49
LABRADOR preliminary Internal Design Review Gary S. Varner On the whipping post ID Lab 10 Oct 2003

LABRADOR preliminary Internal Design Review

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LABRADOR preliminary Internal Design Review

LABRADORpreliminary Internal Design Review

Gary S. VarnerOn the whipping post

ID Lab10 Oct 2003

Page 2: LABRADOR preliminary Internal Design Review

1Gary S. Varner, LABRADOR Internal Design Review, October 2003

Topics (1 hour(?) + 1 hour)

• ANITA ‘ARF’ Architecture– Relation to triggering (STRAW3)– How parts go together

• LABRADOR– Large Analog Bandwidth Recorder And Digitizer with

Ordered Readout– Design philosophy– Improved ADC, readout speed

• Review Items (critical)– It’s the BandWidth Stupid

• What learned from STRAW2• Engineering Tradeoffs

– SPICE simulations (RLC)– 3-D EM sims (Zeland)

Page 3: LABRADOR preliminary Internal Design Review

2Gary S. Varner, LABRADOR Internal Design Review, October 2003

Askaryan Signature

0 2 4 6 8

Time (ns)

• Significant signal power at large frequencies

• Strong linear polarization (near 100%)

Page 4: LABRADOR preliminary Internal Design Review

3Gary S. Varner, LABRADOR Internal Design Review, October 2003

Proposed Signal Flow

STRAW3

LNA Gain

Digitize

Trigger

[GHz]1.2.3

LABRADOR[GHz].3 1.2

Page 5: LABRADOR preliminary Internal Design Review

4Gary S. Varner, LABRADOR Internal Design Review, October 2003

Straw Man

Trigger/Digitizers

Page 6: LABRADOR preliminary Internal Design Review

5Gary S. Varner, LABRADOR Internal Design Review, October 2003

August ’03 Baseline ANITA RF (ARF) Board

Page 7: LABRADOR preliminary Internal Design Review

6Gary S. Varner, LABRADOR Internal Design Review, October 2003

LABRADOR Goals

• Maximum input bandwidth– 50Ω impedance– Simplified architecture (no trigger functionality)– “best” RF coupling into Switched Capacitor storage cells– Classical engineering trade-offs

• Input trace resistance vs. load capacitance• Storage capacitor kTC noise vs. load capacitance• Storage switch Ron vs. drain load capacitance

• Analog Transfer– Optimum speed– Individual channel parallel

• Improved ADC– Ramp type – no missing codes– Massively parallel to reduce conversion time

Address first

Page 8: LABRADOR preliminary Internal Design Review

7Gary S. Varner, LABRADOR Internal Design Review, October 2003

RF Transient Recorder Specs

• >= 1GHz analog input bandwidth (200-1200MHz)

• multi-GSa/s sampling rate (Nyquist limit min.)

• minimum phase distortion for clean polarization

• dynamic range (>= 10 bits)

• internal Analog to Digital Conversion (ADC)

• short record length (100-200ns if optimally matched)

• self-triggering with fine threshold adjustment

• bi-polar triggering

• deadtimeless conclude multi-hit buffering needed

• LOW POWER!! (need 36(40) * 2 channels)

[Acqiris > 1kW] Target: 20W/channel 20mW/channel

Page 9: LABRADOR preliminary Internal Design Review

8Gary S. Varner, LABRADOR Internal Design Review, October 2003

Switched Capacitor Array (SCA)

input• Write pointer is ~4-6 gates open @ once

Page 10: LABRADOR preliminary Internal Design Review

9Gary S. Varner, LABRADOR Internal Design Review, October 2003

STRAW2/3 Architecture

• 0.25µm TSMC process

Page 11: LABRADOR preliminary Internal Design Review

10Gary S. Varner, LABRADOR Internal Design Review, October 2003

LABRADOR Architecture

• 0.25µm TSMC process

Page 12: LABRADOR preliminary Internal Design Review

11Gary S. Varner, LABRADOR Internal Design Review, October 2003

STRAW2 Evaluation

• RF signal input

• Adjustable: 0.6 –3.4 GSa/s

• 256 samples (70 –300ns)

Page 13: LABRADOR preliminary Internal Design Review

12Gary S. Varner, LABRADOR Internal Design Review, October 2003

Better than expected

STRAW2 Sampling Freq.

0

0.5

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3

Freq. Adj. Voltage (ROVDD) [V]

Sam

plin

g Fr

eq. [

GH

z]

Avg.-cycle+cycleSPICE

LABRADOR will extend to lower freq.

