Kumera Girth Gear Technical Manual

Embed Size (px)

DESCRIPTION

Manual on GEARS

Citation preview

  • 1 girthgear

    pinion

    3 segment

    b facewidth

    da

    tipdiameter

    dmax

    max.drumdiameter

    Picture 1. Terms and definitions of an open gear

    Girthgearsaremanufacturedfromsegments.A girth gear is divided into 816 segments,whicharejoinedbybolts.Thesegmentlengthtypicallyvariesbetween0.81.6m.Shortseg-ments enable the use of small versatile andaccuratemachines. Due to this, optimal and

    precisetoothreliefscanbeproduced.Castingofshortsegments iseasy,securinghighandeven material strength properties. Segmentsareinterchangeable,whichreducessparepartcosts.Short segments also enable easy andcost-efficienttransportation.

    Agirthgearcanbesingleordoublepiniondriv-en.Apinionismanufacturedasasinglepartwithanintegratedshaft.Thepinioncanalsobeseparate and mounted on a separate shaft,supportedbybearings,orontheoutputshaftofthemaingearunit.

    The rotationspeedofadrumnormally variesbetween0.50rpmcorrespondingtothepe-ripheralvelocityfrom0.3to10m/softhegirthgear.ThenominalpowerofastandardKumeragirthgearisupto8MWpermesh,i.e.,16MWwhendoublepiniondriven.

    INTRODUCTION

  • 3

    GEAR TECHNOLOGY

    Themanufacturingmethodofgirthgearsena-bles wide possibilities for geometrymodifica-tions.Typically,thetoothgeometryisaccordingtoTable1.

    Pinionflanksaremodifiedbytip,rootandendreliefs.Themodificationscompensatethede-flectionofthedrivesystem,thushighcontactpressureonthetoothedgescanbeavoided.

    Table 1. Typical geometry of a girth gear

    Min. Max. Standard

    Module 0 40 7

    Pressureangle,[] 4

    Helixangle,[] 0 45 0

    Numberofteeth:

    Girthgear 100 300

    Pinion 18 30

    Facewidth,[mm] 100 500

    Referencediameter[mm] 000 nolimitation

    Quality ISO AGMA

    GirthGear 810 97

    Pinion 7 10

    Thetoothloadcarryingcapacitycanbecalcu-latedaccordingtothefollowingstandards:

    ANSI/AGMA 6004-F88 Gear Power RatingforCylindricalGrindingMills,Kilns,CoolersandDryers

    ISO 6336 Calculation of load capacity ofspurandhelicalgears

    DIN3990Calculationofloadcapacityofcy-lindricalgears

  • 4

    GEAR TECHNOLOGY

    Table 2. Minimum service factors according to AGMA 6004 (* < 1.5 rpm)

    Application Durability, CSF

    Strength, KSF

    Coolers 1.00* 1.5*

    Dryers 1.00* 1.5*

    Kilns 1.00* 1.75*

    GrindingMills:

    Ball 1.5 .5

    Autogenous 1.5 .4

    Rod 1.5 .5

    Agirthgearcanbeassembledtoadrumwithaflangedconnectionorwithspringelements.

    Picture 2. The FE-method is utilized for deformation and stress calculation of a whole girth gear including the strength calculation of the fixing structure

  • 5

    MATERIALS

    A commonmaterial for girth gears has beenspheroidal graphite cast ironEN1563GJS800-. Nowadays, austempered ductile iron,ADI,EN1564GJS1000-5ismoreandmoreused.Itsprincipalattributeisitshighstrength-to-weightratio.

    In the past, pinions were often made fromthrough-hardenedsteel.Atpresent,thestand-

    ardmaterial forKumerapinions is case-hard-ened17CrNiMo7-6.Teetharegroundafterheattreatment.Thepinionshaveasubstantiallyim-provedload-carryingcapacity,betterqualityofteeth,andgoodsurfacequalityoftoothflanks,resultinginbetteroperationalreliability.Pinionsarealsolesswidewiththesamenominalout-put torque, which improves the load distribu-tionacrossthefacewidth.

