30
1 Laboratoire des Systèmes Intégrés (Integrated Systems Laboratory) Research Activities Dr. David Atienza Prof. Giovanni De Micheli RWTH Aachen – EPFL Joint Research Meeting

Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

1

Laboratoire des Systèmes Intégrés(Integrated Systems Laboratory)

Research Activities

Dr. David AtienzaProf. Giovanni De Micheli

RWTH Aachen – EPFL Joint Research Meeting

Page 2: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 230/08/2007

Research Projects (1/2)

System-on-Chip Consumer Electronics Networks-on-Chip (NoC) interconnects Thermal modeling SoCs

Reliable Nano-Scale Circuits Efficient addressing schemes (micro/nano) Circuit-level defect modeling and reliable

CAD toolsMOSFET

today 22 nmMOSFET in 2008

4.2 nmMOSFETin 2023

Page 3: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 330/08/2007

Research Projects (2/2)

Wireless Sensor Networks (WSNs) Power-efficient communication protocols Modeling of working conditions of nodes Self-maintained (scavenging mechanisms)

Lab-on-Chip Integration of bio-electro- mechano- opto-

systems Point of care medical devices Implanted health monitoring devices

Page 4: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 430/08/2007

World-Wide Partners and Influence

HolstThe Netherlands

IMECBelgium

Stanford,UC San Diego

CA, USA

Complutense U.Spain

Joint work

World-wide impact

Bologna,Cagliari, Verona

Italy,

Page 5: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 530/08/2007

Research Projects (1/2)

System-on-Chip Consumer Electronics Networks-on-Chip (NoC) interconnects Thermal modeling SoCs

Reliable Nano-Scale Circuits Efficient addressing schemes (micro/nano) Circuit-level defect modeling and reliable

CAD toolsMOSFET

today 22 nmMOSFET in 2008

4.2 nmMOSFETin 2023

Page 6: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 630/08/2007

Roadmap continues: 90→65→45 nm “Traditional” Bus-based SoCs fit in one tile !! Communication demands: unevenly distributed,

because of architectural heterogeneity

I/0

I/0

PE

PE PE PE

SRAM SRAM

DRAM

I/O

I/OPERIPHERALS

3D stacked m

ain mem

ory

PE

LocalMemory

hierarchy

CPU

i/o

Consumer SoCs: Architecture Evolution

Page 7: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 730/08/2007

DSPNI

NIDRAM

switch

DMANI

CPU NI

NIAccelNI MPEG

switch

switch

switch

NoC

switch

switch

NetworkInterface Clean separation at

session layer Cores issue end-to-end

transactions NI deals with transport,

network, link, physical

Modularity at HW level:only 2 building blocks Network interface Switch (router)

Physical design aware(floorplan global routing)

Networks-on-Chip (NoC) Interconnects

Page 8: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 830/08/2007

SunFloor

TopologySynthesis

includes:FloorplannerNoC Router

RTLArchitecturalSimulation

Constraint & Comm graph

Area models

SystemCcode

NoClibrary

FPGAEmul.

To fab

PlatformGeneration

(xpipes-Compiler)

Synth.

User:power, area

Power models

Constraints:area, power,

IP Coremodels

Placem.&

Routing

Codes,Simul

Applic.

Area, power characterizationFloorplanning specifications

Complete NoC-Based EDA Flow

Participants: F. Angiolini, A. Pulini, Dr. S. Murali, Dr. D. Atienza,

Prof. L. Benini, Prof. G. de Micheli Partners: Bologna, Stanford, Cagliari.

Backend flow 130, 90, 65nm

Sunfloor

Page 9: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 930/08/2007

M5 T2M4

P4 P5

AHB Layer 2

M7 T3M6

AHB Layer 3

M9 T4M8

P8 P9

AHB Layer 4

M1 T0M0

P0 P1

AHB Layer 0

M3 T1M2

P2 P3

AHB Layer 1A

MB

A A

HB

cro

ssb

ar

S10

S11

S12

S13

S14

P6 P7

Realistic 130nm SoC (10 cores,5 accelerators, 15 mem. slaves)

Shared bus fully saturated! Multilayer solution required for

performance: Intra-cluster traffic to private

slaves (P0-P9) is bound withineach layer, reducing congestion

Shared slaves (S10-S14) can beaccessed in parallel

Representative 5x5 Multilayerconfiguration (up to 8x8)

Synthesized for max frequency

Case study 130nm: AMBA AHB Multilayer

Page 10: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

1030/08/2007

M0

P0

M1

P1

M2

P2

M3

P3

M5

P5

M4

P4

M6

P6

M7

P7

M8

P8

M9

P9

T0

S10

T1

S11

T2

S12

T3

S13

T4

S14

Uni- Bi-directional links: balanced, no bottlenecks Custom, but almost regular topology: easy to floorplan Optimally placed private slaves, scattered shared slaves Only 4 hours specification to layout thanks to EDA flow

NoC solution: Quasi-Mesh

Page 11: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

1130/08/2007

IPs: 1mm² obstructions (ARM cores, 32kB SRAM) Wire routing over the cores was forbidden Minimum delay synthesis

