37
1 Manufacturing Technology I Manufacturing Technology I Lecture 6 Cutting Criteria Prof. Dr.-Ing. F. Klocke Structure of the lecture The term „Machinability“ Evaluation of machinability Evaluation criterion - tool life Evaluation criterion - cutting force Evaluation criterion - surface quality Evaluation criterion - chip shape Factors influencing the the machinability of steel materials Machinability in dependence of carbon content Influence exerted by alloying elements on machinability Machining properties in dependence on heat treatment Machinability of hardened steel materials Machinability of steel materrials Machinability of free cutting steel Machinability of case-hardening and QT steel Machinability of cast iron materials Machinability of aluminium alloys Machinability of copper base alloys Machinability of nickel-based alloys Machinability of titanium materials Summary

L06 Cutting Criteria - · PDF fileCutting Criteria Prof. Dr.-Ing. F. Klocke Structure of the lecture ... Evaluation of the wear tool life-turning test Structure of the lecture The

Embed Size (px)

Citation preview

1

Manufacturing Technology IManufacturing Technology I

Lecture 6

Cutting Criteria

Prof. Dr.-Ing. F. Klocke

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

2

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

Tool life curve from temperature tool life-turning test

cutting speed vc

experimentalresults

tool l

ife T

T tool life

v cutting speedc

v - T - curve c

α inclination ofv

work material Ck45

tool material S10-4-3-10tool material HS10-4-3-10

3

rake faceflank

Evaluation of the wear tool life-turning test

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

4

influences on surface quality in metal cutting

Factors influencing surface quality in metal cutting

kinematic roughness cutting roughness additional factors

toolmotion

cuttingedge

chip formationmechanisms,dead zone, BUE

alteration ofcut surface

vibrations, chips,deformation of feedtracks

cuttingspeed,feed

wear onminorflank,overallwear

corner andflank wear,friction andwelds,cooling

tool geometry,work material,temperature,tool material

dynamic stiffness ofthe system tool-work-machine tool, cuttingforces, chip formation,tool micro geometry,work material,cutting parameter

influenced by

valid for

andor

Geometrical contact conditions in turning

5

measured values

theoretical values

feed f

rough

ness

Rt

Calculated and measured roughness in turning

Influence of cutting speed on surface quality

roug

hne

ss

Rt

cutting speed vc

tool geometry:

work material:tool material:chip cross section:

6

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

Chip shapes in turning

7

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

Mechanical properties of micro-structure constituents

source: Vieregge

HV 10 Rm Rp0,2 Z

N/mm2 N/mm2 %

ferrite 80 - 90 200 - 300 90 - 170 70 – 80

pearlite 210 700 - 850 300 - 500 30 - 50

cementite >1100 - - -

austenite 180 550 - 750 300 - 400 50

martensite 750 - 900 1380 - 3000 - -

8

Principal constituents of unalloyed sub-eutectic carbon steel

pearlite

eutectoid mixture from

ferrite (87%) and cementite (13%)

restricted ductility

very low tendency towards

sticking and BUE formation

high hardness (210HV10)

high abrasive wear attack

favourable chip formation

no burrs

high surface quality

ferrite

α - ironbcc - latticehigh ductility

high tendency towards

sticking and BUE formation

low hardness (80 - 90HV10)

little abrasive wear attack

unfavourable chip formation

burrs

poor surface quality

cutting speed vc

cutting speed vc

wid

th o

f fla

nk w

ea

r V

Bcra

ter

de

pth

KT

Cutting speed-wear curves related to different carbon contents

9

Machinability vs carbon content

carbon content

machin

abili

ty

Properties of low alloyed steels

chemical composition mechanical propertiesgrade

C

%

Mn

%

Cr

%

V

%

Rm

N/mm2

Rp0,2

N/mm2

A

%

Z

%

HV10 Kc1.1

N/mm2

C15

16MnCr5

0,13

0,15

0,41

1,00

-

1,00

-

-

373

510

206

294

45

37

72

75

108

163

1352

1287

C35

34Cr4

0,32

0,36

0,58

0,60

-

0,91

-

-

490

559

285

294

37

34

66

62

145

150

1391

1494

Ck60

50CrV4

0,61

0,52

0,74

1,00

-

1,06

-

0,10

608

667

304

374

29

29

51

53

180

197

1602

1616

100Cr6 1,01 0,36 1,43 - 624 385 32 61 202 1653

10

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

coarse grain annealing

homogenizing annealing

δ - mixed crystals + liquid

δ - mixed crystals+ austenite

austenite +secundary cementite

liquid + austenite

hardening + normalizing

dissolution of c

arbide sceleton

liquid

carbon content, weight percent

cementite content, weight percent

tem

pe

ratu

reT

ferrite

soft annealing

recrystallization annealing

recrystallization annealing

stress relieve annealing

γ - mixed crystals ( austenite )