Separate VDD,VSS Adjust to reduce

asymmetry

Page 14: LABRADOR preliminary Internal Design Review

13Gary S. Varner, LABRADOR Internal Design Review, October 2003

STRAW ADC Expectations

“worst case” for mismatch in a previous implementation of same

SAR ADC w/R-2R ladder

Can correct to rather linear, but still differential sensitivity and calibration is a pain

Wilkinson type better – monotonicBUT, slower

Page 15: LABRADOR preliminary Internal Design Review

14Gary S. Varner, LABRADOR Internal Design Review, October 2003

“Wilkinson” ADC

+-

• No missing codes

• Linearity as good as can make ramp

• Can bracket range of interest

NB: SCA output not

linear

Page 16: LABRADOR preliminary Internal Design Review

15Gary S. Varner, LABRADOR Internal Design Review, October 2003

ADC Sim

Wilkinson ADC SPICE Sim

y = 128.25x + 1.324R2 = 0.9999

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3

Input Voltage [V]

Out

put c

ode

[cou

nts]

Wilk ADCLinear (Wilk ADC)

Page 17: LABRADOR preliminary Internal Design Review

16Gary S. Varner, LABRADOR Internal Design Review, October 2003

Transfer Curve

Storage Cell Simulation

y = 6.2891x - 2364.8R2 = 0.993

0

100

200

300

400

500

600

700

350 400 450 500

Stored Waveform (Vin) [mV]

Diff

sen

sed

Volta

ge (V

out)

[mV]

Rload = 40k

Gain:

mVCkTvstore

rms 23.0==

Page 18: LABRADOR preliminary Internal Design Review

17Gary S. Varner, LABRADOR Internal Design Review, October 2003

Readout speed comparison

12.8 µs20MHz©EXTLABRADOR -- parallel

210 µs10MHzEXTLABRADOR -- serial

240 µs100kHz(b)INTLABRADOR -- ARF

410 µs10MHz(a)EXTSTRAW3 -- FINESSE

1,638 µs2.5MHzINTSTRAW3 -- ARF

3,072 µs1MHzEXTSTRAW2 – DALI

384 µs8MHzEXTSTRAW2 - GEISER

Total LatencyspeedADCIC Evt.Size

6kB

8kB

4kB

(a) 16 channels for STRAW3, 12 channels for STRAW2(>300MB/s!!)(b) 12.8MHz effective: 128x ADC; 100MHz clock, 12b eff. – includes additional latency

© 8x 20MHz ADC in parallel

Page 19: LABRADOR preliminary Internal Design Review

18Gary S. Varner, LABRADOR Internal Design Review, October 2003

RF Response (1)

• Sub-ns transient ping: <= 100ps leading edge

Scope ET sampling:100 Gsa/s equiv.

Page 20: LABRADOR preliminary Internal Design Review

19Gary S. Varner, LABRADOR Internal Design Review, October 2003

RF Response (2)

• Very nice tool: FFT analysis of RF transient pulse

• Have ideas how to improve –roll-off matches SPICE simulations of storage cells

1/8 ampl

Page 21: LABRADOR preliminary Internal Design Review

20Gary S. Varner, LABRADOR Internal Design Review, October 2003

Understanding STRAW2 Performance

• Contributions considered:– Simple Estimates based on R(Z)LC

– Coupling into package leadframe (TQFP-100)

– On-chip “stripline”

• What is the real limitation?– Cannot rule out multiple contributions (2x poles?)

Page 22: LABRADOR preliminary Internal Design Review

21Gary S. Varner, LABRADOR Internal Design Review, October 2003

STRAW2 Model

7mm3.2mm

MOSIS ID

ii

• Microstripinput

Page 23: LABRADOR preliminary Internal Design Review

22Gary S. Varner, LABRADOR Internal Design Review, October 2003

STRAW2 Equiv. Ckt.

STRAW2 Resistance Estimate Input (RF) Input (ref)bond wire

0.0 0.1 pad70 0.2 M5-M4

Metal 4(sheet) = 0.07 Ohm/sq 243.5 17.0 typ length (sq.)Metal 5(sheet) = 0.03 Ohm/sq 1704 51.1 typ length (sq.)

