L3. Single Phase Ac Voltage Controllers

Embed Size (px)

Citation preview

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    1/68

    AC CONTROLLERS

    (EEL 744)

    Department of Electrical Engineering,Indian Institute of Technology, Delhi,

    Hauz Khas, New Delhi-10016, India- 110016email: [email protected], [email protected]

    Ph.:011-2659-1045

    Prof. Bhim Singh

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    2/68

    Lecture - 3

    2

    Single phaseAC Voltage controller

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    3/68

    3

    Single phase bidirectional controller with series resistive-

    inductance load

    T1

    T2

    iL

    vL

    +

    v=V msin t-

    Triggering circuit

    Control signal

    R L

    L

    vR

    vl

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    4/68

    4

    Waveforms for thyristor control of series R-L 1 = 90, = 60

    The thyristors are triggered at atriggering angle < = (sinusoidal

    phase angle) of the load impedance.

    The use of single , short triggeringangle < could cause only onethyristor to conduct because of continuation of conduction after theend of the voltages half cyclesensures that gating of the reversethyristor would have no effect. Thethyristor pair then act as a rectifier.

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    5/68

    5

    i1

    i2

    vs vo

    ioT2

    T1

    Single phase bidirectional controller with RL load

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    6/68

    6

    To derive an expression for rms output voltage of a single phase full-wave ac voltage controller with RL load.

    12

    2 2

    1

    2

    When the load current and load voltage waveforms become discontinuous as

    shown in the figure above.

    1 sin .

    Output sin for to , when is ON.

    1 cos 2

    2

    mO RMS

    o m

    mO RMS

    O

    V V t d t

    v V t t T

    t V V d t

    12

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    7/68

    7

    122

    122

    12 2

    12

    cos 2 .2

    sin222

    sin 2 sin 22 2 2

    1 sin 2 sin 22 2 2

    1 sin

    2

    mO RMS

    mO RMS

    mO RMS

    mO RMS

    mO RMS

    V V d t t d t

    V t V t

    V V

    V V

    V V

    12

    1

    2 sin 2

    2 2The RMS output voltage across the load can be varied by changing the trigger angle

    For a purely resistive load 0, therefore load power factor angle 0

    tan 0;Exti

    L

    L R

    0nction angle radians 180

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    8/68

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    9/68

    9

    1

    Thyristor Conduction Angle

    Maximum thyristor conduction angle radians = 1800 for

    RMS Output Voltage

    1 sin 2 sin 22 22

    The Average Thyristor Current

    12

    mO RMS

    T T Avg

    V V

    I i d t

    1sin sin

    2

    sin . sin2

    Maximum value of occur at 0.The thyristors should be rated for maximum

    Rt

    m LT Avg

    Rt

    m LT Avg

    T Avg

    mT Avg

    V I t e d t

    Z

    V I t d t e d t Z

    I

    I I , where mm

    V I

    Z

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    10/68

    10

    12

    RMS Thyristor Current

    12

    Maximum value of occurs at 0

    Thyristors should be rated for maximum2

    When a Triac is used in a single phase full wave ac voltage

    T RMS

    T T RMS

    T RMS

    mT RMS

    I

    I i d t

    I

    I I

    controller with RL type of load, then 0

    and maximum2

    T Avg

    mT RMS

    I I

    I

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    11/68

    11

    Waveforms of single phase bidirectional ac voltage controllerwith RL load

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    12/68

    12

    When the triggering angle is greater than the load phase angle the current occurs in discontinuous, non sinusoidal pulses .

    The waveforms shown in figurefor a load of phase angle = 60 or

    power factor 0.5 lagging andtriggering angle = 120If > the onset of the nonsinusoidal load current pulses i Lalways coincides with triggering angle.

