6
115 Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004, pp. 115-120 Electric Heating * 133-791 17 * 431-711 1588-14 (2003 10 14 , 2003 12 20 ) An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric Heating Method in Porous Rocks Wonmo Sung , Hoseob Lee and Hojoon Yang* Department of Geoenvironmental System Eng., Hanyang University, 17, Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea *Technical Department Korea National Oil Company, 1588-14, Gwanyang-dong, Dongan-gu, Anyang, Gyonggi-do 431-711, Korea (Received 14 October 2003; accepted 20 December 2003) electric heating , . , . , . , . . , . Abstract - In this study, an experimental apparatus has been designed and set-up to analyze the dissociating phenomena of hydrate in porous rock using electric heating method supplied at downhole. The electric heat injecting experiments have been performed to investigate the heat transfer within the core, the dissociating phenomena of hydrate, and the productivities of dis- sociated gas and water. These experiments were under constant heat injecting method as well as preheating methods. From the experimental results, it is seen that dissociation of hydrate is accelerated with heat. The injected heat is consumed for the dis- sociation and also it is lost together with outflow of the dissociated gas and water. From the investigation of gas producing behavior for various heat injecting methods, as the injected heat is greater, dissociation is accelerated faster at outlet and hence the initial gas production becomes higher. Also, it is shown that the initial gas productivity under the constant heating method is better, however, the heat is low because of smaller amount of the produced gas comparing to the amount of heat injected. In the experiments of preheating method, it was seen that gas production only initial stage is different with the preheating time, but the producing behaviors of gas production are similar. Key words: Hydrate, Formation and Dissociation Experiment, Electric Heating, Gas Production Behavior 1. . McGuire[1], Bayles [2], Kamath Godbole[3], Selim [4] Verigin [5] Yousif [6, 7] [8, 9]. . To whom correspondence should be addressed. E-mail: [email protected]

Korean Chem. Eng. Res., Vol. 42, No. 1, February, …(2003 10 14 ! "# , 2003 12 20 ! $% ) An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Korean Chem. Eng. Res., Vol. 42, No. 1, February, …(2003 10 14 ! "# , 2003 12 20 ! $% ) An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004, pp. 115-120

Electric Heating

†*

133-791 17

* 431-711 1588-14

(2003 10 14! "#, 2003 12 20! $%)

An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric Heating Method in Porous Rocks

Wonmo Sung†, Hoseob Lee and Hojoon Yang*

Department of Geoenvironmental System Eng., Hanyang University, 17, Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea*Technical Department Korea National Oil Company, 1588-14, Gwanyang-dong, Dongan-gu, Anyang, Gyonggi-do 431-711, Korea

(Received 14 October 2003; accepted 20 December 2003)

electric heating ! "#

$ % &'( )* +,- ./&' 012 3 4 56789 : ;<, 9 =

> 56 3? ;. => 56 @ => )* A %, +,- ./&' B ./C DEF G

H IJ ;. 56 K(, => +,- ./&' LMN =>C +,- ./O

P QRS ./C DEF G T . U5V W 3 4X. => )* DE Y9 IJZ K(, =>

[3\ T] ./9 ^_ LM` ab H c' d eX. fZ g=>h

ab Hh ij k =>C l 8. DE i mQ no pqHh rh d kst. uv, w

Z ./56 wx )S ab DE lP yz D | O ~ DE i'h

Z d kst.

Abstract − In this study, an experimental apparatus has been designed and set-up to analyze the dissociating phenomena of

hydrate in porous rock using electric heating method supplied at downhole. The electric heat injecting experiments have been

performed to investigate the heat transfer within the core, the dissociating phenomena of hydrate, and the productivities of dis-

sociated gas and water. These experiments were under constant heat injecting method as well as preheating methods. From the

experimental results, it is seen that dissociation of hydrate is accelerated with heat. The injected heat is consumed for the dis-

sociation and also it is lost together with outflow of the dissociated gas and water. From the investigation of gas producing

behavior for various heat injecting methods, as the injected heat is greater, dissociation is accelerated faster at outlet and hencethe initial gas production becomes higher. Also, it is shown that the initial gas productivity under the constant heating method is

better, however, the heat is low because of smaller amount of the produced gas comparing to the amount of heat injected. In the

experiments of preheating method, it was seen that gas production only initial stage is different with the preheating time, but

the producing behaviors of gas production are similar.