Poly contact = 5.1 Ohm 6 6 0.9 0.9via 1= 2.7 Ohm 6 3 0.5 0.9via 2= 5.35 Ohm 6 3 0.9 1.8via 3= 8.26 Ohm 6 3 1.4 2.8via 4= 11.34 Ohm 6 1.9

56.6 23.6 Total per feed

48.3 Rterminator

Measured: 130 Ohm 128.5 Grand Total

17Ω

29Ω

48Ω

~50Ω

78fF

~1kΩ

~6fF0.11Ω

22-45Ω

50-130Ω

M5 14λ

Lbond=2.6nH(Z=130,L=6mm)

STRAW2 Z~50ΩM498λ

M5 60λ

Z~30ΩSTRAW3 M498λ

Page 24: LABRADOR preliminary Internal Design Review

23Gary S. Varner, LABRADOR Internal Design Review, October 2003

Naïve Calculations –EST.

Component Length/area Unit Factor Funit Total [fF]Input traces 5 cm 0.2 pF/cm 1000 w.a.g.bonding wire 150 mil 0.3 pF/wire 300 w.a.g.

input pad 60 um^2 187 fF/pad 187 Tannerinput protection 594 λ 1.1 pF/ckt 1100 SPICEstripline area 2500 um^2 43 aF/um^2 107.5 MOSISstripline fringe 5 mm 60 aF/um 300 MOSISSwitch Drains 256 switches 5.6 fF/drain 1433.6 SPICE

Open Switches 6 open 87 fF/gate 522 SPICE

TOTAL 4.9501 pF

.1.22

13 GHz

RCf dB ==

πBonding wire, series R limit

R=Rfeed C=Cload C~2.5pFR~30Ω

.27.12

13 GHz

ZCf dB ==

πLumped elementZ=Z0 C~2.5pF~50Ω

C probably pessimistic, but 2nd pole?800MHz~80Ω C~2.5pF

Page 25: LABRADOR preliminary Internal Design Review

24Gary S. Varner, LABRADOR Internal Design Review, October 2003

Bounding Case

Guidance for Cap Max

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5

Total Load Capacitance [pF]

BW

[GH

z]

pure C + ZoSTRAW2

Page 26: LABRADOR preliminary Internal Design Review

25Gary S. Varner, LABRADOR Internal Design Review, October 2003

Storage Capacitor constraints

Impact of Storage Cap size

0

0.5

1

1.5

2

2.5

0 50 100 150 200

Storage Cap [fF]

Vrm

s [

mV

]

Vrms

STRAW2

For 1V useable input range

9bits

10bits

11bits

12bits

mVCkTvstore

rms 23.0==

Cstore only 78fF !!

Too big??

DC SPICE sim shows can make Rstatic ~ 920Ω, but there is a dynamic component also.

Page 27: LABRADOR preliminary Internal Design Review

26Gary S. Varner, LABRADOR Internal Design Review, October 2003

RF Coupling Simulation

.4.62

13 GHz

RCf dB ==

π.4.6

21

3 GHzRC

f dB ==π

.4.62

13 GHz

RCf dB ==

π.4.6

21

3 GHzRC

f dB ==π

die

on-chip 50Ω stripline

Bonding wires

• Utilizes the LC program (FTDT algorithm)– Cray developed, available for free under Linux

Page 28: LABRADOR preliminary Internal Design Review

27Gary S. Varner, LABRADOR Internal Design Review, October 2003

S-Parameters

STRAW2 Packaging S-Parameters

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

Frequency [GHz]

S11S21

VSWR:

1.8 [1GHz]

1.9 [2GHz]

Page 29: LABRADOR preliminary Internal Design Review

28Gary S. Varner, LABRADOR Internal Design Review, October 2003

SPICE stripline vs. lumped

Transmission line – lossy (multiple elements)

Two techniques give plausibly consistent results, however there is good reason to be skeptical (GIGO)

One point: @ 1GHz, length of on-chip stripline is approx.4-6o (STRAW2/3)

[~3o LABRADOR]

Page 30: LABRADOR preliminary Internal Design Review

29Gary S. Varner, LABRADOR Internal Design Review, October 2003

RF Response

Tried afterLast designReview –

BW obtainedToo High!!

Page 31: LABRADOR preliminary Internal Design Review

30Gary S. Varner, LABRADOR Internal Design Review, October 2003

A worry…

Switch Transition Timing

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5

Time [ns]

Gat

e vo

ltage

[V]

SMP0SMP0b

1.27GHz

1.6kΩ

3.4kΩ

604MHz11.7kΩ

170MHz

11.7kΩ

1.4MHz

Page 32: LABRADOR preliminary Internal Design Review

31Gary S. Varner, LABRADOR Internal Design Review, October 2003

SPICE Wave capture Sims

Page 33: LABRADOR preliminary Internal Design Review

32Gary S. Varner, LABRADOR Internal Design Review, October 2003

Raw Waveform

Page 34: LABRADOR preliminary Internal Design Review

33Gary S. Varner, LABRADOR Internal Design Review, October 2003

Simulation

Sample compares

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

Time[ns]

