19
CHAPITRE 3 L’ É L E C T R O N Préambule/Objectifs Élément constitutif fondamental de la matière, l’électron a sans doute été la première particule à avoir été étudié le plus tôt. Qu’est-ce qu’un électron ? Peut-on le décrire en termes de masse, de charge électrique, de moment magnétique ? L’application de l’approche classique, celle observée à notre échelle, est-elle suffisante pour en décrire tous les comportements ? 1. Détermination du rapport e/m Dans l’électrolyse d’une solution d’un sel métallique dans laquelle un courant d’intensité i passe pendant le temps t, FARADAY relia tous les résultats obtenus par la loi suivante : 3.1 1/F est une constante de proportionnalité identique pour toutes les substances; c’est la constante de FARADAY. zest la valeur absolue du nombre de charges portées par l’ion qui réagit à l’électrode. F est appelé le Faraday: c’est la quantité de charge électrique portée par une mole d’ions chargés une fois. Les déterminations les plus précises de F conduisent à la valeur : F = 96 485 coulombs/mol 1 = 96 485 C•mol 1 . L’hypothèse d’AVOGADRO nous assure que le nombre d’atomes dans un atome- gramme est constant et égal à N. L’équation 3.1 montre que :

L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

CHAPITRE 3

L’ É L E C T R O N

Préambule/Objectifs

Élément constitutif fondamental de la matière, l’électron a sans doute été la première particule

à avoir été étudié le plus tôt. Qu’est-ce qu’un électron ? Peut-on le décrire en termes de masse,

de charge électrique, de moment magnétique ? L’application de l’approche classique, celle

observée à notre échelle, est-elle suffisante pour en décrire tous les comportements ?

1. Détermination du rapport e/m

Dans l’électrolyse d’une solution d’un sel métallique dans laquelle un courant

d’intensité i passe pendant le temps t, FARADAY relia tous les résultats obtenus

par la loi suivante :

3.1

1/F est une constante de proportionnalité identique pour toutes les substances; c’est

la constante de FARADAY. zest la valeur absolue du nombre de charges

portées par l’ion qui réagit à l’électrode.

F est appelé le Faraday: c’est la quantité de charge électrique portée par une mole

d’ions chargés une fois. Les déterminations les plus précises de F conduisent à la

valeur :

F = 96 485 coulombs/mol1 = 96 485 C•mol1 .

L’hypothèse d’AVOGADRO nous assure que le nombre d’atomes dans un atome-

gramme est constant et égal à N. L’équation 3.1 montre que :

Page 2: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

N atomes d’une substance monovalente transportent F

1 atome d’une substance monovalente transporte F/N

1 atome d’une substance divalente transporte F/2N

etc.

On pourrait donc atteindre la charge élémentaire portée par chaque atome

monovalent (par exemple) si on avait une valeur précise de N. À l’époque de

FARADAY, cette valeur n’était qu’une grossière estimation provenant de la théorie

cinétique des gaz. Les mesures de MILLIKAN ont donné une valeur précise de la

charge de l’électron; cette valeur a permis ensuite une bonne détermination de N à

partir des expériences de FARADAY.

a- Déflexion électrique des rayons cathodiques

Le phénomène de décharge dans les gaz a été une source fructueuse d’informations

sur les particules élémentaires. On s’aperçut rapidement que les rayons

cathodiques qui apparaissent aux pressions très faibles provenaient de la cathode et

étaient constitués par un faisceau de particules chargées négativement. Une étude

quantitative de la déflexion de ces rayons par les champs magnétiques et électriques

a été faite par J. J. THOMSON. On sait maintenant que ces rayons sont en réalité

des électrons émis par la cathode sous l’effet du bombardement par les ions positifs

toujours présents dans le gaz raréfié.

Voyons tout d’abord les informations quantitatives apportées par la déflexion

électrique.

Un pinceau d’électrons de charge e et de masse m se déplacent entre les armatures

d’un condensateur plan dans lequel le champ électrique (calculable) est E. La

longueur du condensateur est L et on observe la fluorescence due aux électrons sur

un écran convenable placé à la distance D du centre du condensateur. La force,

appelée force coulombienne, exercée sur un électron est dirigée suivant l'axe Oy et

a pour valeur :

(notons que F est opposé à E). Écrivons la relation fondamentale F = m g

, x et y étant les coordonnées de l’électron à l’instant t (Fig. 3.1).

