33
Konttijärvi Battery Mineral geometallurgical case study Simon Michaux, Alan Butcher, Quentin Dehaine 30/09/2020 1

Konttijärvi Battery Mineral geometallurgical case study

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Konttijärvi Battery Mineral geometallurgical case study

Konttijärvi Battery Mineral geometallurgical case study

Simon Michaux, Alan Butcher, Quentin Dehaine

30/09/2020

1

Page 2: Konttijärvi Battery Mineral geometallurgical case study

Summary• Background of task

• Experimental plan

• Sample starting mineralogy

• Sorting results

• Magnetic separation results

• Flotation results

• Gravity results

• Data patterns

Page 3: Konttijärvi Battery Mineral geometallurgical case study

• SAP Konttijärvi (10 orientation samples)o Economic minerals in order of importance Palladium (2g/t), Pt (0.5g/t), Cu (0.16%), Ni

(0.08%), Au (0.1g/t), Co, Ag, Rhodium

o PGE most valuable

o Orginally a leaching plant but is now a flotation plant (client believes)

o Cu flotation first and Ni flotation on Cu tails

Select 5-10 Orientation samples

OrientationSample 1

OrientationSample 2

OrientationSample 3

OrientationSample 4

OrientationSample 5

OrientationSample 7

OrientationSample 8

Page 4: Konttijärvi Battery Mineral geometallurgical case study

Sample Preparation

Flotation(5kg)

GravitySeparation

(5kg)

MagneticSeparation

(5kg)

Leaching(5kg)

Sorting(5kg)

Characterization(5kg)

Orientation Sample φ(25kg)

-12mm

-3.35mm -3.35mm

-3.35mm

-3.35mm

-3.35mm

Page 5: Konttijärvi Battery Mineral geometallurgical case study

Each Orientation End Member Sample

Hyperspectral Imaging

Chemical Assay

Geophysics

Lithology Min

era

l Sig

na

ture

C

ha

ract

eri

sati

on

Intact Core Texture

FeedSample

A (flow)

ai (components)

B (flow)

bi (components)

C (flow)

ci (components)

Product Samples

SeparationProcess

Gravity Separation

AutomatedMineralogy

XRDChemical

Assay

FeedSample

A (flow)

ai (components)

B (flow)

bi (components)

C (flow)

ci (components)

Product Samples

SeparationProcess

Leaching Testwork

FeedSample

A (flow)

ai (components)

B (flow)

bi (components)

C (flow)

ci (components)

Product Samples

SeparationProcess

Batch Flotation

AutomatedMineralogy

XRDChemical

AssayAutomatedMineralogy

XRD Chemical Assay

Pro

cess

Be

ha

vio

ur

Ch

ara

cte

risa

tio

n

Meso - Micro Texture

Crushed Ore

XRDChemical

AssayAutomatedMineralogy

Company Knowledge & Data

SampleSelection

Digital Image

Min

era

log

ica

lsi

gn

atu

res

tha

tco

ntr

ol p

roce

ssb

eh

avi

or

Page 6: Konttijärvi Battery Mineral geometallurgical case study

Conclusion for each Orientation Sample

• Which process path is more effective in the

recovery of each target metal?

• Which process path is most effective in

recovery of the 2-3 most valuable metals?

• What is the mineralogical signature that

controls that process path?

LeachSLA

FlotationSFA

GravitySGA

LeachSFADLA

FlotationSGFB

Gravity

Flotation

FlotationGravityLeach

SGFDLB

Process Path 1

Process Path 7

Process Path 6

Process Path 4

Process Path 3

Process Path 2

CharacterizationRepresentitive sample of Starting end member orientation sample.

