17
KSTAR ICRF transmission line system upgrade for load resilient operation H. J. Kim , S. J. Wang, Y. S. Bae, H. L. Yang, J.-G. Kwak, S. H. Kim a and M. Park a KSTAR Research Center, NFRI a Fusion Plasma Ion Heating Research Center, KAERI Japan-Korea Workshop on Physics and Technology of Heating and Current Drive Haeundae, Busan, Korea Jan. 28-30, 2013

KSTAR ICRF transmission line system upgrade for load resilient operationpsl.postech.ac.kr/kjw13/talks/Kim_H.pdf · 2013-02-19 · KSTAR ICRF transmission line system upgrade for load

  • Upload
    others

  • View
    17

  • Download
    0

Embed Size (px)

Citation preview

  • KSTAR ICRF transmission line system upgrade for load resilient operation

    H. J. Kim, S. J. Wang, Y. S. Bae, H. L. Yang, J.-G. Kwak, S. H. Kima and M. Parka

    KSTAR Research Center, NFRIa Fusion Plasma Ion Heating Research Center, KAERI

    Japan-Korea Workshop on Physics and Technology of

    Heating and Current Drive

    Haeundae, Busan, Korea Jan. 28-30, 2013

  • Outline

    q Motivation

    q KSTAR ICRF transmission line system upgrade in 2012

    q Stable ICRF operation with load resilient T/L system

    q Conclusion

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 2

  • Motivation

    q Reliable high power ICRF operation in 2012 KSTAR Campaign

    – Fusion plasma is not quiescent and exhibits many transient phenomena such as mode transitions or edge localized modes (ELMs) bursts.

    – Plasma density changes and the characteristic of wave propagation is affected.– Plasma density changes and the characteristic of wave propagation is affected.

    – An effective load resilient operation is mandatory for reliable ICRF operation.

    – In 2011 campaign, we found unstable transmitter power by high reflection.

    – Transmitter unstable power at 30.45 MHzà frequency: 30.8 MHz (2012 campaign)

    – Tuning problem; inter-strap coupling effect is large.

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 3

    2011 campaign

  • KSTAR ICRF transmission line system upgrade2011 Campaign

    2012 CampaignDe-coupler Hybrid splitter

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 4

    transmitter

    Dummy load

  • transmitter

    Load resilient ICRF T/L system upgrade2011 ICRF system 2012 ICRF system

    Dummyload

    90 deg. difference

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 5

    w/ decoupler

    w/o decoupler

    90 deg. difference

  • q Operation of a decoupler

    Installation and measurement of a decoupler*

    YL

    Loop 12

    M X dcLoop 34Y

    1

    2

    q Installation and RF test of a decoupler

    – Decoupler cancels reactive mutual admittance by adjusting Xdc.

    – power balance by allowing coupled power flow through decoupler branch.

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013

    – *S. J. Wang et al., Fusion Engineering and Design (In press in FED, 2013)

    6

    30.8 MHz

  • High power operation with a decoupler

    q Operation of a decoupler at 180 deg. between loop A and B (2011 vs. 2012)

    – Power ratio (PA/PB): ~ 1 (2012)à Decoupler works very well.

    – 400 kW, 3 s stable operation: FWD ~ 400 kW, REF: 60 kW, VSWR : ~ 2

    2011campaign

    2012campaign

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 7

  • Simulation on 3dB coaxial hybrid splitter

    q Quadrant hybrid splitter

    – when power is reflected from the resonant loops, the reflected power will go to the dummy load and will not be seen by the generator.

    – S21, S31: -3.01 dB / S11, S41: -38.1 dB @ 30.8 MHz– S21, S31: -3.01 dB / S11, S41: -38.1 dB @ 30.8 MHz

    – Phase difference (port 2 and 3): 90 deg.

