52
Korea University Computer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu ([email protected] ) Kyungsun Kwon ([email protected] ) Kyunghwi Kim ([email protected] ) Sungjin Kim ([email protected] ) Computer Networks Research Lab. Dept. of Computer Science and Engineering Korea University

Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu ([email protected])[email protected] Kyungsun

Embed Size (px)

Citation preview

Page 1: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

Korea UniversityComputer Networks Research Lab.

5. Nonlinear Functions of Several Variables

Jieun Yu ([email protected]) Kyungsun Kwon ([email protected])

Kyunghwi Kim ([email protected])Sungjin Kim ([email protected])Computer Networks Research Lab.

Dept. of Computer Science and EngineeringKorea University

Page 2: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

2

Contents Introduction Newton’s Method for Nonlinear Systems Fixed-Point Iteration for Nonlinear Systems Minimum of a Nonlinear Function of Several Variables MATLAB’s Methods Case Study

Page 3: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

3

Introduction

Chapter 2

Chapter 3,4

Chapter 5

Chapter 1

Page 4: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

4

Introduction A zero of a nonlinear function of a single variable Nonlinear functions of several variables The latter problem is much more difficult

Newton’s method is applicable to this problem as well as that of a single variable

Page 5: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

Korea UniversityComputer Networks Research Lab.

5.1 Newton’s Method for Nonlinear Systems

Page 6: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

6

Newton’s Method Tangent line function

Iteration form

Tangent plane function

Iteration using r, s

)(')()()( 000 xfxxxfxf

)('

)(

0

001 xf

xfxx

),()(

),()(),(),(

),()(

),()(),(),(

000

00000

000

00000

yxgyy

yxgxxyxgyxg

yxfyy

yxfxxyxfyxf

y

x

y

x

syy

rxx

0

0

Page 7: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

7

Newton’s Method (cont’) Step1

Step2

),(),(),(

),(),(),(

000000

000000

yxgyxgsyxgr

yxfyxfsyxfr

yx

yx

syy

rxx

01

01

Page 8: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

8

5.1.1 Matrix-Vextor Notation Step1

Step2

),(

),(

),(),(

),(),(

00

00

0000

0000

yxg

yxf

s

r

yxgyxg

yxfyxf

yx

yx

)(),()( oldnewoldold xxywherexFyxJ

s

r

y

x

y

x

0

0

1

1

yxx oldnew

Page 9: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

9

Ex5.1 Intersection of a Circle and a Parabola

yxyxg

yxyxf

2

22

),(

1),( ( Circle )

( Parabola )

Page 10: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

10

Ex5.1 Intersection of a Circle and a Parabola

Step1– Partial derivative

– Initial estimate (x0,y0) = (1/2, 1/2)

),(

),(

12

22

00

00

yxg

yxf

s

r

x

yx

4/1

2/1

11

11

s

r

8/1,8/3 sr

Page 11: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

11

Ex5.1 Intersection of a Circle and a Parabola

Step2– The second approximate solution (x1,y1)

8/5

8/7

8/1

8/3

2/1

2/1

0

0

1

1

s

r

y

x

y

x

Page 12: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

12

Ex5.1 Intersection of a Circle and a Parabola

iteration

x y | |

0 0.5 0.5

1 0.875 0.625 0.39528

2 0.79067 0.61806

0.084611

The true solution is (x, y) = (0.78615, 0.61803)

• Initial estimate and 2 iterations of Newton’s method

Page 13: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

13

5.1.2 MATLAB Function for Newton’s Method for Nonlinear

Systems

'__

)(\)(

)()(

yoldxnewx

xFxJFy

xFyxJF

\ operation -> 100p

Page 14: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

14

Example 5.2 a System of Three Equations

04),,(

,04/1),,(

,01),,(

322

213213

23

213212

23

22

213211

xxxxxxf

xxxxxf

xxxxxxf

322

21

23

21

23

22

21

4

4/1

1

)(

xxx

xx

xxx

xF

422

202

222

)(

21

31

321

xx

xx

xxx

xJ

Page 15: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

15

Example 5.2 a System of Three Equations

Page 16: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

16

Example 5.3Intersection of a Circle and an

Ellipse

02/3

0343

22

22

yx

yx

yx

yxyxJ

22

86),(

x

y

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

]5.05.0[0 x

Page 17: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

17

Example 5.3Intersection of a Circle and an

Ellipse

Page 18: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

18

Example 5.4Positioning a Robot Arm

• the end of the first link(x1,y1)