(in 4 size fractions)

Sample SC1-4Magnetic

Separation

Process Path 10

Process Path 11 Ore SortingFlotationSOSGFC

GravitySOSBGC

LeachSOSGFDLC

Ori

en

tati

on

Ste

p 1

Ori

en

tati

on

Ste

p 2

Analysis on what works and what does not

Process Path 5Ore Sorting

SOSA

FlotationMagneticSeparation

Process Path 8

FlotationMagnetic

SeparationLeach

SGFDLBProcess Path 9

OrientationStep 3

Page 7: Konttijärvi Battery Mineral geometallurgical case study

Chemical Assay

SEM Automated Mineralogy

X-Ray Diffraction

XRD

X-Ray Fluorescence

XRF

4 Acid Digest Multi-element analysis by ICP-MS

Fire Assay, Au, Ag, Pd, Pt determination by ICP-OES

Determination of Sulphurby sulphur S analyzer (Eltra)

Determination of carbon by carbon C analyzer (Eltra)

Particle Mineral Texture, Content & Association

Bulk Element Analysis

Bulk Mineral Analysis

SKC KonttijärviOrientation

Characterization Sample

SKC-PM1

SKC-PM2

SKC-PX1

SKC-PX2

SKC-MS1

SKC-MS2

SKC-BAS1

SKC-BAS2

Samples

Characterization analysis of each Orientation sample

Lead Collection Fire Assay (50-100g)

4 acid digest (to measure for 60

elements) (1g)

Ammonium Citrate leach analysis (to

measure supplied nickel minerals) (1g)

LECO/ELTRA (Suplhur combustion

test for high sulphur content) (1g)

XRF pellet (1g)

Bulk QXRD (50-100g)

Page 8: Konttijärvi Battery Mineral geometallurgical case study

Chem Assay XRD/XRF MLA – gangue

MLA – Value 1 MLA – Value 2MLA – Smelter

Penalty 1

FeedSample

A (flow)

ai (components)

B (flow)

bi (components)

C (flow)

ci (components)

Product Samples

SeparationProcess

Rotary divideeach sampleinto 4 parts

Examine Mawsondata

Reserve 1

Leachbackground

Flotation A

Gravity A

Select 4-10 samplesbased on extreme

data signatures

Concentrate

Tails

Heavy fraction

Light fraction

CSIRO

Characterization Point• Qemscan• XRD/XRF• Chemical Assay

Representitively sample acrosswhole sample size distribution. Sample prep in 4 size fractions

Size distributionmeasurement

Size by size handheld XRF &

Chemical Assay

Sample α

Sample δConc

Sample βHF

Sample βLF

Sample δTail

Rotary divideeach sampleinto 4 parts

Examine Mawsondata

Reserve 1

Leachbackground

Flotation A

Gravity A

Select 4-10 samplesbased on extreme

data signatures

Concentrate

Tails

Heavy fraction

Light fraction

CSIRO

Characterization Point• Qemscan• XRD/XRF• Chemical Assay

Representitively sample acrosswhole sample size distribution. Sample prep in 4 size fractions

Size distributionmeasurement

Size by size handheld XRF &

Chemical Assay

Sample α

Sample δConc

Sample βHF

Sample βLF

Sample δTail

Rotary divideeach sampleinto 4 parts

Examine Mawsondata

Reserve 1

Leachbackground

Flotation A

Gravity A

Select 4-10 samplesbased on extreme

data signatures

Concentrate

Tails

Heavy fraction

Light fraction

CSIRO

Characterization Point• Qemscan• XRD/XRF• Chemical Assay

Representitively sample acrosswhole sample size distribution. Sample prep in 4 size fractions

Size distributionmeasurement

Size by size handheld XRF &

Chemical Assay

Sample α

Sample δConc

Sample βHF

Sample βLF

Sample δTail

Make a rock type

mineral content profile

Page 9: Konttijärvi Battery Mineral geometallurgical case study

Konttijärvi (SAP) Orientation Samples

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

SKC-PM1 SKC-PM2 SKC-PX1 SKC-PX2 SKC-MS1 SKC-MS2 SKC-TZ1 SKC-TZ2 SKC-BAS1 SKC-BAS2

Konttijärvi (SAP) Whole Rock Mineralogy - XRD

Biotite Chlorite Quartz Amphibole Plagioclase Calcite Dolomite Magnesite Talc Magnetite

