50
PAOLO TANGA Laboratoire Cassiopée ?

Laboratoire Cassiopée

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Laboratoire Cassiopée

PAOLO TANGA Laboratoire Cassiopée

?

Page 2: Laboratoire Cassiopée

SummaryGrain sticking and aggregate formation

Models and experimentsGas acting on particles

Drag forceEffects in a laminar disk: sedimentation and radial motion

Gravitational collective effects in the dust sub-diskTurbulent diffusivity

Global turbulenceFeedback of particles over gas (Kelvin-Helmoltz instability)

What is turbulence after all?3D and 2DEffects of rotation

Turbulent, not random – the danger of simplicityStructures in a turbulent flow: effects over particlesAre disks globally turbulent? Sources of turbulence

Extreme exemples: stability and its consequences

Page 3: Laboratoire Cassiopée

Grain glue, aggregate structureVan der Waals interactions (induced dielectric forces).For small, hard grains (Derjaguin et al. 1975):

Confirmed with SiO2 spheres, R~0.5-2.5 µm (Heim et al 1999).

Electro-static interactions (103 x stronger)

Rolling-friction forces (reshaping, compaction, energyabsorption)

~10-10 N (Heim et al. 1999).Observed under scanning electron microscope (Heim et al. 2005)

a1

a2

( )2121 /,4 aaaaRRF sc +== πγ

Page 4: Laboratoire Cassiopée

Other glues: ices

Problem: rest. coeff. ~80%

Rest. coeff. 8% if <40 oKElectric charges importantPolarization possible by mutualcollision

Wang et al. 2005

Page 5: Laboratoire Cassiopée

Grain-grain collisionsSpherical grains:

Poppe et al (2000) experiments (« hard » SiO2grains)

Sharp transition from sticking to bouncing for v>1-2 m/sAve. restitution coeff. decreasing with v (large scatter)No theoretical models available for this threshold

Models (« soft » polystyrene grains)restitution coeff. increasing with v (Bridges et al. 1996)Theory available (Chosky et al 1993): sticking v<<1 m/s

Irregular grains:Smooth transition: even at v~100 m/s sticking is marginally

possible.

Page 6: Laboratoire Cassiopée

Aggregates: fractal particles

Mono-size experiments:Df~1.4 brownian motionDf~1.9 turbulenceDf~1.8 sedimentation

ModelsNumerical studies (Kempf et al. 1999)

<m> ~ tk ok with experimentsLower Df 1 for low mean free path (random walk)

Page 7: Laboratoire Cassiopée

Grain growth: Smoluchowski’s equation

The most used theoretical model for growth prediction.

The formulation of the kernel K is crucial.

Some successfull predictions (Wurm and Blum 1998)

Page 8: Laboratoire Cassiopée

Micro-gravity experimentsCODAG experiment(Cosmic dust aggregation)

Blum et al. 2000

1.8

Page 9: Laboratoire Cassiopée

Laboratory experiments

Page 10: Laboratoire Cassiopée

Aggregate-aggregate collisions: results

Dominik, Tielens (1997) – Wurm, Blum (2000)

Page 11: Laboratoire Cassiopée

Macroscopic aggregatesmm vs. cm particles

No satisfying theoretical model.

Low-velocity impacts:Sticking up to 1-2 m/sMass transfer to the projectile

High-velocity impacts:No stickingMass transfer (1/2) to the target for V>13 m/s(Wurm et al. 2005)

Small-size particlesare kept aboundantin the disk

Page 12: Laboratoire Cassiopée

Gas coupling: drag on a sphere« Equation of motion for a small rigid sphere in a nonuniform flow »:

Maxey and Riley (1983)

µ: viscosity; a: particle radius; ρf: fluid density; ρp: particle density(from Basset-Boussinesq-Oseen, « BBO equation »)

( )∫ ⎟⎠⎞

⎜⎝⎛ ∇−−

−−

+⎟⎠⎞

⎜⎝⎛ ∇−−−

+⎟⎠⎞

⎜⎝⎛ ∇−−−=

t

f

fp

add

dd

td

a

adtd

dtd

adtd

aDtD

dtd

0

22

22

2222

2

2

2

61

29

101

21

61

29

uux

uux

uuxux

τττπντµ

ρ

µρρ Stokes drag

Added mass

Basset « history » term

Page 13: Laboratoire Cassiopée

Simplified equation

p

f

p dtd

DtD

dtd

ρρ

δτ

δ =⎟⎠⎞

⎜⎝⎛ −−= ,1

2

2

uxux

Stopping time :

gp F

m v=τuxv −=

dtd

⎪⎪⎪

⎪⎪⎪

=

vvv

v

22

2

2

34

thfD

thf

g

vaC

va

F

ρπ

ρπa << l Epstein

a >> l Stokes

l = (n π aH2)-1~5 x 10-9/ρ (g cm-3) ~ 1-10 m(Supulver, Lin 2000)