Key words: Hydrate, Formation and Dissociation Experiment, Electric Heating, Gas Production Behavior

1.

. McGuire[1], Bayles [2], Kamath Godbole[3],

Selim [4] !" #$%& Verigin [5]' Yousif [6, 7]

!" ()*' + ,-./ 01 ()2 34567 8

95: ' 89;<2 345:= >? @AB' + 4CD

$% [8, 9]. ()* #$%' E9 F G

H IJ KL M N O PQ R

S9 89T UV . W9X 4CD $%†To whom correspondence should be addressed.E-mail: [email protected]

115

Page 2: Korean Chem. Eng. Res., Vol. 42, No. 1, February, …(2003 10 14 ! "# , 2003 12 20 ! $% ) An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric

116

89 YZ5[ R \] ^=G / _

`'1 Q? $%a 4CD ,-. bG c d'

_X 4CD / e fg O PQ dhi jkZ U

V . lm7 ()*' #$%2 no pqr #$%

Q? 89 YZ5:X ()*G /8 89a

\]s \]i2 tu5[ . vwPQ MxyG7

z |Tk #$% # ~=$%R

$ & 8,G s $3.& \]

G7/ # \ UV . lm7 #2

= >? \] G =G /" #\ N

d'P. G7 =P #$%(electric heating) 2

|" x ,-G7 89u 89a

/ 5 yu2 Nf ,

|" #$% 89y 2 qn7 #$%G l 89

u \]dh2 X .

2.

/ #$% N 5 / bPQ ¡1 Fig. 1G &

¢£. Nf M N ¤PQ Q ¥k¦§(Fig. 2) ,-

./ ¨ 01 ();<2 1© *" x/ ª«(sus

316) ¬T£. ¥k/ y% y­ end plugG /8, ®r

*4a x/ X¯ sleeveG /8 °° Xa. ?=7 sleeve ±

(G /8 ¥kG ²³Tk $%a yb ¥k R yT1©

". ±(| yb =,´G µt2 ¶ K1© ·i *

" ¸1 95%/ kerosene |T£. Fig. 2G &¢¹ º +

»i? ¼½P ¾U ¿7 =,´

2 À 1© ¥k Á t2 lm LÂ> ÃT 3/ Ä

T£X, #$%G l ¥k / 01 À 1©

RTD Å7| Ä ¥k M 2.5 cm ¼e >X

. Æ" ¥k ÇU/ 01 À= >? end plugG RTD Å7

N³, y­G7 =P #2 \5:= >? È

4 É%. È/ $%#Ê 01 45 VG7 220 VË

345[ 3(=G /8 ;·a. G7 |a ¥k

/ »i |1© fÌP `'1 X Íx" ;

Z Berea 2 |, Î 15.4 cm, ÏO 3.76 cm/

= X ÐÑ 24%, '1 248.6 md. »

i 89' !G ¥k¦§ ;G ÒÓ ,0´0¸Ô=G /

8 01 ka.

G7 |a »i Air Products/ ¸1

99.995%/ X¸1 @A, . 1.5 wt%/ Õ4&Ö |×

2 |. (), 01, =,´ ' ! ÀT Ø

Ù ÙÚÛ 5 G /8 5¼ ÀTk ,Na. ÙÚ

Û 5 G ÀT ÙG 8 Ü'2 5, ()

/ OÝ Þª¼e 2 psiQ 5 |? Ü. (

)ÜG |a 5 01µtG 8 ÜTk 0.25%

/ ß1 à. 01 áâ ã0.01 KQ ASTM X² 0

1ä |, yÊG 87 1,000 ml/revolution/ |Ê

G Þª¼e 10ml/ wet gas meter |. =,´ 2-10 kΩ/ e ,´U å8 Ü.

3.

3-1.

#$%G /" 89u2 = >8, æ, ¥kG

»i5: 2 ç' + q. ¥k¦§

G ¥k èX v" ±(2 8é ê Zëì |? =

' + í¸2 î". ¥kG 1.5 wt%/ Õ4&Ö |×'

@A ¸Ô5ï ð Ä41 ñ. G7 ^=

Ä41 0.71 ? 2 q. ò»()Ü óÈ ¨

() @A $%nô »i2 YZ5:X, ä«a $%

G1 ()34 § u õr »i' öÙa. 0

u÷G7 qT£s ()34 MJ" Ù. (

)34 øùÜr, »i5G e!G 1/180/ ú Äû

T= üýG P;< G7 () * T 89þ ü w

()/ uÿu &¢¹. Æ &/ Ù =,´/ 3

4. , ç' f" f1i x= üýG

1i ¨ Õ4&Ö |× Ä4Tk Ð G

»iTr uP =,´ ¨L a. u=/

'2 å8 Àa () =,´/ 34 Fig. 3G &¢¹ º

+. Fig. 32 øùÜr G7 " º + »i

G lm $%()Q 5.3 MPaG7 () 2.76 MPa *?