XRD has shown to be useful in

tracking rock type and mineral class

Page 10: Konttijärvi Battery Mineral geometallurgical case study

From MLA data SKC-PM1 SKC-PM2 SKC-PX1 SKC-PX2 SKC-MS1 SKC-MS2 SKC-TZ1 SKC-TZ2 SKC-BAS1 SKC-BAS2

Pyrrhotite (%) 0,69 0,68 0,42 0,01 0,62 0,32 0,62 1,37 1,28 0,26

Chalcopyrite (%) 0,28 0,32 0,38 0,05 0,56 0,49 0,54 0,48 0,45 1,84

Pentlandite (%) 0,29 0,36 0,10 0,00 0,20 0,19 0,15 0,23 0,39 0,04

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

SKC-

PM1

SKC-

PM2

SKC-

PX1

SKC-

PX2

SKC-

MS1

SKC-

MS2

SKC-

TZ1

SKC-

TZ2

SKC-

BAS1

SKC-

BAS2

Prec

ious

Met

al C

onte

nt (m

g/kg

)

Konttijärvi (SAP) Precious Metal Content - Fire Assay

Pd

Ag

Pt

Au

Page 11: Konttijärvi Battery Mineral geometallurgical case study

From MLA data SKC-PM1 SKC-PM2 SKC-PX1 SKC-PX2 SKC-MS1 SKC-MS2 SKC-TZ1 SKC-TZ2 SKC-BAS1 SKC-BAS2

Pyrrhotite (%) 0,69 0,68 0,42 0,01 0,62 0,32 0,62 1,37 1,28 0,26

Chalcopyrite (%) 0,28 0,32 0,38 0,05 0,56 0,49 0,54 0,48 0,45 1,84

Pentlandite (%) 0,29 0,36 0,10 0,00 0,20 0,19 0,15 0,23 0,39 0,04

0,00

0,10

0,20

0,30

0,40

0,50

0,60

SKC-PM1 SKC-PM2 SKC-PX1 SKC-PX2 SKC-MS1 SKC-MS2 SKC-TZ1 SKC-TZ2 SKC-BAS1 SKC-BAS2

(%)

Konttijärvi (SAP) Cu-Ni-Co Content - 4 Acid Digest Assay

Cu (%)

Ni (%)

Co (%)

Page 12: Konttijärvi Battery Mineral geometallurgical case study

Sample Mass Pull Pd Recovery Cu Recovery Ni Recovery Co Recovery

SKF-PM2 2,1 % 72,6 % 80,5 % 27,0 % 11,2 %

SKF-PX1 1,0 % 65,0 % 86,4 % 19,9 % 9,2 %

SKF-PX2 0,8 % 62,1 % 81,6 % 1,0 % 0,6 %

SKF-MS1 2,0 % 60,8 % 85,4 % 42,5 % 10,3 %

SKF-MS2 1,0 % 74,0 % 87,1 % 31,0 % 7,9 %

SKF-TZ1 1,5 % 55,6 % 77,1 % 45,8 % 11,1 %

SKF-TZ2 1,5 % 78,5 % 85,9 % 54,2 % 9,3 %

SKF-BAS1 2,8 % 71,6 % 87,9 % 71,3 % 21,9 %

SKF-BAS2 2,6 % 65,5 % 87,5 % 26,5 % 10,3 %

SAP Flotation

Palladium (2g/t),

Pt (0.5g/t),

Cu (0.16%),

Ni (0.08%),

Co (60-120 ppm)

Au (0.1g/t), Ag, Rhodium

Page 13: Konttijärvi Battery Mineral geometallurgical case study

Flotation at Konttijärvi

% R

ecov

ery

Time

Chemical Assay

Qemscan SEM

QXRD

Characterization

Data

Lead Collection Fire Assay (50-100g)

4 acid digest (to measure for 60

elements) (1g)

Ammonium Citrate leach analysis (to

measure supplied nickel minerals) (1g)

LECO/ELTRA (Suplhur combustion

test for high sulphur content) (1g)

XRF pellet (1g)

Bulk QXRD (50-100g)

