22
Integrity, Professionalism, & Entrepreneurship Komponen Struktur Tekan Pertemuan – 4, 5 Mata Kuliah : Perancangan Struktur Baja Kode : CIV – 303 SKS : 3 SKS

Komponen Struktur Tekan - UPJocw.upj.ac.id/files/Slide-CIV303-CIV303-Slide-03.pdfsebagai jarak di antara dua titik belok dari kelengkungan kolom. •Dalam perhitungan kelangsingan

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

  • Integrity, Professionalism, & Entrepreneurship

    Komponen Struktur Tekan

    Pertemuan – 4, 5

    Mata Kuliah : Perancangan Struktur Baja

    Kode : CIV – 303

    SKS : 3 SKS

  • Integrity, Professionalism, & Entrepreneurship

    • Sub Pokok Bahasan :

    • Panjang Tekuk

    • Tekuk Lokal

    • Tekuk Batang

    • Desain Batang Tekan

  • Integrity, Professionalism, & Entrepreneurship

    • Batang – batang tekan yang banyak dijumpai yaitu kolom dan batang – batang tekan dalam struktur rangka batang.

    • Komponen struktur tekan dapat terdiri dari profil tunggal atau profil tersusun yang digabung dengan menggunakan pelat kopel.

    • Syarat kestabilan dalam mendisain komponen struktur tekan sangat perlu diperhatikan, mengingat adanya bahaya tekuk (buckling) pada komponen – komponen tekan yang langsing.

  • Integrity, Professionalism, & Entrepreneurship

    • Teori tekuk kolom pertama kali diperkenalkan oleh Leonhard Euler di tahun 1744.

    • Komponen struktur yang dibebani secara konsentris, di mana seluruh serat bahan masih dalam kondisi elastik hingga terjadinya tekuk, perlahan – lahan melengkung.

    P P

    y(x)

    x

    L

    2

    2

    L

    EIPcr

    2

    2

    )/( rL

    E

    A

    Pf

    g

    cr

    cr

    Beban tekuk Euler

  • Integrity, Professionalism, & Entrepreneurship

    • Pendekatan Euler pada umumnya diabaikan dalam disain karena hasil dari percobaan – percobaan yang dilakukan tak sesuai dengannya.

    • Pendekatan Euler hanya mungkin terjadi bila nilai (= L/r) yang cukup besar ( > 110 ).

    • Untuk nilai yang lebih kecil, akan terjadi tekuk inelastis. Dan bila nilai < 20 akan terjadi leleh pada seluruh penampang.

    • Pada kenyataannya keruntuhan kolom lebih banyak terjadi akibat tekuk inelastis.

    • Kolom ideal yang memenuhi persamaan Euler harus memenuhi anggapan-anggapan sebagai berikut :

    • kurva hubungan tegangan – regangan tekan yang sama di seluruh penampang • tak ada tegangan sisa • kolom benar – benar lurus dan prismatis • beban bekerja pada titik berat penampang, hingga batang melentur • kondisi tumpuan harus ditentukan secara pasti • berlakunya teori lendutan kecil (small deflection theory ) • tak ada puntir pada penampang, selama terjadi lentur

  • Integrity, Professionalism, & Entrepreneurship

    • Bila asumsi-asumsi di atas dipenuhi, maka kekuatan kolom dapat ditentukan berdasarkan :

    dengan :

    Et = tangen Modulus Elatisitas pada tegangan Pcr/Ag

    Ag = luas gross penampang batang

    kL/r = rasio kelangsingan efektif

    k = faktor panjang efektif

    L = panjang batang

    r = jari – jari girasi

    gcrg

    t

    cr AfArkL

    EP .

    )/( 2

    2

  • Integrity, Professionalism, & Entrepreneurship

    Klasifikasi Penampang • Pasal B.4 SNI 1729:2015 memberikan klasifikasi bagi

    penampang struktur berdasarkan rasio tebal terhadap lebar dari masing-masing elemennya.

    • Untuk suatu komponen struktur tekan, maka penampang diklasifikasikan sebagai penampang langsing dan penampang non langsing.

    • Apabila rasio tebal terhadap lebar dari elemen tekan tidak melebihi nilai r , maka penampang dikategorikan sebagai penampang non langsing.

    • Sedangkan apabila rasio tebal terhadap lebar melebihi r, maka penampang dikategorikan sebagai penampang langsing.

