7
Geometric properties of modular forms 1 Katz interpretation of modular forms we will explain this using the moduli spare Xi N as an example N 34 Recall Xi N represents the functor Mi N Sch 1a Sets this in 1 will explain later sections purpose isom classes of E i is to define a proper Xin Si s M N s E a generalized elliptic curve overs i flays EIN A weight h modular form is a section f e Ho Xi N w k Katz's new definition A testebject over a kit algebraR is a triple CE i w where E i is an R point of M N w is a generator of the free rank one R module WEIR A Katzmodularforne of weightk is a ruleto associate to every 7L it algebraR and an element f CE i w ER every test object E i w s t 1 Thisassignmentdepends only on isom class of Ei w z is compatible with base change in R i e for Spec R ti Spee R f HE a info a f Ei w 1 ER 3 satisfies f E i a w a k f Ei w for a ER theorem The space of modular formsisthe same as the space of Katz modular forms Indeed given a usual modular form f E Ho Xi w w k we obtain a Katz modular form f Kab for every test object Ei w over R 7 morphism a Spec R X n N s it CE i Eun u i univ Then a ft is a section of Hof Speck WEI

kit - pku.edu.cnbicmr.pku.edu.cn/~lxiao/2020spring/Notes4.pdfIS S d j g is fTate ginwean E7LCIN191 Thisisthegexpansionoff Wecomputi Tp f Tate inway ph gq f Taka le if it wean Case

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Geometric propertiesofmodularforms

    1 Katz interpretationofmodularformswewillexplainthisusingthemodulispareXi N as anexample N34

    Recall Xi N representsthefunctor

    Mi N Sch1a Sets this in

    1willexplainlatersectionspurposeisomclassesof E i is todefineaproperXin

    Si sM N s E a generalized ellipticcurve oversi flays EIN

    Aweighthmodularform is a section f eHo Xi N w kKatz'snew definition Atestebjectover a kit algebraR is atriple CE i w where

    E i is an R pointofM Nw is a generatorofthefreerankone R moduleWEIR

    A Katzmodularforneofweightk is aruletoassociatetoevery7Lit algebraR and an element fCE i w EReverytestobject E i w

    s t 1 Thisassignmentdependsonlyon isom classof Ei wz is compatiblewithbasechangeinR

    i e forSpecR ti SpeeR f HEa info a f Ei w1 ER3 satisfies f E i a w a kf E i w for aER

    theorem Thespaceofmodularformsisthesame asthespaceofKatzmodularformsIndeed given a usualmodularform fEHoXi w w k weobtain aKatzmodularform fKab

    foreverytestobject E i w over R7 morphism a SpecR Xn N sit CE i Eunu iunivThen a ft is asectionofHofSpeck WEI

  • S of I 113so f s w k forsome SER setfka E i w _S

    Properties G 3 are easyto see theconverseisalsoimmediate

    ApplicationDescribeHeckeoperatorsTp autionon Katzmodularformf overQp ptNGiven a Katzmodularformf wedefine a newKatymodularform 1pA as follows

    Foreachtestobject E i w over a 21 algebraR assumingSpeerisconnected

    thereareexactlypHsubgroupschemes CCElp ofrankpoverspecRDefine Tpf E i w pkt IffEK.io wd

    normalizing CCECp bypywherewcisfgifinasfollows E Etc E icifn.si E Etc

    define Wc t Cw

    wecanalternativelydefinethis as follows

    op parametrizing pt

    E i

    MIN nequivalentto E ge.si

    X w s'tKerce E hasdegreepX NTh E E i E i where i p E L

    Notethatthere's a universal isogeny THE HE THEmutt.p

    Pullingbackalong it get it Tfw wwedefineTp operator as

    Tp HYXdnt.wxokl HYXGilnhtolpD.twY Hofx.lN z fwxokTntheffide ontTeitzside

    H XIN w't HYX.IN w k

    DefineTp f Tp Thenormalizationfactory isveryimportantRemartRecently Fakhruddin PittonidefinedtheseHeckeoperatorsintegrallyCoverkp for

  • j f p g j i SgeneralShimuravarietiesofPettypeandallweights

    Application Tate curve g expansionexplained followingKatzOver1C Given a latticene I It thequotient Ela istheellipticcurve424

    3FixizzN F Z l D X P 21Tiz zitiNe Y P ziti2 ziti A

    whereplz M Ieaso 5 EpG n to EaEepEy 45 Ego It 240E BCn9 c7LIgIfIT lcA n I

    945E6 276eEngoget 1 504 ECng

    nE If gIf

    x f xWhen A I It we can viewelliptic awe aswhenq o y 4

    3 text246142 7L 0497 for f E t 1 issingularAs EaEsE2191 sotheTatiana Tate EMga isdef'dover7LIf gD