Prepared

Sample

Bulk Sulphide

rougher

flotationBulk Sulphide

Cleaner Test 1

Flotation

Bulk Sulphide

Cleaner Test 2

Flotation

Bulk Sulphide

Cleaner Test 3

Flotation

Rougher Tails

Page 14: Konttijärvi Battery Mineral geometallurgical case study

Konttijärvi Palladium Flotation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25

Pd

Re

cove

ry (

%)

Time (min)

Palladium Flotation

SKF-PM2

SKF-PX1

SKF-PX2

SKF-MS1

SKF-MS2

SKF-TZ1

SKF-TZ2

SKF-BAS1

SKF-BAS2

50

55

60

65

70

75

80

85

90

0 50 100 150

Pd R

eco

very

(%

)

Pd Grade (g/t)

Palladium Grade Recovery

Test 2: SKF-PM2

Test 3: SKF-MS1

Test 4: SKF-MS2

Test 5: SKF-TZ1

Test 6: SKF-TZ2

Test 7: SKF-BAS1

Test 8: SKF-BAS2

Test 9: SKF-PX1

Test 10: SKF-PX2

Page 15: Konttijärvi Battery Mineral geometallurgical case study

Flotation data Pd – 20 minutesFe and Ni good indicators of Pd at 20

mins in most samples. Mo best

predicator in BAS-1 and TZ2

Correlation matrix of data, larger

squares = best correlation

PCA analysis of 20 min data indicate

elemental associations.

Pd group

Zn related to poor recovery

Page 16: Konttijärvi Battery Mineral geometallurgical case study

PM1

PM2

PX1

PX2

MS1

MS2

TZ1

TZ2

BAS2

BAS1

SAP Rock Types

Different mineral

control of flotation

Page 17: Konttijärvi Battery Mineral geometallurgical case study

Flotation data Pd – 20 minutes ( minerals)

Biotite and Plagioclase indicators of Pd

at 20 mins in most samples Chlorite

inverse of these two minerals.

Page 18: Konttijärvi Battery Mineral geometallurgical case study

Konttijärvi Copper Flotation

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Cu

Re

cove

ry %

Time, min

Cu Flotation Kinetics in Final Cleaning

Test 2: SKF-PM2, 2nd cleaning

Test 3: SKF-MS1, 1st cleaning

Test 4: SKF-MS2, 1st cleaning

Test 5: SKF-TZ1, 1st cleaning

Test 6: SKF-TZ2, 1st cleaning

Test 7: SKF-BAS1, 1st cleaning

Test 8: SKF-BAS2, 1st cleaning

Test 9: SKF-PX1, 1st cleaning

Test 10: SKF-PX2, 1st cleaning

70

75

80

85

90

95

0 2 4 6 8 10 12 14 16

Cu

re

cove

ry %

Cu Grade %

Copper grades and Recoveries

Test 1: SKF-PM2

Test 2: SKF-PM2

Test 3: SKF-MS1

Test 4: SKF-MS2

Test 5: SKF-TZ1

Test 6: SKF-TZ2

Test 7: SKF-BAS1

Test 8: SKF-BAS2

Test 9: SKF-PX1

Test 10: SKF-PX2

Page 19: Konttijärvi Battery Mineral geometallurgical case study

Flotation data Cu – 20 mins

Cu strongly associated with Mo,

W and Zn

Page 20: Konttijärvi Battery Mineral geometallurgical case study

Konttijärvi Nickel Flotation

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

Ni R

eco

very

%

Time, min

Ni Flotation Kinetics in Final Cleaning

Test 2: SKF-PM2, 2nd cleaning

Test 3: SKF-MS1, 1st cleaning

Test 4: SKF-MS2, 1st cleaning

Test 5: SKF-TZ1, 1st cleaning

Test 6: SKF-TZ2, 1st cleaning

Test 7: SKF-BAS1, 1st cleaning

Test 8: SKF-BAS2, 1st cleaning

Test 9: SKF-PX1, 1st cleaning

Test 10: SKF-PX2, 1st cleaning

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5

Ni r

eco

very

%

Ni %

Nickel grades and Recoveries

Test 1: SKF-PM2

Test 2: SKF-PM2

Test 3: SKF-MS1

Test 4: SKF-MS2

Test 5: SKF-TZ1

Test 6: SKF-TZ2

Test 7: SKF-BAS1

Test 8: SKF-BAS2

Test 9: SKF-PX1

Test 10: SKF-PX2

Page 21: Konttijärvi Battery Mineral geometallurgical case study

Konttijärvi Cobalt Flotation

0%

5%

10%

15%

20%

25%

0 5 10 15 20 25

Co

Re

cov

ery

(%

)

