393
SUGAR SERIES Vol. 1. Standard Fabrication Practices for Cane Sugar Mills (Delden) Vol. 2. Manufacture and Refining of Raw Cane Sugar (Baikow) Vol. 3. By-Products of the Cane Sugar Industry (Paturau) Vol. 4. Unit Operations in Cane Sugar Production (Payne) Vol. 5. Noel Deerr: Classic Papers of a Sugar Cane Technologist (Payne, Compiler) Vol. 6. The Energy Cane Alternative (Alexander) Vol. 7. Handbook of Cane Sugar Engineering (Hugot, 3rd edition) Vol. 8. Management Accounting for the Surgar Cane Industry (Fok Kam) Vol. 9. Chemistry and Processing of Sugarbeet and Sugarcane (Clarke and GodshalL Editors) Vol. 10. Modern Energy Economy in Beet Sugar Factories (Urbaniec)

K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

Embed Size (px)

DESCRIPTION

Modern Energy Economy in Beet Sugar Factories

Citation preview

Page 1: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

SUGAR SERIES

Vol. 1. Standard Fabrication Practices for Cane Sugar Mills (Delden) Vol. 2. Manufacture and Refining of Raw Cane Sugar (Baikow) Vol. 3. By-Products of the Cane Sugar Industry (Paturau) Vol. 4. Unit Operations in Cane Sugar Production (Payne) Vol. 5. Noel Deerr: Classic Papers of a Sugar Cane Technologist (Payne,

Compiler) Vol. 6. The Energy Cane Alternative (Alexander) Vol. 7. Handbook of Cane Sugar Engineering (Hugot, 3rd edition) Vol. 8. Management Accounting for the Surgar Cane Industry (Fok Kam) Vol. 9. Chemistry and Processing of Sugarbeet and Sugarcane (Clarke

and GodshalL Editors) Vol. 10. Modern Energy Economy in Beet Sugar Factories (Urbaniec)

Page 2: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

sugar series, 10

modern energy economy in beet sugar factories by

K. Urbaniec Division of Thermodynamics, Fluid Mechanics and Heat Transfer, Lund Institute of Technology, Lund, Sweden

Elsevier

Amsterdam — Oxford — New York — Tokyo 1989

Page 3: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

ELSEVIER SCIENCE PUBLISHERS B.V. Sara Burgerhartstraat 25 P.O. Box 2 1 1 , 1000 AE Amsterdam, The Netherlands

Distributors for the United States and Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY INC. 655, Avenue of the Americas New York, NY 10010, U.S.A.

ISBN 0-444-87294-9 (Vol. 10) ISBN 0-444-41897-0 (Series)

© Elsevier Science Publishers B.V., 1989

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Science Publishers B.V./ Physical Sciences & Engineering Division, P.O. Box 330, 1000 AH Amsterdam, The Netherlands.

Special regulations for readers in the USA - This publication has been registered with the Copyright Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the USA . All other copyright questions, including photocopying outside of the U S A , should be referred to the publisher.

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, Oi fi om any use or operation of any methods, products, instructions or ideas contained in the material herein.

Printed in The Netherlands

Page 4: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

FOREWORD

I t has been v e r y demanding o f t ime and e f f o r t to w r i t e a book on the ene rgy

economy o f beet s u g a r f a c t o r i e s , because the re a re so many a s p e c t s o f t h i s

s u b j e c t t ha t dese rve to be p r e s e n t e d . T r y i n g to e x p l a i n how the energy

requ i rements s h o u l d be adapted to the p r i n c i p l e s o f beet s u g a r manu fac tu re ,

I cou ld not a v o i d d i s c u s s i n g c e r t a i n prob lems o f modern beet s u g a r t e c h n o l o g y .

I hope the s u g a r t e c h n o l o g i s t s can u n d e r s t a n d t h a t f rom t h e i r p o i n t o f v i e w ,

t h i s d i s c u s s i o n may seem incomp le te . I t would be a p p r e c i a t e d i f r e a d e r s would

p o i n t out any o m i s s i o n s or e r r o r s which have been o v e r l o o k e d .

T h i s book c o u l d not have been w r i t t e n w i t h o u t the s t i m u l a t i o n and d i r e c t

a s s i s t a n c e o f P r o f e s s o r Jan Dob rzyck i and D r . W i t o l d L e k a w s k i , to whom s p e c i a l

t hanks are e x p r e s s e d . C e r t a i n i d e a s o r i g i n a t e d f rom d i s c u s s i o n s w i t h the l a t e

P r o f e s s o r S t a n i s l a w Z a g r o d z k i d u r i n g the p e r i o d 1 9 7 9 - 1 9 8 0 .

G ra te fu l a p p r e c i a t i o n i s e x p r e s s e d to the f o l l o w i n g f i r m s and i n s t i t u t i o n s

f o r t h e i r a s s i s t a n c e i n p r o v i d i n g t e c h n i c a l i n f o r m a t i o n , i l l u s t r a t i o n s or

s t a t i s t i c a l d a t a :

- Chemadex, Cukropo l and C u k r o p r o j e k t , Warsaw, P o l a n d ;

- D D S , Copenhagen, Denmark;

- F e i t e n & Gu i l l eaume E n e r g i e t e c h n i k , Nordenham, FRG;

- F r a t e l l i B a b b i n i , Fo r i i , I t a l y ;

- GEA Wiegand , E t t l i n g e n , FRG;

- H o l l y Suga r C o r p o r a t i o n , San F r a n c i s c o , USA;

- K ra f twerk U n i o n , M٧ lhe im , FRG;

- I n s t i t u t f ٧ r L a n d w i r t s c h a f t l i c h e T e c h n o l o g i e und Z u c k e r i n d u s t r i e , TU

B r a u n s c h w e i g , FRG;

- I n s t y t u t P rzemys lu C u k r o w n i c z e g o , Warsaw, P o l a n d ;

- P f e i f e r & Langen , C o l o g n e , FRG;

- R a f f i n e r i e T i r l e m o n t o i s e , B r u s s e l s , B e l g i u m ;

- S o c k e r b o l a g e t , Malmφ, Sweden;

- S p r e c k e l s Suga r D i v i s i o n , Amstar C o r p o r a t i o n , San F r a n c i s c o , USA;

- S t o r d B a r t z , B e r g e n , Norway.

A l a r g e p a r t o f the p r e s e n t book was w r i t t e n d u r i n g my s t a y a t the U n i v e r s i t y

o f Lund , Sweden. I am g r a t e f u l to my f r i e n d P r o f e s s o r Gunnar T y l l e r e d , whase

i n v i t a t i o n made my v i s i t to Sweden p o s s i b l e . Gunnar F e l t b o r g and D r . Jan T jebbes

deserve s p e c i a l t h a n k s f o r t h e i r a s s i s t a n c e i n r e a c h i n g the r e l e v a n t i n f o r m a t i o n

on the Swed ish s u g a r i n d u s t r y . Thanks a re a l s o e x p r e s s e d to the pe rsonne l o f the

l i b r a r y o f S o c k e r b o l a g e t i n A r l φ v where I found a p e r f e c t env i ronment f o r my

Page 5: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

V I

l i t e r a t u r e s t u d i e s .

F i n a l l y , I would l i k e to thank t hose A m e r i c a n , B e l g i a n , B r i t i s h , B u l g a r i a n ,

C a n a d i a n , C z e c h , D a n i s h , F r e n c h , German, Greek , H u n g a r i a n , I t a l i a n , P o l i s h ,

S o v i e t , Swed ish and Y u g o s l a v c o l l e a g u e s who he lped me - somet imes unknow ing ly -

th rough i n f o r m a t i o n , a d v i c e , and f r i e n d l y d i s c u s s i o n s .

Page 6: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

V I I

PREFACE

The 1970s and 1980s w i l l c e r t a i n l y be remembered as a p e r i o d o f impor tan t

developments i n the energy market and changes i n i n d u s t r y ' s a t t i t u d e towards

energy economy. As e n t i r e n a t i o n s were a f f e c t e d by the economic consequences o f

v i o l e n t f l u c t u a t i o n s i n fue l p r i c e s , much i n t e l l e c t u a l e f f o r t and numerous

p r a c t i c a l a c t i o n s were under taken w i t h the aim o f imp rov ing energy u t i l i z a t i o n .

For example , the ene rgy consumpt ion i n Swed ish i n d u s t r y dec reased by 20%

between 1973 and 1 9 8 3 , w h i l e the t o t a l p r o d u c t i o n volume - e x p r e s s e d i n f i x e d

p r i c e s - remained n e a r l y c o n s t a n t . I n F r a n c e , where the i n d u s t r i a l ou tpu t was

a l s o n e a r l y c o n s t a n t i n the same p e r i o d , the ene rgy consumpt ion i n i n d u s t r y was

reduced by 12%. I n the Federa l R e p u b l i c o f Germany, i n d u s t r i a l ou tpu t r o s e 8%

between 1973 and 1 9 8 4 , but the energy consumpt ion dec reased by 18%. A l t h o u g h

few n a t i o n s have been as s u c c e s s f u l as t h o s e named a b o v e , the t r end towards

s a v i n g energy i s now common. I t has a l s o become v i s i b l e i n s u g a r i n d u s t r i e s

t h roughou t the w o r l d .

The book i s devoted to the problems o f i d e n t i f y i n g the p o t e n t i a l f o r , and

then d e s i g n i n g and imp lemen t i ng , e n e r g y - s a v i n g measures i n beet s u g a r f a c t o r i e s .

As the s u g a r i n d u s t r i e s i n v a r i o u s c o u n t r i e s d i f f e r c o n s i d e r a b l y w i t h r e s p e c t

to the economic c o n d i t i o n s f o r f a c t o r y o p e r a t i o n and the l e v e l o f t e c h n o l o g i c a l

deve lopment , the problem range i s ve ry b r o a d . I t may i n c l u d e the e l i m i n a t i o n o f

f a u l t y o r u n r e l i a b l e a u x i l i a r y equ ipment , o r the i n t r o d u c t i o n o f s i m p l e

improvements i n vapour d i s t r i b u t i o n s c hemes , i n f a c t o r i e s ope ra ted i n c o u n t r i e s

where the need f o r e f f i c i e n t energy u t i l i z a t i o n has not r e a l l y been ve ry u r g e n t

up to now. On the o t h e r h a n d , t he re a re some o t h e r c o u n t r i e s where s u g a r

f a c t o r i e s have l ong s i n c e been ve ry hard p r e s s e d to save ene rgy and where

c o n s i d e r a b l e ach ievements have been no ted i n t h i s f i e l d . F u r t h e r p r o g r e s s may

s t i l l be p o s s i b l e t h e r e , but o n l y i f more advanced e n g i n e e r i n g prob lems a re

s o l v e d .

T a k i n g the D a n i s h s u g a r i n d u s t r y as an examp le , i t can be seen f rom F i g . 1

t h a t the f ue l consumpt ion was d e c r e a s i n g s t e a d i l y d u r i n g the 1950s and 1 9 6 0 s .

A t the b e g i n n i n g o f the 1970s the energy economy reached a c e r t a i n s t a t e o f

m a t u r i t y ; s a v i n g s which c o u l d be ach ieved i n a s i m p l e manner - r o u g h l y s p e a k i n g ,

by a v o i d i n g waste o f energy - had a l r e a d y become a r e a l i t y . F u r t h e r p r o g r e s s

became g r a d u a l l y a q u e s t i o n o f how to mod i fy the f a c t o r i e s i n a l l the a s p e c t s

t ha t cou ld be r e l a t e d to r e d u c t i o n s o f the ene rgy demand, i n c l u d i n g the s u g a r

manu fac tu r i ng p r o c e s s , b y - p r o c e s s e s and a u x i l i a r y p r o c e s s e s , equ ipment , c o n t r o l

Page 7: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

V I I I

2^ 5h

cn

•Ľ Ö Ĺ ů

§ 3h CP

^0. ^ 0 ,

X · X X

1955 1960 1965 1970 1975 1980 1985

F i g . 1 . Average consumpt ion o f normal fue l ( h e a t i n g v a l u e 29300 k J / k g ) i n beet s u g a r manufactu'^e i n s e l e c t e d European c o u n t r i e s , w i t h t h e i r 1984 s h a r e i n wor ld p r o d u c t i o n o f beet s u g a r g i v e n i n b r a c k e t s .

s y s t e m s , m o n i t o r i n g methods and p r o c e d u r e s , and even o t h e r a r e a s .

In F i g . 1 , the s t a t i s t i c a l da ta on fue l consumpt ion i n Swed ish and French

s u g a r i n d u s t r i e s a re a l s o shown. I t s h o u l d be po in ted ou t t ha t the da ta a re no t

meant to be compared d i r e c t l y , as the d i f f e r e n c e s must be seen as e x p r e s s i o n s

o f numerous d i s s i m i l a r i t i e s between the i n d u s t r i e s c o n c e r n e d . I n d e e d , t he re a re

even some d i f f e r e n c e s i n the methods used to c a l c u l a t e the ave rage ene rgy

consumpt ion : Swed ish data a re based on p r o d u c t i o n s t a t i s t i c s from 6 wh i te s u g a r

f a c t o r i e s (one raw s u g a r f a c t o r y has been e x c l u d e d ) ; D a n i s h data r e p r e s e n t 5

DDS-owned f a c t o r i e s , f o u r o f them p roduc ing wh i te s u g a r o n l y and one wh i te

s u g a r and r a f f i nade ; F rench da ta have been ave raged from 56 f a c t o r i e s , t h e i r

1984 ou tpu t c o n s i s t i n g o f 80% wh i te s u g a r , 15% s y r u p s and 5% raw s u g a r . I n o t h e r

w o r d s , the d i f f e r e n c e s stem p a r t l y f rom the f a c t t ha t p r o d u c t s w i t h d i f f e r e n t

s p e c i f i c energy demands a re i n v o l v e d . N e v e r t h e l e s s , i t can be conc luded from

a compar ison o f t r ends t h a t both i n Sweden and F r a n c e , the deve lopments towards

s i t u a t i o n s s i m i l a r to t h a t i n Denmark a re f a r advanced .

Under such c i r c u m s t a n c e s , i s one j u s t i f i e d i n w r i t i n g a book devoted s o l e l y

to the energy economy? T a k i n g the g l o b a l p e r s p e c t i v e , t he re i s no doubt t h a t

much work on energy problems i s needed i n the s u g a r i n d u s t r y because the re a re

s t i l l c o u n t r i e s - major beet s u g a r p roduce rs - where the s p e c i f i c energy

consumpt ion i n s u g a r manufac ture i s much h i g h e r than i n the c o u n t r i e s named

above . About 60% o f the w o r l d ' s beet s u g a r comes from f a c t o r i e s c o n s u m i n g , on

a v e r a g e , 2 - 3 t imes more ene rgy per u n i t mass o f bee ts than the D a n i s h s u g a r

f a c t o r i e s .

A s e l e c t i o n o f s t a t i s t i c a l da ta on the ene rgy consumpt ion i n beet s u g a r

manufac ture i n s e v e r a l s u g a r - p r o d u c i n g c o u n t r i e s can be seen i n Tab le 1 . A g a i n ,

Page 8: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

IX

TABLE 1

Average consumpt ion o f nonnal f ue l ( h e a t i n g v a l u e 29300 k J / k g ) i n beet s u g a r manufac ture - pu lp d r y i n g e x c l u d e d - i n s e l e c t e d c o u n t r i e s .