    Conduction of current is found tocease prior to the end of thesinusoidal current cycle

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    13/68

    13

    Theoretical components of load current waveform for series R L circuit1 = 60, = 120

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    14/68

    14

    , ,2

    0, ,

    cot

    cot

    0

    2cot

    2sin( )

    sin

    sin

    sin

    sin( ) sin(

    x x

    L

    xt

    xt

    t

    Theload current isdescribed bytheequation

    V i t

    Z

    e

    e

    e

    Extinctionangle xisdefined bythetranscendentaleqn x cot ( )

    1 2 2 2

    ) 0

    tan ;

    xe

    L Z R L

    R

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    15/68

    15

    20

    0

    2

    1 0

    cot ( )1

    1( ) 0

    2 21

    ( )cos( )

    cos(2 ) cos(2 ) sin (2 2 )2

    cos( )4sin sin( )2cos( )

    i L

    i L

    xi

    The Fourier cofficientsof theload current

    waveformareobtained as

    ai t d t

    a i t t d t

    x xV

    a x e Z

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    16/68

    16

    21 0

    cot ( )

    1

    2 21 1 1

    1 11

    1

    1 ( )sin( )

    sin(2 ) sin(2 ) cos (2 2 )2

    sin( )4sin sin( )2 sin( )

    tan

    L

    x

    i

    i i i

    ii

    i

    b i t t d t

    x xV

    a x e Z

    c a b

    ab

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    17/68

    17 17

    T1

    T2

    io

    vo

    +

    -

    v=V msin t

    Performance parameters of a single phase full wave ACvoltage controller with inductive load

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    18/68

    18

    , ,2

    0, ,

    cot

    cot

    02cot

    2sin( )

    sin

    sin

    sin

    sin( ) sin(

    x x

    L

    xt

    xt

    t

    Theload current is described by the equation

    V i t

    Z

    e

    e

    e

    Extinction angle x is defined by the transcendental eqn

    x cot ( )

    1 2 2 2

    0

    ) 0

    tan ;

    Substititing R = 0 in the equation gives us 90

    xe L

    Z R L R

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    19/68

    19

    2 20

    10 0

    cot ( )1

    1 1( ) 0 ; ( )cos( )2 2

    cos(2 ) cos(2 ) sin (2 2 )2 cos( )

    4sin sin( )2cos( )

    i L i L

    xi

    The Fourier cofficientsof theload current

    waveformareobtained as

    a i t d t a i t t d t

    x xV a x e Z

    0

    1

    substituting 90 the above equation as R = 02

    2( ) sin 2i L

    inV

    a X

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    20/68

    20

    2

    1 0

    cot ( )1

    2 21 1 1 1

    1

    1 11

    1

    1( )sin( )

    sin(2 ) sin(2 ) cos (2 2 )2

    sin( )4sin sin( )2

    sin( )

    0

    is the peak value of fundamental current

    tan

    L

    xi

    i i i i

    i

    ii

    i

    b i t t d t

    x xV

    b x e Z

    c a b a

    ca

    b

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    21/68

    Single phase bidirectional controllers fordifferent loads thyristor based

    21 21

    I M

    T1

    T2

    io

    vo

    +

    -

    v=V msin t

    T1

    T2

    io

    vo

    +

    -

    v=V msin t

    T1

    T2

    io

    vo+

    -

    v=V msin t

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    22/68

    I M

    Tio

    vo

    +

    -

    v=V msin ? t

    Tio

    vo

    +

    -

    v=V msin ? t

    T

    io

    vo

    +

    -

    v=V msin ? t

    T

    io

    vo

    +

    -

    v=V msin ? t

    22

    Single phase bidirectional controllers fordifferent loads TRIAC based

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    23/68

    I M

    23

    To have the common cathode for thyristors T 1 and T 2 by addingtwo diodes as shown in figures for different loads.One isolation circuit is required, but at the expense of two power diodes

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    24/68

    Load

    24

    A single phase full wave controller can also be implemented withone thyristor and four diodes.

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    25/68

    25

    Waveforms of single phase full wave controller withone thyristor and four diodes .

