41
10.12.2003 Koc University 1 Conjectures and Challenges in Graph Labelings Ibrahim Cahit Arkut Girne American University

Koc_Arkut

Embed Size (px)

Citation preview

Page 1: Koc_Arkut

10.12.2003 Koc University 1

Conjectures and Challengesin

Graph Labelings

Ibrahim Cahit ArkutGirne American University

Page 2: Koc_Arkut

10.12.2003 Koc University 2

Presentation Plan

• Cordial graphs• Graceful trees• Harmonious graphs• Super magic trees (Beta-

magic)

Page 3: Koc_Arkut

10.12.2003 Koc University 3

Challenges and Conjectures

All trees (arithmetic progression)(Lee, 2003)

Friendly index set of trees

Cordial

All trees

(Cahit, 2000)

Trees with diameter 4Beta-Magic

All trees

(Graham, Sloane, 1980)

Trees with diameter 4Harmonious

All trees

(Ringel-Kotzig,1963)

Trees with diameter 6 and lobsters

Graceful

Page 4: Koc_Arkut

10.12.2003 Koc University 4

Tree Packing Problem(Problem 25)

Gerhard Ringel(1963)

Page 5: Koc_Arkut

10.12.2003 Koc University 5

Origin of the graph labeling problems

• Problem 25. (Ringel, 1963) If T is a tree on m edges, then T6K2m+1.

2 3

1

5 2

4 3

1

=K5= 5 x

(Kotzig, 1965)Cyclically decomposed !

Thm. (Rosa). If T is a graceful tree on m edges, then T6K2m+1.

Page 6: Koc_Arkut

10.12.2003 Koc University 6

Definition

• Label the vertices/edges of a graph G with integers from a set S with the property P’ so that when induce edge/vertex labels computed by the rule R imposed another property P on the edge/vertex set.

e.g., (a) S={1,2,…,n}, {0,1}, {2,4,…,2k}, {a,b,c,…} or {-1,0,+1} etc.,(b) P or P’ may be distinct integers, equitably used numbers, etc.,(c) R addition, modular addition or absolute difference of adjacent

vertex labels, edge sum at a vertex etc.,

Page 7: Koc_Arkut

10.12.2003 Koc University 7

Graceful, Harmonious and Cordial

• f: V T N={0,1,…,e} and f({u,v})=6f(u)-f(v)6, if induce edge labels N={1,2,…,e} then f is called a graceful labeling.

• f: V TN=Ze and f({u,v})=f(u)+f(v), if induce edge labels N=Ze then f is called a harmonious labeling.

• f: V TN={0,1} and if N={0,1} with 6vf(1)-vf(0) 6b1 and 6ef(1)-ef(0) 6b1 then f is called a cordial labeling.

Page 8: Koc_Arkut

10.12.2003 Koc University 8

Reason to non-existence results(according to A. Rosa)

• G has “too many vertices” and “not enough edges”

• G has “too many edges”• G has “ the wrong parity”*

Thm. If every vertex has even degree and 6E(G)6ª1,2 (mod 4) then G is not graceful.

Page 9: Koc_Arkut

10.12.2003 Koc University 9

0

1 4

6

4

3

2

0

7

10

15

0 5

4

1

14

12

8

2

3

SOME GRACEFUL

SOME UNGRACEFUL GRAPHS

Page 10: Koc_Arkut

10.12.2003 Koc University 10

Computational results

• All trees at most 27 vertices are graceful.(Aldred and McKay).

• Decide whether a graph admits a cordial labeling is NP-complete.(Cairne and Edwards).

Page 11: Koc_Arkut

10.12.2003 Koc University 11

Probabilistic results

• Almost all random graphs are cordial.(Godbole, Miller and Ramras).

• Almost all graphs are not graceful.(Erdös).

• Almost all graphs are not harmonious.(Graham and Sloane).