Iron-carbon diagram and areas of typical heat treatments

11

A austeniteF ferriteP pearliteZw bainiteM martensiteO hardness (HV)20 rate of phases (%)

time t

tem

pe

ratu

reT

chem.

comp.(%)

austeniting temperature 880°C(holding time 3 min) heated up in 2 minspecimen dimension Ø 3 x 15 mm

Time-temperature-transformation diagram for unalloyed steel Ck45

Machinability with respect to C-content and microstructure

carbon content

fine or mixed grained

soft carbon free cutting steel

annealed, granular cementite

coarse grained

quenched

ferrite - pearlite

quenched and tempered, Rm = 1050 N/mm2

quenched and tempered, Rm = 1950 N/mm2

rela

tive

machin

abili

ty

12

1

100 µm

3

50 µm

2

100 µm

4

20 µm

4 710°C 72 h/oven (Rm = 550 N/mm2)

1 1050°C 2,5 h/air (Rm = 730 N/mm2) 2 850°C 0,5 h/air (Rm = 700 N/mm2)

3 840°C / water + 600°C 2 h/air

(Rm = 790 N/mm2)

Heat treatment and microstructure of unalloyed steel Ck45

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

13

10 µm

lammelar chip

work material : 100Cr6 (60-62HRC)

chip thickness : h cu= 0,05 mm

γ0

I

II

vc

vsp

1

2

3

vc

vc

vsp

φR

chip formation( source: Ackerschott, Berktold )

( t=0 )

new crack

crack

contact zone temperatureand hardness of work material

( source: Narutaki and Yamane )

work material : C105 W2

feed : f = 0,1 mm

cutting speed: vc= 120 m/min

1100

1000

900

800

700

600

50010 HRC

°C

work material hardness

lammelarchip

PCBN

carbide HW-P10

20 30 40 50 70

ϑk

co

nta

ctzo

ne

tem

pe

ratu

re

continuouschip

Hard turning - chip formation at large chip thickness

10 µm

continuous chip

work material: 100Cr6 (60-62HRC)chip thickness: h

cu= 0,005 mm

γ0

II

vspvc

γeff

τ

σ

kf

2

III

ρs

τf =

shear strength

yield point in shear

( source: Siebel, Kloos, Berktold, Kaiser )type of stress

formation of thin chips ( source: Kaiser )

Hard turning - chip formation at small chip thickness

14

20 µm

-10000 20 40 60 80 100 120 µm 160

VB = 0 mm VB = 0,2 mm

-800

-600

-400

-200

0

200

400

600

1000

N/mm2

VB = 0,1 mm

VB = 0,2 mm

VB = 0 mm

tan

gential re

sid

ual str

esses σ

ET

: 16MnCr5 E

: 125 m/min

: 0,25 mm

: 0,08 mm: mixed ceramic

: none

work material

cutting speed

depth of cut

feed

tool material coolant

distance from surface

structure of rim zone after hard turning

( source: Goldstein )

vc

τVB

σmax

100µm

σVB

strain temperature

100Cr6 (60-62HRC)VB = 0,1 mm

σVB

τVB

= 4000 N/mm²= 800 N/mm²

400°C

vc

20

µm

com

pr.

ten

sio

n

hot yield stress

σE

σE

300°C

mechanically induced thermically inducedtensile stressescompressive stresses

yield stress

formation of residual stresses ( source: Hönscheid )

estimate of stress and temperature distribution

( source: König and Berktold )

com

pr.

ten

sio

n

Hard turning - analysis of surface integrity

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

15

optical work material image

Pb -Lα - radiation

Mn -Kα - radiation

S -Kα - radiation

distribution of Pb and MnSin the work material

20 µm

C Si Mn P S N Pb0,12 0,01 1,23 0,053 0,238 0,011 0,18

chemical compositionof 9SMnPb23 (wt.-%)

optical rake face image

Mn -Kα - radiation

Fe -Kα - radiation

S -Kα - radiation

work material: 9SMnPb23tool material: HW - M40cutting speed: vc = 155 m/min

MnS deposit on the rake faceof the cutting tool

Appearance of MnS and lead in free cutting steel 9SMnPb23

Lead content and tool life in machining of free cutting steel

source: Bersch

toollif

e T

toollif

e T

toollif

e T

tool life T

failure tool life TE

cutting material

cutting cross sections

cooling lubricant

cutting edge geometry

cutting oil

cutting speed vc

cutting speed vc

16

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

Machinability classes for steel ( I )

