16

Click here to load reader

Kristal

Embed Size (px)

Citation preview

Page 1: Kristal

Kristal

Kristal lazimnya digunakan untuk rangkaian osilator yang menuntut stabilitas frekuensi yang tinggi dalam jangka waktu yang panjang. Alasan utamanya adalah karena perubahan nilai frekuensi kristal seiring dengan waktu, atau disebut juga dengan istilah faktor penuaan frekuensi (frequency aging), jauh lebih kecil dari pada osilator-osilator lain. Faktor penuaan frekuensi untuk kristal berkisar pada angka ±5ppm/tahun, jauh lebih baik dari pada faktor penuaan frekuensi osilator RC ataupun osilator LC yang biasanya berada diatas ±1%/tahun.

Simbol KristalKristal juga mempunyai stabilitas suhu yang sangat bagus. Lazimnya, nilai koefisien suhu kristal berada dikisaran ±50ppm direntangan suhu operasi normal dari -20°C sampai dengan +70°C. Bandingkan dengan koefisien suhu kapasitor yang bisa mencapai beberapa persen. Untuk aplikasi yang menuntut stabilitas suhu yang lebih tinggi, kristal dapat dioperasikan didalam sebuah oven kecil yang dijaga agar suhunya selalu konstan.

Tatanan Fisik

Material yang mempunyai bentuk struktur kristalin, seperti quartz, mempunyai satu sifat unik yaitu mampu menghasilkan tegangan listrik ketika diberi tekanan mekanikal dan juga sebaliknya, berubah bentuk mekanikalnya ketika diberi tegangan listrik. Sifat ini dikenal dengan nama efek piezo-electric.

Sifat inilah yang dimanfaatkan untuk menghasilkan resonansi listrik-mekanik, sehingga kristal akan bergetar pada frekuensi alami tertentu jika diberi tegangan listrik bolak-balik. Frekuensi alami ini ditentukan oleh potongan dan dimensi keping kristal, yang ditetapkan pada saat pembuatan.

Page 2: Kristal

Karena potongan dan dimensi keping kristal dapat dikontrol secara presisi pada saat proses produksi, maka kristal mempunyai frekuensi getar alami yang sangat akurat. Akurasi kristal umumnya berada pada kisaran ±30ppm, dengan akurasi yang lebih tinggi juga tersedia walaupun harganya tentu lebih mahal.

Potongan keping kristal mengacu kepada orientasi sudut pemotongan keping kristal terhadap garis struktur kristalin, dan juga bentuk keping kristal tersebut. Ada banyak standar potongan keping kristal, yang masing-masing mempunyai karakteristik yang berbeda-beda. Sebagai contoh, potongan AT yang populer mempunyai frekuensi fundamental maksimum yang tidak terlalu tinggi dan koefisien suhu yang cukup baik (berbentuk kurva fungsi kubik). Contoh lain adalah potongan BT, yang mempunyai frekuensi fundamental maksimum yang lebih tinggi tetapi koefisien suhunya lebih buruk (berbentuk kurva parabolik).

Kristal dapat dioperasikan pada frekuensi fundamental atau salah satu dari frekuensi-frekuensi harmonik ganjil (odd harmonics) yang biasa disebut dengan istilah overtones. Frekuensi fundamental maksimum sebuah kristal ditentukan oleh potongan dan dimensi keping kristal. Semakin tinggi frekuensi fundamental sebuah kristal, semakin tipis keping kristal tersebut, sehingga keping kristal menjadi rapuh dan mudah patah. Jadi untuk mencapai spesifikasi frekuensi getar yang lebih tinggi, kristal harus beroperasi menggunakan salah satu overtone yang ada.

Walaupun quartz adalah material yang paling sering digunakan untuk membuat kristal, material lain seperti lithium-niobate, lithium-tantalate, bismuth-germanium oxide dan alumimium-phosphate juga dapat dipakai untuk membuat kristal. Material lain yang juga dapat digunakan adalah sejenis keramik yang terbuat dari padatan timbal, zirconium dan titanium dan material polimer seperti polyvinyl chloride dan difluorpolyethylene.

Rangkaian Ekuivalen

Rangkaian Ekuivalen KristalDari sudut pandang bidang elektronika, tata kerja kristal dapat diilustrasikan melalui rangkaian ekuivalen yang terdiri dari dua buah kapasitor, satu buah induktor dan satu buah resistor.