Time (min)

Cobalt Flotation SKF-PM2

SKF-PX1

SKF-PX2

SKF-MS1

SKF-MS2

SKF-TZ1

SKF-TZ2

SKF-BAS1

SKF-BAS2

0

10

20

30

40

50

60

70

80

0,00 0,10 0,20 0,30

Co r

ecov

ery

(%)

Co Grade (%)

Cobalt Grade Recovery

Test 2: SKF-PM2

Test 9: SKF-PX1

Test 10: SKF-PX2

Test 3: SKF-MS1

Test 4: SKF-MS2

Test 5: SKF-TZ1

Test 6: SKF-TZ2

Test 7: SKF-BAS1

Test 8: SKF-BAS2

Page 22: Konttijärvi Battery Mineral geometallurgical case study

Flotation data Co – 20 minsS good indicator of Co at 20 mins in

most samples. MnO is the opposite of S

Co strongly associated with S

Page 23: Konttijärvi Battery Mineral geometallurgical case study

Gravity data –general

2.9% of mass 40.8% of mass 56.3% of mass

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

9 000

Concentrate Middlings Tails

(mg/

kg)

Gravity Shaking Table Separation (Sample PM1)

Copper (Cu)

Nickel (Ni)

Cobalt (Co)

Cobalt (Co) Concentrate Middlings Tails

Sample mass 2,9 % 40,8 % 56,3 %

Grade 602 mg/kg 111 mg/kg 106 mg/kgRecovery 14,4 % 36,9 % 48,7 %

0 %

20 %

40 %

60 %

80 %

100 %

Concentrate Middlings Tails

(%)

SKG-PM1 Gravity Separation XRD

Chlorite Quartz Amhibole Plagioclase Calcite

Dolomite Magnesite Magnetite Talc Pyrrhotite

Pyrite Chalcopyrite Ilmenite Pentlandite

Page 24: Konttijärvi Battery Mineral geometallurgical case study

Gravity data – TZ1

Co conc relative to starting material

Page 25: Konttijärvi Battery Mineral geometallurgical case study

Gravity data – TZ1

Co & U removed

Page 26: Konttijärvi Battery Mineral geometallurgical case study

How do we look at down hole data? 26

0

1

2

3

4

5

6

7

8

9

12

8 -

13

01

30

- 1

32

13

2 -

13

41

34

- 1

36

13

6 -

13

81

38

- 1

40

14

0 -

14

21

42

- 1

44

14

4 -

14

61

46

- 1

48

14

8 -

15

01

50

- 1

52

15

2 -

15

41

54

- 1

56

15

6 -

15

81

58

- 1

60

16

0 -

16

21

62

- 1

64

16

4 -

16

61

66

- 1

68

16

8 -

17

01

70

- 1

72

17

2 -

17

41

74

- 1

76

17

6 -

17

81

78

- 1

80

18

0 -

18

21

82

- 1

84

18

4 -

18

61

86

- 1

88

18

8 -

19

01

90

- 1

92

19

2 -

19

41

94

- 1

96

19

6 -

19

81

98

- 2

00

20

0 -

20

22

02

- 2

04

20

4 -

20

62

06

- 2

08

20

8 -

21

02

10

- 2

12

21

2 -

21

42

14

- 2

16

21

6 -

21

82

18

- 2

20

22

0 -

22

22

22

- 2

24

22

4 -

22

62

26

- 2

28

22

8 -

23

02

30

- 2

32

23

2 -

23

4

Fe %

, S

%

Depth (m)