Sha re i n wo r l d Normal f ue l Count ry p r o d u c t i o n o f beet Year Bee ts worked consumpt ion

s u g a r 1984 (%) (1000 t o n s ) ( k g / 1 0 0 kg b)

USSR 2 3 . 0 3 1980 64300 FRG 8 . 2 4 1984 20189 3 . 1 ^ USA 6 . 8 9 1980 21320 7 . 6 a Po land 4 . 9 2 1984 15500 7 . 4 C z e c h o s l o v a k i a 2 . 2 2 1984 7540 8 . 5 Greece 0 . 6 2 1981 2560 4 . 6

es t ima ted

the reade r s h o u l d be c a u t i o n e d a g a i n s t d i r e c t compar i sons o f the i n d i c e s g i v e n ,

as w i th t hese c o u n t r i e s coming i n t o the p i c t u r e , one has to be aware o f even

more p ro found d i s s i m i l a r i t i e s than t h o s e between F r a n c e , Sweden and Denmark.

Le t us j u s t ment ion c l i m a t i c c o n d i t i o n s , wh ich a f f e c t the ene rgy demand

c o n s i d e r a b l y : i t i s no t unusua l f o r U S S R , P o l i s h and some US f a c t o r i e s to

p r o c e s s f r o z e n bee ts i n the f i n a l s t a g e o f the s e a s o n , w h i l e t h i s i s unheard o f

i n Greece ( i t i s a l s o ex t remely u n l i k e l y i n Sweden, Denmark and F r a n c e ) . On the

o t h e r h a n d , some o f the c o u n t r i e s l i s t e d had never been known f o r a ve r y

e f f e c t i v e energy u s a g e ; n e i t h e r had they r e a l l y been a f f e c t e d by the

d i s t u r b a n c e s i n the i n t e r n a t i o n a l f ue l market because t h e i r n a t i o n a l economic

p o l i c i e s were d e s i g n e d to c o u n t e r a c t the wor ldw ide t r e n d s . I t s e e m s , however ,

t ha t the p r e s e n t economic deve lopments i n t hese c o u n t r i e s f o l l o w the gene ra l

p a t t e r n , thus s t i m u l a t i n g i n t e r e s t i n a r a t i o n a l i z e d ene rgy economy. I n t h a t

r e s p e c t , the answer to the q u e s t i o n f o rmu la ted above seems to be p o s i t i v e .

How c o u l d the book be shaped i n o r d e r to make i t u s e f u l to the peop le

work ing i n v a r i o u s c o u n t r i e s , where the s u g a r i n d u s t r i e s a re c h a r a c t e r i z e d by

d i f f e r e n t l e v e l s o f s o p h i s t i c a t i o n o f the ene rgy economy? I t seems t h a t when

l o o k i n g a t the energy subsys tem and i t s i n t e r a c t i o n s w i th o t h e r s u b s y s t e m s and

w i th the env i ronment o f the f a c t o r y , an at tempt can be made to s y s t e m a t i z e and

e v a l u a t e the most impor tan t e n e r g y - s a v i n g measures t h a t may come i n t o q u e s t i o n .

Such a s y s t e m a t i c rev iew can prove h e l p f u l to the managers and t e c h n o l o g i s t s i n

s u g a r f a c t o r i e s , where a problem may a r i s e o f c h o o s i n g the most a p p r o p r i a t e s e t

o f measures t ha t b e s t f i t the f a c t o r y ' s un ique n e e d s . I t i s a l s o hoped t ha t the

book can be used i n u n i v e r s i t y - l e v e l c o u r s e s on the ene rgy economy o f s u g a r

f a c t o r i e s , and t ha t i t may be o f i n t e r e s t to d e s i g n e n g i n e e r s as we l l as to

s p e c i a l i s t s engaged i n r e s e a r c h i n t h i s a r e a .

As r e g a r d s the scope o f the book , i t must be conc luded t h a t when a t tempt ing

Page 9: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

to cove r the e n t i r e problem f i e l d , i t would be i n a p p r o p r i a t e to r e s t r i c t

a t t e n t i o n to the t r a d i t i o n a l l y r e c o g n i z e d energy economy prob lems o n l y . I n s t e a d ,

i t i s n e c e s s a r y to adopt an i n t e r d i s c i p l i n a r y approach aimed a t d e m o n s t r a t i n g

how the energy demand o f a s u g a r f a c t o r y can be a f f e c t e d by the i n t e r a c t i o n s

between a number o f f a c t o r s , namely :

- l a y o u t and parameters o f the energy c o n v e r s i o n and d i s t r i b u t i o n p r o c e s s e s ;

- l a y o u t and parameters o f the s u g a r manu fac tu r i ng p r o c e s s and b y - p r o c e s s e s ;

- c h a r a c t e r i s t i c s o f the equipment and c o n t r o l s y s t e m s ;

- comple teness and accu racy o f the ene rgy m o n i t o r i n g p r o c e d u r e s .

The book c o n s i s t s e s s e n t i a l l y o f t h ree p a r t s . In Chap te rs 1 to 3 , some

t h e o r e t i c a l background i s g i v e n and e n g i n e e r i n g p r i n c i p l e s f o r c r e a t i n g

e f f i c i e n t energy c o n v e r s i o n and u t i l i z a t i o n s u b s y s t e m s i n s u g a r f a c t o r i e s a re

r ev i ewed . More s p e c i f i c a l l y , Chapter 1 p r o v i d e s an i n t r o d u c t o r y s t r u c t u r i n g

o f the problem f i e l d and a rev iew o f the p e r t i n e n t l i t e r a t u r e . Chap te r 2 i s

devoted to mass and energy b a l a n c e s a s t o o l s f o r a n a l y s i n g ene rgy p r o c e s s e s and

s y s t e m s , and to fundamenta ls o f compu te r -a ided a n a l y s i s and d e s i g n o f ene rgy

s u b s y s t e m s . Chapter 3 p r o v i d e s a rev iew o f e s s e n t i a l e n g i n e e r i n g p r o b l e m s , and

methods f o r t h e i r s o l v i n g , r e l a t e d to improv ing heat economy i n e x i s t i n g

f a c t o r i e s o r d e s i g n i n g new, e f f i c i e n t thermal s u b s y s t e m s .

In the i n i t i a l c h a p t e r s , the impor tance i s i n d i c a t e d o f o t h e r a r e a s t ha t do

not s t r i c t l y be long to energy e n g i n e e r i n g but a re c l e a r l y r e l a t e d to an

e f f i c i e n t energy economy. C o n s e q u e n t l y , i n the second p a r t , i . e . , Chap te rs 4

to 7 , recen t developments i n t hese a r e a s and t h e i r impor tance to ene rgy

c o n v e r s i o n and u t i l i z a t i o n i n s u g a r f a c t o r i e s a re d i s c u s s e d . Chapte r 4 i s

devoted to e n e r g y - e f f i c i e n t p r o c e s s e s , and Chapter 5 to equipment d e s i g n .

Con t ro l sys tems and t h e i r r o l e i n s a v i n g ene rgy a re d i s c u s s e d i n Chapte r 6 . I n

Chapte r 7 , methods and p rocedu res f o r m o n i t o r i n g e n e r g y - r e l a t e d a s p e c t s o f

f a c t o r y o p e r a t i o n a re r ev i ewed . In Chap te rs 6 and 7 , computer a p p l i c a t i o n s i n

the r e s p e c t i v e a r e a s a re a l s o d i s c u s s e d .

I t has been the a u t h o r ' s amb i t i on to i l l u s t r a t e the p r e s e n t a t i o n w i th

s u i t a b l e p r a c t i c a l l y - o r i e n t e d examp les . These a re based m o s t l y on the a u t h o r ' s

expe r i ence f rom 9 y e a r s wo rk ing w i t h an e n g i n e e r i n g company s p e c i a l i z i n g i n the

d e s i g n , e r e c t i o n and m o d e r n i z a t i o n o f s u g a r f a c t o r i e s , as wel l f rom an

a d d i t i o n a l 5 y e a r s o f c o n s u l t i n g and r e s e a r c h f o r the s u g a r i n d u s t r y . S h o r t

examples a re p resen ted i n Chap te rs 1 , 2 , 3 and 7 . I n the t h i r d p a r t o f the b o o k ,

i . e . . Chap te rs 8 and 9 , summaries a re g i v e n o f r e a l - l i f e d e s i g n a n a l y s e s o f

ene rgy subsys tems o f s u g a r f a c t o r i e s , c h a r a c t e r i z e d by d i f f e r e n t l e v e l s o f

s o p h i s t i c a t i o n o f the energy economy.

I t s h o u l d be emphas ized t ha t the p r e s e n t book i s not i n tended to g i v e any

p r e s c r i p t i o n s but r a t h e r to s t i m u l a t e t h i n k i n g and i d e a - g e n e r a t i n g . As i t

Page 10: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

X I

d e f i n i t e l y cannot r e p l a c e e n g i n e e r i n g handbooks o r d e s i g n a i d s , an at tempt has

been made to a v o i d the r e p e t i t i o n o f b a s i c t h e o r y and fundamental d a t a , such as

thermodynamic d e f i n i t i o n s and t a b l e s o f p r o p e r t i e s o f water and steam o r

p r o p e r t i e s o f s u g a r s o l u t i o n s ; t h e s e can be found e l s e w h e r e . Fo r r e a d e r s who

may need an i n t r o d u c t i o n to the f u n d a m e n t a l s , ample r e f e r e n c e s a re g i v e n to the

n o w - c l a s s i c a l l i t e r a t u r e , and m o s t l y to A m e r i c a n , E n g l i s h and German s o u r c e s .

Then , i n Append ices 1 and 2 , numer ica l a p p r o x i m a t i o n s o f thermodynamic

p r o p e r t i e s o f wa te r , steam and s u g a r s o l u t i o n s a re d i s c u s s e d . I n Append ix 3 ,

a s h o r t rev iew o f u s e f u l r e l a t i o n s h i p s and da ta r e l a t i n g to c e r t a i n heat

t r a n s f e r phenomena i s g i v e n .

When p r e s e n t i n g p h y s i c o - c h e m i c a l and t e c h n i c a l d a t a , e x a m p l e s , c a l c u l a t i o n s ,

e t c . , S I u n i t s o f measure have been used t h r o u g h o u t the book . Fo r r e a d e r s

accustomed to o t h e r u n i t s . Append ix 4 p r o v i d e s a s e l e c t i o n o f c o n v e r s i o n

f a c t o r s .

Page 11: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

X I I

L I S T OF SYMBOLS

a j u i c e d r a f t

b c o n c e n t r a t i o n

Β fue l consump t i on , fue l demand

C s p e c i f i c heat

D steam f low

F s u r f a c e a rea

G mass f l ow

h en tha lpy

k o v e r a l l heat t r a n s f e r c o e f f i c i e n t

Μ mass

Ν e l e c t r i c a l e f f e c t , power

ρ p r e s s u r e

Ρ power demand, power ou tpu t

q , Q heat

heat o f combust ion

h e a t i n g v a l u e

S steam ra te

t temperature

Ô a b s o l u t e temperature

Ä Ô , At temperature d i f f e r e n c e

V s p e c i f i c volume

ô t ime , d u r a t i o n

Mos t f r e q u e n t l y used s u b s c r i p t s or s u p e r s c r i p t s :

b b e e t s , c o s s e t t e s

c condensate

j j u i c e

Ρ pu lp

s steam

V vapour

w water

Page 12: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

C h a p t e r 1

THE ENERGY SYSTEM AND I T S ROLE IN A SUGAR FACTORY

1.1 SUBSYSTEMS OF A SUGAR FACTORY

The s u g a r m a n u f a c t u r i n g p r o c e s s , b y - p r o c e s s e s and a u x i l i a r y p r o c e s s e s must

be c o n t i n u o u s l y and r e l i a b l y s u p p l i e d w i t h t h e e n e r g y needed t o p e r f o r m a l l t h e

u n i t o p e r a t i o n s i n v o l v e d . By t h e i r v e r y n a t u r e , t h e p r o c e s s e s a r e c h a r a c t e r i z e d

by p r e d e t e r m i n e d v a l u e s o f c e r t a i n i n p u t , o u t p u t and i n t e r m e d i a t e p a r a m e t e r s ;

o t h e r pa ramete rs may be l i m i t e d by c o n s t r a i n t s r e l a t e d t o p r o c e s s r e q u i r e m e n t s ,

f a c t o r y economy, e n v i r o n m e n t p r o t e c t i o n and o t h e r f a c t o r s . C o n s e q u e n t l y , t h e

f reedom o f c h o i c e o f t h e v a l u e s o f pa rame te rs o f t h e e n e r g y c o n v e r s i o n ,

d i s t r i b u t i o n and u t i l i z a t i o n p r o c e s s e s i s s u b s t a n t i a l l y r e s t r i c t e d . To make

t h i n g s even more c o m p l i c a t e d , u n d e r l o c a l c o n d i t i o n s i n a s p e c i f i c f a c t o r y ,

some c o n s t r a i n t s may be g i v e n o n l y i m p l i c i t l y a n d , q u i t e o f t e n , a r e d i f f i c u l t

t o i d e n t i f y .

I n such c i r c u m s t a n c e s , an i n v e s t i g a t i o n o f t h e e n e r g y economy o f a s p e c i f i c

s u g a r f a c t o r y r e q u i r e s s t u d y i n g v a r i o u s a s p e c t s o f i n t e r a c t i o n s between s u g a r

m a n u f a c t u r i n g , b y - p r o c e s s e s and a u x i l i a r y p r o c e s s e s on t h e one s i d e , and e n e r g y

c o n v e r s i o n , d i s t r i b u t i o n and u t i l i z a t i o n p r o c e s s e s on t h e o t h e r . As t h e

i n t e r a c t i o n s a r e t a k i n g p l a c e i n v a r i o u s s e c t i o n s and components o f t h e f a c t o r y ,

i t c o u l d be c o n c l u d e d t h a t i t i s n e c e s s a r y t o s t u d y t h e e n t i r e f a c t o r y i n g r e a t

d e t a i l . H o w e v e r , i t se ldom makes sense t o i n v e s t i g a t e a l l t h e d e t a i l s a t o n c e ,

as a s t r a i g h t f o r w a r d app roach w o u l d r e s u l t i n a l a r g e vo lume o f i n f o r m a t i o n

w h i c h may be d i f f i c u l t t o h a n d l e and i n t e r p r e t . What i s r e a l l y needed f o r

g r a s p i n g t h e s i t u a t i o n and i d e n t i f y i n g p o t e n t i a l e n e r g y s a v i n g s i s s t r u c t u r e d

i n f o r m a t i o n f rom w h i c h , depend ing on s p e c i f i c n e e d s , r e l e v a n t d a t a on t h e

f a c t o r y r e g i o n s o f i n t e r e s t can be e x t r a c t e d .