ò»u÷G 1En2 , =,´ 5 X 17.7 kΩËuÿn2 .

»i öÙTX &r / ½Y2 ~5ï7 Ü z

Ç/ »i5:X " " ¥k bG Ív"

Ä ñ= >8 annealing '2 5. ' »ia

895:= >8 01 279.16 KË uÿ5 ê ;

<Q 273.76 K _7 5 »i5: '2 2 5.

u÷/ 1 Ý á =¼G =ê34

G /" annealing '2 îX s, " '

N;<2 wµ /¶1 X (Yousif , 1991).

3-2.

G7 =P #$%G /" 8

Fig. 1. Schematic diagram of total system.

Fig. 2. Schematic diagram of coreholder.

42 1 2004 2

Page 3: Korean Chem. Eng. Res., Vol. 42, No. 1, February, …(2003 10 14 ! "# , 2003 12 20 ! $% ) An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric

117

9u 89a / yu' \] dhi2 = >

" 2 q. #$% y­ $3/

895ï ^= \]i2 tu5:= >" #(preheating)' «

PQ #$% Q? 89 YZ5:X y1 tu

d' ;= >" «#$%(continuous heating)2 q.

# 8.8 W/ #2 10, 20, 40 ! $%" ê y­/

#k a 89() 2.4 MPa y2 q, «#$

% 8.8 W/ #2 $%n' 5G y­/ #k 89y

2 q. Æ" #$%G /" d' Ü È fÌ,

= >? #$% õ áÏ (G /" 891 q.

æ, (' #$%G /" 89y 'G7

Àa ()' ,´Ä Fig. 4-6G &¢£. WG7

º + (G /" 5 y%/ () y­/ ()

' v 9 5¼, ∆t(Fig. 4) #$%(Fig. 5, 6)G f8

á 2 . y%/ () `'1 248.6 md ¨

¥kG1 íX y­/ ()34G w ! &¢&

K ÐG »ia yby å "

2 ? xP ¥k/ ·`'1 _ u÷= üý

. lm7 y%/ () y­/ ()' î/ y" î2 &¢

r #È 89a ¾U s u=

$' #$% ()*Ü 89 %9 Zq2

. Æ" «#$%' #2 fÌ8Ür, «#$% #

G f8 Ü & 5¼G y­ () y%/ ()G '½n2

. «#$%/ y% ()34 (' #G /"

()34 E9 eÈ KX «PQ #$%G /8 7

7È n2 . Fig. 4-6G7 ,´34 øùÜr, ,´(

^=Ü 2 89T

£= üý.

#$%G /" 0134 Çu2 = >? y­/ #

KX(²)5 ) v#Ê2 ä« $%? Àa ¥k/ òÍ0

Fig. 3. Pressure and resistance behaviors during hydrate formation.

Fig. 4. Pressure and resistance behaviors during hydrate dissociation underonly depressurization method without injecting heat.

Fig. 5. Pressure and resistance behaviors during hydrate dissociation undercontinuous heating method.

Fig. 6. Pressure and resistance behaviors during hydrate dissociation underpreheating for 10 min.

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004

Page 4: Korean Chem. Eng. Res., Vol. 42, No. 1, February, …(2003 10 14 ! "# , 2003 12 20 ! $% ) An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric

118

1 «#$%G /" 89y M Àa ¥k

/ òÍ01 Fig. 7G &¢£. ¥k/ òÍ01 À=

>? #$%G7 5.1 cm 10.3 cm jkZ V(Fig. 2/ 2, 3

* RTD Å7)G7 Àa 01 ]+òÍ. Fig. 7G &¢¹ º

+ ^=G ²)5 ' «#$% , OÝ , #$

% Q? 01 eÈ uÿn2 . ê 89y

2 q" «#$%/ OÝ $%a # \]a G /

8 ­Ts7 ²)5 G f8 ¥k/ òÍ01 77È ~

+L-2 . .È \]^=G 89G

a #' 89 X #' no eÈ &/&

Q8 ^= 01Ü 5 ~ Çu &¢02 ß

Q . Æ" #$% Q? #$% ò»u÷G 1E

01 ²)5 / OÝG 297.1 KQ w8 89y 2

q" OÝG 294.1 K 3 K 1 â 1. #$%

y­1 \]a / \]G /" «PQ #

\= üý.