    -30

    -20

    -10

    0

    180

    240

    300

    360

    S11S21S31S41

    S-pa

    ram

    eter

    s (dB

    )

    Phas

    e di

    ffer

    ence

    (Deg

    .)

    input Output-3 dB

    90 Deg.

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 8

    -60

    -50

    -40

    0

    60

    120

    20 25 30 35 40

    S41

    S21-S31 (Deg.)S-pa

    ram

    eter

    s (dB

    )

    Phas

    e di

    ffer

    ence

    (Deg

    .)

    Frequency (MHz)

    30.8 MHz

    Output-3 dBisolated

    90 Deg.difference

  • Ultra-wideband 3dB coaxial hybrid splitter

    q Proposed two-section 3dB hybrid splitter*

    – Port 2&3: -3.10 ± 0.15 dB(amplitude)

    – 90° ± 2° (phase difference)

    – Bandwidth : 37% (proposed), VSWR < 1.3 -30

    -20

    -10

    0Single-sectionTwo-sectionThree-sectionProposed circuit

    Ret

    urn

    loss

    (dB

    )

    – Bandwidth : 37% (proposed), VSWR < 1.3

    -50

    -40

    -30

    25 30 35 40

    Ret

    urn

    loss

    (dB

    )

    Frequency (MHz)

    0.2

    0.4

    0.6Two-sectionThree-sectionProposed circuit

    Am

    plitu

    de im

    bala

    nce

    (dB

    )

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 9

    – *H. J. Kim et al., Applied Physics Letters 100 (2012) 263506-0.6

    -0.4

    -0.2

    0

    25 30 35 40A

    mpl

    itude

    imba

    lanc

    e (d

    B)

    Frequency (GHz)

    BW: 11.7MHz

  • Measurements on 3dB coaxial hybrid splitter

    q RF measurement results

    – S21, S31: -3.05 dB @ 30.8MHz

    – S11, S41: -34.8 dB @ 30.8MHz

    – Phase difference (port 2 and 3): 90.2 deg.– Phase difference (port 2 and 3): 90.2 deg.

    -30

    -20

    -10

    0

    180

    240

    300

    360

    S11S21S31S41

    S21-S31 (Deg)

    S-pa

    ram

    eter

    s (dB

    )

    Phas

    e di

    ffer

    ence

    (Deg

    .)

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 10

    -60

    -50

    -40

    0

    60

    120

    20 25 30 35 40

    S21-S31 (Deg)

    S-pa

    ram

    eter

    s (dB

    )

    Phas

    e di

    ffer

    ence

    (Deg

    .)

    Frequency (MHz)

    30.8 MHz

  • q Power measured at resonant loop A, B and hybrid splitter(HS)

    – Total reflected power, P_total_ref = P_ref_A + P_ref_B

    – Power ratio (P_HS/P_total_ref) becomes around 1à HS working is very good. (load resilient operation)

    Load resilient operation with a hybrid splitter

    good. (load resilient operation)

    8

    10

    4

    5P_HSP_total_ref

    Ratio (P_HS/ P_total_ref)

    ICR

    F re

    flect

    ion

    pow

    er (k

    W)

    Ref

    lect

    ion

    pow

    er ra

    tio

    # 7899

    15

    20P_fwd_AP_fwd_BP_ref_H/SP_ref_AP_ref_B

    ICR

    F po

    wer

    (kW

    )

    # 7899

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 11

    0

    2

    4

    6

    0

    1

    2

    3

    3 3.2 3.4 3.6 3.8 4IC

    RF

    refle

    ctio

    n po

    wer

    (kW

    )

    Ref

    lect

    ion

    pow

    er ra

    tio

    Time (s)

    0

    5

    10

    3 3.2 3.4 3.6 3.8 4

    ICR

    F po

    wer

    (kW

    )

    Time (s)

  • q Load resilient operation (200 kW, 1s) using a 3dB hybrid splitter

    – Forward power: 200 kW, reflected power: 20 kW, averaged VSWR : ~ 2

    – Stable operation of ICRF transmitter with 10% reflection (L–mode)