The c o n c e p t o f s t r u c t u r e d i n f o r m a t i o n on e n e r g y p r o c e s s e s must be seen i n

c o n n e c t i o n w i t h t h e s t r u c t u r e o f t h e s u g a r f a c t o r y i n q u e s t i o n . T h i s does n o t

n e c e s s a r i l y mean i n v e s t i g a t i n g a l l t h e p h y s i c a l componen ts , l i k e b u i l d i n g s ,

p r o c e s s s t a t i o n s o r equ ipment u n i t s ; t h e s t r u c t u r e may be d e f i n e d i n a manner

s u i t e d t o s p e c i f i c n e e d s . I n t h e l i t e r a t u r e , a v a r i e t y o f app roaches a t

d i f f e r e n t l e v e l s o f c o m p l e x i t y can be f o u n d . A t one end o f t h e c o m p l e x i t y s c a l e ,

t h e app roach employed b y , among o t h e r s , S c h i e b l ( r e f . 1) a n d , more r e c e n t l y ,

K a r r e n ( r e f . 2) can be p l a c e d . H e r e , t h e e n e r g y usage i s i d e n t i f i e d by t h e i n p u t

e n e r g y s t r eam w h i c h can a l s o be c o n s i d e r e d as t h e sum o f power house l o s s e s and

p r o c e s s e n e r g y c o n s u m p t i o n ; t h i s means d i v i d i n g t h e f a c t o r y i n t o power house

and p r o c e s s a r e a s , as i n d i c a t e d i n F i g . 1.1. A b i t c l o s e r t o t h e m i d d l e o f t h e

c o m p l e x i t y s c a l e comes t he s t r u c t u r i n g p r i n c i p l e used by Bal oh ( r e f . 3 ) , t h a t

Page 13: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

Γ l o s s e s I

I

1

1 1 s t e a m . ^

2 1 1 e lect r ic 2 1 power 1

1 power 1

fue l

F i g , Ί . Ι . S u g a r f a c t o r y d i v i d e d i n t o power house 1 and p r o c e s s a r e a 2 . Mass and e n e r g y s t reams c r o s s i n g t h e bounda ry shown by t h e dashed l i n e a r e d e t e r m i n e d .

i s , d i v i d i n g t h e f a c t o r y i n t o e i g h t main s e c t i o n s and i d e n t i f y i n g t h r e e

d i f f e r e n t a reas o f e n e r g y p r o c e s s e s . T h i s p r i n c i p l e i s shown s c h e m a t i c a l l y i n

F i g . 1 .2 ; n o t e t h a t t h e s t reams o f e l e c t r i c a l power s u p p l i e d t o t h e f a c t o r y

s e c t i o n s a r e n o t c o n s i d e r e d . Mov ing t o t h e o t h e r end o f t h e c o m p l e x i t y s c a l e ,

t h e approach used by Z a g r o d z k i ( r e f . 4 ) can be p r e s e n t e d . As can be seen i n

F i g . 1 .3 , i t r e l i e s on t h e i d e n t i f i c a t i o n o f e n e r g y s t reams t o and f rom

i n d i v i d u a l equ ipment u n i t s , o r g r o u p s o f u n i t s . Note t h a t o n l y a p a r t o f t h e

f a c t o r y , and o n l y the rma l e n e r g y , a r e c o n s i d e r e d .

Examples o f even more d e t a i l e d app roaches can be f ound i n t h e l i t e r a t u r e , as

i i u e _ g a s _ _ : \ s l u d g e .

L ±i -T^ -{-- -i-T

F i g . 1.2. S u g a r f a c t o r y d i v i d e d i n t o : 1 - l ime k i l n w i t h m i l k - o f - l i m e s t a t i o n , 2 - e x t r a c t i o n s t a t i o n , 3 - j u i c e p u r i f i c a t i o n s t a t i o n , 4 - e v a p o r a t o r , 5 -s u g a r h o u s e , 6 - c o n d e n s a t e t a n k s , 7 - p u l p d r y i n g s t a t i o n , 8 - power h o u s e . Mass and e n e r g y s t reams can be i d e n t i f i e d a t t h r e e d i f f e r e n t b o u n d a r i e s : I -e n t i r e f a c t o r y , I I - h e a t economy a r e a . I I I - p r o c e s s h e a t i n g a r e a .

Page 14: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

JP

Ε· exhous i j s team,

η

7 • 5H

EV

η η η

F i g . 1.3. Example o f s t r u c t u r i n g o f s u g a r f a c t o r y equ ipment i n v o l v e d i n t h e e n e r g y p r o c e s s e s . Ε - e x t r a c t i o n s t a t i o n , J P - j u i c e p u r i f i c a t i o n s t a t i o n , SH s u g a r h o u s e , EV - e v a p o r a t o r , V - vacuum p a n s , " - Z - e v a p o r a t o r e f f e c t s , 6 -h e a t e r s , 7 - c o n d e n s e r . V a p o u r s t reams c r o s s i r r t h e bounda ry shown by t h e dashed l i n e and t h e b o u n d a r i e s o f J P , EV and SH can be i d e n t i f i e d .

i l l u s t r a t e d i n F i g . 1.4 ( r e f . 5 ) . T a b l e 1.1 d e m o n s t r a t e s how t h i s s t r u c t u r i n g

p r i n c i p l e makes i t p o s s i b l e t o i d e n t i f y t h e consumpt i on o f h e a t i n g media i n

equ ipment u n i t s o r g roups o f u n i t s i n a model f a c t o r y , t hus p r o v i d i n g a

c o n v e n i e n t b a s i s f o r c a l c u l a t i o n s o f t h e o v e r a l l e n e r g y consumpt i on i n t h e

s u g a r m a n u f a c t u r i n g p r o c e s s o r i n i t s p a r t s .

G e n e r a l l y , a s u g a r f a c t o r y may be a n a l y s e d as a who le o r as a sum o f s m a l l e r

p a r t s ( w h i c h , i n t u r n , may be s u b d i v i d e d t o o ) by emp loy ing t h e n o t i o n o f an

open thermodynamic sys tem ( r e f s . 6 , 7 ) . I t can be d e f i n e d as t h e p a r t o f t h e

p h y s i c a l space w h i c h i s c o n t a i n e d w i t h i n p r e s c r i b e d and i d e n t i f i a b l e b o u n d a r i e s .

The s t a t e o f an open thermodynamic sys tem can be d e f i n e d i n te rms o f q u a n t i t i e s

c h a r a c t e r i z i n g mass and e n e r g y s t reams c r o s s i n g i t s bounda ry ( s e e C h a p t e r 2 ) .

By s p l i t t i n g t h e s y s t e m i n t o s u b s y s t e m s , t h e p o s s i b i l i t y i s c r e a t e d o f

d e t e r m i n i n g mass and e n e r g y s t reams and t h e i r pa rame te rs needed t o d e f i n e t h e

s t a t e s o f t h e s u b s y s t e m s . I t s h o u l d be emphas ized t h a t an i n v e s t i g a t o r i s f r e e

t o d e f i n e t h e b o u n d a r i e s o f t h e s y s t e m and i t s subsys tems i n t h e manner b e s t

s u i t e d t o h i s s p e c i f i c n e e d s . T h i s makes i t p o s s i b l e t o decompose c o m p l i c a t e d

m u l t i v a r i a b l e e n g i n e e r i n g prob lems i n t o a number o f s i m p l e r p rob lems t h a t a r e

e a s i e r t o u n d e r s t a n d and s o l v e . A w e l l p l a n n e d sys tem d e c o m p o s i t i o n a l s o

c r e a t e s p o s s i b i l i t i e s o f i n f o r m a t i o n s t r u c t u r i n g , t h i s i n t u r n g i v i n g a b e t t e r

Page 15: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

condenir sa te

J P

6 n: 6

T C ,

e x h p u s t steam

5 H(

π

EV

π

7 :

SH

Β

•Θ D 4 X I ®

F i g . 1.4. A n o t h e r example o f s t r u c t u r i n g o f s u g a r f a c t o r y equ ipment i n v o l v e d i n t h e e n e r g y p r o c e s s e s . JP - j u i c e p u r i f i c a t i o n s t a t i o n , SH - s u g a r h o u s e , A , B, C - vacuum pans A , Β and C , TC - t h e r m o c o m p r e s s o r s , EV - e v a p o r a t o r , 1-4 - e v a p o r a t o r e f f e c t s , 5 - e x t r a c t o r , 6 - h e a t e r s , 7 - c o n d e n s e r , 8 - p u l p p r e s s e s , 9 - t h i c k j u i c e t a n k , 10 m e l t e r , 11 - s y r u p t a n k s , 12 - s u g a r d r y e r . Not shown: condensa te c o n n e c t i o n s . V a p o u r and c o n d e n s a t e s t reams c r o s s i n g t h e bounda ry shown by t h e dashed l i n e and t h e b o u n d a r i e s o f J P , EV and SH a r e i d e n t i f i e d .

i n s i g h t i n t o e n e r g y p r o c e s s e s and p o t e n t i a l e n e r g y s a v i n g s .

The i d e a o f t r e a t i n g a s u g a r f a c t o r y as a thermodynamic sys tem i n w h i c h

subsys tems can be d e f i n e d seems t o be so s i m p l e and o b v i o u s t h a t p e o p l e t e n d t o

s h r u g i t o f f . A c t u a l l y , i t may be t r u e t h a t a common-sense a p p r o a c h t o e n e r g y

a n a l y s e s i s e f f e c t i v e enough i n s o l v i n g s i m p l e p r o b l e m s . When c o n s i d e r i n g

c o m p l i c a t e d and s u b t l e q u e s t i o n s , h o w e v e r , one s h o u l d r e c o g n i z e t h e a d v a n t a g e s

o f a d i s c i p l i n e d , t h e o r e t i c a l l y w e l l f ounded thermodynamic a p p r o a c h . As a m a t t e r

o f f a c t , when t h e e n e r g y economy i n c o n t e m p o r a r y s u g a r f a c t o r i e s becomes so

advanced t h a t t h e was te o f e n e r g y i s l a r g e l y e l i m i n a t e d , v i r t u a l l y no e n e r g y -

s a v i n g measure can be r e g a r d e d as s i m p l e . F o l l o w i n g t h e law o f d i m i n i s h i n g

r e t u r n s , i n v e s t m e n t s i n an advanced e n e r g y economy can b r i n g l i m i t e d g a i n s o n l y ,

so t h e economic a n a l y s e s on w h i c h management d e c i s i o n s a r e based must be

Page 16: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

TABLE 1.1

Steam and v a p o u r s t reams (kg /100 kg b ) between equ ipment u n i t s o r g r o u p s i n t h e model f a c t o r y shown s c h e m a t i c a l l y i n F i g . 1.4. Dashed l i n e s s e p a r a t e d a t a r e l a t i n g t o J P , SH and E V .

S o u r c e s

R e c e i v e r s E v a p o r a t o r

1 2

e f f e c t s

3 4

O t h e r s o u r c e s

P r e s s w a t e r h e a t e r E x t r a c t o r Raw j u i c e h e a t e r

0.90 1.97

0.92 Vacuum pan v a p o u r

P r e - l i m e d j u i c e h e a t e r s H e a t e r a f t e r 1 s t c a r b o n a t a t i o n H e a t e r b e f o r e 2nd c a r b o n a t a t i o n 2.50

2.85 3.36 2.62

Condensa te

T h i n j u i c e h e a t e r s 2.24 2.43 1.65

T h i c k j u i c e h e a t e r M e l t e r I n d i r e c t l y h e a t e d tanks D i r e c t l y hea ted tanks Remelt h e a t e r Vacuum pans A

Β C

Sugar d r y e r

0.20 0.45 0.58

12.80 3.40 1.31

0.15

0.18

E x h a u s t steam 0.50

Thermocompressors Condense r

10.00 0.90

L i v e steam 4.00

E v a p o r a t o r t o t a l 12.24 24.57 8.37 6.23

r e l i a b l e i n d e e d . T h i s makes i t n e c e s s a r y t o e n s u r e a h i g h a c c u r a c y o f

e n g i n e e r i n g c a l c u l a t i o n s so as t o p r o v i d e r e l i a b l e i n p u t d a t a f o r economic

a n a l y s e s . F o r examples o f t h e a p p l i c a t i o n o f a d i s c i p l i n e d thermodynamic

app roach i n t h e c a l c u l a t i o n s o f e n e r g y b a l a n c e s , see C h a p t e r s 2 , 3 , 8 and 9.

I t s h o u l d be n o t e d t h a t t h e need f o r d e f i n i n g and s u b s e q u e n t l y decompos ing

a thermodynamic sys tem may a r i s e i n p r a c t i c a l s i t u a t i o n s as d i f f e r e n t a s :

( i ) R a t i o n a l i z i n g , o r p l a n n i n g m o d e r n i z a t i o n o f , t h e e n e r g y economy o f an

e x i s t i n g f a c t o r y , when a t h o r o u g h u n d e r s t a n d i n g o f t h e d e f i c i e n c i e s and

l i m i t a t i o n s o f an e x i s t i n g sys tem i s needed as a f o u n d a t i o n f o r p r o p o s e d

improvements . C h a r a c t e r i s t i c p rob lems a r e d i s c u s s e d i n C h a p t e r s 8 and 9.

( i i ) D e s i g n i n g a new f a c t o r y , i n c l u d i n g i t s e n e r g y s u b s y s t e m . T h i s r e q u i r e s

a n a l y s i n g t h e p r o p e r t i e s o f a sys tem w h i c h does n o t y e t e x i s t w i t h t h e aim o f

s h a p i n g i t o p t i m a l l y , as d i s c u s s e d i n C h a p t e r 9.

( i i i ) M o n i t o r i n g t h e e n e r g y p r o c e s s e s d u r i n g f a c t o r y o p e r a t i o n , when p e r i o d i c

e n e r g y consumpt ion checks o r a t t e m p t e d improvements i n r o u t i n e m o n i t o r i n g

p r o c e d u r e s may r e q u i r e l o c a t i n g new measur ing i n s t r u m e n t s f o r more d e t a i l e d

Page 17: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

i n f o r m a t i o n on e n e r g y b a l a n c e s , o r p l a c i n g some s e e m i n g l y r e d u n d a n t

measurements i n o r d e r t o o b t a i n i n f o r m a t i o n needed f o r s y s t e m a t i c c r o s s - c h e c k s

on i m p o r t a n t b a l a n c e d a t a . Problems o f t h i s k i n d a r e p r e s e n t e d i n C h a p t e r 7.

1.2 THE THERMAL SYSTEM AND I T S COMPONENTS

1.2.1 D e f i n i t i o n

T a k i n g advan tage o f t h e f l e x i b i l i t y i n h e r e n t i n t h e n o t i o n o f a s y s t e m

b o u n d a r y , a thermodynamic sys tem can be d e f i n e d w i t h i n a s u g a r f a c t o r y so as t o

i n c o r p o r a t e a l l t h e equ ipment u n i t s i n w h i c h the rma l e n e r g y ( h e a t ) c o n v e r s i o n

and u t i l i z a t i o n p r o c e s s e s a r e c a r r i e d o u t . I n t e r c o n n e c t i n g p i p e s a n d , p o s s i b l y ,

r e l e v a n t a u t o m a t i c c o n t r o l c i r c u i t s can a l s o be taken i n t o c o n s i d e r a t i o n . I t

can f u r t h e r be assumed t h a t t h e e l e c t r i c a l e n e r g y i s d i s r e g a r d e d e x c e p t as

a mean ing fu l o u t p u t i n t h e e n e r g y b a l a n c e o f t h e power h o u s e , o r t h a t i t i s

a l s o a c c o u n t e d f o r as a b a l a n c e i n p u t when equ ipment u n i t s o r g r o u p s a r e

a n a l y s e d . I n t he f o l l o w i n g , such a sys tem w i l l be c a l l e d t h e the rma l sys tem o f

a s u g a r f a c t o r y (an example i s shown s c h e m a t i c a l l y i n F i g . 1 . 5 ) . I t s h o u l d be

no ted t h a t i f a l l t h e e n e r g y p r o c e s s e s , i n c l u d i n g power g e n e r a t i o n and

u t i l i z a t i o n , a r e c o n s i d e r e d , t h e n t h e te rm " e n e r g y s y s t e m " w i l l be u s e d .

