9
Vacuum Tubes, BJT or FET? Circuit Analysis: Amplifier & Feedback Classic BJT Circuits Arduino Intro 6.101 Spring 2018 Lecture 5 1 Acnowledgements : Yanni Coroneos, Neamen, Donald: Microelectronics Circuit Analysis and Design, 3 rd Edition Vacuum Tubes NY Times “Guitar heroes favor vacuum tube amplifiers in their instruments” “Many recording engineers tend to use vacuum- tube equipment in their studios” “Some listeners pay thousands of dollars for high- end tube-based stereo systems and CD players.” 6.101 Spring 2018 Lecture 5 2 Linear without feedback Characteristics independent of temperature Wider dynamic range BJT or FET Depends on application Amplifiers BJT are more linear that MOSFET, better fidelity (low harmonic distortion) can drive low impedances at higher power lower noise with low source impedance MOSFET high input impedance Voltage controlled device => lower power 6.101 Spring 2018 Lecture 5 3 Transistor Configurations 6.101 Spring 2018 Lecture 5 4 +15V + V in - + V OUT - R L R 1 + + R 2 [a] Common Emitter Amplifier [b] Common Collector [Emitter Follower] Amplifier R E R E +15V + V in - + V OUT - R L R 1 + + R 2 + [c] Common Base Amplifier TRANSISTOR AMPLIFIER CONFIGURATIONS R 2 R 1 + V in - + V OUT - R E + + high input impedance, for general amplification voltage gain = 1 ; use in amplifier output stage. low input impedance for low impedance sources, for high frequency response . BJT FET Common source Common drain [Source follower] Common gate

L05 BJT Part3 - web.mit.eduweb.mit.edu/6.101/www/s2018/handouts/L05_4.pdf · Characteristics independent of temperature Wider dynamic range ... Common Base Amplifier TRANSISTOR AMPLIFIER

Embed Size (px)

Citation preview

• VacuumTubes,BJTorFET?• CircuitAnalysis:Amplifier&Feedback• ClassicBJTCircuits• ArduinoIntro

6.101 Spring 2018 Lecture 5 1

Acnowledgements: Yanni Coroneos, Neamen, Donald: Microelectronics Circuit Analysis and Design, 3rd Edition

VacuumTubes

•  NYTimes–  “Guitarheroesfavorvacuumtubeamplifiersintheirinstruments”

–  “Manyrecordingengineerstendtousevacuum-tubeequipmentintheirstudios”

–  “Somelistenerspaythousandsofdollarsforhigh-endtube-basedstereosystemsandCDplayers.”

6.101 Spring 2018 Lecture 5 2

Linear without feedback Characteristics independent of temperature Wider dynamic range

BJTorFET

•  Dependsonapplication•  Amplifiers

–  BJT•  aremorelinearthatMOSFET,betterfidelity(lowharmonicdistortion)

•  candrivelowimpedancesathigherpower•  lowernoisewithlowsourceimpedance

– MOSFET•  highinputimpedance•  Voltagecontrolleddevice=>lowerpower

6.101 Spring 2018 Lecture 5 3

TransistorConfigurations

6.101 Spring 2018 Lecture 5 4

+15V

+

Vin

-

+

VOUT

-

RL

R1

+

+

R2

[a] Common Emitter Amplifier [b] Common Collector [Emitter Follower] Amplifier

RE RE

+15V

+Vin

-

+

VOUT

-

RL

R1

+

+

R2

+

[c] Common Base Amplifier

TRANSISTOR AMPLIFIER CONFIGURATIONS

R2

+15V

R 1

+

Vin

-

+VOUT

-

RE

+

+

high input impedance, for general amplification

voltage gain = 1 ; use in amplifier output stage.

low input impedance for low impedance sources, for high frequency response.