machinability class

steel groups

11 12 13 14

untreated(as hotrolled)

not heat treatable grades orcase hardening grades, e.g.9SMn28; 10S20

free cuttingsteels, DIN1651 quenched

andtempered

< 0,45% carbon contente.g. 35S20V; 45S20V

> 0,45 % carbon contente.g. 60S20V -

case hardening steels,unalloyed, DIN 17210

treated for ferrite-pearlite-micro structure (BG), e.g.Ck10BG; Ck15BG

- - -

treated for ferrite-pearlite-micro structure(BG), e.g. 16MnCr5BG

treated for specificstrength (BF),e.g. 16CrNiMo6BF

case hardening steels,alloyed, DIN 17210

- untreated

1)

e.g. 16MnCr5Uuntreated

1)

e.g. 17CrNiMo6U

construction steels,DIN 1700

< 0,2% carbon content,e.g. St50- 3

2)> 0,2 % carbon contente.g. St50- 1

2)

1) machinability depends on percentage of bainite and martensite in the micro structure

2) considerable variation of properties may cause different machinability

17

Machinability classes for steel ( II )

machinability class

steel groups

12 13 14 15

annealed orBF-treated

< 0,40% carbon content,e.g. Ck35BF; Cf35G

> 0,40% carbon content,e.g. Ck45BF; Cf53G;

Ck60G

> 0,60% carboncontent1), e.g. Cf70G

normalised(N)

< 0,45% carbon content,e.g. Ck45N

> 0,45% - 0,55% carboncontent,

e.g. Cf53N; Ck55N

> 0,55% carbon content,e.g. Ck60N

heattreatablesteels,

unalloyedDIN 17200DIN 17212DIN 17240 quenched

andtempered

(V)2

max. 0,45% carboncontent or max. 800

N/mm2 tensile strength,e.g. Ck35V; Cf45V

> 0,45% - 0,60% carboncontent or > 800 N/mm2

tensile strength,e.g. Ck55V

annealed(G) or trea-ted for bestmachina-bility (B)

max. 0,30% carbon contentor max. 200HB,e.g. 25CrMo4B

max. 0,40% carboncontent

or > 200 – 230HB,e.g. 24CrMo5B;

34Cr4B

> 0,40% carbon contentor > 230HB,

e.g. 24CrNiMo6B; 50CrMo4G

heattreatablesteels,alloyed

DIN 17200DIN 17211DIN 17212DIN 17240

quenchedand

tempered(V)2

max. 0,40% carboncontent or > 700 - 800

N/mm2 tensile strength,e.g. 34Cr4V

max. 0,50% carboncontent or > 800 - 1000N/mm2 tensile strength,

e.g. 34CrAlNi7V; 42CrMo4V

> 1000 N/mm2

tensile strength,e.g. 50CrV4V;

30CrNiMo8V

1) unalloyed tool steels, DIN 17350, possess in the annealed condition equal machinability

2) microstructure consists from tempered martensite or bainite

machinability class

cu

ttin

gspe

ed

vc

Machinability class and applicable cutting speed for machining steel

carbide tooling

18

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

casting materialscasting materials

ferrous casting materialsferrous casting materials non-ferrous casting materialsnon-ferrous casting materials

technical pure iron

(C < 0,1 %)

technical pure iron

(C < 0,1 %)

cast iron(2%<C<4,5%)

cast iron(2%<C<4,5%) coppercopper

other(magnesium,titanium, tin,

nickel)

other(magnesium,titanium, tin,

nickel)

steel casting(0,1%<C<2%)

steel casting(0,1%<C<2%) aluminiumaluminium

Classification of casting materials

19

cast ironcast iron

white cast ironwhite cast iron grey cast irongrey cast iron

chilled ironchilled iron chilled cast ironchilled cast iron

malleable cast ironmalleable cast iron

black-heart malleable cast iron

black-heart malleable cast iron

white-heart malleable cast iron

white-heart malleable cast iron

cast iron with lamellar graphite

cast iron with lamellar graphite

cast iron with nodular graphite

cast iron with nodular graphite

ferriticferritic perliticperlitic ferriticferritic perliticperlitic

Classification of cast iron materials

300

50

100

150

200

250

75 79 83 87 91 950

NF-metal foundries[index 1975=100]