Fe_pct

S_pct

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

12

8 -

13

0

13

2 -

13

4

13

6 -

13

8

14

0 -

14

2

14

4 -

14

6

14

8 -

15

0

15

2 -

15

4

15

6 -

15

8

16

0 -

16

2

16

4 -

16

6

16

8 -

17

0

17

2 -

17

4

17

6 -

17

8

18

0 -

18

2

18

4 -

18

6

18

8 -

19

0

19

2 -

19

4

19

6 -

19

8

20

0 -

20

2

20

4 -

20

6

20

8 -

21

0

21

2 -

21

4

21

6 -

21

8

22

0 -

22

2

22

4 -

22

6

22

8 -

23

0

23

2 -

23

4

Cu

%,

Cu

/S

Depth (m)

Cu_pct

Cu/S

0

5000

10000

15000

20000

25000

30000

35000

40000

12

8 -

13

01

30

- 1

32

13

2 -

13

41

34

- 1

36

13

6 -

13

81

38

- 1

40

14

0 -

14

21

42

- 1

44

14

4 -

14

61

46

- 1

48

14

8 -

15

01

50

- 1

52

15

2 -

15

41

54

- 1

56

15

6 -

15

81

58

- 1

60

16

0 -

16

21

62

- 1

64

16

4 -

16

61

66

- 1

68

16

8 -

17

01

70

- 1

72

17

2 -

17

41

74

- 1

76

17

6 -

17

81

78

- 1

80

18

0 -

18

21

82

- 1

84

18

4 -

18

61

86

- 1

88

18

8 -

19

01

90

- 1

92

19

2 -

19

41

94

- 1

96

19

6 -

19

81

98

- 2

00

20

0 -

20

22

02

- 2

04

20

4 -

20

62

06

- 2

08

20

8 -

21

02

10

- 2

12

21

2 -

21

42

14

- 2

16

21

6 -

21

82

18

- 2

20

22

0 -

22

22

22

- 2

24

22

4 -

22

62

26

- 2

28

22

8 -

23

02

30

- 2

32

23

2 -

23

4

Pa

rts

pe

r m

illi

on

(p

pm

)

Depth (m)

Mg_ppmAl_ppmCa_ppmK_ppm

Need a statistically valid

method that can filter data

Case Study P

Page 27: Konttijärvi Battery Mineral geometallurgical case study

Cumulative Summation (cusum) analysis27

82

84

86

88

90

92

94

96

0 20 40 60 80 100 120 140 160

Day

Reco

very

(%

)

Change in Circuit

A change was made to a flotation plant

circuit at day 85 and the data was

analyzed to determine if there was a

change in recovery performance of the

circuit.

The time series plot does not provide any

visible indication of any change in the day

to day recovery data.

Example Source: T. Napier-

Munn

Time Series Recovery Chart

Page 28: Konttijärvi Battery Mineral geometallurgical case study

Cumulative Summation (cusum) analysis 28

-30

-25

-20

-15

-10

-5

0

5

0 20 40 60 80 100 120 140 160

Day

CU

SU

M

Change in Circuit

The cusum plot identifies four periods:

• two –ve gradients

• one horizontal gradient

• one positive gradient

Difference between lowest and

highest recoveries are only 1%

μ=88.87% (overall mean of

dataset) Example Source: T. Napier-Munn

Page 29: Konttijärvi Battery Mineral geometallurgical case study

Cumulative Summation (cusum) analysis 29

• A “cusum” chart is traditionally a time sequence plot of the cumulative sum of the

current value minus some mean value, plus the previous cusum

• Ct=Ct-1+Rt-μ

• Ct: cusum at time t

• Ct-1: cusum at time t-1

• Rt: value of variable at time t

• μ: mean/target value

Copper Rougher Recovery

(CUSUM Analysis)

-50

0

50

100

150

200

250

1100 1175 1250 1325 1400 1475

Depth (m)

CU

SU

M .