#$%G /" 89a / \]i2

= >? «#$%RG /" 10, 20, 40 ! °°

#" ê ( , #$%õ (RG /" 89y 2

q, ?=7 Àa \]Ê2 Fig. 8-12G 15.

(G /" \]Ê 3423Q Fig. 8 øùÜr, \]^= 45

Ë ¥k/ Ð2 "L yT 4

89G lm `'i 5X ü 89a

y2 . «#$%G /" \]Ê 3423

Q Fig. 9 øùÜr, #$% Q8 89 Y

ZTk \]^= yTX «PQ #$% Q?

89 / yi2 tu5ï \] 5¬ ê 200Ë

2 G f8 \]Ê 62 . #2 10, 20

Fig. 7. The comparison of the core temperatures between the closed systemand continuous heating system.

Fig. 8. Gas production under depressureization method.

Fig. 9. Gas production continuous heating method.

Fig. 10. Gas production under preheating for 40 min.

42 1 2004 2

Page 5: Korean Chem. Eng. Res., Vol. 42, No. 1, February, …(2003 10 14 ! "# , 2003 12 20 ! $% ) An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric

119

, 40 " ê (G /" 89y 5 Àa

\]Ê 3423Q Fig. 10G7 Fig. 12 øùÜr, G $%

a #G /8 y­/ 01 uÿ? 89TX

ü 89a ^= \]2 , #5¼ Î

© ^= \]Ê 62 . .È 40 ! #2 " OÝ

Q Fig. 10 \]^=G \]Ê 10' 20 #" OÝG f8 7

4-98& X \] 5¬ ê 200 &r7 \] î/ #Ù2

. #$% Q8 ¥k/ 01 uÿTs7

î/ 89Tk vw Ä4a ¥kG7/ y' y

" Çu2 &¢92 . \]Ê/ 232 fÌ? &¢

: Fig. 132 øùÜr, 40 ! #" OÝ ^=G N z Ç/

\]TX ö;P\]Ê N &¢1. ¬

</ ¥kG7 qTk &¢¹ =v d'7 G7

" º + 89y G $%a #G /8 ¥k/ b01

uÿ? ¶ 89T£= üý. «

#$%G /8 Àa \]Ê2 øùÜr, ^= \]Ê

R ö;P \]Ê ¬ç2 . $%a #ÊG f8 \

]a / Ç ¬L GH dhi _ç2 /¶". lm7 «

#$% $%a # 89 ¥k/ 01 uÿ5:

T=1 R ¥k $3 T # zL dhi

jk-2 . Æ" #G7 #2 10' 20" OÝ

fÌ8Ür # 5¼ âG /8 ^= \]ÊR â >

? bPQ ;P\]Ê y" Çu2 &¢92 .

q G $%a #Ê/ âG /8 y­G

/ 89 1G lm `'1 Ems ^= \]ÊG7R

â >? ê/ y () âG /8 \= üý.

no \]a / ;P\]Ê Fig. 14G &¢£. Fig. 14

øùÜr, «#$% " OÝ # " OÝÜ ^=/ \]

Fig. 11. Gas production under preheating for 20 min.

Fig. 12. Gas production under preheating for 10 min.

Fig. 13. Comparison of gas recoveries for different heating methods.

Fig. 14. Comparison of water recoveries for different heating methods.

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004

Page 6: Korean Chem. Eng. Res., Vol. 42, No. 1, February, …(2003 10 14 ! "# , 2003 12 20 ! $% ) An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric

120

en-

on-

87

ne,

te

u-

s,

d-

m,

r-

ri-

is-

tal

ted

and

the

Ê @ 2 , «PQ #$% Q" 01uÿ

/ Vi1 ? y1 tuT£= üý. Æ",

# " OÝ fÌ8Ür 40 ! #" OÝ # !

89Tk \? \]^=G / \]Ê 62

.

G7 =P #$%2 |" ,-G7

/ #E u' G l 89u2

Nf Ͻ ä ¬? »i' =P #$

%G /" 892 q? ç' + $A2 ñ2 £.