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    26/68

    Natural commutation occurs in single phase full wavecontroller with one thyristor and four diodes with resistiveloads .

    If large inductance is there in the circuit , thyristor T 1 may

    be not turned of in every half cycle of input voltage, and thismay result in a loss of control.

    Three power devices conduct at the same time and the

    efficiency is also reduced.

    26

    A single phase full wave controller with onethyristor and four diodes.

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    27/68

    27

    Transformer tap changingWith resistive and inductive loads

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    28/68

    I M

    28

    Transformer tap changingWith RL and motor loads

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    29/68

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    30/68

    30

    Waveforms for transformer connection changer

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    31/68

    31

    Waveforms without tap changer

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    32/68

    32

    Waveforms with synchronous changer

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    33/68

    Problem: A single phase full wave ac voltage controller hasresistive load of R = 10 and input voltage is V s = 120 V, 60 Hz. Thedelay angle of thyristor T 1 is 1 = 2= = /2. Determine (a) therms value of output voltage V o , (b) the input PF and (c) theaverage current of thyristors I A, and (d) the rms current of thyristors.Solution: R = 10 , Vs = 120 V, = /2 and V m = 2 *120 =169.7 V

    (a)

    = 120 /(2) 1/2 = 84.85V(b) The rms load current I o = Vo / R = 84.85/10 = 8.485 A

    The load power P o = Io2

    R = 8.4852

    * 10 = 719.95 WBecause the input current is the same as the load current, theinput VA rating is VA = Vs Is = Vs Io = 120 * 8.485 = 1018.2 VA

    33

    1/2

    0 s1 sin 2V V

    2

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    34/68

    The input PFPF = Po/VA = Vo/Vs =

    = 1/2 = 719.95/1018.2 = 0.707 (lagging)(c) The average thyristor current

    IA = 2*120/(2 *10)= 2.7V(d) The rms value of the thyristor current

    =120/(2*10) = 6A

    34

    1/21 sin 2

    2

    1/2

    s

    A

    2V

    I cos 12 R

    1/2

    sV 1 sin 222R

    Solution: contd..........

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    35/68

    35

    Problem : A single-phase ac voltage controller has a resistiveload. The input voltage is 230V rms at 50Hz.The delay angle of thyristors is =60 . Determine (a) distortion factor of supply

    current (fundamental rms current/net rms current), (b)displacement factor and (c) input power factor.

    orms s

    orms

    2 2

    s1

    s1

    s

    -1

    230 , 50 , =60

    sin 2V V 1- 206.29 V

    2

    217.48I

    (cos 2 ) 1 2( - +sin2V 193.04 + = A

    R 2 2 R

    193.04I R

    DF = = 0.936206.29I

    (cos 2 ) 1 = tan

    2( - +sin2

    orms

    s

    V V Hz

    V R R

    I

    R

    16.54

    DPF = cos = 0.959

    PF = DPF X DF = 0.959X0.936 = 0.897

    Solution:

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    36/68

    36

    Problem : A single phase full wave ac voltage controller supplies an RL load. The input supply voltage is 230V, RMS at 50Hz. The load has L = 10mH, R = 10 , the delay angle of thyristors and is equal to 60 0 , where . Determine Conductionangle of the thyristor, RMS output voltage, The input power factor. Comment on the type of operation.

    0

    1 2

    Solution:

    Given 230 , 50 , 10 , 10 , 60

    radians,3

    2 2 230 325.2691193

    s

    m S

    V V f Hz L mH R

    V V V

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    37/68

    37

    2 2 22

    3

    2 2

    1

    1

    Solution: contd..........

    Load Impedance 10

    2 2 50 10 10 3.14159

    10 3.14159 109.8696 10.4818

    2 23031.03179

    10.4818

    Load Impedance Angle tan

    tan10

    mm

    Z R L L

    L fL

    Z

    V I A

    Z

    L R

    1 0

    0

    tan 0.314159 17.44059

    Trigger Angle Hence the type of operation will

    be discontinuous load current operation, we get

    ; 180 60 ; 240

    Therefore the range of is from 180 degrees to 240 de0 0

    grees.