O d d l y e n o u g h , t h e n o t i o n o f a t he rma l sys tem i s n o t used i n t h e s u g a r

i n d u s t r y . I n t h e l i t e r a t u r e d e v o t e d t o e n e r g y p r o b l e m s , such terms as " t h e r m a l

scheme o f a s u g a r f a c t o r y " ( r e f . 8 ) , " h e a t c i r c u i t r y " ( r e f . 9 ) , o r " h e a t

economy c i r c u i t " ( r e f . 4 ) a r e u s e d , and most o f t e n , t h e o b j e c t unde r

c o n s i d e r a t i o n i s n o t r i g o r o u s l y d e f i n e d . Some a u t h o r s do n o t use any u n i f y i n g

n o t i o n s f o r t h e o b j e c t o f e n e r g y a n a l y s e s a t a l l . F o r e x a m p l e , Hugo t ( r e f . 10)

t r e a t s e v a p o r a t i o n and h e a t i n g i n d e p e n d e n t l y o f what he c a l l s t h e "s team c y c l e " .

F a i l u r e t o r e c o g n i z e t h e i m p o r t a n c e o f t h e e n t i r e t he rma l s y s t e m t o t h e

e n e r g y econoniy may l e a d t o e n e r g y w a s t a g e . To i l l u s t r a t e t h i s p o i n t , t h e a u t h o r

r e c a l l s a s u g a r f a c t o r y he v i s i t e d f o r a s t u d y on p o s s i b l e e n e r g y s a v i n g s ( t h e

f a c t o r y i s s i t u a t e d i n a c o u n t r y known f o r i t s l o n g - s t a n d i n g i n d u s t r i a l

t r a d i t i o n , and f o r q u i t e e f f i c i e n t e n e r g y u t i l i z a t i o n s t i m u l a t e d by i n a d e q u a t e

domes t i c f u e l r e s o u r c e s ) . I n t he power h o u s e , t h e r e were c l e a n and s h i n i n g

i n s u l a t i o n c o v e r s and f r o n t p a n e l s o f somewhat o u t d a t e d , b u t w e l l m a i n t a i n e d ,

b o i l e r s , c a r e f u l l y m a i n t a i n e d t u r b o - g e n e r a t o r s and p e r f e c t l y f u n c t i o n i n g

a u x i l i a r y equ ipment and measur ing i n s t r u m e n t s . Adequate d a t a r e c o r d s were

a v a i l a b l e f o r t h e e v a l u a t i o n o f e n e r g y b a l a n c e s o f t h e power h o u s e . I n t h e

n e i g h b o u r i n g b u i l d i n g c o n t a i n i n g t h e p r o c e s s e q u i p m e n t , h o w e v e r , e v a p o r a t o r

b o d i e s and vacuum pans were s h i n i n g t o o , b u t numerous p r e s s u r e and t e m p e r a t u r e

i n d i c a t o r s were e i t h e r m i s s i n g o r o u t o f o r d e r . On t h e g round f l o o r ,

m a l f u n c t i o n i n g steam t r a p s and l e a k i n g h o t - c o n d e n s a t e l i n e s were f o u n d . Data

r e c o r d s on e n e r g y u t i l i z a t i o n were i n c o m p l e t e and no h e a t b a l a n c e s o f p r o c e s s

equ ipment c o u l d be e s t i m a t e d . I n s h o r t , t h e r e were s i g n s t h a t t h e f a c t o r y

Page 18: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

to ammonia ι water tank |

F i g . 1.5. Example o f a scheme o f a the rma l s y s t e m . I - power h o u s e , I I -e v a p o r a t o r . I I I - b e e t h o u s e , I V - s u g a r h o u s e , V - c o n d e n s i n g and c o o l i n g e q u i p m e n t , 1-4 - e v a p o r a t o r e f f e c t s , 5 - e x t r a c t o r , 6 - h e a t e r s , 7 - c o n d e n s e r , 8 - p u l p p r e s s e s , 9 - t h i c k j u i c e t a n k , 10 - m e l t e r , 11 - s y r u p t a n k s , 12 -s u g a r d r y e r , 13 - c o n d e n s a t e t a n k s , 14 - i n t e r m e d i a t e c o n d e n s a t e t a n k , 15 -main f e e d - w a t e r t a n k , 16 - b o i l e r , 17 - t u r b i n e .

Page 19: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

managers t r e a t t he power house and t h e p r o c e s s - h e a t i n g a r e a as i f t h e y were n o t

p a r t s o f t he same sys tem i n w h i c h i n t e r a c t i o n s between e n e r g y p r o c e s s e s

d e t e r m i n e t h e o v e r a l l e n e r g y c o n s u m p t i o n . N e e d l e s s t o s a y , t h e f u e l consump t i on

p e r u n i t mass o f b e e t s p r o c e s s e d was v e r y h i g h i n t h i s f a c t o r y .

Now, even i f l a c k o f awareness o f t h e i m p o r t a n c e o f t h e e n t i r e t he rma l

sys tem i s n o t as d r a s t i c , i t may e a s i l y become a cause o f m i s u n d e r s t a n d i n g , o r

f a i l u r e t o r e c o g n i z e , t h e i n t e r d e p e n d e n c e s g o v e r n i n g t h e e n e r g y economy i n

a s u g a r f a c t o r y . On t h e c o n t r a r y , t h e t o t a l app roach o f w h i c h t h e the rma l

s y s t e m c o n c e p t i s o n l y a p a r t makes i t e a s i e r t o g r a s p t h e e s s e n t i a l f e a t u r e s

o f t h e e n e r g y prob lems a n a l y s e d .

1.2.2 Tasks

I t happens a l l t o o o f t e n t h a t t h e s u g a r t e c h n o l o g i s t s a s s i g n a r a t h e r low

p r i o r i t y t o h e a t c o n v e r s i o n and d i s t r i b u t i o n w i t h i n a f a c t o r y , r e q u i r i n g s i m p l y

t h a t t h e h e a t s u p p l y c o v e r t h e p r o c e s s h e a t demand. L e t us o b s e r v e t h a t such

a r e q u i r e m e n t i s ambiguous even i f a l l t h e p r o c e s s pa rame te rs a r e e x a c t l y

s p e c i f i e d , as a d e f i n i t e p r o c e s s h e a t demand can be s a t i s f i e d by v a r i o u s

the rma l sys tems r e q u i r i n g d i f f e r e n t e n e r g y i n p u t s .

A the rma l sys tem can be a n a l y s e d and e v a l u a t e d i n terms o f c e r t a i n n o t i o n s

w h i c h can a l s o be used t o f o r m u l a t e sys tem t a s k s p r e c i s e l y . I n each equ ipment

u n i t i n t h e p r o c e s s h e a t i n g a r e a o f t h e s y s t e m , a c e r t a i n h e a t s t r e a m q^ s h o u l d

be t r a n s f e r r e d t o some p r o c e s s medium. Heat s t reams can be u n i q u e l y d e f i n e d f o r

i n d i v i d u a l equ ipment u n i t s o r g r o u p s o f u n i t s , as a t f i x e d p r o c e s s p a r a m e t e r s ,

hea t b a l a n c e s o f a l l p r o c e s s p a r t s can be s e t up and n e c e s s a r y h e a t i n p u t s can

be i d e n t i f i e d . We a r e t h u s a b l e t o d e f i n e t h e t o t a l h e a t demand as

Ql = q^. ( 1 . 1 )

where η i s t h e t o t a l number o f equ ipment u n i t s o r g r o u p s i n v o l v e d .

I t i s c h a r a c t e r i s t i c o f the rma l sys tems used i n t he s u g a r i n d u s t r y t h a t

m u l t i p l e use o f h e a t t akes p l a c e . Not o n l y i s t h i s t h e u n d e r l y i n g i d e a o f t h e

m u l t i p l e - e f f e c t e v a p o r a t o r , b u t t h e v a p o u r w i t h d r a w n f rom t h e e v a p o r a t o r i s

a l s o used t o h e a t o t h e r equ ipmen t . On t h e o t h e r h a n d , t h e l o s s e s t o t h e

e n v i r o n m e n t a n n i h i l a t e a p a r t o f t h e h e a t c i r c u l a t i n g i n t h e s y s t e m . T h e r e f o r e ,

t h e r e q u i r e d ( n e t ) h e a t i n p u t t o t h e s y s t e m , i s d i f f e r e n t f r om (and u s u a l l y

much s m a l l e r t h a n ) t h e t o t a l h e a t demand.

I t s h o u l d be p o i n t e d o u t t h a t Q2 i s n o t i d e n t i c a l t o t h e p r i m a r y e n e r g y

i n p u t t o t h e f a c t o r y ( s e e S e c t i o n 1 . 2 . 4 ) . I n F i g . 1 .6 , t h e h e a t s t reams and n e t

h e a t demand a r e i l l u s t r a t e d i n a Sankey d iag ram r e p r e s e n t i n g e n e r g y p r o c e s s e s

i n a the rma l s y s t e m . F o r t h e sake o f s i m p l i c i t y , t h e s u g a r m a n u f a c t u r e i s

d i v i d e d i n t o f i v e s u b p r o c e s s e s ( t h a t i s , t h e r e a r e f i v e equ ipment g r o u p s ) .

Page 20: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

ki ln gas,water , cossettes

pulp, heat loss

carbonatatii gas.

heat loss

heat loss ^

k evaporator y l osses

vacuum pan vapour

condensate to boiler

F i g . 1.6. Heat s t reams q . and n e t h e a t demand Qp i n a Sankey d iag ram r e p r e s e n t i n g t h e h e a t f l o w s i n a s u g a r f a c t o r y . 1 - e x t r a c t i o n , 2 - j u i c e p u r i f i c a t i o n , 3 - t h i n j u i c e h e a t i n g , 4 - e v a p o r a t i o n , 5 - c r y s t a l l i z a t i o n .

From t h e p o i n t o f v i e w o f e n e r g y economy, i t i s d e s i r a b l e t h a t t h e r a t i o

Κ = Q T / Q 2 ( 1 . 2 )

i s as l a r g e as p o s s i b l e ; i t t e l l s how many t imes on a v e r a g e t h e h e a t i n p u t i s

c i r c u l a t e d i n o r d e r t o s a t i s f y t h e t o t a l h e a t demand. I n t h e f o l l o w i n g , Κ i s

c a l l e d t h e e f f e c t i v e n e s s r a t i o o f t h e the rma l s y s t e m . The v a l u e o f Κ depends on

t h e sys tem l a y o u t , t h a t i s , t h e number and t y p e s o f equ ipment u n i t s , as w e l l as

v a p o u r and c o n d e n s a t e d i s t r i b u t i o n r o u t e s . F o r a sys tem o f known l a y o u t , t h e

e f f e c t i v e n e s s r a t i o may v a r y , depend ing on t h e the rma l p r o p e r t i e s o f equ ipment

u n i t s and pa rame te rs c h a r a c t e r i z i n g t h e p r o c e s s e s o f e n e r g y d i s t r i b u t i o n and

u t i l i z a t i o n . V a l u e s o f Κ as l a r g e as between 4 and 5 have been r e p o r t e d f o r

s u g a r f a c t o r i e s ( r e f s . 1 1 , 1 2 ) . The t e c h n i q u e s used t o i n c r e a s e Κ a r e d i s c u s s e d

i n C h a p t e r s 3 , 8 and 9. H o w e v e r , d i f f e r e n t l a y o u t s , equ ipment and e n e r g y

p r o c e s s e s l e a d t o d i f f e r e n t i a t e d c o s t s o f i n v e s t m e n t , ma in tenance and o p e r a t i o n .

F o r t h i s r e a s o n , t h e r e i s u s u a l l y a p r a c t i c a l r e q u i r e m e n t imposed on Κ t h a t i t s

Page 21: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

10

v a l u e s h o u l d be as l a r g e as a l l o w e d by t h e economic c o n s t r a i n t s and c r i t e r i a

a c c o r d i n g t o w h i c h t h e r e s u l t s o f f a c t o r y o p e r a t i o n a r e e v a l u a t e d . I t may be

n o t e d t h a t w i t h t h e e n e r g y c o s t s v a r y i n g between 3% and 17% o f t h e c o s t o f s u g a r

i n v a r i o u s c o u n t r i e s , t h e most economic v a l u e s o f Κ may be w i d e l y d i f f e r e n t i a t e d .

A l s o , unde r t i m e - v a r y i n g economic c o n d i t i o n s r e s u l t i n g f rom e l e c t r i c i t y t a r i f f s

w h i c h v a r y f rom month t o month d u r i n g t h e autumn and w i n t e r p e r i o d , v a r i a t i o n s

o f t h e e f f e c t i v e n e s s r a t i o d u r i n g p r o d u c t i o n may be j u s t i f i e d ( r e f . 1 3 ) .

I t s h o u l d be n o t e d t h a t o t h e r i n d i c e s have a l s o been p r o p o s e d i n t h e

l i t e r a t u r e f o r e v a l u a t i o n o f t h e e n e r g y p r o c e s s e s t a k i n g p l a c e i n t h e the rma l

s y s t e m . German s o u r c e s ( r e f . 12) employ t h e n o t i o n o f e f f i c i e n c y o f t h e the rma l

sys tem d e f i n e d by t h e f o r m u l a

η = 1 - Q2/Q1 = 1 - 1/K ( 1 . 3 )

1.2.3 B u i l d i n g b l o c k s

The sys tem p a r t s shown i n F i g . 1.5 a r e component g roups o r i n d i v i d u a l

components t h a t c u s t o m a r i l y r e c e i v e s e p a r a t e t r e a t m e n t i n e n e r g y a n a l y s e s .