Induktor L1 (motional inductance) adalah padanan dari massa keping kristal yang bergetar, kapasitor C1 (motional capacitance) adalah padanan dari kekakuan keping kristal melawan getaran dan resistor R1 adalah padanan dari energi yang hilang diserap oleh kristal karena bentuknya mengalami perubahan ketika bergetar. Kapasitor C0 (shunt

Page 3: Kristal

capacitor) adalah kapasitansi yang terbentuk diantara dua elektroda yang mengapit potongan kristal.

Frekuensi getar alami kristal diberikan oleh persamaan berikut:

Umumnya, nilai induktansi L1 adalah sangat tinggi sementara nilai kapasitansi C1 sangat rendah. Sebagai contoh, sebuah kristal yang mempunyai frekuensi getar 10MHz mempunyai nilai L1 = 0.05H, C1 = 0.0051pF, R1 = 5Ω dan C0 = 6pF.

Rasio antara nilai induktansi L1 dan kapasitansi C1 yang sangat besar, jauh melampaui nilai rasio yang lazim didapat jika menggunakan komponen biasa, sehingga nilai faktor kualitas (Q) dari kristal menjadi jauh lebih tinggi daripada rangkaian LC biasa.

Faktor kualitas sebuah kristal diberikan oleh persamaan berikut:

Nilai faktor kualitas kristal umumnya bekisar diantara 104 sampai dengan 106, bandingkan dengan nilai faktor-kualitas rangkaian LC biasa yang hanya berkisar diangka ratusan.

Kristal dapat diterapkan pada rangkaian resonansi-seri ataupun resonansi-paralel. Pada rangkaian resonansi-seri, kristal bersifat seolah-olah terdiri dari sebuah kapasitor dan sebuah induktor yang dirangkai secara seri. Impedansi kristal akan mencapai nilai terendah, yaitu sama dengan nilai tahanan R1, pada frekuensi getar alami.

Pada rangkaian resonansi-paralel, kristal bersifat seperti terdiri dari sebuah kapasitor dan sebuah induktor yang dirangkai secara paralel. Impedansi kristal akan mencapai nilai tertinggi pada frekuensi getar alami. Perlu dicatat bahwa frekuensi getar alami sebuah kristal yang sama jika beroperasi secara resonansi-paralel adalah sedikit lebih tinggi daripada ketika dioperasikan secara resonansi-seri. Fenomena ini dikenal dengan istilah pulling, yang besarannya tergantung kepada rasio dari C1 dengan C0 dan CL.

Besarnya perubahan frekuensi yang disebabkan oleh faktor pulling ini diberikan oleh persamaan berikut:

Page 4: Kristal

Kristal biasanya dibentuk sedemikian rupa sehingga lebih optimal jika dioperasikan pada salah satu mode tertentu, baik itu secara resonansi-seri ataupun resonansi-paralel.

Aplikasi Kristal

Osilator ColpittsKristal dapat digunakan sebagai pengganti jajaran resonansi LC untuk hampir semua jenis rangkaian osilator, baik secara resonansi-seri maupun resonansi-paralel. Sebagai contoh adalah rangkaian osilator Colpitts yang menggunakan jajaran kristal dan kapasitor secara resonansi-seri.

Osilator PierceSatu contoh lain adalah rangkaian osilator Pierce yang menggunakan jajaran kristal dan kapasitor secara resonansi-paralel pada jalur umpan-balik. Osilator Pierce ini sangat populer dan kerap digunakan karena mempunyai karakteristik stabilitas yang lebih superior dibandingkan dengan rangkaian osilator lainnya.

Page 5: Kristal

Osilator CMOSRangkaian osilator populer lain menggunakan sebuah CMOS inverter yang menerapkan kristal pada jalur umpan-balik dari kaki output ke kaki input. Osilator ini mempunyai prinsip kerja yang serupa dengan osilator Pierce.

Rangkaian osilator klasik ini diterapkan secara luas sebagai sumber frekuensi denyut (clock frequency) pada rangkaian digital dan juga menjadi dasar cara kerja rangkaian osilator terpadu yang biasa digunakan oleh mikrokontroler.