    180 240

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    38/68

    38

    Solution: contd..........

    Extinction Angle is calculated by using the equation

    sin sin

    In the exponential term the value of should be

    substituted in radians. Hence

    sin sin R

    R

    L

    R

    L

    e

    and

    e

    0

    100 0

    0 3.183

    00

    0

    0 00

    0

    ;3

    60 17.44059 42.5594

    sin 17.44 sin 42.5594

    sin 17.44 0.676354

    180 radians,180

    190Assuming 190 ; 3.3161

    180 180

    ad Rad

    Rad

    Rad

    Rad

    e

    e

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    39/68

    39

    0

    3.183 3.316143

    0

    0 0

    0

    Solution: contd..........

    L.H.S: sin 190 17.44 sin 172.56 0.129487

    R.H.S: 0.676354 4.94 10Assuming 183

    1833.19395

    180 180

    3.19395 2.146753

    L.H.S: sin si

    Rad

    e

    0

    3.183 2.14675 4

    0 00

    0

    n 183 17.44 sin165.56 0.24936

    R.H.S: 0.676354 7.2876 10

    180Assuming 180 ;

    180 1802

    3 3

    Rad

    e

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    40/68

    40

    3.18343

    0

    0 0

    0

    3.183

    Solution: contd..........

    L.H.S: sin sin 180 17.44 0.2997

    R.H.S: 0.676354 8.6092 10Assuming 196

    1963.420845

    180 180L.H.S: sin sin 196 17.44 0.02513

    R.H.S:0.676354

    Rad

    e

    e3.420845

    43

    0

    0 0

    0

    3

    3.183 3.4382943

    3.5394 10

    Assuming 197

    1973.43829180 180

    L.H.S: sin sin 197 17.44 7.69 7.67937 10

    R.H.S: 0.676354 4.950386476 10

    Rad

    e

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    41/68

    41

    0

    0

    0

    4

    3.183 3.445643

    0 0

    Solution: contd..........

    Assuming 197.42

    197.423.4456180 180

    L.H.S: sin sin 197.42 17.44 3.4906 10

    R.H.S: 0.676354 3.2709 10

    Conduction Angle 197.42 60 137

    Rad

    e

    0

    0 0

    .42RMS Output Voltage

    1 sin 2 sin 22 2

    sin 2 60 sin 2 197.421230 3.4456

    3 2 2

    1230 2.39843 0.4330 0.285640

    S O RMS

    O RMS

    O RMS

    V V

    V

    V

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    42/68

    42

    22

    Solution: contd..........

    230 0.9 207.0445 V

    Input Power Factor

    207.044519.7527 A

    10.481819.7527 10 3901.716 W

    230 , 19.7527

    3901.716230 19.

    O RMS

    O

    S S

    O RMS

    O RMS

    O LO RMS

    OS S O RMS

    S S

    V

    P PF

    V I

    V I

    Z P I R

    P V V I I PF

    V I

    0.85887527

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    43/68

    43

    Problem : A single phase TCR has an input 240 V, 50 Hz ACsupply and an inductance of 5mH. Calculate RMS current andfundamental RMS at =30 .

    2

    L

    Solution:The expressions for the RMS current, fundamental current

    and THD are

    ( / ( )) {( 2 )(1 / 2 sin ) 3sin 2 / 2} /

    ( / ( )){1 2 / sin 2 / } / 2Given that V=240 V, L=5 mH, f=50 Hz.