BJT

FET

Common source Common drain [Source follower] Common gate

MillerEffect*–CommonEmitter

6.101 Spring 2018 Lecture 3 5

)](1[ LCmM RRgCC += µ

* Agarwal & Lang Foundations of Analog & Digital Electronics Circuits p 861

InputImpedanceandFrequencyResponse

6.101 Spring 2018 6

RV1 V2C

Av =V2V1=

j XCR+ j XC

=

1jωC

R+ 1jωC

=1

jωRC +1

Av =1

sRC +1

High frequency cutoff fhi =1

2πRC

log f

AV (dB)

-3dB

fHI or f-3dB

slope = -6 dB / octaveslope = -20 dB / decade

0

log f

Degrees

-45o

fHI or f-3dB

0o

-90o

PHASE LAG

Lecture 2

log scale

LowFrequencyHybrid-πEquationChart

6.101 Spring 2018 Lecture 5 7

High gain, better high frequency response Low input resistance

Unity gain, low output resistance High input resist.

High gain applications Moderate input resistance High output resistance

CascodeAmplifer

•  Twotransistoramplifer:commonemitter(CE)withacommonbase

•  MillereffectavoidedbysettinggainofCEstagelow.

•  CEstageprovideshighinputimpedance

•  Commonbase(CB)providesgainwithoutMillereffect;baseisgrounded.

6.101 Spring 2018 Lecture 5 8

Miller effect

No Miller effect

Objectives

•  PerformananalysisintothebehaviorofacomplicatedcircuitusingbasicpropertiesofBJT’s(npn,pnp)

•  Calculategainofthesystem

•  Discusscrossoverdistortionissuesinpush-pullamplifiers

•  Understandfeedback

6.101 Spring 2018 Lecture 5 9

ThreeStage–PushPullAmplifier

6.101 Spring 2018 Lecture 5 10

6.101 Spring 2018 Lecture 5 11

ThreeStageAmplifer–BlockDiagram

Feedback

Q3-Q4PushPull

6.101 Spring 2018 Lecture 5 12

•  Q3:EmitterFollower(positvecycle)

•  Q4:EmitterFollower(negativecycle)

•  Overallgain~1

•  Q3&Q4Vbearealwaysonediodedrop

•  Crossoverdistortion

aboutzerocrossing

CrossoverDistortion

6.101 Spring 2018 Lecture 5 13

Q2–HighGainStage

6.101 Spring 2018 Lecture 5 14

•  Sincelaststageisanemitterfollower,noden4shouldbebiasednearzerovolts.

•  Q2isacommonemitter

configurationwithapnptransistor.

•  Forpnpconfiguration,reversethepolarityofthevoltagesfromanpn.

mvVVI

g

rg

THTH

CQm

m

26

0

==

= πβ

Lm

m

o

Lov Rg

g

RA −=

−=

ββ

5701015

*38

4 −==

==

vCQ

CQTH

CQm

AI

IVI

g

Q1Analysis

6.101 Spring 2018 Lecture 5 15

Biasing

6.101 Spring 2018 Lecture 5 16

Biasing–QuiescentPoint

•  Determinethequiescentpoint•  ForBJT

–  assumeVbe=0.6V–  assumebasecurrentneglible

•  ApplyKVL,KCL

6.101 Spring 2018 Lecture 5 17

Biasing–QuiescentPoint

6.101 Spring 2018 Lecture 5 18

v(n5) = Vout = 0

v(n1) - v(n3) = 0.6

v(n2) = 15 – 0.6

0.6 ma

knv

knv

iiKCL rt

10)3(06.0

1)15()3(6.0:

−+=

−−

+=

vnvornv 4.12)1(13)3( −=−=

kkforvnv 3/303.12)1( −=

it

if

+ 0.6 -

-13.0

-12.4

KeyObservations

6.101 Spring 2018 Lecture 5 19

•  Crossoverdistortioncausedbybaseemittervoltage.

•  Feedbackresultsinoverallgainindependentofβ

•  Biasingnotprecise,highlydependentonsupplyvoltage(poorsupplyvoltagerejection)

ClassicBJTCircuits/components

•  DarlingtonPair•  Matchedtransistors•  Shortcircuitprotection•  Currrentmirror•  Schottkydiode•  BakerClamp•  Vbemultiplier

6.101 Spring 2018 Lecture 5 20

MPSA13Darlington

6.101 Spring 2018 Lecture 5 21

MatchedPair

•  Closeelectricalandthermalcharacteristics

•  Supermatchedpairsalsoavailable

•  Usedindifferentalamplifiersandmeasurementequipment

6.101 Spring 2018 Lecture 5 22

SuperMatchedPair

•  Characteristicsapproachtheoreticaltransistor

•  Vbematchedto50µv

•  hFEmatchedto2%

6.101 Spring 2018 Lecture 5 23

7805RegulatorShortCircuitProtection

6.101 Spring 2018 Lecture 5 24

•  WhenvoltageacrossR16exceeds~0.6volt,Q14divertsawaybasedrivetoQ15.

