63
CISE301_Topic1 KFUPM - T092 - Section 08 1 CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4: KFUPM (Term 092) Section 08

KFUPM (Term 092) Section 08

  • Upload
    jada

  • View
    56

  • Download
    0

Embed Size (px)

DESCRIPTION

CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4:. KFUPM (Term 092) Section 08. Lecture 1 Introduction to Numerical Methods. What are NUMERICAL METHODS ? Why do we need them? Topics covered in CISE301 . - PowerPoint PPT Presentation

Citation preview

Page 1: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 1

CISE-301: Numerical Methods

Topic 1: Introduction to Numerical Methods and

Taylor Series

Lectures 1-4:

KFUPM(Term 092)Section 08

Page 2: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 2

Lecture 1Introduction to Numerical

Methods

What are NUMERICAL METHODS? Why do we need them? Topics covered in CISE301.

Reading Assignment: Pages 3-10 of textbook

Page 3: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 3

Numerical Methods

Numerical Methods: Algorithms that are used to obtain numerical

solutions of a mathematical problem.

Why do we need them? 1. No analytical solution exists,

2. An analytical solution is difficult to obtain or not practical.

Page 4: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 4

What do we need?

Basic Needs in the Numerical Methods: Practical: Can be computed in a reasonable amount of time. Accurate:

Good approximate to the true value, Information about the approximation error

(Bounds, error order,… ).

Page 5: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 5

Outlines of the Course Taylor Theorem Number

Representation Solution of nonlinear

Equations Interpolation Numerical

Differentiation Numerical Integration

Solution of linear Equations

Least Squares curve fitting

Solution of ordinary differential equations

Solution of Partial differential equations

Page 6: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 6

Solution of Nonlinear Equations Some simple equations can be solved analytically:

Many other equations have no analytical solution:

31

)1(2

)3)(1(444solution Analytic

034

2

2

xandx

roots

xx

solution analytic No052 29

xex

xx

Page 7: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 7

Methods for Solving Nonlinear Equations

o Bisection Method

o Newton-Raphson Method

o Secant Method

Page 8: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 8

Solution of Systems of Linear Equations

unknowns. 1000in equations 1000

have weif do What to

123,2

523,3

:asit solvecan We

52

3

12

2221

21

21

xx

xxxx

xx

xx

Page 9: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 9

Cramer’s Rule is Not Practical

this.compute toyears 10 than more needscomputer super A

needed. are tionsmultiplica102.3 system, 30by 30 a solve To

tions.multiplica

1)N!1)(N(N need weunknowns, N with equations N solve To

problems. largefor practicalnot is Rule sCramer'But

2

21

11

51

31

,1

21

11

25

13

:system thesolve toused becan Rule sCramer'

20

35

21

xx

Page 10: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 10

Methods for Solving Systems of Linear Equations

o Naive Gaussian Elimination

o Gaussian Elimination with Scaled Partial Pivoting

o Algorithm for Tri-diagonal Equations

Page 11: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 11

Curve Fitting Given a set of data:

Select a curve that best fits the data. One choice is to find the curve so that the sum of the square of the error is minimized.

x 0 1 2

y 0.5 10.3 21.3

Page 12: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 12

Interpolation Given a set of data:

Find a polynomial P(x) whose graph passes through all tabulated points.

xi 0 1 2

yi 0.5 10.3 15.3

tablein the is)( iii xifxPy

Page 13: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 13

Methods for Curve Fitting o Least Squares

o Linear Regressiono Nonlinear Least Squares Problems

o Interpolationo Newton Polynomial Interpolationo Lagrange Interpolation

Page 14: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 14

Integration Some functions can be integrated

analytically:

?