3.2

3.3

Page 3: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

L’intégration de 3.2 donne :

3.4 x = vo t

vo est la vitesse initiale de l’électron avant d’entrer dans le condensateur.

L’intégration de 3.3 donne :

3.5

(la vitesse initiale suivant Oy est nulle)

Figure 3.1. Déviation électrostatique d’un faisceau électronique.

En effet, y = 1/2 g t2 = 1/2 e (E/m) t

2 et dy/dt = e (E/m) t

Le faisceau d'électrons arrive horizontalement par la gauche (Fig. 3.1) et traverse

une région de l'espace située en les deux plaques d'un condensateur (en rouge sur la figure). Il termine sa course sur un écran (en bleu, à droite de la figure).

Selon l'axe des x, la vitesse

est constante.

La vitesse

est nulle à

l’entrée du faisceau électronique dans le champ électrique créé par les plateaux du

condensateur. Cette vitesse augmente puisque les électrons sont accélérés vers la

plaque positive. À la sortie du condensateur, les e ont atteint l’abscisse y1 telle que

:

Page 4: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

puisque L / o mesure le temps requis pour traverser le condensateur. Après ce

point le faisceau suit une trajectoire rectiligne en prenant la direction de la tangente

à la parabole et

La position du spot sur l’écran est donc telle que :

3.6

Cette équation permet de mesurer le rapport e/m en mesurant , L, D, E, pourvu

que o soit connu. La déflexion magnétique va permettre d’éliminer la nécessaire

connaissance de o : figure 3.2.

Figure 3.2. Déviation électromagnétique d’un faisceau électronique.

b- Déflexion magnétique d’un faisceau d’électrons

Le faisceau d’électrons e arrive en O. Entre O et B est appliqué un champ

magnétique orienté perpendiculairement à OB et de l’arrière vers l’avant (direction

Oz). Au déplacement des e est associé un courant électrique i de sens opposé à la

direction des électrons. La règle des trois doigts de la main droite permet de

Page 5: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

déterminer la direction de la force qui est appliquée sur le courant électronique

(Fig. 3.3).

La loi de LAPLACE permet de connaître cette force F :

où est l’angle entre la direction de i et celle du champ magnétique. Avec un

montage convenable :

= / 2 et sin = 1

F = ß i avec q = i t

or ici : q = e = i t et i = e / t

F = (e / t) = e 0

Puisque l /t = o, la forme de la trajectoire est une portion de cercle, à l’intérieur du

champ magnétique ß. En effet, voir la figure 3.4, F = m 2 / R pour une trajectoire

curviligne où R est le rayon de courbure au point considéré. En faisant

l’approximation d’une faible déviation de telle sorte que :

3.7

Page 6: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

Figure 3.3. Règle des trois doigts de la main droite.

Figure 3.4. Déplacement d’un faisceau électronique.

En construisant les systèmes de déflexions magnétique et électrique, on s’arrange

pour que les différents paramètres géométriques soient les mêmes (les expériences

de déflexion se font dans le même appareil). La relation 3.6 s’écrit :

ou encore,

3.8

Ces équations 3.7 et 3.8 permettent de déterminer e/m à partir de quantités

mesurables. La valeur admise actuellement est :

e / m = 1,758 9 1011 C·kg1.

c- Le sélecteur de vitesse.

Page 7: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

On peut également jouer sur la valeur de B pour obtenir une force magnétique

exactement égale en valeur absolue mais de sens opposé à la force électrique. Dans

ces conditions :

e B = e E et = E / B

On obtient ainsi ce que l’on appelle un sélecteur de vitesse. Mais puisque la

particule n’est alors soumise à aucune force, sa trajectoire est rectiligne ( ce qui

permet d’ajuster visuellement la valeur de B) et son mouvement uniforme :

3.8 = o = E / B .

Seuls les électrons incidents de vitesse initiale o ne seront pas déviés. Les

électrons qui n’ont pas la vitesse appropriée o, seront déviés dans un sens ou dans

l’autre. En utilisant un écran percé en son centre, seuls les électrons de vitesse

appropriée passeront.