    Table 3. Material properties

    Material Hardness Tensile strength[N/mm2]

    Allowable contact stress

    [N/mm2]

    Allowable bending stress

    [N/mm2]

    Youngs modulus

    [kN/mm2]

    Girth gear

    EN1563GJS800- 8030HB 800 700 48 185

    EN1564GJS1000-5(ADI) 300360HB 1000 100 30 159

    Pinion

    EN1008417CrNiMo7-6 586HRC 100 1500 500 06

  • 6

    MATERIALS, ADI

    The standardization of the ADI material hasproceededinrecentyears,whichfacilitatesitsuse. The standards ASTM A897/A897M-06,EN1564:1997,and ISO17804:005outlinethe ADI grades varying inmechanical proper-ties. The information sheet AGMA 939-A07AustemperedDuctileIronforGearscoverstheareasofdesigning,purchasingspecifyingandverifyingtheADImaterial, inparticular forap-plications in gears and power train compo-nents.

    ADI is producedby heat treating ductile iron,usingtheaustemperingprocess.Austemperingis a specialized, isothermal heat treatment.When compared to conventional ductile iron,ADIcanhaveovertwicethestrengthforagivenlevelofductility.ADIcanhaveafatiguestrength

    comparabletothatofcastandforgedsteels.ADIsstrengthcanbegreatlyenhancedbysub-sequentgrinding,filletrollingorshotpeening.

    TheausferritematrixinADIundergoesastraintransformation hardening when exposed to ahigh normal force. This same strain transfor-mation hardening is what gives ADI a betterwearresistancethanthebulkhardnesswouldindicate. Other attributes of ADI material in-clude good noise dampening, fracture tough-ness,lowtemperatureproperties,andreason-ablestiffness.ADIhasa0% lowerYoungsModulusthansteel.Ingears,thisresultsinalarger contact area for a given input load. Insome cases, this has been shown to reducecontactstressandnoise.

    Table 4. Properties of different ADI-grades

    ADI 750 900 1050 1200 1400 1600

    Herzianresistance Modest Moderate Fair Good Good Verygood

    Bendingresistance Verygood Good Good Fair Modest Poor

    Machinability Verygood Good Poor

    Shotpeening Good Good

    Loadcapacity Moderate High Veryhigh

    Exceedsductileiron

    Competeswith

    through-hardening

    Exceedsthrough-hardening

    Competeswith

    nitridedsteel

    Exceedsflame

    hardening

    Competeswithcasehardening

  • 7

    LUBRICATION

    Themostcommontypeofoperationallubrica-tion is automatic interval spray lubrication,wheretheappliedlubricationvolumeiscontrol-ledbythesprayaswellaspausetimes.

    Ifadrumisrotatedbyagirthgearbeforethelubricationsystemistakenintooperation,prim-inglubricationisrecommended.Apriminglubri-cantpreventsdamageduringinitialoperation.Thepriminglubricantisappliedoncetoalltoothflanksbyabrushorspatula.

    Basedonexperience, it canbestated thatagirth gears rolling strength and scuffing load

    capacityareimprovedbyreducingflankrough-nessandincreasingtheeffectivecontactratio.Duringtherunning-inperiod,limitedwearisin-tentionallyproducedatthetoothflanks,whichimprovesthetoothsurfaceroughnessandfur-therincreasestheloadcontactarea.

    During the running-in, increased lubricantthroughputisnecessarytoflushouttheinitialmetalwear generated through the removalofthe surface peaks and high spots during thefirststagesoftheprocess.Anaveragerunning-intimeis300hours.

    Table 5. Lubricant consumption for running-in and operational lubrication

    ApplicationConsumption (g/cm/op. hour.)

    Running-in Operational

    Rotarydrumdrives(coolers) 4 1.01.5

    Singlepinionkilndrives 5 1.5.0

    Singlepinionmillorkilndrives 6 .0.5

    Singlepinionmilldrivesanddoublepinionkilndrivesoflargedimensions

    7 .53.0

    Doublepinionmilldrives 8 3.03.5

  • 8

    SELECTION

    SelectionDeterminetheminimumdiameterofthegirthgear(table9)ddrum