1mm²

AMBA

Slaves

AHB Layer

1mm²

Mesh Row

2 NIs + 1 switch

Summary of results:6.4% vs. 22.9% post P&R timing degradation → Improved predictabilityClock frequency 793 vs. 370 MHz post P&R → Much faster15% avg application speedup (longer latency, more effective bandwidth)

Application specific NoC competitive with state-of-the-artinterconnect even in 130nm using proposed EDA flow

AMBA vs NoC: Results in 130 nm

Page 12: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 1230/08/2007

90 nm, 1 mm2 cores

65 nm, 1 mm2 cores

65 nm, 0.4 mm2 cores

Three designs for max frequency:

NoC Technology Scaling

Page 13: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 1330/08/2007

NoC Results in 90 and 65nm

0.63 mm2

0.64 mm2

1.31 mm2

NoC CellArea

495.3 mW520.1 mW784.6 mW

Power BandwidthMax Freq.Max Frequency

(38-bit links)

285 GB/s1.25 GHz65 nm, .4 mm2

1.25 GHz1 GHz

285 GB/s65 nm, 1 mm2

228 GB/s90 nm, 1 mm2

Power shifting from switches/NIs to links (buffering) Links always short (<1.2 mm) → non-pipelined Power figures:

− 90 nm 1 mm2: 3.1 mW− 65 nm 1 mm2: 3.6 mW (tightest fit → more buffering)− 65 nm 0.4 mm2: 2.2 mW

Page 14: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 1430/08/2007

Thermal Modeling Multi-Processor SoC

[Sun,1.8 GHz

Sparc v9Microproc]

Complex SoCs, increase power density Non-uniform hot-spots Spatial gradients: large part of chip

with slower performance & leaking

Participants: F. Mulas, M. Buttu, M. Pittau, P. Valle,

Prof. S. Carta, Prof. A. Acquaviva,Dr. D. Atienza, Prof. L. Benini,Prof. G. de Micheli

Partners: UCM, Cagliari, Verona, Bologna.

[Sun,Niagara

Broadband Processor]

Page 15: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 1530/08/2007

FPGA

Xilinx

MPSoC HW architec. emulation

HW statistics extraction system

HW/SW Emulation Framework for MPSoC

FPGA FPGA Host communication ?? Host communication ??mustmust be be efficientefficient andand flexible flexible toto avoidavoid

bottlenecksbottlenecks

Integration FPGA SoC-NoC emul with SW thermal libraries

SW Thermal Model

Host PC

standardstandard EthernetEthernet connectionconnection & &dedicateddedicated HW monitor HW monitor

ConnectionConnection Monitor Monitor

Energy

Temp. (T)

si sisi

sisi

sisi

sisi

cu cucu cu cu

Page 16: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 1630/08/2007

Comparisons with State-of-the-art Simulators

HW emulation does not lag with large numberof processors (100 MHz) or signal management (NoC)

0.17 sec(1147x)

3’ 15 secMultimedia pipeline(4 cores-NoC)

0.18 sec(861x)

2’ 35 secMultimedia pipeline(4 cores-bus)

1.2 sec(664x)

13’ 17 secMatrix (8 cores)

1.2 sec(269x)

5’ 23 secMatrix (4 cores)

1.2 sec(88x)

106 secMatrix (one core)

HW/SWEmulator

MPARMSW sim.

Performance Improvement

0200400600800

100012001400

Matrix

(one core)

Matrix (4

cores)

Matrix (8

cores)

Dithering

(4 cores-

bus)

Dithering

(4 cores-

NoC)

Speed-ups of 3 orders of magnitude withcycle-accurate MPSoC simulators

Page 17: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 1730/08/2007

Long Thermal Studies

SW sim. very slow with “high” accuracy (<12 cells) Long simulations are unaffordable: 2 days for 0.18 real sec

Average temperature of emulated 4-core MPSoC

300

320

340

360

380

400

420

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Time (seconds)

Tem

pera

ture

(K

elv

in)

Simulation in MPARM Emulation Emulation with DFS

Emulation time5.02s (26 cells)!DFS OFF:

500 MHz.

DFS ON:100 MHz. 100 MHz.

500 MHz.

Validation run-time thermal management in real-life systems

Page 18: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 1830/08/2007

FPGA

Xilinx

MPSoC HW architec. emulation

HW statistics extraction system

OS-Based Thermal Management Framework

uCLinux extended with task migration support

SW Thermal Model

Host PC

ConnectionConnection Monitor Monitor

Energy

Temp. (T)

si sisi

sisi

sisi

sisi

cu cucu cu cu

MPOS layer + task migration

Page 19: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 1930/08/2007

Case Study: OS-Based Thermal Policies

Working conditions− 3 cores start processing− 1 core remains idle for cooling

Task migration policy− Treshold-Based Policy:

– Upper bound: 360º K− Migration to coolest processor

DFS Policy− 10 Emulated freq: 100-512 MHz− Linear decrease applied

if deadline met

Task2Task1 Task3

Task2

Task1Task4

Page 20: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 2030/08/2007

Results: Thermal Evaluation

Page 21: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 2130/08/2007

Research Projects (1/2)

System-on-Chip Consumer Electronics Networks-on-Chip (NoC) interconnects Thermal modeling SoCs

Reliable Nano-Scale Circuits Efficient addressing schemes (micro/nano) Circuit-level defect modeling and reliable

CAD toolsMOSFET

today 22 nmMOSFET in 2008

4.2 nmMOSFETin 2023

Page 22: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 2230/08/2007

Nanoscale Hybrid Crossbar Memory

p-doped SiNW or CNT

n doped SiNW

molecularswitch

molecularswitch

SiO2-coated n-doped SiNW

P-doped SiNW or CNT

Lower layer of NW

Upper layer of NW

Participants: H. Ben Jamaa, F. Angiolini,

S. K. Bobba, Dr. David Atienza, Prof. Yusuf Leblebici,

Prof. Giovanni de Micheli, Prof. Luca Benini

Partners: STMicroelectronics, Stanford, Bologna

RegularArchitecture

Logic Circuit

EncoderRecognizer

Recognizer

CrossbarMemory

CrossbarMemory

Add.

Page 23: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 2330/08/2007

Project Major Research Questions

Conformal layer

2nd spacer

Multispacer

1st spacer

Sacrificial layerConformal layer

Integration Issue:micro-to-nano interface

within hybridizedstandard CMOS

Reliability Issues: Switch defects Nanowire breakage Nanowire shorts

G C

Nanowiredifferentiation

Defect-awareaddressing

Defect-awareinformationencoding

Redundancy atthe device levelAchieved reliable decoding schemes for multi-Vt SiNW

memory architectures

Page 24: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 2430/08/2007

Research Projects (2/2)

Wireless Sensor Networks (WSNs) Power-efficient communication protocols Modeling of working conditions of nodes Self-maintained (scavenging mechanisms)

Lab-on-Chip Integration of bio-electro- mechano- opto-

systems Point of care medical devices Implanted health monitoring devices

Page 25: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 2530/08/2007

Wireless Sensor Networks (WSN) Projects

Participants: A. Susu, F. Rincon, Dr. N. Khaled,

Prof. Andrea Acquaviva, Dr. David Atienza,Prof. Giovanni de Micheli

Partner: IMEC-NL/Holst, ComplutenseUniv. Madrid

Optimization of communicationprotocols for WSN nodes Nodes: SensorCubes (IMEC/Holst) Basestation: USB Stick-MSP 430 (Holst) Tiny OS

Modeling of scavenging devices Model checking-based simulator

Page 26: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 2630/08/2007

MAC Protocols Exploration

Contention based/random access Mesh network. Dynamic topology, no

rigid structure Allows multihoping, energy

optimization, mesh topology Applications: spread networks,

alarms o events transmission B-MAC, S-MAC, Aloha protocol.

TDMA Based dynamic/static Star topology. Optimal under known/static

conditions Appls: real time or continuos

monitoring (e.g. EMGBAN)Working 5/10-node WSN for biomedical applicationsmonitoring (ECG, EEG, EMG, etc.)

Page 27: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 2730/08/2007

Research Projects (2/2)

Wireless Sensor Networks (WSNs) Power-efficient communication protocols Modeling of working conditions of nodes Self-maintained (scavenging mechanisms)

Lab-on-Chip Integration of bio-electro- mechano- opto-

systems Point of care medical devices Implanted health monitoring devices

Page 28: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 2830/08/2007

Lab-on-Chip Projects

Participants: Dr. Frank K. Guerkaynak, Dr. Carlotta Guiducci, Prof. Y. Leblebici Dr. Diego Barrettino, Prof. Martin Gijs Prof. Luca Benini, Prof. Giovanni de Micheli

Partner: Institut Suisse de Recherche Expérimentale sur le Cancer (ISREC), Lab NanoPhysics Paris, Bologna

Cancer research Why incidence of cancer rises exponentially with age? Deterioration in genomic stability due to age creates

higher incidence of cancer

Capacitive DNA sensor chip Aims for cheap label-free detection of DNA Passive sensors realized on glass substrates 4th generation of chips underway

Page 29: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 2930/08/2007

Moving Forward

Design better circuits with current technology NoC based design and EDA tools with new tech nodes Thermal studies in multi-FPGA context Relation thermal vs long-term reliability

Design working circuits with future technologies Interconnect nano wires with micro wires Reliable decoding models of underlying faults and defects Scavenger-based wireless sensor networks

Extend design and data analysis techniques tointegrated non-conventional systems Medical diagnosis and studies of cancer-age relations Capacitive DNA sensor

Page 30: Laboratoire des Systèmes Intégrés (Integrated Systems ...Lab-on-Chip Integration of bio-electro- mechano- opto-systems Point of care medical devices Implanted health monitoring

David Atienza (LSI/EPFL) 3030/08/2007

QUESTIONS ?