Page 30: Konttijärvi Battery Mineral geometallurgical case study

How do we look at down hole data? 30

0

1

2

3

4

5

6

7

8

9

12

8 -

13

01

30

- 1

32

13

2 -

13

41

34

- 1

36

13

6 -

13

81

38

- 1

40

14

0 -

14

21

42

- 1

44

14

4 -

14

61

46

- 1

48

14

8 -

15

01

50

- 1

52

15

2 -

15

41

54

- 1

56

15

6 -

15

81

58

- 1

60

16

0 -

16

21

62

- 1

64

16

4 -

16

61

66

- 1

68

16

8 -

17

01

70

- 1

72

17

2 -

17

41

74

- 1

76

17

6 -

17

81

78

- 1

80

18

0 -

18

21

82

- 1

84

18

4 -

18

61

86

- 1

88

18

8 -

19

01

90

- 1

92

19

2 -

19

41

94

- 1

96

19

6 -

19

81

98

- 2

00

20

0 -

20

22

02

- 2

04

20

4 -

20

62

06

- 2

08

20

8 -

21

02

10

- 2

12

21

2 -

21

42

14

- 2

16

21

6 -

21

82

18

- 2

20

22

0 -

22

22

22

- 2

24

22

4 -

22

62

26

- 2

28

22

8 -

23

02

30

- 2

32

23

2 -

23

4

Fe %

, S

%

Depth (m)

Fe_pct

S_pct

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

12

8 -

13

0

13

2 -

13

4

13

6 -

13

8

14

0 -

14

2

14

4 -

14

6

14

8 -

15

0

15

2 -

15

4

15

6 -

15

8

16

0 -

16

2

16

4 -

16

6

16

8 -

17

0

17

2 -

17

4

17

6 -

17

8

18

0 -

18

2

18

4 -

18

6

18

8 -

19

0

19

2 -

19

4

19

6 -

19

8

20

0 -

20

2

20

4 -

20

6

20

8 -

21

0

21

2 -

21

4

21

6 -

21

8

22

0 -

22

2

22

4 -

22

6

22

8 -

23

0

23

2 -

23

4

Cu

%,

Cu

/S

Depth (m)

Cu_pct

Cu/S

0

5000

10000

15000

20000

25000

30000

35000

40000

12

8 -

13

01

30

- 1

32

13

2 -

13

41

34

- 1

36

13

6 -

13

81

38

- 1

40

14

0 -

14

21

42

- 1

44

14

4 -

14

61

46

- 1

48

14

8 -

15

01

50

- 1

52

15

2 -

15

41

54

- 1

56

15

6 -

15

81

58

- 1

60

16

0 -

16

21

62

- 1

64

16

4 -

16

61

66

- 1

68

16

8 -

17

01

70

- 1

72

17

2 -

17

41

74

- 1

76

17

6 -

17

81

78

- 1

80

18

0 -

18

21

82

- 1

84

18

4 -

18

61

86

- 1

88

18

8 -

19

01

90

- 1

92

19

2 -

19

41

94

- 1

96

19

6 -

19

81

98

- 2

00

20

0 -

20

22

02

- 2

04

20

4 -

20

62

06

- 2

08

20

8 -

21

02

10

- 2

12

21

2 -

21

42

14

- 2

16

21

6 -

21

82

18

- 2

20

22

0 -

22

22

22

- 2

24

22

4 -

22

62

26

- 2

28

22

8 -

23

02

30

- 2

32

23

2 -

23

4

Pa

rts

pe

r m

illi

on

(p

pm

)

Depth (m)

