Author
others
View
0
Download
0
Embed Size (px)
EECS 4214, F15 1
L15: Bandpass Detection
Sebastian Magierowski York University
L15: Bandpass Detection
LE/EECS 4214 Fall 2015
EECS 4214, F15 2
• 15.1 Coherent Detection of BPSK • 15.2 Coherent Detection of Multiple PSK • 15.3 Non-coherent Detection of DPSK • 15.4 Non-coherent FSK
Outline
L15: Bandpass Detection
EECS 4214, F15 3
• Recall BPSK
• Modulation-wise
Bandpass Modulation: BPSK
L15: Bandpass Detection
pE�
pE
1
s1(t) =
r2E
Tcos(!
o
t)�r
2E
Tcos(!
o
t) = s2(t)
1(t) =
r2
Tcos(!
o
t)
±pE
1
si(t) si(t) =NX
j=1
aij j(t)
EECS 4214, F15 4
• For a 2D system
Bandpass Modulation: QPSK
L15: Bandpass Detection
𝛴
±pE
±pE
pE
1
2
si(t)
1(t) =
r2
Tcos(!
o
t)
2(t) =
r2
Tsin(!
o
t)
EECS 4214, F15 5
• Same idea as with baseband
• Send a signal and extract maximum SNR from it – Correlator example
• Note how this matches up with our abstract signal-space mapping ideas
Bandpass Detection: BPSK
L15: Bandpass Detection
±pE
1
si(t)
1
si(t)Z T
0
ai1 = ±pE
si(t) =NX
j=1
aij j(t) aij =
Z Tf
Ti
si(t) j(t)dt
EECS 4214, F15 6
• Using related receive architectures gives us the same basic result
Bandpass Detection: BPSK
L15: Bandpass Detection
±pE
1
si(t)
1
si(t)Z T
0
ai1 = ±pE
Bandpass Matched
Filter si(t) ai1 = ±
pE
1
si(t) ai1 = ±pEMF
EECS 4214, F15 7
• What if we sent…
• But received…
• If the phase is not right – Easy to get garbage – The challenge of coherent detection
Coherent Detection
L15: Bandpass Detection
±pE si(t) = ±
r2E
Tcos(!
o
t)
1(t) =
r2
Tcos(!
o
t)
Z T
0
si
(t) = ±r
2E
Tcos
⇣!o
t+⇡
2
⌘
1(t) =
r2
Tcos(!
o
t)
ai1 = ???
EECS 4214, F15 8
• Picking up signals over a 2-D space
• Formal decision procedure: based on proximity
A (More) General BP Detection Scheme
L15: Bandpass Detection
Z T
0
Z T
0
1
2
r(t)
choose si(t) based on proximity
of projection to (ai1,ai2)
projection
z2(T ) =
Z T
0r(t) 2(t)dt
z1(T ) =
Z T
0r(t) 1(t)dt
arg min[si � zi(T )]2si
EECS 4214, F15 9
More Specifics: M-ary PSK Detection
L15: Bandpass Detection
Z T
0
Z T
0
r(t)
choose si(t) based on proximity
of projection to (ai1,ai2)
z2(T ) =
Z T
0r(t) 2(t)dt
z1(T ) =
Z T
0r(t) 1(t)dt
1(t) =
r2
Tcos(!
o
t)
2(t) =
r2
Tsin(!
o
t)
r(t) = si
(t) =
r2E
Tcos
✓!o
t+2⇡i
M
◆, i = 0, . . . ,M � 1
EECS 4214, F15 10
More Specifics: M-ary PSK Detection
L15: Bandpass Detection
Z T
0
Z T
0
r(t)
choose si(t) based on proximity
of projection to (ai1,ai2)
z2(T ) =
Z T
0r(t) 2(t)dt
z1(T ) =
Z T
0r(t) 1(t)dt
1(t) =
r2
Tcos(!
o
t)
2(t) =
r2
Tsin(!
o
t)
r(t) = si(t) =pE cos
✓2⇡i
M
◆ 1(t) +
pE sin
✓2⇡i
M
◆ 2(t)
Xi =pE cos (2⇡i/M)
Yi =pE sin (2⇡i/M)
EECS 4214, F15 11
• Detect signals by looking at:
More Specifics: M-ary PSK Detection
L15: Bandpass Detection
Z T
0
Z T
0
r(t)
choose si(t) based on proximity
of projection to (ai1,ai2)
1(t) =
r2
Tcos(!
o
t)
2(t) =
r2
Tsin(!
o
t)
Xi =pE cos (2⇡i/M)
Yi =pE sin (2⇡i/M)
pE
1
2
Xi
Yi
�i�i
EECS 4214, F15 12
M-ary PSK Receiver
L15: Bandpass Detection
Z T
0
Z T
0
1
2
r(t) atan(Y/X) �̂
|�i � �̂|ŝi = arg mini(·)
pE
1
2
Xi
Yi �i
Xi
Yi
EECS 4214, F15 13
QPSK Transmitter
L15: Bandpass Detection
( & LdL1WA’.