Am

plitu

de

unloaded0.25pF loadRef x637fF CstoreBig gateSuperD buffBig CstoreTiny CapGND source

Page 35: LABRADOR preliminary Internal Design Review

34Gary S. Varner, LABRADOR Internal Design Review, October 2003

FFT curves

Vref1

Vref2

STRAW2

Page 36: LABRADOR preliminary Internal Design Review

35Gary S. Varner, LABRADOR Internal Design Review, October 2003

Cross-check

Vref Comparison

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.5 1 1.5 2 2.5 3

Time [ns]

DC

sub

t. Vr

ef

Vref1Vref2Vorig

Page 37: LABRADOR preliminary Internal Design Review

36Gary S. Varner, LABRADOR Internal Design Review, October 2003

Cross-check (2)

Vref Comparison

-0.05

0

0.05

0.1

0.15

0.2

0.5 1 1.5 2 2.5 3

Time [ns]

DC

sub

t. Vr

ef

Vref1Vref2

Page 38: LABRADOR preliminary Internal Design Review

37Gary S. Varner, LABRADOR Internal Design Review, October 2003

Cross-check (3)

Vref Comparison

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.5 1 1.5 2 2.5 3

Time [ns]

DC

sub

t. Vr

ef

Vref1Vref2VorigVref3Vref4Vref5

Page 39: LABRADOR preliminary Internal Design Review

38Gary S. Varner, LABRADOR Internal Design Review, October 2003

Treat as Systematic Error?

BW Comparison STRAW2

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1 1.2

Freq [GHz]

Atte

nuat

ion

[dB

]

Vref sample1Vref sample2

ContinueStudying

Page 40: LABRADOR preliminary Internal Design Review

39Gary S. Varner, LABRADOR Internal Design Review, October 2003

Convergence** Accuracy and convergence options:* absi|abstol : 5e-010 absv|vntol : 1e-006 accurate : 0* cshunt : 0 dchomotopy : All dcmethod : Standard* dcstep : 0 extraiter|newtol : 0 fast : 0* gmin : 1e-012 gmindc : 1e-012 gramp : 6* gshunt : 0 kcltest : 1 kvltest : 0* maxdcfailures : 4 mindcratio : 0.0001 minsrcstep : 1e-008* numnd|itl1 : 200 numndset|dchold : 20 numns|itl6 : 50* numnx|itl2 : 80 numnxramp : 40 precise : 0* reli|reltol : 0.0005 relv : 0.0005 tolmult : 1** Timestep and integration options:* absdv : 0.5 absq|chargetol : 1e-014 ft : 0.4* lvltim : 2 maxord : 2 method : gear* mintimeratio : 1e-009 mu : 0.5 numnt|itl4 : 10* numntreduce|itl3 : 3 poweruplen : 0 reldv : 0.35* relq|relchgtol : 0.0005 rmax : 2 trtol : 10** Model evaluation options:* dcap : 2 defad : 0 defas : 0* defl : 0.0001 defw : 0.0001 defnrd : 0* defnrs : 0 defpd : 0 defps : 0* deriv : 0 minresistance|resmin : 1e-005 modelmode : cachetable* moscap : 0 mosparasitics : 0 scale : 1* scalm : 1 tnom : 25 wl : 0** Linear solver options:* linearsolver : best pivtol : 1e-014 zpivtol : 1e-006*

Page 41: LABRADOR preliminary Internal Design Review

40Gary S. Varner, LABRADOR Internal Design Review, October 2003

LABRADOR case

128x Wilk ADCs8 chan. * 256 samples

8x HS Analog out, 1x MUX out

STRAW3

Page 42: LABRADOR preliminary Internal Design Review

41Gary S. Varner, LABRADOR Internal Design Review, October 2003

LABRADOR Equiv. Ckt.

4.7Ω

28Ω

~13Ω

10fF

~0.7kΩ

~12fF0.02Ω

0.3Ω

50-130Ω

M5 14λ

Fixed

LABRADOR Resistance Estimate Input (RF) Input (ref)bond wire

Length 17000 λ 0.0 0.1 pad70 0.2 M5-M4

Metal 4(sheet) = 0.07 Ohm/sq 71.42857 5.0 typ length (sq.)Metal 5(sheet) = 0.03 Ohm/sq 166.6667 5.0 typ length (sq.)