Kedua kapasitor yang terhubung dari kaki-kaki kristal ke ground adalah kapasitor beban (load capacitance) yang perlu untuk berfungsinya rangkaian osilator ini. Nilai total kapasitor beban akan mempengaruhi frekuensi getar sebuah kristal. Efek ini juga disebut pulling, dimana perubahan nilai kapasitor beban (atau mode resonansi, seperti disebutkan diatas) dalam rangkaian osilator kristal akan merubah frekuensi getar kristal tersebut.

Pulling dapat digunakan untuk mengatur frekuensi getar kristal, walaupun hanya dalam rentangan yang terbatas. Biasanya, lembaran data kristal mencantumkan nilai nominal kapasitor beban yang tepat untuk mendapatkan spesifikasi frekuensi getar yang tertera.

Resistor R2 berfungsi untuk membatasi tingkat pasokan daya (drive level) kepada kristal. Tingkat pasokan daya yang terlalu rendah akan menyebabkan kristal gagal berosilasi dan sebaliknya, jika terlalu tinggi akan mempengaruhi stabilitas frekuensi kristal atau malah dapat menyebabkan keping kristal menjadi retak.

Kristal jenis HC49 memerlukan tingkat pasokan daya dikisaran 1mW, sedangkan kristal HC49S atau HC49SM memerlukan sekitar 100µW. Semakin besar dimensi kepingan kristal, akan semakin tinggi pasokan daya yang dibutuhkan. Tingkat pasokan daya juga dipengaruhi oleh frekuensi getar, dimana frekuensi getar yang lebih tinggi akan memerlukan pasokan daya yang lebih besar.

Page 6: Kristal

Kemasan Kristal

Kemasan KristalKristal tersedia dalam berbagai bentuk kemasan. Kemasan yang populer adalah HC49 dan HC49S. HC49S mempunyai bentuk tapak yang sama dengan HC49, tetapi kemasannya lebih pendek. HC49S juga tersedia untuk aplikasi SMD (HC49SM), dengan kaki yang ditekuk rata dibawah dasar yang terbuat dari plastik. Kemasan SMD bentuk lain juga banyak tersedia dipasaran.

Perlu diingat bahwa kristal dengan kemasan yang berbeda akan mempunyai karakteristik yang berbeda pula. Hal ini disebabkan karena dimensi dan bentuk keping kristal tergantung kepada besarnya kemasan. Sebagai contoh, kemasan HC49 biasanya berisikan keping kristal yang berbentuk piringan, sedangkan kemasan HC49S, karena lebih pendek, berisikan keping kristal berbentuk persegi panjang.

Page 7: Kristal

Memilih Timah Solder yang TepatDoni Saldiro|1 March 2009 - 16:25 WIB|Alat & Perlengkapan|Komentar (35)

Kualitas sambungan solder tergantung pada beberapa faktor, antara lain alat solder yang digunakan, kecakapan menyolder dan jenis timah solder. Dipasaran, tersedia berbagai macam jenis timah solder dengan spesifikasi yang berbeda-beda, dan tentu saja diperuntukkan bagi pekerjaan yang berbeda pula. Didalam menentukan pilihan jenis timah solder yang tepat, perlu diketahui sekilas tentang karakteristik utama timah solder dan faktor-faktor yang mempengaruhi karakteristik tersebut.

Karakteristik timah solder ditentukan oleh dua faktor utama, yaitu komposisi campuran logam dan jenis flux yang terkandung didalam timah solder.

Komposisi Campuran Timah Solder

Timah solder terbuat dari campuran lebih dari satu jenis logam, atau dikenal dengan istilah alloy. Dua jenis logam yang lazim digunakan dibidang elektronika adalah timah (Sn) dan timbal (Pb), dengan berbagai macam perbandingan campuran. Perbandingan campuran ini dinyatakan melalui angka persentase perbandingan timah/timbal (Sn/Pb), sebagai contoh 60/40 dan 63/37. Jenis logam lain, seperti perak (Ag) dan tembaga (Cu), juga dapat ditambahkan dalam jumlah kecil (dikisaran 1% - 2%) untuk mendapatkan sifat-sifat tertentu.

Perbandingan campuran timah dan timbal mempengaruhi karakteristik timah solder, antara lain kekuatan sambungan solder, kelancaran aliran timah solder cair, titik lebur timah solder dan mekanisme perubahan wujud timah solder dari padat menjadi cair dan sebaliknya.