Page 12: Koc_Arkut

10.12.2003 Koc University 12

Cordial Labeling

Ibrahim Cahit (1986)

Page 13: Koc_Arkut

10.12.2003 Koc University 13

Trees are cordial

• Proof 1. Mathematical induction on n.

• Proof 2. Horce-race labeling algorithm

0

1

1 0

1

0

1

0

1

0

1

322110e(1)

221100e(0)

322210v(1)

332111v(0)

Page 14: Koc_Arkut

10.12.2003 Koc University 14

k-equitable labeling of graphsCahit (1990)

• For any positive integer k, assign vertex labels from {0, 1, . . . , k – 1} s.t.

• (1) the number of vertices labeled with i and the number of vertices labeled with j differ by at most one and

• (2) the number of edges labeled with i and the number of edges labeled with j differ by at most one.

• G(V,E) is graceful if and only if it is |E| + 1-equitable and is cordial if and only if it is 2-equitable.

Page 15: Koc_Arkut

10.12.2003 Koc University 15

Some results• An Eulerian graph with qTk (mod 2k)

edges is not 3-equitable.• (Szanizló) Cn is k-equitable iff k satisfies:

n∫k; if kª2,3 (mod 4) then n∫k-1if kª2,3 (mod 4) then nTk (mod 2k).

• (Speyer,Szanizló) All trees are 3 equitable.Conjecture (Cahit, 1990): All trees are k-

equitable.

Page 16: Koc_Arkut

10.12.2003 Koc University 16

Randomly Cordial Graphs(Chartrand, Min Lee, Zhang,2002)

• Thm. Connected graph G of order nr2 is randomly cordial iff n=3 and G=K3or n is even and G=K1,n-1

Proof: Very lengthy (17 pages)

n=3andK3

K1,n-1,n=even

Page 17: Koc_Arkut

10.12.2003 Koc University 17

Friendly Index Set of Cordial Graphs

• f: V(G)TA induces F*:E(G) TA defined f*(xy)=f(x)+f(y), for each xyeE(G).

• For ieA, vf(i)=card{veV(G):f(v)=i} and ef(i)=card{eeE(G):f*(e)=i}.

• Let c(f)={6ef(i)-ef(j)6:(i,j)eAxA}• f of G is said to be A-friendly if 6vf(i)-vf(j)6b1 for all

(i,j)eAxA• If c(f) is a (0,1)-matrix for an A-friendly labeling f

then f is said to be A-cordial.• A=Z2 T FI(G)={6ef(0)-ef(1)6:f is Z2-friendly}

Page 18: Koc_Arkut

10.12.2003 Koc University 18

Friendly index sets of trees

• FI(K1,n)={1} if n is odd and {0,2} otherwise.• Complete binary tree with depth 1 has

FI={0,2} and FI={0,2,…,2d+1-4} for depthr2.

• Conjecture (Lee and Ng, 2004). The numbers in FI(T) for any tree T forms an arithmetic progression.

Page 19: Koc_Arkut

10.12.2003 Koc University 19

Examples

• Thm. For any G with q edges

FI(G)m{0,2,…,q} if q is even

FI(G)m{1,3,…,q} if q is odd

0 0

1 1

0

1

0

1 1 0

0 1

11 1

1

0

011

1

00 1

1 1 0 1 0 1

FI(K1,3)={1}

FI(K2,2)={0,4}

Page 20: Koc_Arkut

10.12.2003 Koc University 20

Example (complete binary tree){0,1,1,0,0,1}

{0,0,0,1,0,0} {1,1,0,1,1,1}

{0,0,0,0,1,1} {1,1,1,1,1,1} {0,0,0,0,0,0} {1,1,1,1,0,0}

{0,1,1,1,0,1} {1,0,1,1,1,0}

{0,0,0,1,1,1} {1,1,1,0,1,1} {1,1,0,1,1,1} {0,0,1,0,1,1}

e(1)=3,e(0)=3 and e(1)-e(0)=0 FI(T2)={0,2,4}

Page 21: Koc_Arkut

10.12.2003 Koc University 21

Graceful Labeling

AlexandreRosa(1965)

Page 22: Koc_Arkut

10.12.2003 Koc University 22

Alpha-labeling of graphs (Rosa)

• If f is an graceful labeling and there exists mœ{1,2,…,n}s.t. for an arbitrary edge (x,y) of G either f(x)bm and f(y)>m or f(x)>m and f(y)bmholds.