C-Al

C-Zn

C-CuC-Mg

Inde

x

Al Mg Cu Zn0

20

40

60

80

production values of1998 [in 1000t]

Iron and steel castings

cast iron with lamellar graphite (GJL)

cast iron with nodular graphite (GJS)

malleable cast iron (GT)

steel castings (GS)

NF-metal castings

aluminium castings

magnesium castings

copper castings

tin castings

75 79 83 87 91 95

200250

150

100

5010

Cast iron and steel foundries[index 1975=100]

GJS

GJL GS

GT

Inde

x

0

500

1000

1500

2000

2000

GJS GT GSGJL

production values of1998 [in 1000t]

source: Verein Deutscher Giessereifachleute (VDG)

Production values of different casting materials

20

0

5%

10%

15%

500 [MPa]

GJS

GJL

GJL

GJS

malleable cast ion

steel

GJS (ferrite) GJS (perlite)GJL (perlite)GJL (ferrite) malleable cast ion

chilled iron

ADIstr

ess

strain

elo

nga

tion

tensile strength

GJV (ferrite)

Properties and structure of different cast iron materials

motor block (grey cast iron) crank shaft (ductile cast iron)

source: Opel (Ecotec-Motor)

source: VW, Halberg Guss (VR5)

Applications of different cast iron materials

21

properties application example

source: BMW high performance diesel engine

higher strength und elongation than GJL

higher damping and heat conduction than GJS

more compact construction than with aluminium

New cast iron applications: e.g. compacted graphite iron

ferrite

ferrite + pearlite

pearlite (coarse)

bainite

pearlite (fine)

tool life criterion:

tool material:

chip cross section:

tool geometry:

cu

ttin

g s

pe

ed

vc

brinell hardness HB30/5

Machining grey cast iron - dependence of cutting speed on hardness

22

Tool life in face milling of grey cast iron

cutting speed vc

toollif

e L

f(V

B =

0,2

mm

)

cemented carbide

coatedcementedcarbide

Si3N4-ceramic

ceramic

carbide

cutting edge geometry

workpiece material GG25depth of cut ap = 2,0 mmcutter diameter D = 125 mmnumber of teeth z = 8feed per tooth fz = 0,3 mmradial depth of cut ae = 90 mm

chamfered

Hardness vs machinability for unalloyed chilled cast iron

source: Vieregge

Vic

kers

hard

ness

HV

30

Shore

hard

ness

hardn

ess

cutting speed

cutting material

cutting cross section

tool life

flank wear

carbon content

23

Machinability classes for castings

machinability class

material group

31 32 33 34 35

lamellar grey cast iron,(GG, GGL)1), DIN 1691

max. 150HB 150 to 180HB 180 to 230HB > 230HB

spheroidal graphite castiron, (GGG)2), DIN 1693

max. 180HBe.g. GGG-40

180 to 220HBe.g. GGG-50

220 to 260HBe.g. GGG-60

> 260HBe.g. GGG-70

black malleable cast iron,(GTS), DIN 1692

max. 140HB,e.g. GTS-35

140 to 180HBe.g. GTS-45

180 to 220HBe.g. GTS-55

220 to 260HBe.g. GTS-65

> 260HBe.g. GTS-70

white malleable cast iron,(GTW), DIN 1692

max. 150HBe.g. GTW-40 GTW-S-38

150 to 210HBe.g. GTW-45

> 210HBe.g. GTW-55

1) Local hardness of the castings depends on the wall thickness. Hardness of the area that must be machined decidesupon machinability class.

2) Spheroidal graphite cast iron in as-cast-condition: see 1)

Machinability class vs cutting speed for machining castings

machinability class

cuttin

gspe

ed

vc

carbide tooling

24

special combination of properties

assumed special machinability

Compared to conventionalductile cast iron:

• increased hardness, strength and ductility

• high strain hardening.