• the end of the second link(x2,y2)

We need to solve

)sin(

),cos(

112

212

dyy

dxx

0 2 4 6 80

2

4

6

8

10

10

α

β

(x1,y1)

(x2,y2)

(10,4)

)sin()sin(

),cos()cos(

212

211

ddp

ddp

)sin(),cos( 1111 dydx

Page 19: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

19

Example 5.4Positioning a Robot Arm

Find the angles so that the arm will move to the point(10,4)

– The length of link (d1,d2) = (5, 6)

– initial angles(α , β) = (0.7,0.7)

– The system of equations

04)sin(6)sin(6

,010)cos(6)cos(5

Page 20: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

Korea UniversityComputer Networks Research Lab.

5.2 Fixed-Point Iteration For Nonlinear Systems

Page 21: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

21

5.2 Fixed-Point Iteration For Nonlinear Systems

Ex 5.5 Fixed-Point Iteration for a System of two Nonlinear Function– Consider the problem of finding a zero of the system

0110),(

,0510),(

2321212

2131211

xxxxxf

xxxxxf

– Coverting ),,( 2111 xxgx ),( 2122 xxgx form

1.01.01.0

,51.01.03212

2311

xxx

xxx

– The graph of the equations and01 f 02 f

Page 22: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

22

5.2 Fixed-Point Iteration For Nonlinear Systems

1x

2x

0.2 0.4 0.6 0.8 100

0.2

0.4

0.6

101 f

02 f

0.8

Iteration0 0.60000 0.60000

1 0.53840 0.18160 0.42291

2 0.50255 0.15444 0.044975

3 0.50275 0.15062 0.0038204

4 0.50235 0.15062 0.00039661

5 0.50238 0.15058 4.9381e-05

1x 2x x

Page 23: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

23

5.2 Fixed-Point Iteration For Nonlinear Systems

Page 24: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

24

Using MATLAB

5.2 Fixed-Point Iteration For Nonlinear Systems

% Actually using function : Fixed_pt_sys >> x=Fixed_pt_sys(@ex5_5, [0.6 0.6], 0.00001, 5)

function G = ex5_5(x)

G = [ (-0.1*x(1)^3 + 0.1*x(2) + 0.5)

(0.1*x(1) + 0.1*x(2)^3 + 0.1)];

Page 25: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

25

Result

5.2 Fixed-Point Iteration For Nonlinear Systems

Page 26: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

26

5.2 Fixed-Point Iteration For Nonlinear Systems

Ex 5.5 Fixed-Point Iteration for a System of Three Nonlinear Function

07540),,(

,05020),,(

,020050),,(

322

213213

232

213212

23

221

213211

xxxxxxf

xxxxxxf

xxxxxxxf

– Coverting this system to a fixed point iteration form

7540

,5020

,20050

22

213

23

212

23

22

211

xxx

xxx

xxxx

)(xgx

Page 27: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

27

5.2 Fixed-Point Iteration For Nonlinear Systems

875.1025.0025.0),,(

,5.205.005.0),,(

,402.002.002.0),,(

22

2132133

23

2132122

23

22

2132111

xxxxxgx

xxxxxgx

xxxxxxgx

– Using the preceding MATLAB function and a starting estimate of (2, 2, 2)

Iteration0 2.0000 2.0000 2.00001 3.7600 2.1000 -1.6750 4.07592 3.5729 1.6528 -1.4113 0.55183 3.6502 1.7621 -1.4876 0.154034 3.6272 1.7232 -1.4643 0.0509035 3.6346 1.7350 -1.4719 0.01158996 3.6323 1.7312 -1.4695 0.00506967 3.6330 1.7324 -1.4702 0.00160318 3.6328 1.7320 -1.4700 0.000508669 3.6328 1.7321 -1.4701 0.0001611710 3.6328 1.7321 -1.4701 5.1098e-05

1x 2x x3x

Page 28: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

28

5.2 Fixed-Point Iteration For Nonlinear Systems Using MATLAB

function G = ex5_6(x)G = [ (-0.02*x(1)^2 - 0.02*x(2)^2 - 0.02*x(3)^2 + 4) (-0.05*x(1)^2 - 0.05*x(3)^2 + 2.5) (0.025*x(1)^2 + 0.025*x(2)^2 - 1.875)];