Kekuatan Sambungan Solder

Kekuatan sambungan solder dinyatakan melalui dua parameter, yaitu kekuatan tarik (tensile strength) dan kekuatan robek (shear strength). Kekuatan tarik dan robek timah solder dengan perbandingan campuran 60/40 adalah 52MPa dan 39MPa, sedangkan untuk perbandingan campuran 63/37 adalah 54MPa dan 37MPa.

Page 8: Kristal

Dapat dilihat bahwa perbedaan kekuatan sambungan solder antara timah solder dengan perbandingan campuran 60/40 dan 63/37 tidaklah signifikan. Kedua perbandingan campuran ini, dari sudut kekuatan sambungan solder yang dihasilkan, cocok untuk digunakan dibidang elektronika.

Perlu ditambahkan bahwa kekuatan dan kualitas sambungan solder dapat ditingkatkan dengan menambahkan campuran logam perak dalam jumlah kecil (berkisar diantara 1% - 2%).

Aliran Timah Solder Cair

Kelancaran aliran timah solder cair, atau dikenal dengan istilah wetting, adalah kemampuan timah solder cair untuk membasahi permukaan benda yang disolder. Tentu saja, semakin lancar aliran timah solder cair, semakin mudah bagi timah solder cair untuk membasahi permukaan benda yang disolder, sehingga sambungan solder yang dihasilkan menjadi lebih baik. Sebaliknya, aliran yang tidak baik akan menghasilkan sambungan solder yang lebih tebal atau jika terlalu parah malah membentuk gumpalan timah solder yang tidak menempel.

Timah solder dengan perbandingan campuran 63/37 memiliki kelancaran aliran yang sedikit lebih baik dari pada timah solder dengan perbandingan campuran 60/40. Untuk pekerjaan dibidang elektronika dengan sambungan yang kecil dan rapat, seperti penyolderan komponen Surface Mount Device (SMD), disarankan untuk menggunakan timah solder dengan perbandingan campuran 63/37 untuk mengurangi resiko gumpalan solder menjembatani kaki-kaki komponen yang berdekatan dan memastikan kaki komponen tersolder dengan sempurna.

Timah solder dengan perbandingan campuran 60/40 dapat digunakan untuk pekerjaan yang menuntut sambungan solder yang lebih kokoh, seperti penyolderan kabel atau konektor yang berukuran sedang sampai besar. Diharapkan sambungan solder yang dihasilkan akan lebih tebal dan, tentu saja, akan lebih kuat.

Kelancaran aliran timah solder cair dapat ditingkatkan dengan menambahkan campuran logam tembaga dalam jumlah kecil (berkisar diantara 1% - 2%).

Titik Lebur dan Mekanisme Perubahan Wujud Timah Solder

Timah solder dengan perbandingan campuran 60/40 mempunyai titik lebur 183°C - 188°C, dimana pada suhu 183°C timah solder memasuki fasa plastis (melting solidus) dan kemudian mencair dengan sempurna pada suhu yang lebih tinggi dari 188°C (temperature liquidus). Begitupun sebaliknya, perubahan wujud dari cair menjadi padat juga melalui fasa plastis pada rentang suhu yang sama. Pada fasa ini, pergerakan pada benda yang disolder akan mengubah bentuk dan merusak sambungan solder.

Page 9: Kristal

Sebaliknya, timah solder dengan perbandingan campuran 63/37 mempunyai sifat eutectic, dimana perubahan wujud timah solder tidak melalui fasa plastis. Oleh karena itu, penggunaan timah solder eutectic dapat mengurangi terjadinya kerusakan sambungan solder yang diakibatkan oleh pergerakan benda sewaktu disolder. Sebagai tambahan, titik lebur timah solder eutectic berada pada satu titik suhu, yaitu 182°C, dan tidak berupa rentangan suhu. Titik lebur ini juga merupakan suhu terendah yang dapat dicapai oleh campuran murni timah dan timbal.

Jika benda yang disolder sulit untuk distabilkan secara mekanikal atau sangat sensitif terhadap suhu tinggi, seperti komponen SMD yang berukuran kecil, disarankan untuk menggunakan timah solder dengan perbandingan campuran 63/37.

Penambahan campuran logam tembaga dalam jumlah yang kecil (berkisar diantara 1% - 2%) dapat menurunkan titik lebur timah solder.