Compared to steel:• heterogeneous micro-

structure due to graphite nodules,

• high abrasive wear resistance due to special austenitic-ferritic microstructure.

elo

ng

ati

on

/ d

uc

tili

ty

co

nve

nti

on

al

ca

st

iro

n m

ate

ria

ls

GJS

GJV

GJL

EN-GJS-400-15

EN-GJS-700-2

ADI

ADI 800

ADI 1000

ADI 1200

Austempering

tensile strength / hardness

42CrMo4V

ADI: combination of special properties

EN-GJS-400-15

EN-GJS-900-7

EN-GJS-700-2

20 µm 5 µm

graphite

austeniteferrite

Properties

• high tensile strength and high elongation(Rm = 1000 MPa, A = 10 %, 330 HB)

• high wear resistance(~+50% compared to steel of the same hardness)

• high fatigue strength(σW = 425 Mpa, σSch = 675 MPa)

• work hardening

Microstructure of analysed materials

25

Machining processes:

• Drilling (a)

• Tapping (b)

• face milling (c)• disc milling (d)

• boring (e)

• reaming (f) ...

source: ADITECH, Fiat

GJS-600 ADI 900

(a)

(a)

(b)

(c)

(d)

(a)(c)

(e&f)

Designed acc. to fatigue life20% weight reduction

ADI suspension fork

ADI: part complexity requires many machining operations

0

5

10

15

20

25

30

35

[min]

45

100 140 180 220 260 300 340 [m/min] 420

K10 (coated)

K10 (Al2O3- coated)

P10 (coated)

cemented carbides

EN-GJS-400-15

(ferrite)

EN-GJS-900-7(ADI-900)

EN-GJS-700-2

(pearlite)

cutting speed vc

turning parameters:

vc = 120 - 400 m/minf = 0,1 - 0,4 mmap = 1 mmdry cutting

cutting tool materials:

cemented carbides(different coatings)- K10 (Ti(C,N)-Al2O3-TiN)- K10 (Ti(C,N)-Al2O3-TiN)- P10 (Ti(C,N)-Al2O3-TiN)

work materials:

ADI 900EN-GJS-700-2 (GGG70)EN-GJS-400-15 (GGG40)

too

l li

fe (

cri

teri

on

: fl

an

k w

ear,

VB

= 0

,3 m

m)

Tool life: conventional GJS vs. ADI

26

ADI 900tc = 19,9 min

42CrMo4Vtc = 19,6 min

cutting speed vc = 160feed f = 0,2 mmdepth of cut ap = 2 mmcutting tool material HC-K10

coating TiN-Al2O3

dry cutting

Tool wear compared to Q&T steel

vc = 100 m/min, f = 0,2 mm, ap = 4 mm vc = 100 m/min; κκκκ = 75°

1000

1500

2000

[N]

3000

1 2 [ms] 4

42CrMo4V

ADI 900

cutting time tc

500 0

100

200

300

400

500

[N/mm]

700

0 0,1 0,2 [mm] 0,4

undeformed chip thickness h (≈≈≈≈feed)

42CrMo4V

EN-GJS-400-15

EN-GJS-700-2

ADI 900 (≈≈≈≈EN-GJS-900-7)

cu

ttin

g f

orc

e v

ari

ati

on

(F

)~

cu

ttin

g f

orc

e / w

idth

of

un

defo

rmed

ch

ip (

F/b

)–

EN-GJS-400-15

EN-GJS-700-2

Cutting forces when turning ADI compared to other materials

27

Material model

• ADI-specific material law (ADI-900)

• additional strain an strain-rate related softening process to attain shear concentration

• additional crack initiation by deleting elements based on crack criteria

Results

• Analysis of load distribution by place and time

• Analysis of the chip formation and the development of the shear zone

• Analysis of temperature distribution

• Analysis of contact conditions to predict adhesion processes

FEM Cutting simulation based on ADI-specific material law

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

28

Data for machining wrought aluminium alloys

process turning milling drilling sawing

tool material HS HW PCD HS HW PCD HS HW HS HW

cutting speed

vC [m/min]≤800 ≤4000 *) ≤1200 ≤2500 ≤2500 ≤200 ≤500

400-

2000≤3000

rake angle γ0 [deg] 25-35 ≤30 *) 15-30 10-20 2 30 30 25 10

relieve angle α0 [deg] 7-10 7-10 *) 19-20 9-20 6 15-17 5-10 8 7-9

feed f [mm]

fz [mm]≤0,8

-*)-

-~0,3

-~0,3

-~0,3

0,1-0,5-

≤0,15-

-≤0,06 ≤0,06

depth of cut ap [mm] ≤6 ≤6 *) ≤6 ≤8 ≤2,5 - - - -

*) not suited respectively not practised

Data for machining sub-eutectic aluminium alloys

process turning milling drilling sawing

cutting material HS HW PCD HS HW PCD HS HW HS HW

cutting speed vC [m/min] ≤400 ≤1200 ≤1500 ≤300 ≤700 ≤1500 80-100 ≤500200

-1000

≤3000

rake angle γ0 [deg] 10-20 6-12 6 15-25 10-20 2 30 30 25 8

relieve angle α0 [ded] 7-10 5-8 12 9-20 9-20 6 12 5-10 8 7-9

feed f [mm]