(1) #$%G /" 89y G7 Àa ()3

4 232 " $', #$%2 " OÝ y%/ ()' y­/ (

) +L 9 5¼ $%a # z OÝv© ¬

&¢1. ¥kG 89T P

J2 /¶ #$%G /8 89 YZ

2 .

(2) #$%G /" 0134 " $', «#$%G /" 8

9y 5 89G /" # ?R LBm y­T G /8

$%a # T 2 £, \]^=G $%a #

$ 89G Tk ¥k/ 01 T À

T£.

(3) #$%G l \]i2 " $', #2 $%nG lm

^=/ \]Ê ~T£, .È ^=G $%a #Ê C

© y­D/ 89 YZ5ï7 ^=/ \]i ~2

. ;P\]Ê2 fÌ" $', «#$% ^= \

]i ÇER $%a #ÊG f8 \]T / Ç ¬L G

H dhi _ç2 $%a # ¥k $3

T Ç z= üý.

(4) #G /" 895, #5¼G lm \]Ê ^=

GR â > ? bPQ \]î y" Çu2 &¢92

. #G /8 y­G7 89T

1G lm ^=/ \]GR â >? ê/ y ()

âG /87R \T= üý.

(5) #$%G /" 89y G7 \]a / Ç «#$

%G /" OÝ N z \]a &¢1, «PQ

#$% Q? / 01 uÿG lm / y1 ~

= üý.

Fý 2001G1 "HC+ZIU/ ðG /? T£J

B(KRF-2001-041-E00507).

1. McGuire, P. L., “Recovery of Gas from Hydrate Deposits using Conv

tional Technology,” paper SPE/DOE 10832 presented at the Unc

ventional Gas Recovery Symposium, Pittsburgh, PA, May, 373-3

(1982).

2. Bayles, G. A., Sawyer, W. K., Anada, H. R., Reddy, S. and Malo

R. D., “A Steam Cyclic Model for Gas Production from a Hydra

Reservoir,” Chem. Eng. Comm., 47(2), 225-245(1986).

3. Kamath, V. A. and Godbole, S. P., “Evaluation of Hot Brine Stim

lation Technique for Gas Production From Natural Gas Hydrate”

JPT, 39(11), 1379-1388(1987).

4. Selim, M. S. and Sloan, E. D., 1990, “Hydrate Dissociation in Se

iment,” SPERE, May, 245-251(1990).

5. Verigin, N. N., Khabibullin, I. L. and Khalikov, G. V., “Linear Prob-

lem of the Dissociation of the Hydrates of Gas in a Porous Mediu”

Izvest. Akad. Nauk. SSR, Mekhanika Zhidkosti Gaza, 1. 174-177(1980).

6. Yousif, M. H., Li, P. M., Selim, M. S. and Sloan, E. D., “Depressu

ization of Natural Gas Hydrate in Berea Sandstone Cores,” J. Inclu-

sion Phenomena & Molecular Recognition Chem., 8, 71-88(1990).

7. Yousif, M. H., Abass, H., Selim, M. S. and Sloan, E. D., “Expe

mental and Theoretical Investigation of Methane-Gas-Hydrate D

sociation in Porous Media,” SPERE, Feb., 69-76(1991).

8. Sung, W. M., Lee H. S., Kim, S. J. and Kang, H., “Experimen

Investigation of Production behaviors of Methane Hydrate Satura

in Porous Rock,” Energy Sources, 25(8), 845-856(2003).

9. Seo, Y. T., Kang, S. P. and Lee, H., “Experimental Determination

Thermodynamic Modeling of Methane and Nitrogen Hydrates in

Presence of THF, Propylene Oxide, 1,4-Dioxane and Acetone,”Fluid

Phase Equilibria, 189(1-2), 99-110(2001).

Table 1. The comparison of energy efficiencies for different heating methods

Heating Method100 min 500 min 1,000 min

Output (kJ) Energy efficiency Output (kJ) Energy efficiency Output (kJ) Energy efficiency

Continuous heating 25.71 0.49 52.39 0.20 52.39 0.10Preheating for 10 min 9.78 1.85 46.69 8.84 59.70 11.31Preheating for 20 min 16.89 1.60 56.22 5.32 67.81 6.42Preheating for 40 min 56.82 2.69 68.70 3.25 75.65 3.58No heating 9.21 48.38 53.01

42 1 2004 2