Flux

Flux merupakan bagian yang tak terpisahkan dari proses penyolderan. Flux adalah senyawa yang bersifat korosif dan berfungsi untuk menghilangkan lapisan oksidasi dari permukaan benda yang disolder, mencegah pembentukan lapisan oksidasi baru saat disolder dan menurunkan ketegangan permukaan (surface tension) timah solder cair.

Lapisan oksidasi menghalangi timah solder membasahi permukaan benda yang disolder, akibatnya adalah sambungan solder tidak menempel, atau dikenal dengan istilah cold joint. Sedangkan ketegangan permukaan yang lebih rendah akan memudahkan timah solder cair untuk mengalir membasahi permukaan benda yang disolder. Akibat lain dari kesalahan penggunaan flux adalah timah solder cair lengket dan tertarik oleh ujung alat solder, sehingga sambungan solder tidak rata dan berujung runcing.

Jenis-Jenis Flux

Flux, berdasarkan jenisnya, dapat digolongkan kedalam dua kategori, yaitu rosin dan senyawa asam (acid). Rosin terbuat dari getah pohon pinus atau konifer yang telah dibersihkan dan diolah. Flux senyawa asam haruslah dicuci bersih setelah proses penyolderan. Jika tidak, sisa flux yang tertinggal dan bersifat korosif akan merusak sambungan solder, kaki komponen dan permukaan papan cetak. Flux jenis ini juga bersifat menarik uap air dari udara sekitar (hygroscopic) dan jika dibiarkan akan menyebabkan arus pendek pada rangkaian elektronika.

Rosin, disisi lain, hanya aktif bekerja saat dipanaskan dengan alat solder. Setelah proses penyolderan selesai, flux rosin yang telah dingin kembali menjadi tidak aktif, tidak konduktif dan tidak korosif, sehingga dapat dibiarkan tinggal dipermukaan sambungan solder dan papan cetak tanpa perlu dicuci (no-clean flux). Selain flux rosin alami yang berasal dari getah pohon pinus, juga terdapat flux rosin buatan (synthetic rosin) dengan karakteristik menyerupai flux rosin alami.

Page 10: Kristal

Flux juga dapat dikategorikan berdasarkan tingkat keaktifannya, yaitu tidak aktif (inactive), aktif ringan (mildly active), aktif (active) dan sangat aktif (highly active). Flux tidak aktif hanya mencegah terbentuknya lapisan oksidasi baru saat sedang disolder. Sedangkan flux lainnya, selain mencegah, juga dapat membersihkan lapisan oksidasi yang telah terbentuk. Flux yang lebih aktif mampu membersihkan lapisan oksidasi yang lebih tebal dan noda-noda lain. Akan tetapi karena bersifat lebih korosif, flux jenis ini harus dibersihkan setelah proses penyolderan.

Kaki-kaki komponen elektronika yang baru lazimnya telah dilapisi dengan timah solder (tinned) dan dalam keadaan bersih. Oleh sebab itu, tidak diperlukan flux yang terlalu aktif. Flux yang tepat untuk digunakan dibidang elektronika adalah jenis rosin atau rosin sintetik aktif ringan yang tidak perlu dibersihkan (no-clean flux).

Flux Tambahan

Timah solder, terutama yang digunakan dibidang elektronika, sudah mengandung flux yang diisikan kedalam sejumlah saluran ditengah-tengah kawat timah solder (multi-core). Jumlah flux yang terkandung di dalam timah solder jenis ini biasanya berkisar diantara 1% - 4%, tergantung kepada jenis flux-nya. Jumlah saluran yang lebih dari satu ditujukan untuk memperbaiki dan meratakan penyebaran flux keseluruh permukaan benda yang disolder.

Flux tambahan juga tersedia dipasaran dan dapat dipakai jika benda yang disolder terlalu kotor dan timah solder cair gagal menempel. Akan tetapi, sebelum memutuskan untuk menggunakan flux tambahan, usahakan terlebih dahulu untuk membersihkan permukaan benda yang kotor dengan menggunakan sabut nilon atau ampelas yang sangat halus. Jika penggunaan flux tambahan tidak bisa dihindarkan, pastikan sisa-sisa flux dibersihkan setelah proses penyolderan.