REMARQUE

La même méthode appliquée aux rayons canaux permet de déterminer la

valeur q / m correspondant à ces particules. Cette valeur est toujours beaucoup plus

petite que e / m et dépend du gaz introduit dans l’ampoule. L’examen des résultats

montre que les rayons sont constitués par des atomes ou des molécules chargées

positivement. Les charges positives sont toujours multiples entiers petits de la

charge élémentaire e. Ceci montre bien que la structure particulaire de l’électricité

et confirme les hypothèses de FARADAY.

2- Détermination de la valeur de e

Les expériences historiques de MILLIKAN sur les gouttes ultramicroscopiques

d’huile datent de 1909. On doit les considérer comme apportant une preuve

complètement indépendante de la précédente de la nature corpusculaire de

l’électricité (Fig. 3.5). J. J. THOMSON et H. A. WILSON avaient déjà remarqué

que des gouttes microscopiques transportaient des charges électriques. MILLIKAN

donna à cette expérience le degré élevé de précision qui permis la mesure de e. Il a

choisi l’huile en raison de sa très faible vitesse d’évaporation. Un appareillage très

compliqué permet de placer les gouttes ultra microscopiques dans un champ

électrique vertical qui peut ralentir leur chute dans l’air, soit arrêter la goutte, soit la

faire remonter.

Page 8: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

Figure 3.5. Expérience de MILLIKAN.

La goutte de masse m, de masse spécifique r placée dans l’air de masse

spécifique ro, s’arrête par action du champ E lorsque la force du champ et la force

de la pesanteur s’équilibrent :

q E = 4/3 r3 ( o ) g

On pourrait donc connaître q si l’on connaissait r. Cette dernière quantité n’est pas

mesurable directement, mais en mesurant la vitesse limite de chute des gouttes. La

vitesse limite, c’est-à-dire le mouvement uniforme, est atteinte lorsque le poids

équilibre les forces de frottement. La résultante des forces de frottement dues à un

milieu de viscosité, , sur une sphère de rayon r se déplaçant à la vitesse est

donnée par la loi de STOKES.

f = 6 r .

La vitesse limite v est atteinte lorsque ces forces équilibrent le poids; donc:

3.9 4/3 r3 ( o ) g = 6 r v

La relation 3.9 permet de déterminer r en mesurant . Les quantités , o et sont

déterminées séparément. La connaissance de r entraîne la détermination de q.

4/3 r2 ( o ) g = 6 v

Page 9: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

L’étape suivante consiste à introduire une brève impulsion de rayons X qui ionisent

les gouttes en leur arrachant un nombre n1 d’électrons. La goutte est chargée

positivement. En ayant soin de charger négativement le plateau supérieur du

condensateur, la goutte alors remonte. La vitesse de montée est telle que :

n1 e E m g = 6 r (d / t1)

si t1 est le temps nécessaire pour que la goutte passe entre les deux repaires séparés

par une distance d. On coupe alors le champ électrique. La goutte toujours chargée

redescend. On injecte une nouvelle dose de rayons X, une nouvelle charge apparaît

et après application du champ électrique, on a alors :

n2 e E m g = 6 r (d / t2)

En comparant les deux équations :

En procédant à plusieurs reprises le cycle décrit ci-dessus, on obtient une valeur

très convenable de e. La valeur de e, charge électrique, maintenant admise, est la

suivante :

e = 1,602 176 53 ( = 0,000 000 14) 1019 C .

La masse de l’électron que l’on peut déduire de la valeur de e/m est :

m = 9,109 3826 ( = 0,000 0016) 1031 kg .

3- Conséquences des expériences précédentes

Les rayons canaux ont été observés pour la première fois par GOLDSTEIN en

1886. En 1917 WIEN a montré qu’il s’agissait de particules chargées positivement.

Ce n’est qu’en 1912 que l’on a pu leur appliquer les méthodes de déflexions

électrique et magnétique. On a pu ainsi déterminer la valeur q/m correspondant à

Page 10: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

ces diversions. En faisant quelques hypothèses simples sur la valeur de q, on peut

déterminer la masse de ces ions, donc la masse des divers atomes (ou molécules).