Page 14: Laboratoire Cassiopée
Page 15: Laboratoire Cassiopée

Gas friction for fractal particles

normalized projected areas of aggregates

Page 16: Laboratoire Cassiopée

Vertical settling

zrz

rGM

k2

2 Ω≡⎟⎠⎞

⎜⎝⎛•Central potential: vertical component:

z

⎪⎪⎪

⎪⎪⎪

=

vvv

v

22

2

2

34

thfD

thf

g

vaC

va

F

ρπ

ρπ

)()(103

cmayr

vz

zsettle ≈=τ

zthfgk vvaFz ρπ 22

34

≡=Ω

At the terminal speed:

Page 17: Laboratoire Cassiopée

Sub-keplerian rotationTangential gas velocity in the disk:

2

2 1r

GMdrdP

rv •−−=−

ρθ

2

2

rvk−

drdP

vr

rv

k

k

ρη 111

2

2

2

−=⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−−− )( θη vvkk −Ω≡

31021 −≈−≈

drdP

ρη

Page 18: Laboratoire Cassiopée

Sunward dust fall

Dust particles run headwind

Weidenschilling 1977-..

St~τpΩ~1

Page 19: Laboratoire Cassiopée

Classic « Old » Planet Formation ScenarioSmall density fluctuations could become unstable and form large planetesimals.

λ

From linear perturbations analysis:2222 44)( Ω+Σ−= λλππλ GcF

Σp = surf. density of solids; c = velocity dispersion

Safronov 1969Goldreich, Ward 1973

It requires:• settling• fast collisional dissipation

Page 20: Laboratoire Cassiopée

Unstable wavelengths

2222 44)( Ω+Σ−= λλππλ GcF

ΩΣ

=∗ Gc π2

22Ω

Σ=∗ Gπλ

At 5 AU, in a “minimum mass”nebula, λc = 5.5 10-4 AU

λc~r3/2Σ~r-3/2

c*~const.

Equivalent to the Toomre crit.:

1*

Ω=

GcQp π

Page 21: Laboratoire Cassiopée

Turbulent diffusivityGlobal disk turbulence is very efficient in preventing settling

Dubrulle et al. 1995

Page 22: Laboratoire Cassiopée
Page 23: Laboratoire Cassiopée

Kelvin-Helmoltz instability in a « laminar » nebula

Settled dust create an overdense layer:

back reaction on gasvertical velocity gradient (shear)

Kelvin-Helmoltz instability?

zvg

vk

Richardson number

Page 24: Laboratoire Cassiopée

Could K-H turbulence prevent the gravitationalinstability of the dust layer?

Requirements:Critical mass density ~10-7 g cm-3 (103 x gasdensity)

thickness h<10-5 H (a<10-8-10-10 ??)« Perfect » dissipation by collisionsGas pressure support for particles τs<(Gρp)-1/2

even higher densities required (x 104)

*Weak* turbulence will prevent direct collapse

Page 25: Laboratoire Cassiopée

A new perspective in an enriched nebula

The disk could be « K-H stable » if stratification increasesYoudin & Shu 2002

Page 26: Laboratoire Cassiopée

Putting dust in a disk…Df<2, τs~single particle

Decoupling fromsmall-scale gas motion

Interaction with smallerparticles: Df 3

Large grains sedimentfaster: sweeping ofsmall grains

Erosion ?Turbulence

Page 27: Laboratoire Cassiopée

The danger of simplicity

Flow topology, inertial particlesDensity and velocity are correlated…The simple « homogeneous » approach can be misleading« Turbulent », not « random »

Page 28: Laboratoire Cassiopée

What is fluid turbulence?« Turbulence » is the contemporary presence of different scales

of motion, interacting by energy transfer.

1/η

Page 29: Laboratoire Cassiopée

Turbulence in 2D

Page 30: Laboratoire Cassiopée

2D decaying turbulence

Low energy transfer inside vortices:small scales are ABSENT

Low relative velocities

Page 31: Laboratoire Cassiopée

From 3D to 2D turbulence

McWilliams, 1994

1)(≈

Ω=

llVRoRossby number

Page 32: Laboratoire Cassiopée

Tubulence scales, speeds, structures, rotation…

21

32

34

)(

)()(

Re

⎟⎟⎠

⎞⎜⎜⎝

⎛ Ω≈

⎟⎠⎞

⎜⎝⎛Ω≈≈

⎟⎟⎠

⎞⎜⎜⎝

⎛≈≈

LHL

Ll

llVl

LHC

m

s

ωα

ω

ηνα

1/L 1/η

1)(≈

Ω=

llVRo

k-5/3

k-2

Energy spectrum of the galactic disk (Vereshchagin, Solov’ev 1990)

Page 33: Laboratoire Cassiopée

Are disks turbulent?« Observed » accretion rates: ~10-8 Mo/yr

Molecular viscosity if by far too weak to sustain the observedaccretion

Re

(Longaretti 2003; Dubrulle et al. 2004)

Page 34: Laboratoire Cassiopée

Main (in)stability issues

A keplerian profile is linearly stable wrt axisym. perturbations (Rayleight crit.):

Finite amplitude disturbances (nonlinear) Taylor Couette experiment(Dubrulle 1993, Richard and Zhan 1999, Lesur & Longaretti 2005)

Vertical magnetic field (Balbus, Hawley 1991), « arbitrarly weak »Magneto Rotational Instability

Page 35: Laboratoire Cassiopée

Large scale structures in disks?