A l t h o u g h t h e s e p a r t s a r e c e r t a i n l y i m p o r t a n t , such a " d e e p " d e c o m p o s i t i o n does

n o t c o n t r i b u t e much t o u n d e r s t a n d i n g o f t h e e s s e n t i a l f e a t u r e s o f e n e r g y

p r o c e s s e s . A b e t t e r i n s i g h t i s g a i n e d by l o o k i n g a t t h e subsys tems d e f i n e d

a c c o r d i n g t o a n o t h e r d e c o m p o s i t i o n p r i n c i p l e , i n d i c a t e d by t h e dashed l i n e s i n

F i g . 1.5 and a d d i t i o n a l l y i l l u s t r a t e d by t h e scheme shown i n F i g . 1 . 7 ( a ) . The

f u n c t i o n o f t h i s v e r s i o n o f t h e the rma l s y s t e m can be summar ized as f o l l o w s :

- u s i n g p r i m a r y e n e r g y s u p p l i e d i n f u e l , combined g e n e r a t i o n o f h e a t ( c a r r i e d

away by steam e x t r a c t e d f rom t h e t u r b i n e e x h a u s t ) and e l e c t r i c a l power t akes

p l a c e i n t he power h o u s e ,

- hea t s u p p l i e d i n h e a t i n g steam t o t h e e v a p o r a t o r s t a t i o n g e n e r a t e s v a p o u r s

( o f w h i c h a sma l l f r a c t i o n may be d i r e c t e d t o t h e c o n d e n s e r ) and h o t c o n d e n s a t e ;

t he t o t a l q u a n t i t y o f w a t e r e v a p o r a t e d i s p r e d e t e r m i n e d by t h e n e c e s s i t y o f

t r a n s f o r m i n g t h i n j u i c e i n t o t h i c k j u i c e ,

- a p a r t o f t he h o t c o n d e n s a t e i s r e t u r n e d t o t h e power h o u s e ; t h e v a p o u r s and

t h e rema in i ng c o n d e n s a t e a r e used t o t r a n s p o r t h e a t t o t h e j u i c e h e a t e r s , vacuum

pans and o t h e r p r o c e s s equ ipment i n t h e b e e t house and s u g a r h o u s e ,

- a f r a c t i o n o f h e a t s u p p l i e d t o t h e p r o c e s s i s d i s s i p a t e d t o t h e e n v i r o n m e n t

o r c a r r i e d away by o u t f l o w i n g p r o d u c t s o r was te m e d i a , and t h e main p a r t i s

c a r r i e d away by v a p o u r s g e n e r a t e d i n vacuum p a n s ,

- t h e vacuum pan v a p o u r s a r e n o t u t i l i z e d b u t d i r e c t e d t o t h e c o n d e n s e r , where

t h e i r e n e r g y i s a b s o r b e d and removed i n b a r o m e t r i c w a t e r ( i . e . , c o o l i n g w a t e r

mixed w i t h condensed v a p o u r s ) ; t h i s e n e r g y must be f i n a l l y d i s s i p a t e d t o t h e

e n v i r o n m e n t i n a s y s t e m component n o t shown i n t h e scheme ( e . g . c o o l i n g t o w e r s ,

c o o l i n g p o n d , r i v e r o r l a k e ) .

Page 22: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

11

-Ό C

t í 3 c χ : -Μ <o

4-> υ χ : to o χ : *f- χ •Μ 3 ω •Γ- C 5 «3 + J

Ε (Ο ^ <ϋ S- ^ — <ο I σ> ω

· » 3 + J ι— 4Λ to <ο <ο o e s

• ι - ω to ω ι to S ίΟ -Μ UD

ι— ω ο XI ·«

<ο ο to " Ι - C

· · ο -σ · (Λ <υ α i-Ε C ο (υ <υ C ο (Λ ο ι -σ to r— LO Q .

t— Ε • ' ^

ío $- <υ Q . Ε <U «Λ S. ^ Ζ( O) ω -M O SZ Z3

4 J ^ + J Μ- · ι - <0 S-o 5 σ> <υ σ) to Ε <υ -o <υ Q . s ^ ι 4-> >> ι

C O s- o «»f— O to to I

Μ- to 13 <U O CT»

Μ- ι - ^ O CL

E -Μ J -to O (U 0) ω α <υ >» ο. ί- -σ

• ι - 3 1 U ο Q . C Ο-ΓΟ I — •Γ- ίΟ Ζ3

i- > - ο . ^ ο ω

C7)4-> 4-> i -C - r - ίΟ 3 •Γ- 5 $- 4->

Ο <ο S- ^ CL $-Ο U ro <υ 5 — > Q .

0) ε (Λ Ο ^ ο . «^-Γ-ο «S ω ^ ο > ίΛ

ι— 3 I ^ C ο

<0 ^ 00 0> Q . C i - -·.- ε ω J -

^ 5 ο · — 13 ο V ) •Γ- ο Q . V ) J D > I S-= ^ . ^ i •

ο C S-1^ >> ο

. «ο $ ο . ι— Ν -σ <ο

•I- > • r— O l

σ>·Γ- Γ - I •Γ- 4-> Ζ3

Page 23: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

12

The f o l l o w i n g b u i l d i n g b l o c k s can t hus be named w i t h i n t h e s y s t e m : power h o u s e ,

m u l t i p l e - e f f e c t ( m u l t i - s t a g e ) e v a p o r a t o r , p r o c e s s equ ipment i n t h e b e e t house

and i n t h e s u g a r h o u s e , and c o n d e n s e r ( a l s o r e p r e s e n t i n g a s s o c i a t e d c o o l i n g

e q u i p m e n t ) . I n F i g . 1 . 7 ( a ) , t h e w i d t h o f t h e s t r i p s l i n k i n g t h e b l o c k s i n d i c a t e

a p p o x i m a t e l y t h e p r o p o r t i o n a t e e n e r g y s t reams c i r c u l a t e d .

The e s s e n t i a l l a y o u t o f e n e r g y c o n v e r s i o n and d i s t r i b u t i o n p r o c e s s e s

e x p l a i n e d above i s by f a r t h e most commonly a p p l i e d i n c o n t e m p o r a r y s u g a r p l a n t s .

L e t us use i t as a s t a r t i n g p o i n t f o r a s h o r t p r e s e n t a t i o n o f o t h e r p o s s i b l e

l a y o u t s . F o r t he sake o f s i m p l i c i t y , i t w i l l be assumed t h a t t h e pa rame te rs o f

t he s u g a r m a n u f a c t u r i n g p r o c e s s a r e f i x e d , t h a t i s , t h e t o t a l hea t demand

remains c o n s t a n t .

Suppose t h a t i n s t e a d o f d i r e c t i n g t h e e n t i r e e n e r g y s t ream c a r r i e d by vacuum

pan vapou rs t o t h e c o n d e n s e r , a p a r t o f i t i s r e - u s e d i n p r o c e s s h e a t i n g , as

shown s c h e m a t i c a l l y i n F i g . 1 . 7 ( b ) . A p r e r e q u i s i t e ( i . e . an a d d i t i o n a l

c o n s t r a i n t t o be s a t i s f i e d ) f o r t h i s i s t h e e x i s t e n c e o f l o w - t e m p e r a t u r e p r o c e s s

p a r t s where t he t e m p e r a t u r e o f vacuum pan v a p o u r s c o u l d be r e g a r d e d as

s u f f i c i e n t l y h i g h t o a l l o w e f f i c i e n t h e a t i n g . I f p r a c t i c a b l e , t h i s g i v e s t h e

p o s s i b i l i t y o f s a v i n g e n e r g y by r e d u c i n g t h e demand f o r v a p o u r s f rom t h e

e v a p o r a t o r a n d , c o n s e q u e n t l y , d e c r e a s i n g steam demand a t t h e e v a p o r a t o r i n l e t .

H o w e v e r , t h i s p o s s i b i l i t y can be r e a l i z e d o n l y i f t h e e v a p o r a t i o n p r o c e s s i s

m o d i f i e d so as t o s a t i s f y t h e c o n d i t i o n s t h a t t h e t o t a l q u a n t i t y o f w a t e r

e v a p o r a t e d remains unchanged .

Now, suppose t h a t an a t t emp t i s made t o a p p l y one o f t h e above l a y o u t s , b u t

i t t u r n s o u t t h a t t he demand f o r v a p o u r s f rom t h e e v a p o r a t o r i s so sma l l t h a t

t h e r e q u i r e d q u a n t i t y o f w a t e r can be e v a p o r a t e d o n l y i f a l a r g e v a p o u r f l o w t o

t h e c o n d e n s e r i s a l l o w e d . T h i s must be i n t e r p r e t e d as an i n d i c a t i o n t h a t a n o t h e r

e n e r g y - s a v i n g b l o c k s h o u l d be added t o t h e s y s t e m , as shown i n F i g . 1 . 7 ( c ) .

A v a p o u r compresso r r a i s i n g t h e p r e s s u r e o f a p a r t o f t h e v a p o u r s makes i t

p o s s i b l e t o r e c y c l e t h e compressed steam and t o use i t f o r h e a t i n g p u r p o s e s i n

t he e v a p o r a t o r . The r e c y c l e d h e a t d e c r e a s e s t h e h e a t demand a t t h e e v a p o r a t o r

i n l e t , r e s u l t i n g i n a h e a t s a v i n g as shown i n t h e scheme.

As f a r as t h e s u g a r m a n u f a c t u r i n g p r o c e s s i s c o n c e r n e d , m u l t i - s t a g e

e v a p o r a t i o n w i t h v a p o u r w i t h d r a w a l , u t i l i z a t i o n o f vacuum pan v a p o u r s , and

v a p o u r c o m p r e s s i o n a r e t h e main e n e r g y c o n v e r s i o n p r o c e s s e s and t hus a l s o t h e

main f u n c t i o n s o f t h e b u i l d i n g b l o c k s o f t he rma l s y s t e m s . P o s s i b l e v a r i a n t s o f

t h e b u i l d i n g b l o c k s and t h e i r v a r i o u s c o m b i n a t i o n s a r e p r e l i m i n a r i l y p r e s e n t e d

i n t h e r e m a i n i n g S e c t i o n s o f t h i s C h a p t e r . Note t h a t any the rma l s y s t e m has t o

s a t i s f y t h e p r o c e s s - i m p o s e d c o n s t r a i n t s men t ioned a b o v e . O t h e r c o n s t r a i n t s and

t h e i n t e r a c t i o n s between them, seen f rom d i f f e r e n t p o i n t s o f v i e w , a r e d i s c u s s e d

when p r e s e n t i n g t h e d e t a i l s o f t h e b u i l d i n g b l o c k s i n t h e f o l l o w i n g S e c t i o n s and

Page 24: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

13

C h a p t e r s .

An i m p o r t a n t b y - p r o c e s s employed i n a m a j o r i t y o f c o n t e m p o r a r y b e e t s u g a r

f a c t o r i e s i s p u l p d r y i n g . I t i s n o t unusua l t h a t i t r e q u i r e s 35% o r even more

o f t h e f a c t o r y ' s o v e r a l l ( i . e . , f o r s u g a r m a n u f a c t u r e and p u l p d r y i n g

c o n s i d e r e d j o i n t l y ) demand f o r p r i m a r y e n e r g y . From t h e p o i n t o f v i e w o f e n e r g y

u t i l i z a t i o n a t y p i c a l d r y i n g p l a n t , c o n s i s t i n g o f a d r y e r and a f u r n a c e where

f u e l i s bu rned i n o r d e r t o g e n e r a t e h o t g a s e s , i s r a t h e r p r i m i t i v e .

C o n s e q u e n t l y , much a t t e n t i o n has r e c e n t l y been d e v o t e d t o r a t i o n a l i z i n g t h e

e n e r g y usage i n p u l p d r y i n g . P o s s i b l e e n e r g y s a v i n g m o d i f i c a t i o n s o f t h e p r o c e s s

l a y o u t and pa ramete rs a r e d i s c u s s e d i n S e c t i o n 1 .2 .8 .

I n a s u g a r f a c t o r y emp loy ing p u l p d r y i n g , an e n e r g y - s a v i n g p o t e n t i a l e x i s t s

a l s o i n t h e the rma l c o u p l i n g between t h i s p r o c e s s and o t h e r f a c t o r y a r e a s . An

e a r l y i d e a , d e v e l o p e d s e v e r a l decades a g o , was t o mix h o t f l u e gas f rom b o i l e r s

w i t h a i r s u p p l i e d t o t h e f u r n a c e , t hus r e d u c i n g t h e f u e l consumpt i on i n t h e

d r y i n g p l a n t . More r e c e n t l y , bo th t h e u t i l i z a t i o n o f d r y e r o u t l e t gas i n t h e

p r o c e s s h e a t i n g i n s u g a r manu fac tu re and t h e u t i l i z a t i o n o f w a s t e h e a t f rom

s u g a r manu fac tu re i n t h e p u l p d r y i n g were i n t r o d u c e d , as shown s c h e m a t i c a l l y i n

F i g . 1 . 7 ( d ) . U s i n g t h e s e t e c h n i q u e s , t h e c o n s t r a i n t s imposed on t h e the rma l

sys tem by t h e s u g a r m a n u f a c t u r i n g p r o c e s s a r e f a v o u r a b l y m o d i f i e d , c r e a t i n g new

p o s s i b i l i t i e s o f e n e r g y s a v i n g s . The u n d e r l y i n g c o n c e p t s a r e d i s c u s s e d i n

S e c t i o n 1 .2 .9 .

1.2.4 Power house

The w o r k i n g p r i n c i p l e o f t h e power houses i n c o n t e m p o r a r y s u g a r f a c t o r i e s

c o n s i s t s o f b u r n i n g f u e l i n a b o i l e r w h i c h s u p p l i e s l i v e steam t o a b a c k

p r e s s u r e t u r b i n e . The t u r b i n e d r i v e s an e l e c t r i c a l g e n e r a t o r w h i c h s u p p l i e s

e l e c t r i c a l power t o t he f a c t o r y ; s i m u l t a n e o u s l y , t h e steam f rom t h e t u r b i n e

e x h a u s t i s d e l i v e r e d t o t h e e v a p o r a t o r s t a t i o n .

T h e r e a r e two i m p o r t a n t c o n s t r a i n t s r e s u l t i n g f rom t h e p r o p e r t i e s o f t h e

power house equ ipment and a f f e c t i n g t h e c h a r a c t e r i s t i c s o f t h e e n t i r e the rma l

s y s t e m :

( i ) The c o n v e r s i o n o f l i v e - s t e a m e n e r g y t a k i n g p l a c e i n t h e t u r b i n e i s

c h a r a c t e r i z e d by a d e f i n i t e r a t i o between e n e r g y c o n v e r t e d i n t o e l e c t r i c i t y and

e x h a u s t - s t e a m e n e r g y w h i c h i s a v a i l a b l e f o r h e a t i n g . From t h e demand

c h a r a c t e r i s t i c s o f t h e e n t i r e f a c t o r y , a d i f f e r e n t p r o p o r t i o n between t h e power

demand and n e t h e a t demand may r e s u l t . O n l y i f t h e e v e n t u a l mismatch p rob lem i s

e f f e c t i v e l y r e s o l v e d by some s p e c i a l measures ( s e e S e c t i o n 1 .5 .3 ) can t h e power

house be r e g a r d e d as a s u i t a b l e e n e r g y s o u r c e f o r a p a r t i c u l a r t he rma l s y s t e m .

( i i ) The c o n v e r s i o n o f p r i m a r y e n e r g y i n t o l i v e - s t e a m e n e r g y t a k i n g p l a c e i n t h e

b o i l e r i s a s s o c i a t e d w i t h e n e r g y l o s s e s o f t h e o r d e r o f 10-20% o r even more .

Page 25: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

14

The r e s u l t i n g demand f o r p r i m a r y e n e r g y i s equa l t o t h e sum o f l i v e - s t e a m

e n e r g y and b o i l e r l o s s e s . O n l y i f t h e the rma l c o n n e c t i o n between t h e power

house and p r o c e s s h e a t i n g i s m o d i f i e d can t h e s e l o s s e s be p a r t l y r e c o v e r e d ,

r e s u l t i n g i n a r e d u c t i o n o f t h e t o t a l e n e r g y l o s s f rom t h e the rma l sys tem and

t hus r e d u c i n g t h e demand f o r p r i m a r y e n e r g y .