    X =1.570796

    Su

    RMS

    F

    I V L

    I V L

    RMS FUND

    RMS

    FUND

    2

    bstituting the values in the expression for I and I ,

    I = 44.9374 A

    I = 42.2431 A

    44.9374THD = 1 *100 36.28%

    42.2431THD

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    44/68

    44

    Problem : A single phase 25 kVAr TCR has an input of 230 V, 50Hz AC supply. Calculate (a) inductance rating (b) RMS currentunder maximum THD current (c) corresponding delay angle.

    2

    2

    Solution:

    The expressions for the RMS current, fundamental current

    and THD are

    ( / ( )) {( 2 )(1 / 2 sin ) 3sin 2 / 2} /

    ( / ( )){1 2 / sin 2 / } / 2

    ( / ) 1

    Given that V=230 V, Q=25 kVAR, f=50

    RMS

    F

    RMS F

    I V L

    I V L

    THD I I

    2L

    2 2

    Hz.

    The inductance rating can be calculated as follows:

    X =230 /25k=2.116 , L=6.7354 mH Now, the expression for the harmonic component of the

    TCR current is,

    4 sin cos( ) cos sin( )( )

    ( 1)

    V n n n I n

    L n n

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    45/68

    45

    Solution:contd.....

    Differentiating the above equation w.r.t. , we

    get the condition as cos cos( ) 0Equating the first term to zero, gives us a trivial

    solution when the current in the TCR branch is

    n

    RMS F

    equal to zero. Hence we have to consider the

    second term, with the value of n being assignedas the dominant harmonic number i.e. 3

    Hence, =30

    Substituting the values in the expression for

    I and I UND RMS

    FUND

    , I =31.9690 AI =30.0522 A

    Hence THD=36.28%

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    46/68

    46

    Problem: A single-phase TCR (thyristor controlled reactor consisting back-to-back connected thyristors with pureinductor) has an input of 240V, 50Hz, AC supply and an

    inductance of 20 mH. Calculate maximum VAR rating. Alsocalculate (i) net rms current, (ii) fundamental rms current, (iii)3rd harmonic rms current, (iv) 5th harmonic rms current, and(v) 7th harmonic rms current at delay angle of 30 .

    2

    -3

    2rms

    f

    n 2

    3 5 7

    240Solution: VAR rating =9.167kVAR 2 502010

    V 1 3sin2 i) I = -2 0.5+sin - = 11.23 A

    L 2

    V 2 sin2ii) I = 1- - =10.71A 2 L

    V 4 sin cosn-ncossinniii) I =

    L n(n -1)

    I =-5.25A iv) I =-1.05A v) I =0.375A

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    47/68

    47

    Problem: A single-phase ac switch having anti parallel-connected thyristors is used between a 230 V, 50 Hz ac mainsand a load of 4.0 kW, 0.8 lagging for switching in andinterrupting it. Calculate the (i) peak and rms voltage andcurrent rating of the thyristors and (ii) instant of firing anglesof thyristors for transient free switching.

    1

    Solution: i) Peak voltage rating for thyristor = 230 2

    rms voltage rating= 230 V

    4000 2Peak current rating = =30.74A

    0.8230thyristor rms current=30.74/2 = 15.37 A

    ii) Instant of firing angle = cos 0.8 36.86o

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    48/68

    48

    Problem: A single-phase ac switch having anti parallel-connected thyristorsare used between a 240 V, 50 Hz ac mains and three binary weighted TSCs toform 7 kVAR capacitor bank with a minimum of an ac capacitor of 1 kVAR

    for switching in and interrupting it. Calculate the (i) peak and rms voltageand current rating of diode and thyristors and (ii) instant of firing angles of thyristors for transient free switching.

    Solution: V s= 240 V, Total kVAR = 7, f =50 Hz.

    (a) Peak Current (I m) = 2 P o/ V s P.F.= 27000/ 2401 = 41.247 A.

    r.m.s. current (I r ) = I m/2 = 20.623 A.

    Peak voltage (Vm) = 2 Vs = 339.411 v.

    r.m.s. voltage = 240 V.

    (b) Firing Angle =90 0 (here, capacitive circuit).