    Rmd can changecoordinatestobedef'dover2kgRemartThisanalytic constructionalsoworks over 1C

    mttbot foldstheannuluswithPrada

    inIit

    into a rigidanalyticspace overQp

    ByrigidGAGAthisdefines an elliptic curve Tateg overQpEfIThisTate curve isequippedwith a naturallevelstructure

    in MN a e E Iqa TateofThere's anaturalbasis of wtatea.la aqI invariantdifferential on

    Usingtheparametrizationabove Zaid2 wean where I expzitiz

    In termsofthemoduliproblem weget a morphism a CartisianpullbackdiagramEg EI P l

    SpeakHD X InIf f is a modularformofwth itsevaluation on theobject Tate in wean

  • IS S d j gis f Tateg inwean E7LCIN 191

    This isthegexpansionof fWecomputi

    Tpf Tate inway phgqf Takale if it wean

    Case Gyp TateHyp Iq yupE qp2

    it EYqP1 E q2 isthenaturalquotientso it dz Diamond

    in pen E Iqa aYqp2 isthecpts.IMCase2C l5pigF for i o r p i

    Tateqfc.CH qgpiqfy7L Tatespiqto

    it EYgp.iq j2 sCTq2 is raisingtopthpowerit 1 p.dz so I Wean pWean

    if ipin Ilga 0415pigtop isthenaturaloneSo wehaveTplf phtipfig ph pk f spigot

    Tfrom wean pWcan

    This isexactlytheusualformulaong expansions

    2 Kodaira Spencer isomorphism

    Lethbe afieldofcharo

    If X is apropersmoothvariety over k thenwe haveitsde13hamcohomologyHip Mk HI X Oxshik Riya s

    EachHIRCHH carries a naturaldecreasingfiltration Artlk

    thxrial H'fx.rxiiil tilx.mx

  • H x Ryen XishanFi

    FilmI

    F

    Upshot Askvectorspares HIr Hh Hi XRipp butnotcanonicallyOnlytheHodgefiltration iscanonical

    Ingeneral if Xy is a propersmoothfamily

    Ip can define RT Axis Hip MsnAtleastinchar0 each Hdp Hs is a vectorbundleovers

    carrying a filtration 714 54 1 H x riis HHTin

    F

    There's an additionalfeature GaussManinconnection0 Hip Ms Air Hs Nsait isintegrable 5 0 AIR Ms e HahaMs Rsfsr Hicks Ish

    So cantalkaboutthedeRhamcomplex HahnHs Ish 0but wedon'tdiscussthishere

    itsatisfiesGriffithtransversal'ity0 Filitti Xs E Fil Hann Ask

    Formodularcurves

    µ

    0 THR Yim Hdr Ely.cm xory9cnyhIt

    wi.in ii i iIWEYdNMoreover WElying Hdr EXAM RINNA

    tThismap grotldpCEIY.CN xoNyinHhamapofcoherentsheavesnedifferentialmaps

    w w My.ink

  • KS w Ny.cm

    kTheomm KodairaSpencerisomorphism KS inducesan isomorphismKS w Winge logo Shibuya c

    runwithlogpoleatasps

    Moreoverthis isomorphism evenextendstoKitt

    3de13hamcohomologyoflocalsystemsE Htp Elycm is locallyfreeofrank2It

    Y.CN carrying an integrableconnection

    Fork 2 getsymmetricpower SyknitHR withintegrableconnectionThisextendsnaturallytothecusp which wewilldiscusslater

    We ignoretheissueatthecusp pretendthatYin isproper writeX n instead

    Goat Understand H Xin sykiittdr ssykn.itIrxoN sllogcD HfIfxdnbSykmHdrOver1C bydeRhamBetticomparison

    HFrfxink.syhm.HR H fxilnKel.SyhnifRftEDchoosing E QI rank2localsystemE Heifxdnlq.sykm.IR oIeD

    The Hodgefiltration w w on Hdr induces a naturalfiltration

    SykinAfp WhZ Wh4 wk6 wzk

    t iSykinHdp Rf ogC Wh Wh

    Z wh4 wak

    HS

  • w2

    Thecorrespondinggradedmap gri SykinHip gri SykinHair In Clogcis an isomorphism

    Sothewholecomplex inHI I SykinHis ShilinHoge wah 0 wkwhereOmapisgivenbysending asection sof d

    k

    liftsto SykinHI modifyitinto a uniquelift5suchthat06T euhDefine 0 s T 5

    ugh2Fact Onthelevelof9 expansions OCfs 9Hh f

    theorem HIE Xi N SykinHdr At Xin wth 0 whyAssumek33 forsimplicityByspectralsequence

    page qq.ggg t.tifx.cmwh5 HERHintShimHID

    t.tt x.lnl.w

    o Ho x n wh HI HimSykinHdr HXin wzh some lls

    vMkkind HYX.CN whtd

    SkCt NThis istheEichler Shimuraisomorphism

    Generalizationsofthis iscalledd e ofFaltingsHeinterpretedtheabovephenomenonintermsofBernsteinGelfand Gelfandcomplex

    fromrephsof liegroups