The prob lems i n d i c a t e d may come i n t o q u e s t i o n i n new o r e x i s t i n g f a c t o r i e s

o p e r a t e d u n d e r d i f f e r e n t l o c a l c o n d i t i o n s and s u b j e c t t o t he i n f l u e n c e o f

d i f f e r e n t economic f a c t o r s . As t h i s d e f i n e s an a r r a y o f w i d e l y d i v e r s i f i e d

s i t u a t i o n s , i t can h a r d l y be imag ined t h a t a steam b o i l e r and a b a c k - p r e s s u r e

t u r b i n e do r e a l l y p r o v i d e a u n i v e r s a l power house s o l u t i o n . A d i s c u s s i o n o f

v a r i o u s s i t u a t i o n s and s o l u t i o n s i s p r e s e n t e d i n S e c t i o n 1.5.

1.2.5 E v a p o r a t o r

The dom ina t i ng e v a p o r a t o r a r rangemen t i s t h a t u s i n g t h e m u l t i p l e - e f f e c t ,

p a r a l l e l - f l o w p r i n c i p l e s c h e m a t i c a l l y shown i n F i g . 1.5. T h r e e t o s i x e f f e c t s

a r e u s e d , f o u r o r f i v e b e i n g t h e commonest s o l u t i o n . The o r i g i n a l i d e a o f u s i n g

t he hea t as many t imes as t h e r e a r e e f f e c t s i n t h e e v a p o r a t o r ( R i l l i e u x

p r i n c i p l e ) has been m o d i f i e d by v a p o u r w i t h d r a w a l f o r h e a t i n g p u r p o s e s . W h i l e

t h i s r e s u l t s i n w o r s e h e a t u t i l i z a t i o n i n t h e e v a p o r a t o r i t s e l f , t h e v a p o u r

w i t h d r a w a l t u r n s o u t t o be d e c i s i v e i n e n s u r i n g a h i g h l y e f f i c i e n t h e a t

u t i l i z a t i o n i n t h e e n t i r e s u g a r f a c t o r y . T h i s p rob lem i s a d d i t i o n a l l y d i s c u s s e d

i n C h a p t e r 3 , and p r a c t i c a l examples a r e g i v e n i n C h a p t e r s 8 and 9.

As a b u i l d i n g b l o c k i n a the rma l s y s t e m , t h e e v a p o r a t o r s h o u l d be adap ted t o

t h e p r o c e s s - i m p o s e d c o n s t r a i n t a l r e a d y m e n t i o n e d , namely t h e p r e d e t e r m i n e d

p e r c e n t a g e o f w a t e r t o be e v a p o r a t e d . A n o t h e r i m p o r t a n t c o n s t r a i n t i s c o n c e r n e d

w i t h t h e j u i c e t e m p e r a t u r e i n t h e h e a t i n g chamber o f t h e f i r s t e v a p o r a t o r

e f f e c t , name ly , i n o r d e r t o p r e v e n t e x c e s s i v e the rma l decay o f s u c r o s e , t h i s

t e m p e r a t u r e must n o t e x c e e d 125-130°C. A number o f p r o p o s a l s on e v a p o r a t o r

a r rangemen t have been made w h i c h aim t o e n s u r e e f f i c i e n t h e a t u t i l i z a t i o n w h i l e

a l s o s a t i s f y i n g t h e c o n s t r a i n t s ; t h e s e p r o p o s a l s have been r e v i e w e d e l s e w h e r e

( r e f . 3 ) . A q u i n t u p l e - e f f e c t e v a p o r a t o r , w i t h p a r a l l e l f l o w o f j u i c e and v a p o u r

i n e f f e c t s 1 t h r o u g h 4 and c o u n t e r - f l o w i n e f f e c t 5, i s shown s c h e m a t i c a l l y i n

F i g . 1.8.

I n modern the rma l sys tems where t h e h e a t i n g needs have been r e d u c e d t o

a minimum, t h e o v e r a l l demand f o r v a p o u r s w i t h d r a w n f rom t h e e v a p o r a t o r may be

l e s s than t h e amount o f w a t e r t o be e v a p o r a t e d , t h u s making t h e w a t e r

p e r c e n t a g e c o n s t r a i n t d i f f i c u l t t o s a t i s f y . An i n c r e a s e d f l o w o f l a s t - e f f e c t

v a p o u r t o t h e c o n d e n s e r can h a r d l y be a c c e p t e d , as t h i s wou ld be a d i r e c t

e n e r g y l o s s r e q u i r i n g a c o r r e s p o n d i n g i n c r e a s e o f t h e h e a t i n g steam s u p p l y t o

t h e f i r s t e f f e c t . H o w e v e r , t h i s s i t u a t i o n can be changed i f u n c o n v e n t i o n a l

e v a p o r a t i o n s t a g e s hea ted w i t h l o w - t e m p e r a t u r e o r was te h e a t a r e a t t a c h e d t o

Page 26: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

15

e x h a u s t s team ' \ -

η 128°C

\ th in j u i ce

14 .5%DS.90°C

th ick ju ice 7 2 % D S . 9 4 ° C _

F i g . 1.8. Scheme o f a m u l t i p l e - e f f e c t e v a p o r a t o r f e a t u r i n g c o u n t e r - f l o w o f j u i c e and h e a t i n g v a p o u r i n t he f i f t h e f f e c t . 1-5 - e v a p o r a t o r e f f e c t s , 6 - j u i c e h e a t e r s .

t h e c l a s s i c a l e v a p o r a t o r . An i n t r o d u c t i o n t o p o s s i b l e s o l u t i o n s based on t h i s

p r i n c i p l e i s g i v e n i n S e c t i o n 1 .2 .6 . As an a l t e r n a t i v e , t h e c l a s s i c a l m u l t i

s t a g e e v a p o r a t i o n can be combined w i t h v a p o u r c o m p r e s s i o n , as o u t l i n e d i n

S e c t i o n 1 .2 .7 .

I n each e v a p o r a t o r e f f e c t , w h i l e v a p o u r i s g e n e r a t e d a t a c e r t a i n r a t e ,

condensa te must be d r a i n e d a t an a p p r o x i m a t e l y equa l r a t e f rom t h e h e a t i n g

chamber. The c o n d e n s a t e i s f l a s h e d ( f l a s h - e v a p o r a t e d ) , g e n e r a t i n g a d d i t i o n a l

v a p o u r , t h e e n e r g y o f w h i c h can be u t i l i z e d i n t h e s u b s e q u e n t e f f e c t s . Among

v a r i o u s a r rangements o f t h e c o n d e n s a t e s u b s y s t e m , t h e cascade f l a s h shown

s c h e m a t i c a l l y i n F i g . 1.5 i s t he most e f f e c t i v e s o l u t i o n . F i r s t - e f f e c t and

p o s s i b l y s e c o n d - e f f e c t c o n d e n s a t e a r e t y p i c a l l y used as b o i l e r f e e d - w a t e r , w h i l e

t he condensa tes f rom t h e r e m a i n i n g e f f e c t s can be u t i l i z e d i n t h e p r o c e s s

h e a t i n g and f o r o t h e r p u r p o s e s . V a r i o u s a s p e c t s o f t h e c o n d e n s a t e usage a r e

d i s c u s s e d i n C h a p t e r s 3 , 8 and 9.

The impo r t ance o f t he e v a p o r a t o r t o t h e e n e r g y c o n v e r s i o n and d i s t r i b u t i o n i n

a the rma l sys tem imposes s p e c i a l r e q u i r e m e n t s on t h e e v a p o r a t i o n p r o c e s s , as

w e l l as t he a s s o c i a t e d equ ipment and c o n t r o l s y s t e m s . New deve lopmen ts i n t h e s e

a reas a r e m a i n l y d i s c u s s e d i n C h a p t e r s 5 and 6.

1.2.6 U t i l i z a t i o n o f l o w - t e m p e r a t u r e o r was te h e a t

As t h e vacuum pans a r e s u p p l i e d w i t h t h e h e a t r e q u i r e d f o r s u g a r b o i l i n g , and

the p r o c e s s media a r e c o n t i n u o u s l y hea ted i n o r d e r t o s t a b i l i z e t h e t e m p e r a t u r e s

needed f o r i m p o r t a n t u n i t o p e r a t i o n s , s t reams o f l o w - t e m p e r a t u r e h e a t become

a v a i l a b l e , m a i n l y i n vacuum pan v a p o u r s and s p e n t c a r b o n a t a t i o n g a s . T h e r e a r e

s t i l l many f a c t o r i e s where t h e l o w - t e m p e r a t u r e h e a t i s c o n s i d e r e d u s e l e s s , so

t he vapou rs a r e d i r e c t e d t o t h e c o n d e n s e r and t h e c a r b o n a t a t i o n gas i s

d i s c h a r g e d d i r e c t l y t o t h e a tmosphe re . H o w e v e r , i f t h e s u g a r m a n u f a c t u r i n g

p r o c e s s i s so a r r a n g e d t h a t i n c e r t a i n p a r t s o f t h e w a t e r and j u i c e f l o w s t h e

t empe ra tu re i s low enough ( t h a t i s , l o w e r t han t h e t e m p e r a t u r e o f vacuum pan

Page 27: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

16

v a p o u r s o r s p e n t c a r b o n a t a t i o n g a s ) , t h e n t he l o w - t e m p e r a t u r e h e a t can be

u t i l i z e d . T y p i c a l " c o l d " media a r e raw j u i c e a n d , i n some i n s t a n c e s , w a t e r

s u p p l i e d t o t h e e x t r a c t o r , and p r e - l i m e d j u i c e .

One o f t h e o b s t a c l e s t o u t i l i z i n g l o w - t e m p e r a t u r e h e a t i s t h a t t h e n e c e s s a r y

equ ipment may be a b i t t r o u b l e s o m e . I n a j u i c e h e a t e r hea ted by vacuum pan

v a p o u r s , t h e s p e c i f i c volume o f v a p o u r i s so l a r g e t h a t i t n e c e s s i t a t e s a h i g h

f l o w v e l o c i t y . T h i s i n v o l v e s t he r i s k , among o t h e r s , o f t ube v i b r a t i o n a n d , as

t he w a t e r c o n t e n t i n v a p o u r f l o w i n g t h r o u g h t h e h e a t e r i n c r e a s e s , t u b e e r o s i o n .

When r e c o v e r i n g t he c a r b o n a t a t i o n h e a t l o s s i n a s u r f a c e hea t e x c h a n g e r , a low

f i l m c o e f f i c i e n t o f h e a t t r a n s f e r between t h e gas and t h e h e a t i n g s u r f a c e i s

u n a v o i d a b l e , and t hus a r e l a t i v e l y l a r g e h e a t i n g s u r f a c e a r e a may be r e q u i r e d .

I n t he case o f c a r b o n a t a t i o n - g a s r e c i r c u l a t i o n , p o w e r - e x p e n s i v e pumping may a l s o

be n e c e s s a r y .

P r o v i d i n g r e l i a b l e and n o t t o o c o s t l y equ ipment i s a v a i l a b l e , t h e

r e c i r c u l a t e d l o w - t e m p e r a t u r e h e a t can r e p l a c e an e q u i v a l e n t p o r t i o n o f t h e hea t

i n vapou rs w i t h d r a w n f rom t h e e v a p o r a t o r , t hus making i t p o s s i b l e t o r e d u c e t h e

h e a t i n g steam demand a t t he e v a p o r a t o r i n l e t . The h e a t i n g by vacuum pan v a p o u r s

i s a d d i t i o n a l l y d i s c u s s e d i n C h a p t e r 3 , and t h e t e c h n i q u e s used t o r e d u c e t h e

c a r b o n a t a t i o n h e a t l o s s i n C h a p t e r 4 .

C e r t a i n s t reams o f l o w - t e m p e r a t u r e hea t l e a v i n g t h e f a c t o r y a r e so d i f f i c u l t

t o u t i l i z e t h a t t h e y a r e t r a d i t i o n a l l y c a l l e d " w a s t e h e a t " . (Some a u t h o r s use

t h i s te rm f o r a l l t h e hea t s t reams t h a t a r e f i n a l l y d i s c h a r g e d t o t h e

e n v i r o n m e n t , i n c l u d i n g t h e l o w - t e m p e r a t u r e h e a t ) . I t may i n c l u d e , among o t h e r

componen ts , h e a t c a r r i e d by o u t l e t gas f rom t h e p u l p d r y e r , e x c e s s c o n d e n s a t e

f rom t h e e v a p o r a t o r and even b a r o m e t r i c w a t e r p r i o r t o e n t e r i n g t h e c o o l i n g

t o w e r s . I t s h o u l d be emphas ized t h a t t h e u t i l i z a t i o n o f was te h e a t i s now

r e a l i z a b l e , a l t h o u g h n o t a lways e c o n o m i c a l l y f e a s i b l e .

Both l o w - t e m p e r a t u r e and was te hea t can be u t i l i z e d i n j u i c e and s y r u p

e v a p o r a t i o n pe r fo rmed a t a s u f f i c i e n t l y low t e m p e r a t u r e , t h a t i s , u n d e r h i g h

vacuum. S p e c i a l v a p o u r - and g a s - h e a t e d e v a p o r a t o r s a r e b e i n g d e v e l o p e d f o r t h i s

p u r p o s e , as d i s c u s s e d i n C h a p t e r 5. A l t e r n a t i v e methods o f u t i l i z a t i o n o f l o w -

t e m p e r a t u r e hea t employ the rma l c o n n e c t i o n s between s u g a r m a n u f a c t u r e and p u l p

d r y i n g . T h i s i s p a r t i c u l a r l y i n t e r e s t i n g i f t h e s o - c a l l e d l o w - t e m p e r a t u r e d r y i n g

i s a p p l i e d , as o u t l i n e d i n S e c t i o n 1 .2 .9 .

1.2.7 Vapou r compresso rs

As i n d i c a t e d i n S e c t i o n 1.2.3 a b o v e , v a p o u r c o m p r e s s i o n i s a t e c h n i q u e w h i c h

can be used t o r e s o l v e a c o n f l i c t between t h e p o t e n t i a l r e d u c t i o n s o f t h e v a p o u r

demand and t he p r o c e s s c o n s t r a i n t on w a t e r q u a n t i t y t o be e v a p o r a t e d f rom j u i c e .

By i n t r o d u c i n g v a p o u r c o m p r e s s i o n t o t h e the rma l s y s t e m , i t becomes p o s s i b l e t o

e v a p o r a t e the r e q u i r e d w a t e r amount w h i l e r e c i r c u l a t i n g t h e p o r t i o n o f t h e

Page 28: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

17

e v a p o r a t i o n h e a t w h i c h exceeds t h e hea t demand o f v a p o u r - h e a t e d equ ipment

o u t s i d e t h e e v a p o r a t o r .

Most o f t e n , t h e v a p o u r t o be compressed i s t aken f rom th-e f i r s t e f f e c t a n d ,

i t s p r e s s u r e r a i s e d , i s s u p p l i e d t o t he h e a t i n g chamber o f t h e same e f f e c t .