% Actually using function : Fixed_pt_sys >> x=Fixed_pt_sys(@ex5_6, [2 2 2], 0.00001, 10)

Page 29: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

29

5.2 Fixed-Point Iteration For Nonlinear Systems

Result

Page 30: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

30

5.2 Fixed-Point Iteration For Nonlinear Systems

If g(x) maps D into D, then g has a fixed point in D. In other words, if g(x) is in D whenever x is in D, then there is some point p in D such that p=g(p)

If sequence of approximations to the fixed point1)(

pG

),( )()1( kk xgx

intial point )0(x is sufficiently close to the fixed point p

If there is a constant K<1 such that for every x in D

n

K

x

xg

i

i

)( For each i= 1,….,n and each j=1,…,n,

)0()1()(

1xx

K

Kpx

mm

A bound on the error at the mth step is given by

Page 31: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

31

5.2 Fixed-Point Iteration For Nonlinear Systems

Example 5.5

),(1.01.01.0

),,(51.01.0

2123212

2112311

xxgxxx

xxgxxx

First check to make sure that g(x) maps the retangle 10,10 21 xx

That is, for 1,0 21 xx we have 1,0 21 gg

In fact 6.04.0 1 g and 3.01.0 2 g

22

2

2

1

2

2

121

1

1 3.0)(

,1.0)(

,1.0)(

,3.0)(

xx

xg

x

xg

x

xgx

x

xg

Which are all less than 0.5 (for ), as is required for the corollary1,0 21 xx

Page 32: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

Korea UniversityComputer Networks Research Lab.

5.3 Minimum of a Nonlinear Function of Several

Variables

Page 33: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

33

Example 5.7 and , we define

The minimum value of h(x,y) is 0, which occurs when f(x,y)=0 and g(x,y)=0.

The derivatives for the gradient are

1),( 22 yxyxf yxyxg 2),(

22222 )()1(),( yxyxyxh

).1)((22)1(2),(

,2)(22)1(2),(222

222

yxyyxyxh

xyxxyxyxh

y

x

Page 34: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

34

Table 5.8 Result of ffmin

Table 5.8 Approximate zeros at each step of iteration

Step x y Change

0 0.5 0.5

1 0.875 0.625 -0.26831

2 0.74512 0.61133 -0.035987

3 0.79251 0.61902 -0.0079939

4 0.78446 0.6178 -0.00019414

5 0.78657 0.6181 -1.3631e-05

Page 35: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

35

5.3.1 MATLAB Function for Minimization by Gradient

Descent

Page 36: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

36

5.3.1 MATLAB Function for Minimization by Gradient

Descent

function dh = ex_min_g(x)dh = [ -(4*(x(1)^2 + x(2)^2 - 1)*x(1) + 4*(x(1)^2 - x(2))*x(1)) -(4*(x(1)^2 + x(2)^2 - 1)*x(2) - 2*(x(1)^2 - x(2)))]';

function h = ex_min(x)h = (x(1)^2 + x(2)^2 - 1)^2 + (x(1)^2 - x(2) )^2;

xmin = ffmin(@ex_min, @ex_min_g, [0.5 0.5], 0, 5) 0 0.5000 0.5000

1.0000 0.8750 0.6250 -0.2683

2.0000 0.7451 0.6113 -0.0360

3.0000 0.7925 0.6190 -0.0080

4.0000 0.7845 0.6178 -0.0002

5.0000 0.7866 0.6181 -0.0000

Page 37: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

37

Example 5.8 Given three points in the plane, we wish to find the locati

on of the point P=(x,y) sp that the sum of the squares of the distances from P to the three given points, is as small as possible.

),(),,(),,( 332211 yxandyxyx

.2226)(2)(2)(2),(

,2226)(2)(2)(2),(

.)()()()()()(),(

321321

321321

23

23

22

22

21

21

yyyyyyyyyyyxf

xxxxxxxxxxyxf

yyxxyyxxyyxxyxf

y

x

Page 38: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

38

Figure 5.7

Page 39: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

Korea UniversityComputer Networks Research Lab.