  • Integrity, Professionalism, & Entrepreneurship

    • Dalam perencanaan rasio lebar terhadap tebal dari suatu elemen penampang sebaiknya dibatasi sehingga tidak masuk ke dalam kategori penampang langsing.

    • Hal ini bertujuan untuk mencegah terjadinya tekuk lokal pada penampang, serta agar kekuatan penampang tidak perlu direduksi

  • Integrity, Professionalism, & Entrepreneurship

    Panjang Tekuk • Panjang efektif suatu kolom secara sederhana

    dapat didefinisikan sebagai jarak di antara dua titik pada kolom tersebut yang mempunyai momen sama dengan nol, atau didefinisikan pula sebagai jarak di antara dua titik belok dari kelengkungan kolom.

    • Dalam perhitungan kelangsingan komponen struktur tekan ( = L/r ), panjang komponen struktur yang digunakan harus dikalikan suatu faktor panjang tekuk k untuk memperoleh panjang efektif dari kolom tersebut.

  • Integrity, Professionalism, & Entrepreneurship

    Faktor Panjang Tekuk

    • SNI 03-1729-2002 pasal 7.6.3.1 memberikan daftar nilai faktor panjang tekuk untuk berbagai kondisi tumpuan ujung dari suatu kolom.

    • Nilai k ini diperoleh dengan mengasumsikan bahwa kolom tidak mengalami goyangan atau translasi pada ujung – ujung tumpuannya.

  • Integrity, Professionalism, & Entrepreneurship

    Faktor Panjang Tekuk

  • Integrity, Professionalism, & Entrepreneurship

    Tekuk Lentur Dari Komponen Struktur Tanpa Elemen Langsing • Jika sebuah komponen struktur tekan dibebani beban aksial tekan

    sehingga terjadi tekuk terhadap keseluruhan elemen tersebut (bukan tekuk lokal), maka ada tiga macam potensi tekuk yang mungkin terjadi :

    • Tekuk lentur. Dapat terjadi pada semua penampang

    • Tekuk torsi. Tekuk torsi hanya terjadi pada elemen-elemen yang langsing dengan sumbu simetri ganda. Contoh : penampang cruciform

    • Tekuk lentur torsi. Tekuk lentur torsi dapat terjadi pada penampang – penampang dengan satu sumbu simetri saja seperti profil kanal, T, siku ganda dan siku tunggal sama kaki. Di samping itu juga dapat terjadi pada penampang – penampang tanpa sumbu simetri seperti profil siku tunggal tak sama kaki dan profil Z

  • Integrity, Professionalism, & Entrepreneurship

  • Integrity, Professionalism, & Entrepreneurship

    • Kekuatan tekan nominal, Pn, dari suatu komponen struktur tekan akibat tekuk lentur harus ditentukan berdasarkan keadaan batas dari tekuk lentur. Nilai Pn, menurut SNI 1729-2015, pasal E.3 adalah :

    Pn =Fcr.Ag

    dengan :

    Ag adalah luas bruto penampang

    Fcr adalah tegangan kritis yang ditentukan sebagai berikut :

    a. Jika yF

    E,

    r

    KL714 atau 252,

    F

    F

    e

    y

    yF

    F

    cr F,Fe

    y

    6580 1.a

    b. Jika yF

    E,

    r

    KL714 atau 252,

    F

    F

    e

    y

    Fcr = 0,877Fe 1.b

    2

    2

    r

    KL

    EFe

  • Integrity, Professionalism, & Entrepreneurship

    • Besarnya faktor ketahanan fc, dan faktor keamanan tekan, Wc, ditentukan dalam pasal E.1 SNI 1729:2015 sebagai berikut :

    Metode DFBK

    fc = 0,90

    Metode DKI (Desain Kekuatan Ijin) :

    Wc = 1,67

  • Integrity, Professionalism, & Entrepreneurship

    Contoh 1 : • Tentukan kekuatan tekan desain fcPn, dan kekuatan tekan

    tersedia, Pn/Wc,dari suatu komponen struktur tekan dalam gambar berikut ini. Mutu baja dari ASTM A992 (Fy = 345 MPa)

    Data penampang : d = 298 mm

    b = 201 mm

    tw = 9 mm

    tf = 14 mm

    r0 = 18 mm

    4,5 m W300×200×9×14

    tf

    tw h d

    b

  • Integrity, Professionalism, & Entrepreneurship

    1. Periksa terhadap batasan r

    Flens

    187142

    2012,

    t

    /b

    f

    4813345

    000200560560 ,

    .,

    F

    E,

    y

    r

    ft

    b

    2/ o.k.