:solutions analytical no have functionsmany But

42

1

2

9

2

1

0

3

1

23

1

2

dxe

xxdx

ax

Page 15: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 15

Methods for Numerical Integration

o Upper and Lower Sums

o Trapezoid Method

o Romberg Method

o Gauss Quadrature

Page 16: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 16

Solution of Ordinary Differential Equations

only. cases special

for available are solutions Analytical *

equations. thesatisfies that function a is

0)0(;1)0(

0)(3)(3)(

:equation aldifferenti theosolution tA

x(t)

xx

txtxtx

Page 17: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 17

Solution of Partial Differential Equations

Partial Differential Equations are more difficult to solve than ordinary differential equations:

)sin()0,(,0),1(),0(

022

2

2

2

xxututut

u

x

u

Page 18: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 18

Summary Numerical Methods: Algorithms that are

used to obtain numerical solution of a mathematical problem.

We need them when No analytical solution

exists or it is difficult to obtain it.

Solution of Nonlinear Equations Solution of Linear Equations Curve Fitting

Least Squares Interpolation

Numerical Integration Numerical Differentiation Solution of Ordinary Differential

Equations Solution of Partial Differential

Equations

Topics Covered in the Course

Page 19: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 19

Number Representation Normalized Floating Point Representation Significant Digits Accuracy and Precision Rounding and Chopping

Reading Assignment: Chapter 3

Lecture 2 Number Representation and

Accuracy

Page 20: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 20

Representing Real Numbers You are familiar with the decimal system:

Decimal System: Base = 10 , Digits (0,1,…,9)

Standard Representations:

21012 10510410210110345.312

part part

fraction integralsign

54.213

Page 21: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 21

Normalized Floating Point Representation Normalized Floating Point Representation:

No integral part, Advantage: Efficient in representing very small or very

large numbers.

integer:,0

exponent mantissasign

10.0

1

4321

nd

dddd n

Page 22: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 22

Calculator Example Suppose you want to compute: 3.578 * 2.139 using a calculator with two-digit fractions

3.57 * 2.13 7.60=

7.653342True answer:

Page 23: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 23

Binary System

Binary System: Base = 2, Digits {0,1}

exponent mantissasign

21.0 432nbbb

10 11 bb

1010321

2 )625.0()212021()101.0(

Page 24: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 24

7-Bit Representation(sign: 1 bit, mantissa: 3bits, exponent: 3 bits)

Page 25: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 25

Fact Numbers that have a finite expansion in one numbering

system may have an infinite expansion in another numbering system:

You can never represent 0.1 exactly in any computer.

210 ...)011000001100110.0()1.0(

Page 26: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 26

Representation

Hypothetical Machine (real computers use ≥ 23 bit mantissa)

Mantissa: 3 bits Exponent: 2 bits Sign: 1 bit

Possible positive machine numbers:

.25 .3125 .375 .4375 .5 .625 .75 .875

1 1.25 1.5 1.75

Page 27: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T091 - Section 07 27

Representation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Gap near zero

Page 28: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 28

Remarks

Numbers that can be exactly represented are called machine numbers.

Difference between machine numbers is not uniform

Sum of machine numbers is not necessarily a machine number:

0.25 + .3125 = 0.5625 (not a machine number)

Page 29: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 29

Significant Digits

Significant digits are those digits that can be used with confidence.

Page 30: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 30

48.9

Significant Digits - Example

Page 31: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 31

Accuracy and Precision

Accuracy is related to the closeness to the true value.

Precision is related to the closeness to other

estimated values.

Page 32: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 32

Page 33: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 33

Rounding and Chopping

Rounding: Replace the number by the nearest machine number.

Chopping: Throw all extra digits.

Page 34: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 34

Rounding and Chopping - Example

Page 35: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 35

Can be computed if the true value is known:

100* valuetrue

ionapproximat valuetrue

Error RelativePercent Absolute

ionapproximat valuetrue

Error True Absolute

t

tE

Error Definitions – True Error

Page 36: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 36

When the true value is not known:

100*estimatecurrent

estimate previous estimatecurrent

Error RelativePercent Absolute Estimated

estimate previous estimatecurrent

Error Absolute Estimated

a

aE

Error Definitions – Estimated

Error

Page 37: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 37

We say that the estimate is correct to n decimal digits if:

We say that the estimate is correct to n decimal digits rounded if:

n10Error

n 102

1Error

Notation

Page 38: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 38

Summary Number Representation

Numbers that have a finite expansion in one numbering system may have an infinite expansion in another numbering system.