Poly contact = 5.1 Ohm 6 6 0.9 0.9via 1= 2.7 Ohm 6 3 0.5 0.9via 2= 5.35 Ohm 6 3 0.9 1.8via 3= 8.26 Ohm 6 3 1.4 2.8via 4= 11.34 Ohm 6 1.9

10.5 11.5 Total per feed

28 Rterminator

Measured: Ohm 50.0 Grand Total

STRAW2 Z~50ΩM498λ

LABRADOR M5 102λ

M4 Z~13Ω238λ

Page 43: LABRADOR preliminary Internal Design Review

42Gary S. Varner, LABRADOR Internal Design Review, October 2003

Comparison

BW Comparison LABRADOR

-14

-12

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1 1.2

Freq [GHz]

Atte

nuat

ion

[dB

]

STRAW2 (pessimistic)LABRADOR (mod)

2.33fF

2x W:L

Page 44: LABRADOR preliminary Internal Design Review

43Gary S. Varner, LABRADOR Internal Design Review, October 2003

LABRADOR – Best Quess onto chip

Component Length/area Unit Factor Funit Total [fF]Input traces 5 cm 0.2 pF/cm 1000 w.a.g.bonding wire 150 mil 0.3 pF/wire 300 w.a.g.

input pad 60 um^2 187 fF/pad 187 Tannerinput protection 594 λ 1.1 pF/ckt 1100 SPICEstripline area 2500 um^2 43 aF/um^2 107.5 MOSISstripline fringe 5 mm 60 aF/um 300 MOSISSwitch Drains 256 switches 5.6 fF/drain 1433.6 SPICE

Open Switches 6 open 87 fF/gate 522 SPICE

TOTAL 4.9501 pF2.3fF

8fF

.35.12

13 GHz

ZCf dB ==

πHard to get much

higherZ=Z0 ~50Ω C~2.35pF

0.3pF?

2.05pF

.876.02

13 GHz

ZCf dB ==

πPessimistic case: full stripline Cap = .74pF

If use bigger transistors, Ctotal ~ 2.8pF

[Min tran & full Cap = 1.46GHz]

Page 45: LABRADOR preliminary Internal Design Review

44Gary S. Varner, LABRADOR Internal Design Review, October 2003

Zeland Software

Serious Learning CurveBasically as complex as

AutoCAD

Best use of time?

Page 46: LABRADOR preliminary Internal Design Review

45Gary S. Varner, LABRADOR Internal Design Review, October 2003

Summary/Homework

• Package simulation– Geometry Input to Zeland quite elaborate– Will take some time– Not much can do about (BGA not really an option)

• Plans:– LABRADOR submission deadline (11/17)

• Only mopping up after everyone disappears for Antarctica

– Bite bullet and increase SPICE sim window enough to do AVTECH pulse simulation

– Optimization: specific tuning:• Storage cap size• Storage gate size

– Multi-dim optimization? (using 4x software tools…)

• Action Items from this meeting (another mtg?)• Hope at least can sign-off on general issues

Page 47: LABRADOR preliminary Internal Design Review

46Gary S. Varner, LABRADOR Internal Design Review, October 2003

Back-up slides

Page 48: LABRADOR preliminary Internal Design Review

47Gary S. Varner, LABRADOR Internal Design Review, October 2003

Summary:Design Issues for ANITA

• RF amps/filter mounting– Directly onto back of antennas? (modular)

• Better performance, but power, cooling, cabling issues

– Miteq LNAs adequate?– Sufficient sensitivity (w/ power limit, multi-notch filters) ??

• Trigger architecture:– Global, local, cluster (half-array) ??– Logic on ARF boards ??– Multi-leveled ?? Multi-band ??– VETO ?? RCP & LCP generation ??

• Signal digitizing:– Random interleaving (longer record length) ??– Alternatives to current plan ??– Multi-buffering (ping-pong) depth ??

Page 49: LABRADOR preliminary Internal Design Review

48Gary S. Varner, LABRADOR Internal Design Review, October 2003

High-speed Digitizers

• Kleinfelder speed but not high

analog BW

High Speed Digitizer Comparison

10

100

1000

10000

10 100 1000 10000

Analog Bandwidth [MHz]

Sam

plin

g R

ate

[MS

a/s]

ZEUS[12]RD2[13]Kleinfelder[14]Haller[15]ADeLine1[11]DSC/DRS[16]AD9410[17]CLC5957[18]TLV5580[19]ADS5102[20]MAX1449[21]

Desired Max.Operating Region

STRAW2• Analog BW tough

• Comm. ADC very high P