fz [mm]≤0,5

--≤0,6

--≤0,3

----

~0,3--

~0,3--

~0,20,1-0,4

--0,15

----

≤0,06

--

≤0,06

depth of cut ap [mm] ≤6 ≤6 ≤1 ≤6 ≤8 ≤2,5 -- -- -- --

29

process turning milling drilling sawing

cutting material HS HW PCD HS HW PCD HS HW HS HW

cutting speed vC [m/min] *) ≤400 ≤900 *) ≤300 ≤1000 5060-

100

80-

200≤1000

rake angle γ0 [deg] *) 6 6 *) 10-20 2 30 30 15 6

relieve angle α0 [deg] *) 5-8 12 *) 9-20 6 12 5-10 8 7-9

feed f [mm]

fz [mm]*)--

≤0,6--

≤0,2--

--*)

--~0,3

--~0,15

0,1-0,4--

0,15--

--≤0,06

--≤0,06

depth of cut ap [mm] *) ≤4 ≤0,8 *) ≤8 ≤2,5 -- -- -- --

*) not suitable respectively not common

Data for machining hyper-eutectic aluminium silicon alloys

Turning castings - comparison of cutting data

cu

ttin

gspe

ed

vc60

chill

cast

ing

sand

cast

ing

sp

ec.

cu

ttin

gfo

rce

fc1.1

requir

ed

cu

ttin

gp

ow

er

P

chip cross section

30

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

Data for turning copper based alloys

source: DKI cutting speed vccutting speed vc

feed

f tooll

ife

tV

B≈0,5

mm

feedtool material

tool geometry

BUE - free area

BUE transition zone

tool materialwork material

31

Notch wear in turning OF- copper with cemented carbide tools

source: DKI

flank and cutting edge rake face

cutting speed vc = 240 m/min feed f = 0,1 mm

process turning milling drilling sawing

cutting material HS HW HS HW HS HW HS HW

cutting speed vC [m/min] 10-220 75-1320 10-80 40-560 18-80 50-125 30-180 500-1000

rake angle γ0 [deg] 20-30 6-8 16-20 6-8 10-30 10-30 5-15 5-15

relieve angle α0 [deg] 8-10 6-8 5-7 5-7 6-8 6-8 8 8

0,1-0,63 0,-0,8 -- -- 0,1-0,4 0,1-0,4 -- -- f [mm]feed

fz [mm] -- -- 0,1-0,35 0,1-0,35 -- -- 0,03-0,15 0,03-0,15

depth of cut ap [mm] 0,6-4 0,6-4 0,6-4 0,6-4 -- -- -- --

Data for machining copper based alloys

32

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

Machinability classes for nickel based alloys

machinability class

1 2 3 4 5

wrought and cast alloys cast alloys

alloy-group I:Ni-Cu-alloys

alloy-group II:Ni-(Cr)-Mo-alloys andnot hardenable alloys ofgroups III and IV:III: Ni-Fe-Cr-alloysIV: Ni-Cr-Fe-alloys

precipitation hardenable alloys of groups III-V:

III: Ni-Fe-Cr-alloys IV: Ni-Cr-Fe-alloys V : Ni-Cr-Co-alloys

heat resistant castalloys(special alloys)

examples

Monel 400Monel 401Monel 404Monel R 405

examples

Hastelloy BHastelloy XIncoloy 804Incoloy 825Inconel 600Inconel 601

examples

Incoloy 901Incoloy 903Inconel 718Inconel X-750Nimonic 80Waspaloy

examples

Nimonic 90Nimonic 95Rene 41Udimet 500Udimet 700Astralloy

examples

IN-100Inconel 713 CMAR-M 200Nimocast 739

33

Data for turning nickel based alloys

HS2)

HW2)

machinabilitygroup

alloy condition1) hardness

HV

depth ofcut

[mm]feed[mm]

cutting speed[m/min]

feed[mm]

cutting speed[m/min]