1-v-i-
—‘I)
sQf)
t1 (+i w4)
1(-1)
I-I
/‘ ‘L
i—ih() 0
0
+1--1
13 50
2.
-I
of£7.0 0
3
--1
II
00 10
( & LdL1WA’.
1-v-i-
—‘I)
sQf)
t1 (+i w4)
1(-1)
I-I
/‘ ‘L
i—ih() 0
0
+1--1
13 50
2.
-I
of£7.0 0
3
--1
II
00 10
EECS 4214, F15 14
QPSK Receiver
L15: Bandpass Detection
‘IC.’
\L)
.—
;
Ii.
cji
LA
Q:7;;:\j
(AI
c’ 0 LA
V
1•/
LA%J
‘4
/
/
j
4,
‘IC.’
\L)
.—
;
Ii.
cji
LA
Q:7;;:\j
(AI
c’ 0 LA
V
1•/
LA%J
‘4
/
/
j
4,
EECS 4214, F15 15
• Instead of mapping data to phase: 𝜃k – BPSK: 𝜃k = 0, 𝜋 – QPSK: 𝜃k = 𝜋/4, 3𝜋/4, 5𝜋/4, 7𝜋/4
• Map it to phase shift: 𝜃k = 𝜃k-1 + 𝛥𝜃k – DPSK: 𝛥𝜃k = 0, 𝜋 – DQPSK: 𝛥𝜃k = 0, 𝜋/2, 𝜋, 3𝜋/2
Non-Coherent Detection: DPSK
L15: Bandpass Detection
EECS 4214, F15 16
DPSK Transmitter
L15: Bandpass Detection
1(t) =
r2
Tcos(!0t)
p(t)
DQ
m(k) c(k) p(k)
k 0 1 2 3 4 5 6 7 8
m 1 1 0 1 0 1 1 0
c 0 1 0 0 1 1 0 1 1
p -1 1 -1 -1 1 1 -1 1 1
𝜃 𝜋 0 𝜋 𝜋 0 0 𝜋 0 0
r(t)
EECS 4214, F15 17
DPSK Receiver
L15: Bandpass Detection
Z T
0
T
k 0 1 2 3 4 5 6 7 8
m 1 1 0 1 0 1 1 0
c 0 1 0 0 1 1 0 1 1
p -1 1 -1 -1 1 1 -1 1 1
𝜃 𝜋 0 𝜋 𝜋 0 0 𝜋 0 0
z -1 -1 1 -1 1 -1 -1 1
r(t) z(k)
EECS 4214, F15 18
Differential Drawback
• Higher noise
• In coherent reception – Demodulate with clean
reference signal
• In non-coherent reception – Demodulate using a noisy
reference (the previously received signal)
– 2X the noise
L15: Bandpass Detection
• I1 L ‘Q-t7’(QJLA4 ‘2 ,V
-,‘, DP Si UL fl -r p57’ I’€&!-‘ Lt /1Lf g- 744Q A1Li’S (/‘p S/n’
Pi
e___
bPS
/c Z/ rs/<1c- 11?LtIf2/r
r(+)
S’fl.iba5Icv
1 VJ
1(t) =
r2
Tcos(!0t)
EECS 4214, F15 19
• Energy detection method
• Envelope detection
Non-Coherent FSK
L15: Bandpass Detection
• I1 L ‘Q-t7’(QJLA4 ‘2 ,V
-,‘, DP Si UL fl -r p57’ I’€&!-‘ Lt /1Lf g- 744Q A1Li’S (/‘p S/n’
Pi
e___
bPS
/c Z/ rs/<1c- 11?LtIf2/r
r(+)
S’fl.iba5Icv
1 VJ
• I1 L ‘Q-t7’(QJLA4 ‘2 ,V
-,‘, DP Si UL fl -r p57’ I’€&!-‘ Lt /1Lf g- 744Q A1Li’S (/‘p S/n’
Pi
e___
bPS
/c Z/ rs/<1c- 11?LtIf2/r
r(+)
S’fl.iba5Icv
1 VJ
EECS 4214, F15 20
• Another receiver example
Non-Coherent FSK
L15: Bandpass Detection
.LWL
111
____