Pour l’atome d’hydrogène : M = 1,672 614 ( = 0,000 011) 1027 kg;

Masse du proton / masse de l’électron = 1 836,13.

À partir des hypothèses et expériences de FARADAY on détermine ensuite le

nombre d’AVOGADRO :

N = 6,022 169 ( = 0,000 040) 10 23 mol1.

Figure 3.6. Obtention des rayons canaux.

L’historique de la détermination de N est particulièrement bien développée dans le

livre de J. PERRIN : "Les Atomes". Enfin, à partir de la valeur de la densité, on

peut déterminer le volume des divers atomes (ou molécules).

densité = masse d’un atome / volume d’un atome.

D’autres méthodes de détermination du volume ne donnent que des résultats

grossièrement concordants. Le résultat commun à toutes ces mesures est que le

diamètre des atomes est un peu plus grand que 1010 m (0,1 nm).

4- L’électronvolt (eV)

Dans un grand nombre d’expériences, les électrons des rayons cathodiques où les

électrons émis par un filament chauffé sont accélérés par une différence de

potentiel, dans le but de leur donner de l’énergie cinétique. Cette énergie est ensuite

utilisée pour effectuer diverses transformations sur une cible. Il vient

immédiatement à l’esprit d’utiliser une unité d’énergie à l’échelle de l’électron.

L’électronvolt est la quantité d’énergie cinétique transportée par un électron

Page 11: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

accéléré par une différence de potentiel de 1 volt. On peut facilement voir que cette

énergie vaut :

1 eV = 1,602 176 1019 C sous 1 volt.

Plus tard, en physique nucléaire, nous utiliserons le million d’électronvolts (MeV)

et le milliard d’électronvolts (ou billion BeV).

5. Onde associée à un électron - Diffraction des électrons

De BROGLIE avait montré théoriquement, avant toute vérification expérimentale,

que l’on pouvait décrire le mouvement de l’électron, soit en le considérant comme

une particule, soit en le considérant comme une onde. La longueur d’onde déduite

de ses calculs a la valeur :

3.10

C'est la formule de DE BROGLIE.

Figure 3.7. Expérience de DAVISSON et GERMER.

l.é.: lentilles électromagnétiques; f.: fentes; c.F.: cage de Faraday.

Cette théorie a été vérifiée expérimentalement par les expériences de DAVISSON

et GERMER (1927) et ensuite par le grand nombre de conséquences qui en ont été

tirées (Fig. 3.7).

Page 12: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

Soit un faisceau d’électrons arrivant au voisinage d’un atome avec une direction

privilégiée (ici l’axe Ox : figure 3.8). En arrivant dans le nuage électronique, le

faisceau électronique le perturbe momentanément et selon le système ondulatoire,

avec la même fréquence. Il modifie la répartition des charges électroniques dans ce

nuage. Il y a alors émission d’énergie rayonnée par ce nuage et cela dans toutes les

directions. Il n’y a donc pas réflexion simple mais plutôt diffusion.

Dans les expériences de DAVISSON et GERMER (Fig. 3.7) un faisceau

d’électrons accélérés par une tension inférieure à 100 volts tombait sur un

monocristal de nickel pouvant tourner autour d’un axe perpendiculaire au faisceau.

On recueillait dans un cylindre de FARADAY les électrons diffusés dans la

direction a. La courbe d’intensité du courant électronique en fonction de présente

des maxima et des minima (Fig. 3.9). On ne peut pas plus concevoir ce résultat

dans l’hypothèse de l’électron-particule que l’on peut concevoir un tas de billes

réfléchissant des billes incidentes dans des directions privilégiées. Nous allons voir

que ce phénomène est explicable dans l’hypothèse de l’électron-onde.

Figure 3.8. Perturbation d’un électron traversant un champ atomique.

Figure 3.9. Résultats observés.

Page 13: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

Figure 3.10. Première condition de réflexion : les rayons tels que R1, R2, etc.

correspondant

aux diffractions sur les atomes d’un même plan doivent être en phase.

Figure 3.11. Deuxième condition de réflexion. Les rayons diffractés dans la

direction

par les plans successifs doivent être en phase.