5.4 MATLAB’s Methods

Page 40: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

40

MATLAB’s METHODS FMINS

– finds the minimum of a scalar function of several variables, starting at an initial estimate

– Note• The fmins function was replaced by fminsearch in Release 11 (MAT

LAB 5.3).• In Release 12 (MATLAB 6.0), fmins displays a warning message an

d calls fminsearch – Syntax

• x = fmins('fun',x0) • x = fminsearch(fun,x0)

– starts at the point x0 and finds a local minimum x of the function described in fun.

– x0 can be a scalar, vector, or matrix.

Page 41: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

41

MATLAB’s METHODS Examples

– A classic test example for multidimensional minimization is the Rosenbrock banana function

– The traditional starting point is (-1.2,1). The M-file banana.m defines the function.

– The minimum is at (1,1) and has the value 0.

a

Page 42: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

Korea UniversityComputer Networks Research Lab.

5.5 Nonlinear system: Case Study

Page 43: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

43

Nonlinear system: Case Study

The analytical model to compute the 802.11 DCF throughput

Page 44: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

44

Nonlinear system: Case Study

The stationary probability τ – The station transmits a packet in a generic slot time

The conditional collision probability p

aa

Page 45: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

45

Nonlinear system: Case Study

Two Equations represent a nonlinear system in the two unknowns τ and p

W = Cwmin

m = Maximum backoff stageN = The number of stations

Page 46: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

46

Nonlinear system: Case Study

Solve the nonlinear problem of two variables– Assumptions

• W = 32• m = 3 • N = 3, 10, 50

– Newton’s Method and fminsearch(fun,x0)

Problem1 by Newton’s Method (W=32, m = 3, N =3)

64τ p^4 + 34pτ - 33τ - 4p +2 =0 (1)

p = 1-(1- τ )^2 (2)

*Equations (1) and (2) is nonlinear system

Page 47: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

47

Nonlinear system: Case Study

• function f = newton_case1(x)f = [ (64*x(2)*x(1)^4 + 34*x(1)*x(2) -33*x(2) -4*x(1) +2) (x(2)^2 - 2*x(2) + x(1)) ];

• function df = newton_case1_j(x)df = [ (256*x(2)*x(1)^3 + 34*x(2) - 4) (64*x(1)^4 + 34*x(1)-33) 1 ( 2*x(2) -2) ];

τ = 0.4165 p = 0.6595

aa

Page 48: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

48

Nonlinear system: Case Study

Problem1 by fminsearch(fun,x0) (W=32, m = 3, N =3)

– function h = fminsearch_case1(x)h = (64*x(2)*x(1)^4 + 34*x(1)*x(2) -33*x(2) -4*x(1) +2)^2 + ((1-x(2))^2 -1 +x(1))^2;

Page 49: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

49

Nonlinear system: Case Study

Problem2 by Newton’s Method (W=32, m = 3, N =10)64τ p^4 + 34pτ - 33τ - 4p +2 =0 (1)

p = 1-(1- τ )^9 (2) *Equations (1) and (2) is nonlinear system

– τ = 0.1259– p = 0.7021

– dd

Page 50: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

50

Nonlinear system: Case Study

Problem2 by fminsearch(fun,x0) (W=32, m = 3, N =10)

– function h = fminsearch_case1(x)h = (64*x(2)*x(1)^4 + 34*x(1)*x(2) -33*x(2) -4*x(1) +2)^2 + ((1-x(2))^2 -1 +x(1))^9;

Page 51: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

51

Nonlinear system: Case Study

Problem3 by Newton’s Method (W=32, m = 3, N =50)64τ p^4 + 34pτ - 33τ - 4p +2 =0 (1)

p = 1-(1- τ )^49 (2) *Equations (1) and (2) is nonlinear system

– τ = 0.0427– p = 0.8823

– dd

Page 52: Korea UniversityComputer Networks Research Lab. 5. Nonlinear Functions of Several Variables Jieun Yu (jieunyu@korea.ac.kr)jieunyu@korea.ac.kr Kyungsun

52

Nonlinear system: Case Study

Problem2 by fminsearch(fun,x0) (W=32, m = 3, N =50)

– function h = fminsearch_case1(x)h = (64*x(2)*x(1)^4 + 34*x(1)*x(2) -33*x(2) -4*x(1) +2)^2 + ((1-x(2))^2 -1 +x(1))^49;