1/L 1/η

1)(≈

Ω=

llVRo

k-5/3

k-2

Energy spectrum of the galactic disk (Vereshchagin, Solov’ev 1990)

Bracco et al 1998Anticyclons can form and survive in a keplerian shear

Page 36: Laboratoire Cassiopée

Effects of particle inertia: simple flows⎟⎠⎞

⎜⎝⎛ −−= uxux

dtd

DtD

dtd

pτδ 1

2

2

δ>1δ<1

Chaotic diffusion of particles in simple, stationary flows

Page 37: Laboratoire Cassiopée

Effects of particle inertia: adding global rotation

rurΩurur ˆ)1(212

22

2

δδτ

δ −⎜⎜⎝

⎛⎟⎠⎞−Ω+⎟

⎠⎞

⎜⎝⎛ −×−⎟

⎠⎞

⎜⎝⎛ −−= ∗

rGMr

dtd

dtd

DtD

dtd

f

Ω ≠ 0, δ → 0, Ro=U/2ΩL< 1

Anticyclonic vortices capturesmall planetesimals

Page 38: Laboratoire Cassiopée

φξ

⎟⎠⎞

⎜⎝⎛ −−⎟

⎠⎞

⎜⎝⎛ −Ω+

+⎥⎥⎦

⎢⎢⎣

⎡−⎟

⎠⎞

⎜⎝⎛=

−ξφ

φ

ξδφξ

δφξξ

ξ

vdtdtv

dtd

vdtd

dtd

e1

22

2

2

2

1

Tanga, Babiano, Dubrulle, Provenzale 1996

Page 39: Laboratoire Cassiopée
Page 40: Laboratoire Cassiopée

5 cm 25 cm

log(density) log(vorticity)

Fromang, Nelson, MNRAS, submitted

Page 41: Laboratoire Cassiopée

Role of large-scales structures: summaryVortices can induce low relative velocitiesThey efficiently affect particle distribution depending upon:

St~1LifetimeDisplacement

In-homogeneous growthrole of gravity? Collision rates?

Could they directly form « planets »? (Klahr Bodenheimer 2006)

Page 42: Laboratoire Cassiopée

Small scales

3D isotropic turbulence? (Ro >> 1)

Cuzzi et al. 20013D turbulence (St~0.2 - 6)

Page 43: Laboratoire Cassiopée

An extreme example: the paradox of purely « diffusive » turbulence

Page 44: Laboratoire Cassiopée

Johansen, Henning, KlahrDust sedimentation and self-sustained Kelvin Helmoltz turbulence in protoplanetary disksA&A submitted

y

x

z

ε = local dust/gas mass ratio

Page 45: Laboratoire Cassiopée

Initial conditions for gas:

1 cm particles

Paolo
Text Box
See movies at Anders Johansen home page: http://www.mpia.de/homes/johansen/research_en.php
Page 46: Laboratoire Cassiopée

10 cm particles

Paolo
Text Box
See movies at Anders Johansen home page: http://www.mpia.de/homes/johansen/research_en.php
Page 47: Laboratoire Cassiopée

1 m particles

Paolo
Text Box
See movies at Anders Johansen home page: http://www.mpia.de/homes/johansen/research_en.php
Page 48: Laboratoire Cassiopée
Page 49: Laboratoire Cassiopée

ConclusionsTurbulence could be unavoidable

as byproduct of particle settling in a laminar nebula…as global turbulence

Particle distribution in position and velocity cannot be disentangled

inhomogeneous growth could be « the rule » in many situationsfor building chondrulaefor the growth of ~1 cm to 1 m bodies…

Turbulence could promote local solid enrichment and local gravitationalinstability

The variety of planetary systems (and inside them) could be stronglyinfluenced by the coupling of solid with gas

…turbulence does not forbid planet formation!!

Page 50: Laboratoire Cassiopée

References and cloudy night readings :

Blum et al. Phys Rev. Lett. 85, 12, 2426Derjaguin, Muller, Toporov, 1975 : J. Colloid Interf. Sci., 53, 314Dubrulle, Morfill, Sterzik, 1995, Icarus 114, 237Goldreich, Ward, Astrophys. J. 183, 1051 1973,Heim, Blum, Oreuss, Butt, Phys. Rev. Lett., 83, 3328Heim, Butt, Schrapler, Blum, 2005, Aus. J. Chem., 58, 671 Klahr, Bodenheimer, 2006, ApJ 1, 432Maxey, Riley, 1983, Phys. Fluids 26 (4), 883McWilliams, Weiss, Yavneh, 1994, Science 264, 410Supulver, Lin, 2000, Icarus 146, 525Tanga, Babiano, Dubrulle, Provenzale, 1996, Icarus 121, 158Wang, Bell, Iedema, Tsekouras, Cowin, 2005 ApJ 620, 1027Weidenschilling 1977, MNRAS 180, 57Wurm, Paraskov, Krauss, 2005, Icarus, 178, 253Youdin, Shu 2002, Astroph. J., 580, 494