•  NoteDarlingtonpair

Q15,Q16

6.101 Spring 2018 Lecture 5 25

356Op-AmpShortCircuitProtection CurrentMirror

6.101 Spring 2018 Lecture 5 26

Schottky*Diode

•  Schottkydiodeformedwithmetal-semiconductorjunctionvspnjunction

•  Lowerforwardvoltagedrop:0.15-0.45vs0.6-0.7forpnjunction

•  Almostzeroreverserecoverytimes.

•  Usedin74LSserieslogicLow-powerSchottky

6.101 Spring 2018 Lecture 5 27

* Walter Schottky

Baker*Clamps

•  Reducesturnofftimebylimitingsaturation

•  BakerCampwithdiodes

•  BakerclampwithSchottkydiode

6.101 Spring 2018 Lecture 5 28

*named by Richard Baker (1956); drawings from http://en.wikipedia.org/wiki/Baker_clamp

VbeMultipler

6.101 Spring 2018 Lecture 5 29

BEVRRRV2

21 )( +=

Arduino

•  Lowcostopensourcemicrocontrolleranddevelopmentsystem–  16MHzATmega328,32KBflash,1KBEEPROM,2KBSRAM–  22I/Oports:analog/digital–  5V(19ma)operation

•  Idealforprototyping,processcontrollerorstatemachines

•  Maybeusefulforfinalprojectbutonlyinasecondary

manner:–  datadisplay,controllogic

•  Manyvariants:Uno,Nano,Pro,Teensy….

•  Originalsvsclones

6.101 Spring 2018 Lecture 5 30

ArduinoNano

6.101 Spring 2018 Lecture 5 31

SPI: +5, GND, MISO, MOSI, SCK

USB: programming & +5V power

reset

LEDs: Power, LED, Rx, Tx

ATMEGA 328P CPU

J1 – pin 1

J2 – pin 1 7-12 VDC in

J2 – pin 14 3.3V @20ma

J2 – pin 4 5V in or out

ArduinoNano

6.101 Spring 2018 Lecture 5 32

LM1115 5V

CH340 FTDI Clone 3.3V regulator

J2 – pin 1

J1 – pin 1

D3, D5, D6, D9, D10, and D11 provide 8-bit PWM output with analogWrite() D10 (SS), D11 (MOSI), D12 (MISO), D13 (SCK) same as SPI header

A0-A7 10-bit analog inputs referenced to 5V or AREF using the analogReference() function; A4 (SDA) and A5 (SCL) support I2C

A0-A7 10-bit analog inputs referenced to 5V or AREF using the analogReference() function.

MultifunctionI/OPinsPartialList

Pin Function1 Function2 Function3

D13 digitalI/O SCK(SPI) Built-inLED

D12 digitalI/O MISO

D11 digitalI/O MOSI

D3,5,6,9,10,11 digitalI/O PWM

D3 digitalI/O Interrupt1

D2 digitalI/O Interrupt0

D1 digitalI/O Tx

D0 digitalI/O Rx

A5 analogin SCL

A4 analogin SDA

6.101 Spring 2018 Lecture 5 33

SerialInterface

•  ArduinoNanocloneusesCH340G;needtoinstallserialportdriver.•  Driversonhttp://web.mit.edu/6.101/www/s2018/drivers/havebeen

tested.–  CH341SER_MAC:OSXYosemite,ElCapitan

serialport:cu.wchusbserial1410–  CH34x_Install_Windows_v3_4.zip:Windows7

serialport:COM3–  CH340_LINUX.zip:Ubuntu14.04

serialport:/dev/ttyUSB0

•  Otherdriversareavailablefromhttp://sparks.gogo.co.nz/ch340.html

6.101 Spring 2018 Lecture 5 34

// driver install make sudo make load

ArduinoLab

6.101 Spring 2018 Lecture 5 35

common normally closed

Connect switch to Arduino and control LED