Page 23: Koc_Arkut

10.12.2003 Koc University 23

Strong graceful trees

• If f is an graceful labeling and for every x,y,zœV(T) with (x,y),(y,z)œE(T)either f(x)<f(y) and f(y)>f(z) or f(x)>f(y)and f(y)<f(z) holds then f is called ordered.

1

7

5

6 2

4

3

Conjecture (Cahit, 1980): All trees are ordered graceful.

Page 24: Koc_Arkut

10.12.2003 Koc University 24

Graceful trees

1

2 3

4

5 6

7

8

9

10

11

1213

14

All caterpillar trees are graceful

Conjecture (Bermond 1979): All lobster trees are graceful.

Page 25: Koc_Arkut

10.12.2003 Koc University 25

Rotatability

• A graceful tree is called rotatable if it is possible to assign smallest label to an arbitrary vertex.

• Paths and a class of caterpillars are rotatable. Unrotatable trees

Conjecture:

There exists no trees with more than two unrotatable vertices.

Page 26: Koc_Arkut

10.12.2003 Koc University 26

Small rotatable trees

• T(p,1) is rotatable for pT3,11 (mod 12) and pT0 (mod 2).

• T(p,r) is rotatable for p,r=even.

• T(p,r) is not rotatable for p=odd and r=even.

• T(p,r) is rotatable for p,r=odd and (p+r)/2=odd.

p vertices

rvertices

T(p,r)

Page 27: Koc_Arkut

10.12.2003 Koc University 27

Spiral canonic labeling

1

10

29

38

4

7

5

6

1 n 2 n-1 3 n-2

(1) All trees with diameter four are graceful (Cahit, 1985)

(2) All trees with diameter five are graceful (Hrnciar, Haviar, 2001)

Page 28: Koc_Arkut

10.12.2003 Koc University 28

An application of spiral-labeling

22

37

813

3631 9 14

35

30

10

41

434401153963338

127

32

1 43 2 42 3

15291628172718261925202421

23

START

FINISH

Graceful lobster!

Page 29: Koc_Arkut

10.12.2003 Koc University 29

Trees with diameter r 6Rooted trees where the roots have odd degree and the lengths of thepaths from the root to the leaves differ by at most one and all the internal vertices have the same parity.

1

2

3 4

5

6

7 8 9 10

11 131416

17181920

22

2324 25

26

27

28 29 30 31

32 343537

383940

46 45

43

44

3 24 44 23 4 25 42 21

43 22 626 42 215 27 41

7 2841 20

36 15 12 33

n=46 , m=2 (mod 4)

Classify them as:

(a) TR(o),I(e) ,

(b) TR(o),I(o) ,

(c) TR(e),I(e) ,

(d) TR(e),I(o)

Page 30: Koc_Arkut

10.12.2003 Koc University 30

Harmonious Labeling

Ron L. Graham

and

Neil J. A. Sloane(1980)

Page 31: Koc_Arkut

10.12.2003 Koc University 31

Harmonious trees

• f is harmonious labeling of G with e edges if it is possible to label vertices with distinct elements f(x) of Ze, s.t. f(x,y)=f(x)+f(y).

• If G is a tree exactly one vertex label repeated.

Conjecture: All trees are harmonious.

Page 32: Koc_Arkut

10.12.2003 Koc University 32

Harmonious labeling of p-stars

• A p-star is a star tree in which each edge is a path of length k.

Challenge: Harmonious labeling of p-stars, where p=even and k>2.