Conditions de réflexion de BRAGG

Un monocristal de nickel est un arrangement régulier dans l’espace d’atomes de

nickel. Ces atomes sont distribués dans des plans parallèles; on peut trouver

plusieurs séries de plans dont l’intervalle d est différent. Considérons l’une des ces

séries et supposons qu’une radiation de longueur d’onde tombe sur ces plans.

Cette radiation est diffractée par les atomes dans toutes les directions. Dans une

direction , on reçoit des rayons parallèles diffractés par tous les atomes de tous les

plans. Un rayon diffracté aura une intensité appréciable dans la direction si :

les rayons provenant de la diffraction sur un plan d’atomes sont en phase,

les rayons provenant de la diffraction sur les divers plans atomiques sont en

phase.

Page 14: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

Les rayons en phase sont ceux pour lesquels la différence de marche est égale à un

nombre entier de longueur d’onde. Si la différence de marche entre deux rayons

consécutifs diffère même d’une quantité très petite /2n, les rayons que réfléchira

le plan atomique (n + 1) seront en opposition de phase avec ceux du plan atomique

1 et, de proche en proche, ils se détruisent complètement par interférence.

La première condition (Fig. 3.10) impose que sur les plans A, A', etc. la diffraction

se fasse en suivant les lois de DESCARTES relatives à la réflexion sur un miroir

plan. En effet, la différence des deux hauteurs du triangle AMA' représente la

différence de marche entre les rayons R1 et R2. Elles sont égales lorsque les rayons

incidents et diffractés sont symétriques et la différence de marche est nulle. On peut

montrer qu’il est impossible d’envisager une autre position pour laquelle on aurait

par exemple AH AH' = car à la fois AA', AH et AH' doivent être de l’ordre de

grandeur de pour qu’il y ait diffraction.

La deuxième condition peut s’écrire (Fig. 3.11):

BA AH = n

Mais on a :

Donc :

3.11

C’est la fameuse relation de BRAGG utilisée dans tous les problèmes de diffraction

et en particulier pour la diffraction des rayons X où elle est abondamment

vérifiée. On dira aussi que la réfraction est de premier ordre (d’ordre 1) lorsque n =

1, de second ordre lorsque n = 2, …

Diffraction des électrons

Les directions privilégiées dans lesquelles on reçoit des électrons sont celles qui

satisfont à la condition de BRAGG. On peut le vérifier quantitativement, et vérifier

du même coup l’hypothèse de : DE BROGLIE.

On connaît d par la diffraction des rayons X. On en déduit en admettant que le

plus petit angle observé correspond à n = 1. On peut ensuite calculer de la façon

suivante en admettant que la mécanique classique reste applicable (c’est-à-dire pour

des faibles tensions d’accélération V).

Page 15: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

Les valeurs calculées et mesurées ont été trouvées en excellent accord. La longueur

d’onde est de l’ordre de l’Ångström pour des tensions accélératrices de l’ordre de

100 volts. C’est la raison pour laquelle la diffraction sur les cristaux est possible

puisque les distances des plans atomiques sont aussi de l’ordre de l’Ångström

(1010 m ou 0,1 nm).

REMARQUE

Les expériences de diffraction ont été effectuées depuis avec d’autres particules

élémentaires, protons, atomes, molécules ont été utilisés. La formule de DE

BROGLIE est donc extrêmement générale et montre que lorsque les dimensions

des masses en mouvement deviennent extrêmement petites la mécanique classique

n’est plus applicable. La mécanique ondulatoire a remplacé la mécanique classique

pour décrire le mouvement des particules élémentaires.

Supposons en effet qu’un électron pénètre dans l’espace occupé par un atome

(inclus dans une molécule ou dans un réseau cristallin). Puisque l’espace occupé

par l’atome est essentiellement constitué de vide, l’électron incident à une

probabilité extrêmement faible de rentrer physiquement en collision avec une autre

particule. Ce type d’interaction peut donc ici être ignoré. Par contre, à chaque

électron en mouvement est associé un champ électrique et un champ magnétique.

Les interactions à travers ces champs peuvent avoir lieu à grande distance (grande

devant le rayon de l’électron). C’est donc à travers ces champs que les électrons

vont échanger de l’énergie. Il est donc tout naturel de faire intervenir ici l’onde

électromagnétique associée à l’électron (la nature ondulatoire des particules) pour

apprécier quantitativement ces échanges.