1Monel 400Momel 401

G or KGor GG

115-2401

4-80,18

0,40-0,7530

17-210,18

0,25-0,50105

50-67

G or LG 140-2200,8-2,5

50,13-0,18 6-8 0,13-0,18

0,4030-35

242

Hastelloy XIncoloy 825Inconel 600 KG or A 240-310

0,8-2,55

0,13-0,18 5-6 0,13-0,180,40

21-2715

G or LG 200-3000,8-2,5

50,13-0,18 6-8 0,13-0,18

0,4024-30

183

Incoloy 901Inconel 718Nimonic 80Waspaloy LG and A 300-400

0,8-2,55

0,13-0,18 5-8 0,13-0,180,40

23-2915

LG 225-3000,8-2,5

50,13-0,18 3,6-5 0,13-0,18

0,2521-24

174

Nimonic 90Rene 41Udimet 700 LG and A 300-400

0,8-2,55

0,13-0,18 3,0-3,6 0,13-0,180,40

18-2315

5IN-100Mar-M200

GG orGG and A

250-4250,8-2,5

50,13 3,5-5 0,13-0,18

0,2511-189-11

1) G: annealed ; LG: solution treated ; KG: cold drawn ; GG: as cast ; A: aged 2) HS: HS12-1-5-5 und HS-2-9-1-8 ; HW: K01 and K20

HS HW

feed fZ [mm] feed fZ [mm]

cutter diameter [mm] cutter diameter [mm]

machinabilitygroup

alloy condition1)

HVae

2)

[mm]vC

[m/min]10-18 25-50

vC

[m/min]10-18 25-50

1Monel 400Monel 401

G or KGor GG

115-

240

0,5-1,5d/2-d/4

d

26-2015-17

8-9

0,03-0,100,03-0,070,03-0,07

0,01-0,130,07-0,10

0,07

76-5846-50

0,03-0,100,03-0,07

0,10-0,130,07-0,10

G or LG140

-220

0,5-1,5d/2-d/4

d

9-85-65

0,03-0,070,03-0,060,02-0,05

0,05-0,100,06-0,07

0,07

30-2318-20

0,03-0,070,03-0,04

0,05-0,100,03-0,05

2

Hastelloy X

Incoloy 825

Inconel 600 KG or A240

-310

0,5-1,5d/2-d/4

d

8-63,6-5,5

3,6

0,03-0,070,03-0,06

0,04

0,05-0,070,05-0,06

0,05

27-2017-18

0,03-0,070,03-0,04

0,05-0,100,04-0,05

G or LG200

-300

0,5-1,5d/2-d/4

d

6-53,6-61,8

0,03-0,070,03-0,06

0,04

0,05-0,070,05-0,07

0,05

24-1814-15

0,03-0,070,04-0,05

0,05-0,100,05-0,06

3+4

Inconel 718WaspaloyRene 41Udimet 700 LG and A

300-

400

0,5-1,5d/2-d/4

d

5-3,62,4-31,5

0,03-0,050,02-0,04

0,04

0,05-0,070,04-0,05

0,05

18-1411-12

0,03-0,050,03-0,05

0,05-0,070,04-0,07

5IN-100Mar-M200

GG or GGand A

250-

425

0,5-1,5d/2-d/4

d

0,03-0,050,01-0,05

0,04

0,03-0,050,01-0,05

0,04

0,05-0,100,05-0,07

0,05

23-118-15

0,03-0,050,03-0,04

0,05-0,070,03-0,05

1) G: annealed; LG: solution treated; KG: cold drawn; GG: as cast; A: aged

2) axial depth of cut: ap = 1,5 * d at radial depth of cut ae = 0,5; 1,5; d/4; d/2

axial depth of cut: ap = d/4 at radial depth of cut ae = d

Data for end milling nickel based alloys

34

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

Choice of titanium alloys

materialgroup

HB Rm

N/mm2Rp0,2

N/mm2

commercially pure titanium(annealed)

Ti99,8, Ti99,5 110 – 170 280 – 420 180

Ti99,2, Ti99,0,TiPd0,2

140 – 200 350 – 550 280 - 520

Ti99,0, Ti98,9 200 – 275 560 490 – 670

α- and (α+β)- alloys(annealed)

TiMn8TiAl2Sn11Zr5Mo1TiAl5Sn2,5TiAl6Sn2Zr4Mo2TiAl6Sn2Zr4Mo6TiAl6V4

300 - 350

9001000 880 9301155 970

850910840840910890

TiAl6V6Sn2Cu1Fe1TiAl7MoTiAl8Mo1V1

320 - 380109010801030

10201000 980

materialdesignation

HB Rm

N/mm2Rp0,2

N/mm2

α- and (α+β)- alloys(solution treated and aged)

TiAl6V4TiAl6Sn2Zr4Mo2TiAl6Sn2Zr4Mo6

320 - 3801190 9301150

1080 8651035

TiAl5Sn2Zr2Mo4Cr4TiAl6V6Sn2Cu1Fe1TiAl7MoTiAl8Mo1V1

375 – 4401120130012801470

1050123012201400

β- alloys(annealed and solution treated)