A the rma l machine t r a n s f e r r i n g , a t t he expense o f w o r k , h e a t f rom a l o w -

t e m p e r a t u r e body t o a h i g h - t e m p e r a t u r e body i s known as a h e a t pump. I n a

t y p i c a l the rma l sys tem i n a s u g a r f a c t o r y , t h e r e a r e numerous p o t e n t i a l h e a t

pump a p p l i c a t i o n s o t h e r than h e a t r e c i r c u l a t i o n i n t h e f i r s t e v a p o r a t o r e f f e c t .

G e n e r a l l y , t he e n e r g y t r a n s p o r t i s i n i t i a t e d a t t h e h i g h e s t t e m p e r a t u r e / p r e s s u r e

l e v e l c o r r e s p o n d i n g t o t h e pa ramete rs o f l i v e steam and t h e n c o n t i n u e d a t t h e

g r a d u a l l y d e c r e a s i n g t e m p e r a t u r e s and p r e s s u r e s o f media c i r c u l a t e d i n v a r i o u s

p a r t s o f t h e the rma l s y s t e m . The l o w e s t l e v e l , a t w h i c h t h e e n e r g y t r a n s p o r t i s

t e r m i n a t e d , i s d e f i n e d by t h e t e m p e r a t u r e o f b a r o m e t r i c w a t e r and t h e

a t m o s p h e r i c p r e s s u r e . T h e o r e t i c a l l y , t h e h e a t pump p r i n c i p l e can be a p p l i e d

between any two d i f f e r e n t t e m p e r a t u r e / p r e s s u r e l e v e l s . By s u p p l y i n g e n e r g y (as

e l e c t r i c a l power o r l i v e s team) t o t h e h e a t pump, i t becomes p o s s i b l e t o

r e c i r c u l a t e a c e r t a i n amount o f h e a t , t hus c u t t i n g down t h e n e t h e a t demand o f

t he therma l s y s t e m .

I n r e a l i t y , t h e number o f f e a s i b l e h e a t pump a p p l i c a t i o n s i n a t he rma l

sys tem i s l i m i t e d . F o r e x a m p l e , t h e h e a t r e c o v e r y f rom t h e b a r o m e t r i c w a t e r ,

a l t h o u g h r e a l i z a b l e , c a n n o t be pe r fo rmed by v a p o u r c o m p r e s s i o n ; i n s t e a d , i t

r e q u i r e s complex and c o s t l y m a c h i n e r y , making t h e s o l u t i o n uneconomic . F i g u r e

1.9 shows f i v e p o s s i b l e l o c a t i o n s o f v a p o u r compresso rs t o r e c i r c u l a t e h e a t i n

a the rma l sys tem w i t h a q u a d r u p l e - e f f e c t e v a p o r a t o r . I t s h o u l d be p o i n t e d o u t

t h a t t h e s e l o c a t i o n s a r e by no means e q u i v a l e n t t o each o t h e r . I n g e n e r a l , i f

e n e r g y s a v i n g s a r e t o be o b t a i n e d , t hen t h e h e a t r e c i r c u l a t i o n t a k i n g p l a c e i n

a c e r t a i n p a r t o f t h e the rma l s y s t e m must be c o o r d i n a t e d w i t h mass and e n e r g y

Γ "

e x h a u s t ) s t e a m

6

F i g . 1.9. P o s s i b l e l o c a t i o n s o f v a p o u r c o m p r e s s o r s r e l a t i v e t o e s s e n t i a l components o f a the rma l sys tem w i t h a q u a d r u p l e - e f f e c t e v a p o r a t o r s u p p l y i n g s e c o n d - e f f e c t v a p o u r t o vacuum-pan h e a t i n g . 1-4 - e v a p o r a t o r e f f e c t s , 5 - vacuum p a n s , 6 - c o n d e n s e r .

Page 29: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

s team

c o m p r e s s e d

v a p o u r

v a p o u r

F i g . 1.10. Work ing p r i n c i p l e o f a j e t - t y p e c o m p r e s s o r .

f l o w s i n o t h e r p a r t s o f t he s y s t e m . F o r e x a m p l e , i f vacuum pan v a p o u r i s

compressed and r e - u s e d t o hea t t h e vacuum p a n s , t h e n t h e demand f o r v a p o u r f rom

the e v a p o r a t o r i s r e d u c e d . As t h e amount o f w a t e r t o be removed f rom j u i c e must

be h e l d c o n s t a n t , t h e d i s t r i b u t i o n o f v a p o u r s w i t h d r a w n f rom t h e e v a p o r a t o r

must be p r o p e r l y a d j u s t e d ; o t h e r w i s e , i t may be n e c e s s a r y t o i n c r e a s e t h e e n e r g y

l o s s r e s u l t i n g f rom t h e f l o w o f l a s t - e f f e c t v a p o u r t o t h e c o n d e n s e r , pe rhaps

making t h e i d e a o f v a p o u r c o m p r e s s i o n m e a n i n g l e s s .

As r e g a r d s t h e e q u i p m e n t , b o t h j e t - t y p e compresso rs ( t h e r m o c o m p r e s s o r s ) and

mechan ica l compresso rs ( t u r b o c o m p r e s s o r s ) can be u s e d . The j e t - t y p e c o m p r e s s o r

( F i g . 1.10) must be c o n t i n u o u s l y s u p p l i e d w i t h l i v e s t eam, b y - p a s s i n g t h e t u r b o

g e n e r a t o r and n o t c o n t r i b u t i n g t o e l e c t r i c i t y g e n e r a t i o n . Depend ing on t h e

i n l e t and o u t l e t p r e s s u r e s o f t h e v a p o u r c o m p r e s s e d , t he c o m p r e s s i o n r a t i o , i . e .

t h e r a t i o o f v a p o u r mass f l o w t o l i v e - s t e a m mass f l o w , v a r i e s as shown i n T a b l e

1.2 ( t h e v a l u e s g i v e n s h o u l d be i n t e r p r e t e d as t h e h i g h e s t a t t a i n a b l e , w h i l e

t h e a c t u a l v a l u e s may a l s o depend on compresso r q u a l i t y ) .

The mechan ica l compresso r ( F i g . 1.11) i s d r i v e n by a m o t o r , t o w h i c h e n e r g y

must be s u p p l i e d c o n t i n u o u s l y . A t p r e s e n t , e l e c t r i c moto rs a r e g e n e r a l l y

r e g a r d e d as most e c o n o m i c , b u t steam t u r b i n e s a r e a l s o used as c o m p r e s s o r

d r i v e s . As a c o n s e q u e n c e , t h e a p p l i c a t i o n o f a mechan ica l c o m p r e s s o r e i t h e r

i n c r e a s e s t h e f a c t o r y ' s power demand, o r r e q u i r e s a c e r t a i n f l o w o f l i v e steam

b y - p a s s i n g t he t u r b o - g e n e r a t o r t o be s u p p l i e d t o t h e c o m p r e s s o r d r i v e .

When c o n s i d e r i n g a l l t he p o s s i b l e s i t u a t i o n s r e l a t e d t o t h e f a c t o r y ' s power

b a l a n c e and hea t b a l a n c e and t h e p o s s i b i l i t y o f c o o p e r a t i o n w i t h an e x t e r n a l

TABLE 1.2

E s t i m a t e d a t t a i n a b l e v a l u e s o f t h e c o m p r e s s i o n r a t i o o f j e t compresso rs o p e r a t e d a t d i f f e r e n t l o c a t i o n s i n t h e the rma l sys tem shown i n F i g . 1.9 a t l i v e - s t e a m paramete rs 38 b a r and 450°C.

L o c a t i o n Compress ion r a t i o

a - 1s t e f f e c t v a p o u r t o e x h a u s t steam 2.4 b - 2nd e f f e c t v a p o u r t o e x h a u s t steam 1.1 c - vacuum pan v a p o u r t o e x h a u s t steam 0.3 d - 3 rd e f f e c t v a p o u r t o 2nd e f f e c t v a p o u r 1.5 e - vacuum pan v a p o u r t o 2nd e f f e c t v a p o u r 0.7

Page 30: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

19

F i g . 1.11. T y p i c a l s i n g l e - s t a g e c e n t r i f u g a l c o m p r e s s o r f o r t h e c o m p r e s s i o n o f f i r s t e v a p o r a t o r e f f e c t v a p o u r . A t volume f l o w 50 000 m^/h and r o t a t i o n a l v e l o c i t y 5000 rpm, t h e r o t o r d i a m e t e r i s a b o u t 0.9 m.

power g r i d , i t must be c o n c l u d e d t h a t t h e r e i s no u n i v e r s a l l y o p t i m a l v a p o u r

compress i on t e c h n i q u e . Depending on t h e c o n s t r a i n t s t o be s a t i s f i e d and t h e

economic r e l a t i o n s between t he n e c e s s a r y i n v e s t m e n t s and t h e a t t a i n a b l e e n e r g y

s a v i n g , one t y p e o f equ ipment o r a c o m b i n a t i o n o f bo th may p r e v a i l . Unde r West

European c o n d i t i o n s , i t i s g e n e r a l l y b e l i e v e d t h a t t h e e l e c t r i c a l l y d r i v e n

mechan ica l compresso r r e c i r c u l a t i n g f i r s t - e f f e c t v a p o u r i s most e c o n o m i c .

A l t h o u g h t h i s seems t o be p r o v e d by a number o f r e c e n t i n v e s t m e n t s ( r e f . 1 4 ) ,

t h e e n e r g y - e f f i c i e n t Dan ish f a c t o r i e s employ t u r b i n e - d r i v e n c o m p r e s s o r s

r e c i r c u l a t i n g s e c o n d - e f f e c t v a p o u r ( p o s s i b l y i n c o m b i n a t i o n w i t h j e t - t y p e

c o m p r e s s o r s ) . T h e r e a r e a l s o numerous West European s u g a r f a c t o r i e s r e l y i n g on

j e t - t y p e compresso rs and a t t a i n i n g e x c e l l e n t r e s u l t s ( r e f s . 1 5 , 1 6 ) . I n E a s t e r n

E u r o p e , where t h e economic c o n d i t i o n s a r e d i f f e r e n t , j e t - t y p e c o m p r e s s o r s a r e

u s u a l l y p r e f e r a b l e t o mechan ica l ones ( r e f . 5 ) .

I t may be added t h a t j e t - t y p e compresso rs have r e c e n t l y been s e l e c t e d f o r

v a p o u r c o m p r e s s i o n c i r c u i t s i n Greek and Czech s u g a r f a c t o r i e s ( r e f s . 1 7 , 1 8 ) .

The a p p l i c a t i o n s o f v a p o u r compresso rs a r e d i s c u s s e d i n g r e a t e r d e t a i l i n

C h a p t e r s 3 , 8 and 9.

1.2.8 Pu lp d e h y d r a t i o n

The p u l p d e h y d r a t i o n p r o c e s s i s t y p i c a l l y o p e r a t e d i n p a r a l l e l w i t h t h e

s u g a r m a n u f a c t u r i n g p r o c e s s ( F i g . 1 . 1 2 ( a ) ) . The d e h y d r a t i o n u s u a l l y c o n s i s t s o f

mechan ica l p r e s s i n g o f t h e p u l p t o a d r y - s u b s t a n c e c o n t e n t o f t h e o r d e r o f

Page 31: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

20

(α)

(c)

pw

Lt lue_äqs_J

PP

fuel

αίΓ

(b) α I

ä;i

I

>-! σ ι

t o

1 u 2 3 1 2 3

pw PP d p i

dp

4

dp

CL Ό CL ¿1 σ ι ·

• •

1

1 I

2 3 1 2 3

pw

(d)

PP d p |

α o CL I I

ι

' t lue gas

1 I

2 3 1 2 3

pw

PP d p |

F i g . 1.12. P o s s i b l e schemes f o r t h e p u l p d e h y d r a t i o n p r o c e s s : ( a ) t h e r m a l l y i n d e p e n d e n t , ( b ) t h e r m a l l y i n d e p e n d e n t w i t h gas r e c i r c u l a t i o n , ( c ) p a r t l y h e a t e d w i t h b o i l e r f l u e g a s , ( d ) w i t h t h e u t i l i z a t i o n o f b o i l e r f l u e g a s . pw - p r e s s w a t e r , pp - p r e s s e d p u l p , dp - d r i e d p u l p ; 1 - p r e s s e s , 2 - f u r n a c e , 3 - d r y e r .

20% DS and s u b s e q u e n t the rma l d r y i n g t o abou t 90% DS. W h i l e t h e a v e r a g e e n e r g y

demand i s abou t 1000 kJ p e r kg w a t e r r emoved , t h e c o n t r i b u t i o n s o f t h e two

p r o c e s s e s t o t h i s f i g u r e a r e v e r y d i f f e r e n t i n d e e d . The mechan ica l p r e s s i n g

r e q u i r e s 40-80 k J e l e c t r i c a l e n e r g y p e r kg w a t e r r emoved , w h i l e t h e h e a t demand

i n the rma l d r y i n g i s abou t 3000 kJ p e r kg w a t e r . The d r y i n g and t h e s u b s e q u e n t

p e l l e t i n g o f t h e d r i e d p u l p a r e a l s o a s s o c i a t e d w i t h a power e x p e n d i t u r e o f t h e

o r d e r o f 0.6 kWh p e r 100 kg b e e t p r o c e s s e d .

When compared t o t h e s u g a r m a n u f a c t u r e , t h e u t i l i z a t i o n o f p r i m a r y e n e r g y

s u p p l i e d t o the rma l d r y i n g o f t h e p u l p i s r a t h e r p o o r . A c t u a l l y , i t c a n n o t be

b e t t e r i n a p r o c e s s s t a r t i n g f rom f u e l combus t i on i n a h i g h e x c e s s o f a i r , w h i c h

i s e q u i v a l e n t t o m i x i n g t h e o r e t i c a l l y p o s s i b l e h i g h - t e m p e r a t u r e c o m b u s t i o n gases

w i t h c o l d a i r . T h e r e i s a l s o a l a r g e t e m p e r a t u r e d i f f e r e n c e between t h e gases

and t h e p u l p i n t he d r y e r . F i n a l l y , t h e e n e r g y s t ream i s c a r r i e d away by t h e

o u t l e t gases a f t e r p e r f o r m i n g o n l y one pass t h r o u g h t h e d r y e r .

S u b s t a n t i a l e n e r g y s a v i n g s a r e p o s s i b l e i n p u l p d e h y d r a t i o n i f more w a t e r i s

removed by p r e s s i n g and l e s s by d r y i n g . T h i s can be a c h i e v e d by i n t r o d u c i n g

m ino r p r o c e s s m o d i f i c a t i o n s and a p p l y i n g improved p u l p p r e s s e s , as d i s c u s s e d i n

C h a p t e r 4 . As f a r as t h e c l a s s i c a l the rma l d r y i n g i s c o n c e r n e d , i t can be

c o n c l u d e d t h a t t h e p o s s i b i l i t i e s o f c u t t i n g down t h e e n e r g y e x p e n d i t u r e p e r u n i t

mass o f e v a p o r a t e d w a t e r a r e r a t h e r l i m i t e d . The o n l y e f f e c t i v e e n e r g y - s a v i n g

t e c h n i q u e i s t h e r e c i r c u l a t i o n o f gases f rom the d r y e r o u t l e t , e i t h e r t o t h e

Page 32: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

21

d r y e r i n l e t o r t o t h e f u r n a c e i n l e t ( F i g . 1 . 1 2 ( b ) ) . S a v i n g s o f up t o 10-12% o f

t he p r i m a r y e n e r g y i n p u t can be a t t a i n e d ( r e f s . 1 9 , 2 0 ) . H o w e v e r , an e n t i r e l y new

f i e l d o f p o t e n t i a l e n e r g y s a v i n g s can be opened i f t h e p u l p d r y i n g becomes

t h e r m a l l y i n t e g r a t e d w i t h t he s u g a r m a n u f a c t u r e .