Mg_ppmAl_ppmCa_ppmK_ppm

Need a statistically valid

method that can filter data

Case Study P

Page 31: Konttijärvi Battery Mineral geometallurgical case study

The CuSUM tool 31

-8,0

-6,0

-4,0

-2,0

0,0

2,0

4,0

6,0

8,0

-4,0

-3,0

-2,0

-1,0

0,0

1,0

2,0

3,0

4,0

5,0

12

8 -

13

0

13

2 -

13

4

13

6 -

13

8

14

0 -

14

2

14

4 -

14

6

14

8 -

15

0

15

2 -

15

4

15

6 -

15

8

16

0 -

16

2

16

4 -

16

6

16

8 -

17

0

17

2 -

17

4

17

6 -

17

8

18

0 -

18

2

18

4 -

18

6

18

8 -

19

0

19

2 -

19

4

19

6 -

19

8

20

0 -

20

2

20

4 -

20

6

20

8 -

21

0

21

2 -

21

4

21

6 -

21

8

22

0 -

22

2

22

4 -

22

6

22

8 -

23

0

23

2 -

23

4

Depth (m)

cusum S

cusum Fe

-1,4

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

-2

-1,8

-1,6

-1,4

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

12

8 -

13

01

30

- 1

32

13

2 -

13

41

34

- 1

36

13

6 -

13

81

38

- 1

40

14

0 -

14

21

42

- 1

44

14

4 -

14

61

46

- 1

48

14

8 -

15

01

50

- 1

52

15

2 -

15

41

54

- 1

56

15

6 -

15

81

58

- 1

60

16

0 -

16

21

62

- 1

64

16

4 -

16

61

66

- 1

68

16

8 -

17

01

70

- 1

72

17

2 -

17

41

74

- 1

76

17

6 -

17

81

78

- 1

80

18

0 -

18

21

82

- 1

84

18

4 -

18

61

86

- 1

88

18

8 -

19

01

90

- 1

92

19

2 -

19

41

94

- 1

96

19

6 -

19

81

98

- 2

00

20

0 -

20

22

02

- 2

04

20

4 -

20

62

06

- 2

08

20

8 -

21

02

10

- 2

12

21

2 -

21

42

14

- 2

16

21

6 -

21

82

18

- 2

20

22

0 -

22

22

22

- 2

24

22

4 -

22

62

26

- 2

28

22

8 -

23

02

30

- 2

32

23

2 -

23

4

Depth (m)

cusum Cu

cusum Cu/S

-20000

-10000

0

10000

20000

30000

40000

-35000

-30000

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

12

8 -

13

01

30

- 1

32

13

2 -

13

41

34

- 1

36

13

6 -

13

81

38

- 1

40

14

0 -

14

21

42

- 1

44

14

4 -

14

61

46

- 1

48

14

8 -

15

01

50

- 1

52

15

2 -

15

41

54

- 1

56

15

6 -

15

81

58

- 1

60

16

0 -

16

21

62

- 1

64

16

4 -

16

61

66

- 1

68

16

8 -

17

01

70

- 1

72

17

2 -

17

41

74

- 1

76

17

6 -

17

81

78

- 1

80

18

0 -

18

21

82

- 1

84

18

4 -

18

61

86

- 1

88

18

8 -

19

01

90

- 1

92

19

2 -

19

41

94

- 1

96

19

6 -

19

81

98

- 2

00

20

0 -

20

22

02

- 2

04

20

4 -

20

62

06

- 2

08

20

8 -

21

02

10

- 2

12

21

2 -

21

42

14

- 2

16

21

6 -

21

82

18

- 2

20

22

0 -

22

22

22

- 2

24

22

4 -

22

62

26

- 2

28

22

8 -

23

02

30

- 2

32

23

2 -

23

4

Depth (m)

cusum Mg

cusum Al

cusum Ca

cusum K

• The absolute value of the cusum at any point is not important

• The gradient of the line over a characteristic period indicates the prevailing mean.

Case Study P

Page 32: Konttijärvi Battery Mineral geometallurgical case study

[email protected]

www.gtk.fi

Page 33: Konttijärvi Battery Mineral geometallurgical case study

Simon P. MichauxAssociate Professor GeometallurgyUnit Minerals Processing and Materials Research - Circular Economy SolutionsOre Characterization, Process Engineering & Mineral Intelligence

Geological Survey of Finland/Geologian tutkimuskeskusPO Box 96, (Vuorimiehentie 2)F1-02151 Espoo, FINLAND

Landline: +358 (0)29 503 2158Mobile: +358 (0)50 348 6443

http://en.gtk.fi/