6. Correction de relativité pour les électrons rapides

Si, dans les expériences du type de celles de DAVISSON et GERMER, la tension

accélératrice dépasse 10 000 volts on ne peut plus expliquer les résultats

expérimentaux sans faire intervenir la correction de relativité.

De nombreux ouvrages traitent de la théorie de la relativité, soit à l’aide de

raisonnements rigoureux, soit au moyen d’images concrètes. Il est conseillé de lire

un exemple de chacun de ces deux points de vue. Deux principes énoncés par

EINSTEIN en 1905 sont à la base de cette théorie :

Page 16: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

les lois des phénomènes physiques et en particulier les lois fondamentales de

l’électromagnétisme sont les mêmes dans tous les référentiels galiléens

(hypothèse). Un système de référence est galiléen lorsqu’il est animé d’un

mouvement rectiligne uniforme par rapport aux étoiles fixes.

pour tous les référentiels galiléens, la vitesse de la lumière, c, est la même

dans toutes les directions (conséquence de l’expérience de MICHELSON).

Les conséquences de ces hypothèses sont nombreuses et nous les admettons. En

particulier EINSTEIN a montré que la masse m d’un corps quelconque animé d’un

mouvement rectiligne uniforme de vitesse est plus grande que la masse au

repos mo :

3.12 m = mo / (1 2/c

2)

1/2

Aux vitesses de notre vie quotidienne 2/c2 est négligeable devant l’unité et la

variation de masse est très au-dessous de ce que l’on peut mesurer. Par contre, si

l’on mesure la valeur e/m correspondant à des électrons accélérés par une

différence de potentiel de 80 kV (vitesse l,5 l08 m/s) on trouve une valeur environ

l/8 plus petite que la valeur standard. Le développement en série de la formule

d’EINSTEIN, 3.12, donne en ne conservant que les deux premiers termes :

3.13

Dans l’exemple ci-dessus la vitesse des électrons est la moitié de la vitesse de la

lumière, donc :

m = mo( 1 + 1/8 )

résultat qui explique la diminution observée du rapport e/m .

De même, dans tous les cas où l’expérience de diffraction d’électrons a été faite

avec les électrons rapides, l’introduction de la masse relativiste dans la formule de

DE BROGLIE, a toujours expliqué complètement les résultats. Une autre

conséquence importante de la théorie de la relativité est l’équivalence de la masse

et de l’énergie donnée par la relation :

3.14

Page 17: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

L’équation 3.14 contient cette équivalence, tout au moins en ce qui concerne

l’énergie cinétique. Elle peut en effet s’écrire :

1/2 mo2 est approximativement la variation d’énergie cinétique EC ( si on néglige

la variation de masse) lorsque l’électron passe de la vitesse 0 à la vitesse . Donc :

m mo = m = EC / c2 .

La relation 3.14 généralise cette propriété à une forme quelconque de l’énergie.

CONCLUSIONS

L’électron a donc une masse, petite, mais bien réelle. Il porte une charge électrique, elle aussi petite, mais toute aussi réelle. Ce chapitre n’a pas apporté de réponse quant à l’existence éventuelle d’un

moment magnétique associé à l’électron (on verra cela plus tard). Par contre on sait qu’un champ magnétique n’est pas sans effet sur la trajectoire d’un faisceau électronique.

Par ailleurs, la mécanique classique est incapable d’expliquer quantitativement certains phénomènes associés aux électrons. La diffraction des électrons sur un réseau atomique, par exemple, montre

qu’une onde associée à ces électrons permet d’expliquer ce phénomène. La mécanique ondulatoire constitue donc une autre approche permettant de mieux cerner la réalité électronique.

7. Problèmes

7.1 Une bille de densité égale à 2,20 g/cm3 en chute libre dans l’air voyage à une vitesse

de 1,40 m/s. La viscosité de l’air est de 1,80 105 Pa·s. En utilisant la loi de

STOKES, trouver le rayon de la particule.

Réponse : r = 72,5 m

7.2

En supposant que la viscosité de l’air est de 1,83 105 Pa·s, calculez la vitesse limite

d’une goutte d’eau de 0,40 mm de rayon. En supposant qu’il fait un vent horizontal

de 13,4 m/s, quel sera l’angle de tombée de la goutte avec la verticale?