Normalized Floating Point Representation Efficient in representing very small or very large numbers, Difference between machine numbers is not uniform, Representation error depends on the number of bits used in

the mantissa.

Page 39: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 39

Lectures 3-4Taylor Theorem

Motivation Taylor Theorem Examples

Reading assignment: Chapter 4

Page 40: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 40

Motivation

We can easily compute expressions like:

?)6.0sin(,4.1 computeyou do HowBut,

)4(2

103 2

x

way?practical a thisis

?)6.0sin(

compute todefinition theusecan We

0.6

ab

Page 41: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 41

Taylor Series

∑∞

000

)(

000

)(

30

0)3(

20

0)2(

00'

0

0

)()(!

1)(

:can write weconverge, series theIf

)()(!

1

...)(!3

)()(

!2

)()()()(

:about )( ofexpansion seriesTaylor The

k

kk

k

kk

xxxfk

xf

xxxfk

SeriesTaylor

or

xxxf

xxxf

xxxfxf

xxf

Page 42: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 42

Taylor Series – Example 1

∞.xfor converges series The

!)()(

!

1

11)0()(

1)0()(

1)0(')('

1)0()(

∑∑∞

0

000

)(

)()(

)2()2(

k

k

k

kkx

kxk

x

x

x

k

xxxxf

ke

kforfexf

fexf

fexf

fexf

:0about )( of expansion seriesTaylor Obtain xexf x

Page 43: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 43

Taylor SeriesExample 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

1

1+x

1+x+0.5x2

exp(x)

Page 44: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 44

Taylor Series – Example 2

∞.xfor converges series The

....!7!5!3

)(!

)()sin(

1)0()cos()(

0)0()sin()(

1)0(')cos()('

0)0()sin()(

753∞

00

0)(

)3()3(

)2()2(

xxxxxx

k

xfx

fxxf

fxxf

fxxf

fxxf

k

kk

:0about )sin()( of expansion seriesTaylor Obtain xxxf

Page 45: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 45

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

3

4

x

x-x3/3!

x-x3/3!+x5/5!

sin(x)

Page 46: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 46

Convergence of Taylor Series(Observations, Example 1)

The Taylor series converges fast (few terms are needed) when x is near the point of expansion. If |x-c| is large then more terms are needed to get a good approximation.

Page 47: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 47

Taylor Series – Example 3

....xxx1x1

1 :ofExpansion SeriesTaylor

6)0(1

6)(

2)0(1

2)(

1)0('1

1)('

1)0(1

1)(

:0about of expansion seriesTaylor Obtain

32

)3(4

)3(

)2(3

)2(

2

fx

xf

fx

xf

fx

xf

fx

xf

xx1

1f(x)

Page 48: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 48

Example 3 – Remarks

Can we apply Taylor series for x>1??

How many terms are needed to get a good approximation???

These questions will be answered using Taylor’s Theorem.

Page 49: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 49

Taylor’s Theorem

. and between is)()!1(

)(

:where

)(!

)()(

:b][a,∈cany for then

b],[a, interval closed ain 1)(n ..., 2, 1, orders of

sderivative continuous possesses f(x)function a If

1)1(

1

1

n

0

)(

xcandcxn

fE

Ecxk

cfxf

nn

n

nk

kk

(n+1) terms Truncated Taylor Series

Remainder

Page 50: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 50

Taylor’s Theorem

.applicablenot is TheoremTaylor

defined.not are sderivative

its andfunction then the,1includes],[If

.1||if0expansion ofpoint with the1

1

:for theoremsTaylor'apply can We

xba

xcx

f(x)