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    49/68

    AC Voltage controllers with PWM control

    Naturally commutated thyristor controllersintroduce low order harmonics in both theload and supply side and have low inputpower factor.

    The input power factor of AC voltagecontrollers can be improved by PWM controland producing variable output voltage.

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    50/68

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    51/68

    Waveforms of gating signals of AC Voltagecontrollers with PWM control

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    52/68

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    53/68

    Single phase line conditioning unit

    IoIi

    +

    -V i

    C1

    C2

    +

    -

    +

    -

    +

    -

    Vm

    +

    -

    Vx

    Vc1

    Vc2

    Vo

    Co+

    -

    R L

    LoL i

    D1

    D2 S2

    S1

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    54/68

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    55/68

    Single phase line conditioning unitDisadvantages:

    Input current is seen to have reasonableharmonics.

    To control the input current two additionalswitches are required.

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    56/68

    Single phase line conditioning unit

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    57/68

    Single phase line conditioning unitLoad regulation for voltage doubler. Vi = 115 V rms . P base = 1KW,C = 1 p.u. (200 F, based on 115 v, 1 KW) and 100 p.u.

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    58/68

    Single phase line conditioning unit

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    59/68

    Single phase line conditioning unit

    Simulated waveforms for two switch line conditioner.C 1 = C 2 = 1.3 p.u., L i = 0.01 p.u., L o = 0.1 p.u., C O = 0.3 p.u., I o = 1.0 p.u., resistive load, switching frequencyf = 30 kHz. (e)-(g) Boost operation with no phase shift, V o/Vi = 1.2.

    Si l h li di i i i

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    60/68

    Single phase line conditioning unit

    Experimental waveforms for four switch line conditioner under normaloperation. V i = Vo = 115 V rms , C1 = C 2, = 22.5 F, L i = L o = 3 m H , C o = 100 F,Cs = 40.000 F, R L = 12 , PWM switching frequency = 3 kHz.

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    61/68

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    62/68

    Si l h li diti i it

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    63/68

    Single phase line conditioning unit

    Experimental waveforms for two switch line conditioner. V i = 75Vrms , Vo = 100 V rms , C 1 = C 2 = 470 F, C o = 10 F, L o = 1 mH, R L =

    50, = 30, switching frequency f = 30 kHz.

    Single phase line conditioning unit

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    64/68

    Single phase line conditioning unit

    UPS system with sinusoidal input current and 0-2 p.u.

    output voltage regulation.

    IoIi

    +

    -Vi

    C1

    C2

    +

    -

    +

    -

    +

    -

    Vm

    +

    -

    Vx

    Vc1

    Vc2

    Vo

    Co+

    -

    R L

    Lo

    Li

    +

    -VB

    LF

    D6S1

    S2 S4

    S3

    S5

    Single phase line conditioning unit

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    65/68

    Single phase line conditioning unitCapabilities

    All the topologies are transformer less.

    They are characterized by common neutral connection

    between the output and input.

    Buck boost voltage regulation capability.

    The input and output filters provide a significant

    measure of common mode and normal mode noiserejection.

    Single phase line conditioning unit

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    66/68

    Single phase line conditioning unitFeatures

    These features are essential to low cost realization.

    Isolation is not a significant issue in low power line

    conditioners which feed computer and its peripherals

    with internally isolated high frequency SMPS.

    The four switch topology has significantly superior

    operation at the expense of two additional switchesincluding unity power factor operation.

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    67/68

    R f

  • 8/12/2019 L3. Single Phase Ac Voltage Controllers

    68/68

    References

    N. G. Hingorani and L. Gyugyi, Understanding FACTS, IEEE

    Press, Delhi, 2001, ISBN 81-86308-79-2.

    Chingchi Chen and Deepakraj M. Divan, Simple Topologies

    for Single Phase AC Line Conditioning IEEE transactions onindustry applications, vol. 30, no. 2, march/april 1994