    Typical load resilient ICRF operation

    150

    200

    250

    300

    3

    4

    5

    6ForwardReflected

    VSWR

    ICR

    F po

    wer

    (kW

    )

    VSW

    R

    # 7398

    90deg.àload resilient

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 12

    0

    50

    100

    0

    1

    2

    6 6.2 6.4 6.6 6.8 7

    ICR

    F po

    wer

    (kW

    )

    Time (s)

    àload resilient

  • q Load resilient operation in H-mode plasma

    – Plasma density in the area of antenna changes rapidly in H-mode plasma

    – The characteristic of wave propagation from antenna to plasma is affected

    – High reflection from antenna plasma loading changed (high VSWR:2~6)

    Stable ICRF operation in H-mode plasma

    – High reflection from antenna plasma loading changed (high VSWR:2~6)

    – Stable ICRF operation with a load resilient T/L in ELMy plasmas

    3

    4

    5

    6

    6

    8

    10

    12VSWR_loop AVSWR_loop B

    Ratio

    VSW

    R

    Rat

    io (P

    _HS

    / P_t

    otal

    _ref

    )

    # 7907

    15

    20

    25P_fwd_AP_fwd_BP_ref_AP_ref_B

    ICR

    F po

    wer

    (kW

    )

    # 7907

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 13

    0

    1

    2

    3

    0

    2

    4

    6

    6.5 7 7.5

    VSW

    R

    Rat

    io (P

    _HS

    / P_t

    otal

    _ref

    )

    Time (s)

    0

    5

    10

    5 5.5 6 6.5 7 7.5 8

    ICR

    F po

    wer

    (kW

    )

    Time (s)

  • q Increase in the ICRF averaged coupled power in ELMy plasmas

    – Effective protection of transmitter using a 3dB hybrid coupler

    – Load resilient TL system leads to a stable power transmission in ELMy plasmas

    – An effective load resilient operation is mandatory for reliable and efficient ICRF

    Typical ICRF shot in ELMy plasmas

    – An effective load resilient operation is mandatory for reliable and efficient ICRF power transmission

    1000

    1500

    2000

    2500

    3000

    600

    800

    1000

    Ip (kA)NBI_total (kW)ICRF_forward (kW)ICRF_reflected (kW)

    H_alphaW_TOT

    NB

    I (kW

    ), IC

    RF

    (kW

    )

    W_s

    tore

    (kJ)

    , H_a

    lpha

    (a.u

    .)

    # 7273

    200

    400

    600

    800

    150

    200

    250

    300

    Ip (kA)ICRF_forward (kW)ICRF_reflected (kW)W_TOT

    H_alpha

    ICR

    F (k

    W),

    W_s

    tore

    (kJ)

    H_a

    lpha

    (a.u

    .)

    # 7273

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 14

    -500

    0

    500

    1000

    0

    200

    400

    0 2 4 6 8 10 12

    Ip (k

    A),

    NB

    I (kW

    )

    W_s

    tore

    (kJ)

    Time (s)

    -400

    -200

    0

    0

    50

    100

    7.4 7.5 7.6 7.7 7.8 7.9 8 8.1

    Ip (k

    A),

    ICR

    F (k

    W),

    H_a

    lpha

    (a.u

    .)

    Time (s)

  • Conclusion

    q We have newly installed a decoupler and a 3 dB hybrid coupler.

    q Load resilient operation has been successfully performed in 2012 campaign.

    – In L/H-mode plasmas, we found load resilient transmission line system – In L/H-mode plasmas, we found load resilient transmission line system leads to stable ICRF transmitter operation and high power transmission.

    q We expect that the load resilient KSTAR ICRF system enables not only the stable transmitter operation but also enhancement of power coupling to the plasma in 2013 KSTAR campaign.

    Japan-Korea Workshop Haeundae, Busan Jan. 28-30, 2013 15

    q We also designed an ultra-wideband two-section 3 dB coaxial hybrid coupler by configuring asymmetric impedance matching using HFSS.

  • Thank you for your attention

    16

  • 17