7.3a Dans une expérience de la goutte d’huile, les plaques du condensateur sont séparées

de 0,016 m, et la différence de potentiel entre les plaques est de 4 820 volts. La

densité de l’huile est de 858 kg/m3 et la viscosité de l’air 1,83 10

5 Pa·s à 25 °C. La

vitesse moyenne de chute d’une goutte est de 6,0 mm en 21,2 s en l’absence de

Page 18: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

champ. Les temps de montée suivants ont été observés : 46,1; 15,6; 28,0; 13,0; 45,2

et 20,1 s. Calculer e.

7.3b Calculer le nombre de charges portées par la goutte lors de la première montée.

Réponse : 5.

7.3c Comparer le rapport de la charge avec la masse de la goutte dans le cas de la

première montée avec le rapport e/m pour 1 électron.

7.4 Dans un tube à vide on réalise simultanément les déviations électrique et magnétique

d’un faisceau électronique en opérant de telle sorte que les forces électrique et

magnétique soient opposées. Le faisceau électronique est accéléré sous une tension

de 300 volts avant d’être introduit dans la zone où l’on applique les deux champs. La

distance entre les deux plaques du condensateur est de 15 mm. On observe la sortie

du faisceau sans déviation lorsque la différence de potentiel appliquée aux plaques

est de 308 volts et le champ magnétique est de 0,0020 Wb/m2 . Calculer le

rapport e/m.

7.5

Dans un sélecteur de vitesse, une tension de 240 volts est appliquée entre des plaques

distantes de 0,020 m, ainsi qu’un champ magnétique de 0,012 Wb/m2. Quelle sera la

vitesse des électrons qui ne subissent aucune déflexion? Quelle sera l’importance de

la variation relativiste de la masse de ces électrons?

Réponse : = 106 m/s.

7.6 Calculer la longueur d’onde associée à:

1- un électron voyageant à la vitesse de 1 10

7 m/s.

2- une molécule d’hydrogène dans des conditions normales de pression et de

température : = 1 770 m·s1

.

3- une voiture de course pesant 500 kg et roulant à la vitesse de 280 km/h.

7.7 Dans une expérience de diffraction de rayons X, à quels angles observera-t-on les

diffractions du premier et du second ordre pour les plans séparés de 0,315 nm. La

longueur d’onde des rayons X utilisés est de 0,1537 nm.

Page 19: L’ É L E C T R O N...Au déplacement des e est associé un courant électrique i de sens opposé à la direction des électrons. La règle des trois doigts de la main droite permet

Rép.: n = 1, = 14,12°

7.8 En supposant qu’un neutron, dans des conditions particulières, se transforme en un

proton et un électron, quelle sera l’énergie libérée par cette réaction? On suppose

disposer d’une mole de neutrons et chaque particule est considérée au repos. On sait

que les masses du neutron et du proton sont, respectivement, 1,674 70 et 1,672 39

1024

g.

7.9

Un faisceau d’électrons au repos est soumis à un potentiel accélérateur, V, de 1

000, 10 000, 100 000 et de 1 000 000 volts. Soient o et les vitesses non-relativiste

et relativiste de ces électrons ainsi que mo et m leur masse au repos et en mouvement.

Calculez,

1- en fonction de e, V et de la vitesse de la lumière le rapport /o.

2- les rapports /o pour chacune des valeurs du potentiel.

Rép. : /o = 0,58 sous 1 000 000 volts.

7.10 Calculez l’énergie équivalente à la masse d’un électron. Faire le même calcul pour un

proton.

Pour en savoir plus:

BRAGG : http://www.nobelprize.org/nobel_prizes/physics/laureates/1915/wl-

bragg-bio.html

DAVISSON

: http://www.nobelprize.org/nobel_prizes/physics/laureates/1937/davisson-

bio.html

DE

BROGLIE http://www.nobelprize.org/nobel_prizes/physics/laureates/1929/broglie

-bio.html

MILLIKAN : http://nobelprizes.com/nobel/physics/1923a.html

THOMSON : http://nobelprizes.com/nobel/physics/1906a.html

et aussi EINSTEIN : http://www.westegg.com/einstein/