Diameter Kawat Timah Solder

Ukuran diameter kawat timah solder yang tepat ditentukan oleh besar kecilnya sambungan solder yang dikerjakan. Sambungan solder yang kecil, seperti untuk komponen SMD, hanya membutuhkan sedikit timah solder. Agar jumlah timah solder yang dilelehkan dapat diatur dengan akurat dan menghindari kelebihan timah solder yang dapat menjembatani sambungan solder yang rapat, timah solder yang digunakan haruslah mempunyai diameter kawat kecil, yaitu 0,4mm - 0,5mm.

Begitupun sebaliknya, jika sambungan solder yang dikerjakan berukuran besar, agar dapat melelehkan lebih banyak timah solder dengan cepat, sebaiknya menggunakan timah solder dengan diameter kawat lebih besar, yaitu 0,8mm - 1mm.

Untuk komponen standar, dapat digunakan timah solder dengan diameter kawat 0,5mm -0,8mm, sesuai dengan kebiasaan atau persediaan yang ada.

Page 11: Kristal

RoHS

Restriction of Hazardous Substances Directive (RoHS) adalah kebijaksanaan pembatasan penggunaan unsur berbahaya yang dikeluarkan oleh Uni Eropa dan mulai berlaku awal Juli 2006. Timbal termasuk didalam daftar unsur berbahaya yang dibatasi pemakaiannya bagi produk elektronika komersial yang dibuat dan dipasarkan di wilayah Uni Eropa.

Sebagai pengganti, telah dikembangkan timah solder bebas timbal (lead-free). Komposisi yang populer digunakan saat ini adalah campuran logam timah, perak dan tembaga dengan berbagai macam perbandingan campuran. Perbandingan campuran eutectic untuk jenis timah solder ini, menurut NIST, adalah 95,6/3,5/0,9 dengan titik lebur 217°C. Perbandingan campuran lain yang lazim dan banyak tersedia dipasaran adalah 96,5/3,0/0,5 dengan titik lebur 217°C - 220°C.

Karena titik lebur timah solder bebas timbal sekitar 35°C - 40°C lebih tinggi dari pada timah solder biasa, diperlukan alat solder dengan spesifikasi suhu yang lebih tinggi. Selain itu, komponen elektronika yang sensitif terhadap suhu tinggi menjadi lebih rawan terhadap kerusakan. Sambungan solder yang dihasilkan pun terlihat tidak mengkilap sehingga sulit membedakan antara sambungan solder yang baik dan tidak baik. Karena itu, bagi pemula yang sedang mengasah keterampilan menyolder disarankan tidak menggunakan timah solder bebas timbal.

Untuk mendapatkan titik lebur yang lebih rendah, timah solder bebas timbal dapat dicampur dengan logam indium atau bismuth. Selain itu, campuran logam bismuth juga berfungsi memperbaiki kelancaran aliran timah solder cair.

Ringkasan Rekomendasi

Untuk komponen elektronika standar, gunakan timah solder dengan perbandingan campuran 60/40 atau 63/37. Pilihlah timah solder berdiameter 0,5mm - 0,8mm, tergantung dari besar kecilnya sambungan solder yang dikerjakan. Pastikan timah solder tersebut mempunyai saluran majemuk berisikan flux rosin atau rosin sintetik aktif ringan yang tidak perlu dibersihkan (no-clean flux).

Untuk komponen SMD yang berukuran kecil dengan kaki rapat, gunakan timah solder eutectic dengan perbandingan campuran 63/37. Pilihlah timah solder berdiameter 0,5mm dengan saluran majemuk yang berisikan flux rosin atau rosin sintetik aktif ringan yang tidak perlu dibersihkan (no-clean flux). Timah solder dengan tambahan kandungan logam

Page 12: Kristal

tembaga juga dapat digunakan, karena mempunyai aliran timah solder cair yang lebih baik dan titik lebur yang lebih rendah.

Jika permukaan benda yang disolder terlalu kotor, coba bersihkan terlebih dahulu. Jika terpaksa, gunakan flux tambahan yang lebih aktif, tetapi jangan lupa untuk membersihkan sisa flux setelah disolder.

Jika ingin mengikuti peraturan RoHS, gunakan timah solder bebas timbal yang mengandung campuran logam timah, perak dan tembaga dengan perbandingan campuran 96,5/3,0/0,5 atau jika mudah didapatkan, perbandingan campuran eutectic 95,6/3,5/0,9. Bagi pemula tidak disarankan untuk menggunakan timah solder bebas timbal.