Page 51: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 51

Error Term

. and between allfor

)()!1(

)(

:on boundupper an derivecan we

error,ion approximat about the ideaan get To

1)1(

1

xcofvalues

cxn

fE n

n

n

Page 52: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 52

Error Term – Example 4

0514268.82.0)!1(

)()!1(

)(

1≥≤)()(

41

2.0

1

1)1(

1

2.0)()(

EEn

eE

cxn

fE

kforefexf

nn

nn

n

kxk

?2.0=0=about

expansion seriesTaylor its of3)=(n terms4first the

by =)( replaced weiferror theis large How

xwhenx

exf x

Page 53: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 53

Alternative form of Taylor’s Theorem

hxxwherehn

fE

Ehk

xfhxf

[a,b]hx[a,b]x

[a,b]

xfLet

nn

n

n

n

k

kk

and between is)!1(

)(

!

)()(

:then, and and

, intervalan on 1)(n ..., 2, 1, orders

of sderivative continuous have)(

1)1(

1

10

)(

Page 54: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 54

Taylor’s Theorem – Alternative forms

. and between is

)!1(

)(

!

)()(

,

. and between is

)()!1(

)()(

!

)()(

1)1(

0

)(

1)1(

0

)(

hxxwhere

hn

fh

k

xfhxf

xchxx

xcwhere

cxn

fcx

k

cfxf

nnn

k

kk

nnn

k

kk

Page 55: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 55

Mean Value Theorem

(b-a)dx

df(ξf(a)f(b)

bhxaxn

(b-a)

f(a)f(b)

dx

df(ξ

baξ

)

, ,0for Theorem sTaylor' Use:Proof

)

],[ exists then there

b)(a, intervalopen on the defined is derivative its and

b][a, interval closed aon function continuous a isf(x) If

Page 56: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 56

Alternating Series Theorem

termomittedFirst :

n terms)first theof (sum sum Partial:

converges series The

then

0lim

If

S

:series galternatin heConsider t

1

1

4321

4321

n

n

nnnn

a

S

aSS

and

a

and

aaaa

aaaa

Page 57: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 57

Alternating Series – Example 5

!7

1

!5

1

!3

11)1(s

!5

1

!3

11)1(s

:Then

0lim

:since series galternatin convergent a is This!7

1

!5

1

!3

11)1(s:usingcomputed becansin(1)

4321

in

in

aandaaaa

in

nn

Page 58: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 58

Example 6

? 1with xe eapproximat to

used are terms1)(n when beerror can the largeHow

expansion) ofcenter (the5.0aboutef(x) of

expansion seriesTaylor theObtain

12x

12x

c

Page 59: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 59

Example 6 – Taylor Series

...!

)5.0(2...

!2

)5.0(4)5.0(2

)5.0(!

)5.0(

2)5.0(2)(

4)5.0(4)(

2)5.0('2)('

)5.0()(

22

222

0

)(12

2)(12)(

2)2(12)2(

212

212

k

xe

xexee

xk

fe

efexf

efexf

efexf

efexf

kk

k

kk

x

kkxkk

x

x

x

5.0,)( of expansion seriesTaylor Obtain 12 cexf x

Page 60: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 60

Example 6 – Error Term

)!1(

max)!1(

)5.0(2

)!1(

)5.01(2

)5.0()!1(

)(

2)(

3

12

]1,5.0[

11

1121

1)1(

12)(

n

eError

en

Error

neError

xn

fError

exf

nn

nn

nn

xkk

Page 61: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 61

Remark

In this course, all angles are assumed to be in radian unless you are told otherwise.

Page 62: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 62

Maclaurin Series Find Maclaurin series expansion of cos (x).

Maclaurin series is a special case of Taylor series with the center of expansion c = 0.

Page 63: KFUPM (Term 092) Section 08

CISE301_Topic1 KFUPM - T092 - Section 08 63

Maclaurin Series – Example 7

∞.xfor converges series The

....!6!4!2

1)(!

)0()cos(

0)0()sin()(

1)0()cos()(

0)0(')sin()('

1)0()cos()(

642∞

0

)(

)3()3(

)2()2(

xxxx

k

fx

fxxf

fxxf

fxxf

fxxf

k

kk

)cos()( :of expansion series Maclaurin Obtain xxf