TiCr11Mo7,5Al3,5TiV8Cr6Mo4Zr4Al3TiV8Fe5Al1TiV13Cr11Al3

275 – 350

850 – 950880

1250950

800 8401200 910

β- alloys(solution treated and aged)

TiCr11Mo7,5Al3,5TiMo11,5Zr6Sn4,5TiV8Fe5Al1TiV13Cr11Al3

350 – 4401300 – 1500

141014701300

1250134014001230

35

Data for turning titanium alloys

HS HW

material group condition hardness HBvc

[m/min]

f[mm]

vc

[m/min]

f[mm]

commerciallypure

G 110-275 75-30 0,13-0,4 170-50 0,13-0,5

G 300-380 24-6 0,13-0,4 80-15 0,13-0,4α- and (α+β)-

alloysLG + A 320-440 20-9 0,13-0,4 60-12 0,13-0,4

G, LG 275-350 12-8 0,13-0,4 50-15 0,13-0,4

β- alloys

LG + A 350-440 10-8 0,13-0,4 35-12 0,13-0,4

cutting materialG : annealedLG : solution treatedA : aged HS12-1-5-5, HS2-9-1-8

HS10-4-3-10K01-K20M10-M20

Data for end milling titanium alloys

HS HW

material group condition hardnessvc

[m/min]

fZ[mm]

vc

[m/min]

fZ[mm]

commerciallypure

G 110-275 55-15 0,025-0,15 130-45 0,025-0,15

G 300-380 30-9 0,025-0,13 90-30 0,025-0,15α- and (α+β)-

alloysLG + A 320-440 25-8 0,015-0,10 70-20 0,015-0,13

G, LG 275-350 15-6 0,015-0,10 50-15 0,015-0,50

β- alloys

LG + A 350-440 12-5 0,015-0,08 40-15 0,015-0,10

cutting materialG : annealedLG : solution treatedA : aged HS12-1-5-5, HS2-9-1-8

HS10-4-3-10K10M20

36

Data for drilling titanium alloys

HS HW

material group condition hardness HBvc

[m/min]

f[mm]

vc

[m/min]

f[mm]

commerciallypure

G 110-275 35-12 0,05-0,45

G 300-380 14-6 0,05-0,40α- and (α+β)-

alloysLG + A 320-440 9-6 0,025-0,25

G, LG 275-350 8 0,025-0,20

β- alloys

LG + A 350-440 6 0,025-015

75-20 0,1-0,3

cutting materialG : annealedLG : solution treatedA : aged HS12-1-5-5, HS7-4-2-5

HS2-9-1-8; HS10-4-3-10K10, K20

Structure of the lecture

� The term „Machinability“

� Evaluation of machinability� Evaluation criterion - tool life

� Evaluation criterion - cutting force

� Evaluation criterion - surface quality

� Evaluation criterion - chip shape

� Factors influencing the the machinability of steel materials� Machinability in dependence of carbon content

� Influence exerted by alloying elements on machinability

� Machining properties in dependence on heat treatment

� Machinability of hardened steel materials

� Machinability of steel materrials� Machinability of free cutting steel

� Machinability of case-hardening and QT steel

� Machinability of cast iron materials

� Machinability of aluminium alloys

� Machinability of copper base alloys

� Machinability of nickel-based alloys

� Machinability of titanium materials

� Summary

37

� Which main criteria are used for the evaluation of the machinability?

� Specify the equation for the description of the tool life dependent on the cutting speed.

� Compile the factors influencing the surface quality in metal cutting.

� Specify the simplified equation for the description of the cinematic roughness.

� When and why does the cinematic roughness deviate from the measured roughness?

� Which chip shapes are good, which are acceptable and which are unfavourable?

� Evaluate the different microstructural components of the system iron-carbon with respect to the four main evaluation criteria for the machinability. Substantiate your answer.

� How does the cutting speed-wear curves change related to different carbon contents?

List of questions I

� Which heat treatment is used to reduce the hardness of a microstructure? Describe the appropriate temperature control.

� Which microstructure exists after heating (T=1050°C, 2h) and cooling on air?

� Which properties has a normalised microstructure?

� Illustrate the characteristics of hard machining.

� Why are free cutting steels well machinable?

� Due to which special feature the machinability of cast iron materials is influenced?

� Specify the factors influencing the machinability of aluminium alloys.

� Due to which material properties nickel-based alloys are difficult to machine?

List of questions II