    Web

    269

    234

    wt

    h

    8735345

    000200491491 ,

    .,

    F

    E,

    y

    r

    wt

    h o.k.

    2. Menentukan rasio kelangsingan (KL/r), karena ry < rx, maka rasio kelangsingan ditentukan oleh ry.

    4775747

    500480,

    ,

    .,

    r

    KL

    y

    3. Menghitung tegangan tekuk Euler, Fe.

    563464775

    0002002

    2

    2

    2

    ,,

    .

    r

    KL

    EFe

    MPa

  • Integrity, Professionalism, & Entrepreneurship

    4. Menghitung tegangan kritis, Fcr

    4113345

    000200714714 ,

    .,

    F

    E,

    y

    > 4775,r

    KL

    y

    Sehingga Fcr dihitung dari persamaan 4.22.a

    4422734565806580 56346345

    ,,F,F ,yF

    F

    cre

    y

    MPa

    5. Menghitung kekuatan tekan desain fcPn (DFBK) dan kekuatan tekan tersedia, Pn/Wc (DKI)

    DFBK DKI

    fcPn = 0,90FcrAg = 0,90(227,44)(8.336)

    = 1.706.345,86 N

    = 1.706,35 kN

    Pn/Wc = FcrAg /1,67

    = (227,44)(8.336)/1,67

    = 1.135.293,32 N

    = 1.135,29 kN

  • Integrity, Professionalism, & Entrepreneurship

    Tekuk Torsi dan Tekuk Lentur Torsi Dari Komponen Tanpa Elemen Langsing

    • SNI 1729:2015 pasal E.4 mencantumkan persyaratan pemeriksaan terhadap tekuk lentur torsi untuk profil-profil simetris tunggal, asimetris dan penampang simetris ganda tertentu, misalnya kolom cruciform, siku tunggal dengan b/t > 20, dan profil T.

  • Integrity, Professionalism, & Entrepreneurship

    Dinyatakan bahwa tegangan kritis, Fcr, pada keadaan batas dari tekuk tosi dan tekuk lentur

    torsi, sebagai berikut :

    1. Untuk komponen struktur tekan siku ganda dan profil T

    2

    411

    2 )FF(

    H.F.F.

    H

    FFF

    crzcry

    crzcrycrzcry

    cr

    Dengan Fcry dihitung dari nilai Fcr seperti dalam persamaan 1a dan b untuk tekuk

    lentur pada sumbu y simetris,

    2

    0r.A

    J.GFcrz

    202

    0

    2

    0 yxA

    IIr

    g

    yx

    2

    0

    2

    0

    2

    01r

    yxH

    a. xo, yo merupakan koordinat pusat geser terhadap titik berat, x0 = 0 untuk siku ganda dan profil T.

    b. G adalah modulus geser baja, diambil sebesar 77.200 MPa

    c. J adalah konstanta puntir, 3.3

    1tbJ

  • Integrity, Professionalism, & Entrepreneurship

    2. Untuk semua kasus lainnya, nilai Fcr harus ditentukan sesuai dengan persamaan 1.a dan b, hanya saja nilai Fe ditentukan sebagai berikut :

    a. Untuk komponen struktur simetris ganda :

    yxz

    we

    IIGJ

    LK

    ECF

    12

    2

    b. Untuk komponen struktur simetris tunggal dengan y adalah sumbu simetris :

    2

    411

    2ezey

    ezeyezey

    eFF

    HFF

    H

    FFF

    c. Untuk komponen struktur tak simetris, Fe adalah akar terendah dari persamaan pangkat tiga berikut :

    02

    0

    02

    2

    0

    02

    r

    yFFF

    r

    xFFFFFFFFF exeeeyeeezeeyeexe

  • Integrity, Professionalism, & Entrepreneurship

    Dengan :

    2

    2

    2

    2

    y

    y

    ey

    x

    x

    ex

    r

    LK

    EF

    r

    LK

    EF

    202

    21

    rAGJ

    LK

    ECF

    gz

    wez

    Kz adalah faktor panjang efektif untuk tekuk torsi