10

9

12

8

11

6

75

4

31

20 181614

0

13

191715

mod 20

Harmonious labeling of T(2,10)

Page 33: Koc_Arkut

10.12.2003 Koc University 33

Magic Trees and Graphs

Anton Kotzig and Alex Rosa, 1970

Page 34: Koc_Arkut

10.12.2003 Koc University 34

Magic (edge) labeling

• f: V(G)(E(G)T{1,2,…,6V(G)6(6E(G)6} is edge-magic if f(x)+f(y)+f(xy)=C for any xyeE(G).

• f is called super-magic if additionally f(V(G))={1,2,…, 6V(G)6} and f(E(G))={6V(G)6+1,…, 6V(G)6(6E(G)6}

• Paths and caterpillars are edge-magic. (Kotzig and Rosa, 1970).

• Complete binary trees are edge-magic. (Cahit, 1980).

Page 35: Koc_Arkut

10.12.2003 Koc University 35

Alpha-magic (or consecutive magic)

• A(T,v): set of vertices even distance from v.

• B(T,v): set of vertices odd distance from v.

• If f(A(T,v))={1,2,…,6A(T,v)6}

andf(B(T,v))={6A(T,v)6+1,…,6V(T)6}

then T is called alpha-magic.

21

3 8

13 18 24 29

1 2 4 5 6 7 9 10

11 12 15 1714 16 23 2220 19 26 28 25 27 30 31

A(T,1)={1,2,3,...,10}

B(T,1)={11,12,....,31}

Complete binary trees are alpha magic

Page 36: Koc_Arkut

10.12.2003 Koc University 36

Beta-magic trees (Cahit 2003)

• A tree T is beta-magic if it is super-magic and its vertices partitioned into three color classes C1,C2,C3 of consecutive labels.

• All alpha magic trees are beta magic (reverse is not true).

• All comets (2-stars) are beta magic.

Conjecture: All trees are beta-magic.

Page 37: Koc_Arkut

10.12.2003 Koc University 37

2

5

7

1

4

6

3

13

12

11

8

9

10

C=19

No alpha-magic labeling exits!

Page 38: Koc_Arkut

10.12.2003 Koc University 38

Geometric representation

Vertex labels 1,2,....,k

Vertex labelsk+p+1,k+p+2,...,k+p+r

Vertex labelsk+1,k+2,...,k+p

L1

L2

consecutive edgelabels

Page 39: Koc_Arkut

10.12.2003 Koc University 39

Beta-magic diameter four trees

1 2 4 5 6 7 2m 2m+1 2m+2 2m+r

2m+r+1 2m+r+2 2m+r+3 n=2m+r+4

T(m,m,r)

3

2m+r+3

4m+2r+5

4m+2r+4

13 14 15 16

321 121110987654

15

1617 18 19 20 21

22 2324

25 26 27

28

29

Beta-magic labeling of T(4,4,4) tree

Challenge: T(q1,q2,,,,,qp) is an open-problem for pr4.

Page 40: Koc_Arkut

10.12.2003 Koc University 40

Beta-magic labeling of T(2,2,2,2,2,2,2,2), qi=2, 1bib8

1812

9 1 4 5 3 7 13 14

20

10 2 8 6 16 19 17 15

21 22 23 24 25

11

pr9 ???

Page 41: Koc_Arkut

10.12.2003 Koc University 41

Mile-stones• A. Rosa, On certain valuations of the vertices of a

graph, in: Theory of Graphs (Proc. Internat. Sympos. Rome 1965), Gordon and Breach, N.Y.-Paris 1967, pp.349-355.

• A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canadian Math. Bull.,13(4),(1970),451-461.

• R. L. Graham, N.J.A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Disc. Math.,1(1980), pp.382-404.

• I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23(1987),pp.201-208.

• J. Gallian, A dynamic survey of graph labeling, October 2003, (http://www.combinatorics.org), DS6.