1.2.9 Thermal c o u p l i n g between p u l p d r y i n g and s u g a r manu fac tu re

The e n e r g y b a l a n c e o f p u l p d r y i n g can be c o n s i d e r a b l y improved by u t i l i z i n g

t h e was te h e a t f rom t h e b o i l e r f l u e g a s , as shown s c h e m a t i c a l l y i n F i g s . 1 . 1 2 ( c )

and 1 . 1 2 ( d ) . P o s s i b l e s a v i n g s can be e s t i m a t e d a t up t o 12-15% o f t h e d r y e r ' s

h e a t demand.

P a r a l l e l o p e r a t i o n o f a d r y e r hea ted by f l u e gas and a d r y e r w i t h i t s own

f u r n a c e , a l t h o u g h r e a l i z a b l e , has s e r i o u s drawbacks and i s n o t t o be recommended

( r e f . 1 9 ) . I n an a l t e r n a t i v e s y s t e m , t h e b o i l e r f l u e gas r e p l a c e s t h e a i r

admixed w i t h t h e combus t i on gas i n t h e o u t l e t o f t h e d r y i n g - p l a n t f u r n a c e . As

t he f l u e gas t e m p e r a t u r e i s h i g h e r than t h e a i r t e m p e r a t u r e , l e s s combus t i on gas

and thus l e s s f u e l w i l l be consumed f o r a d e f i n i t e t e m p e r a t u r e a t t h e d r y e r

i n l e t . I t i s a l s o p o s s i b l e t o mix t h e b o i l e r f l u e gas w i t h t h e c o m b u s t i o n a i r

p r i o r t o t h e f u r n a c e , r a i s i n g t h e t e m p e r a t u r e i n t h e f u r n a c e i n l e t and making i t

p o s s i b l e t o r e d u c e t h e f u e l demand.

G e n e r a l l y , t h e use o f b o i l e r f l u e gas s e t s s p e c i a l r e q u i r e m e n t s on t h e d r y e r

c a p a c i t y . As shown i n t h e i n v e s t i g a t i o n s o f drum d r y e r s ( r e f . 2 0 ) , t h e most

e f f e c t i v e h e a t u t i l i z a t i o n i s a t t a i n e d a t a c e r t a i n o p t i m a l l o a d o f t h e d r y e r ' s

drum. Load d e v i a t i o n s f rom the o p t i m a l v a l u e cause t h e h e a t consump t i on p e r kg

w a t e r t o i n c r e a s e .

The d i s p r o p o r t i o n i n e n e r g y u t i l i z a t i o n e f f i c i e n c y o f p u l p d r y i n g and s u g a r

manu fac tu re has r e c e n t l y i n s p i r e d r a t i o n a l i z a t i o n measures aimed a t i n t e n s i f y i n g

t he e n e r g y usage i n f a c t o r i e s emp loy i ng p u l p d r y i n g . A t t h e h i g h - t e m p e r a t u r e end

o f t h e p u l p d r y i n g p r o c e s s , e l e c t r i c i t y g e n e r a t i o n ( p r e f e r a b l y i n a g a s - t u r b i n e

s e t ) i s p r o p o s e d t o u t i l i z e t h e the rma l p o t e n t i a l o f t h e h e a t o b t a i n e d t h r o u g h

f u e l c o m b u s t i o n . The changed r e q u i r e m e n t s o f power house o p e r a t i o n a s s o c i a t e d

w i t h g a s - t u r b i n e a p p l i c a t i o n s a r e d i s c u s s e d i n S e c t i o n 1.5.

A t t h e l o w - t e m p e r a t u r e end o f p u l p d r y i n g , a t t e m p t s a r e made t o use w a s t e

h e a t i n t he o u t l e t gases f rom t h e d r y e r f o r h e a t i n g p u r p o s e s i n s u g a r

m a n u f a c t u r e . As t h e o u t l e t gases c o n t a i n d u s t p a r t i c l e s accompanied by s u l p h u r

d i o x i d e , t h i s must be seen i n c o n n e c t i o n w i t h gas c l e a n i n g . Where gas c l e a n i n g

( p o s s i b l y i n c l u d i n g d e s u l p h u r i z a t i o n ) i s r e q u i r e d f o r e n v i r o n m e n t a l r e a s o n s , i t

may be a d v i s a b l e t o comp le te t h e n e c e s s a r y equ ipment w i t h a h e a t - r e c o v e r y

c i r c u i t . The r e c o v e r e d h e a t can be u t i l i z e d i n j u i c e h e a t i n g o r e v a p o r a t i o n , as

has been demons t ra ted i n p r o t o t y p e p l a n t s ( r e f s . 2 1 , 2 2 ) , T h i s c r e a t e s a d d i t i o n a l

p o s s i b i l i t i e s o f s a t i s f y i n g t h e w a t e r remova l c o n s t r a i n t w h i c h i s so i m p o r t a n t

t o t he e n e r g y b a l a n c e o f s u g a r m a n u f a c t u r e .

Page 33: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

22

A n o t h e r g roup o f r a t i o n a l i z a t i o n measures o r i g i n a t e s f rom t h e i d e a o f

s p l i t t i n g t he p u l p d r y i n g p r o c e s s i n t o p a r t s pe r fo rmed a t d i f f e r e n t t e m p e r a t u r e

l e v e l s ( r e f s . 9 , 1 9 , 2 3 ) . W h i l e t h e h i g h - t e m p e r a t u r e p r o c e s s i s e s s e n t i a l l y

i d e n t i c a l t o c o n v e n t i o n a l d r y i n g , t h e l o w - t e m p e r a t u r e p r o c e s s c r e a t e s new

p o t e n t i a l f o r t he u t i l i z a t i o n o f was te hea t f rom s u g a r manu fac tu re and

r e d u c t i o n s i n o v e r a l l e n e r g y demand o f t h e f a c t o r y . Waste h e a t can be r e c o v e r e d

f rom vacuum pan v a p o u r s , c o n d e n s a t e , s p e n t c a r b o n a t a t i o n gas and even b a r o m e t r i c

w a t e r , r a i s i n g t h e t e m p e r a t u r e o f a i r s u p p l i e d t o t h e l o w - t e m p e r a t u r e d r y e r t o

55-60°C. By remov ing a s u b s t a n t i a l p a r t o f t h e w a t e r f rom t h e p u l p , t h e f u e l

demand can be r e d u c e d i n t h e f i n a l d r y i n g , where t h e r e q u i r e d d r y s u b s t a n c e

c o n t e n t o f t h e d r i e d p u l p i s a t t a i n e d . The economic p o t e n t i a l s s o c i a t e d w i t h

t h i s s o l u t i o n has a l r e a d y been demons t ra ted i n i n d u s t r i a l - s c a l e p l a n t s

( r e f . 2 4 ) .

V e r y p r o m i s i n g c o n c e p t s o f e n e r g y - s a v i n g the rma l c o u p l i n g between p u l p d r y i n g

and o t h e r s u g a r f a c t o r y subsys tems a r e based on t he a p p l i c a t i o n s o f steam

d r y e r s . The i d e a o f steam d r y i n g i s n o t new t o t h e s u g a r i n d u s t r y , b u t i t i s

o n l y r e c e n t l y t h a t i t has become p o s s i b l e t o i n c l u d e t h e d r y e r s - w h e t h e r

s u p p l i e d w i t h l i v e s t eam, o r w i t h e x h a u s t steam o r v a p o u r f rom t h e e v a p o r a t o r -

i n t o the rma l sys tems u s i n g t h e p r i n c i p l e o f m u l t i p l e h e a t u t i l i z a t i o n w h i c h i s

so c h a r a c t e r i s t i c o f s u g a r m a n u f a c t u r e . I f used i n c o m b i n a t i o n w i t h medium- o r

l o w - t e m p e r a t u r e d r y i n g ( r e f s . 2 5 , 2 6 ) , steam d r y i n g makes i t p o s s i b l e t o

e l i m i n a t e p r i m a r y e n e r g y i n p u t t o t h e p u l p d r y i n g p l a n t and t o a t t a i n

c o n s i d e r a b l e o v e r a l l e n e r g y s a v i n g s .

I t must be a d m i t t e d t h a t t h e the rma l c o u p l i n g between p u l p d r y i n g and s u g a r

manu fac tu re g e n e r a l l y r e q u i r e s t h e a p p l i c a t i o n o f r a t h e r c o s t l y e q u i p m e n t .

T h e r e f o r e , t h e p r a c t i c a b l e e n e r g y s a v i n g s a r e h i g h l y dependen t on economic

f a c t o r s , l i k e t he c o s t s o f f u e l and p o w e r , and t h e c a p i t a l c o s t . W i th t h e

e x c e p t i o n o f t he u t i l i z a t i o n o f b o i l e r f l u e g a s , a l l t h e t e c h n i q u e s men t ioned

above s h o u l d be r e g a r d e d as new deve lopmen ts r a t h e r t han s t a n d a r d i n d u s t r i a l

p r a c t i c e ( f o r a more d e t a i l e d d i s c u s s i o n , see C h a p t e r 4 ) .

1.3 HEAT DEMAND

1.3.1 Scope o f t h e prob lems

Sugar i n d u s t r y p e o p l e t e n d t o t h i n k o f t h e l i n k between h e a t economy and t h e

s u g a r m a n u f a c t u r i n g p r o c e s s i n terms o f how much f u e l s h o u l d be b u r n t i n t h e

b o i l e r s i n o r d e r t o make t h e p r o c e s s r u n . As f u e l p r i c e s go u p , h o w e v e r , t h e

q u e s t i o n o f how t h e p r o c e s s can be a l t e r e d i n o r d e r t o r e d u c e t h e h e a t demand

becomes more and more i m p o r t a n t .

I n S e c t i o n 1 .2 , t h r e e q u a n t i t i e s were i n t r o d u c e d t o e x p r e s s t h e

c h a r a c t e r i s t i c s o f t h e h e a t economy: t o t a l h e a t demand n e t h e a t demand

Page 34: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

23

and e f f e c t i v e n e s s r a t i o K. The t r a d i t i o n a l app roach s u g g e s t s t h a t t h e h e a t

economy can be improved by e n s u r i n g t h a t t h e the rma l sys tem i s w e l l d e s i g n e d ,

c a r e f u l l y o p e r a t e d and w e l l m a i n t a i n e d . T h i s means t h a t a t a g i v e n Q- j , a l a r g e Κ

s h o u l d be a t t a i n e d so t h a t Q2 = Q-j /K w i l l become s u f f i c i e n t l y s m a l l .

The p r o c e s s - o r i e n t e d app roach stems f rom t h e o b s e r v a t i o n t h a t t h e n e t h e a t

demand can a l s o be c u t down by r e d u c i n g t h e sum o f h e a t s t reams ( t o t a l h e a t

demand) Q-j. T h i s r e q u i r e s a d j u s t i n g t h e p r o c e s s so as t o make s u g a r m a n u f a c t u r e

l e s s e n e r g y - i n t e n s i v e .

I t s h o u l d be emphas ized t h a t i n i n d u s t r i a l p r a c t i c e , t h e measures t aken t o

i n c r e a s e Κ s h o u l d be t r e a t e d on an equa l b a s i s w i t h t h o s e aimed a t r e d u c i n g Q-j .

I n o t h e r w o r d s , e n e r g y - s a v i n g p r o c e s s a d j u s t m e n t s a r e as i m p o r t a n t as the rma l

sys tem improvements s e r v i n g t h e same p u r p o s e .

I n t h i s S e c t i o n , we s h a l l s t u d y t h e i n f l u e n c e o f p r o c e s s pa rame te rs on t he

sum o f hea t s t reams Q-j . T a k i n g i n t o a c c o u n t t h a t t h e number o f pa rame te rs

c h a r a c t e r i z i n g t h e s u g a r m a n u f a c t u r i n g p r o c e s s and t h e b y - p r o c e s s e s may be q u i t e

l a r g e , we s h a l l r e s t r i c t o u r t r e a t m e n t t o t h e most i m p o r t a n t pa ramete rs t h a t can

a l s o be c o n s i d e r e d a d j u s t a b l e . B e f o r e d i s c u s s i n g t h e d e t a i l s , h o w e v e r , l e t us

ment ion some l i m i t a t i o n s o f t h i s a p p r o a c h .

T h e r e i s much t r u t h i n t h e s a y i n g t h a t s u g a r i s e s s e n t i a l l y p r o d u c e d i n t h e

b e e t f i e l d s and t he f a c t o r y i s o n l y p r o c e s s i n g i t . The i n f l u e n c e o f b e e t g r o w i n g

on t he f a c t o r y ' s h e a t demand i s a t l e a s t t w o f o l d :

( i ) An i n c r e a s e d s u g a r c o n t e n t o f b e e t s i s e q u i v a l e n t t o a r e l a t i v e r e d u c t i o n o f

t h e i n t a k e o f w a t e r and n o n - s u g a r s t o t h e s u g a r m a n u f a c t u r i n g p r o c e s s . As t h e

s u g a r c o n t e n t i s i n c r e a s e d f rom 16 t o 19%, a h e a t s a v i n g ( p e r 1 kg s u g a r

p r o d u c e d ) o f t h e o r d e r o f 6% can be o b t a i n e d .

( i i ) A r e d u c e d c o n t e n t o f n o n - s u g a r s i n b e e t s , t h a t i s , a h i g h e r j u i c e p u r i t y ,

p o s i t i v e l y a f f e c t s t h e mass b a l a n c e s o f t h e p u r i f i c a t i o n and c r y s t a l l i z a t i o n

p r o c e s s e s . As r a w - j u i c e p u r i t y i s i n c r e a s e d f rom 88.5 t o 90%, t h e r e s u l t i n g h e a t

s a v i n g ( p e r 1 kg b e e t ) amounts t o abou t 3%.

U n d e r s t a n d a b l y e n o u g h , d e s p i t e t h i s i n t e r e s t i n g e n e r g y - s a v i n g p o t e n t i a l , i t

i s i m p o s s i b l e t o a d j u s t t he b e e t p r o p e r t i e s q u i c k l y by t a k i n g some t e c h n i c a l l y -

o r i e n t e d measures . T h e r e f o r e , t h e p rob lems o f b e e t g r o w i n g must be c o n s i d e r e d

as be ing beyond t h e scope o f t h e p r e s e n t book .

The e n e r g y demands o f s u g a r manu fac tu re may v a r y c o n s i d e r a b l y , depend ing on

t he t y p e and q u a l i t y o f t he s u g a r . When c o n s i d e r i n g t h e e n t i r e f a c t o r y , o t h e r

f a c t o r s o f impo r tance a r e t h e t y p e and q u a l i t y o f t h e b y - p r o d u c t s , w h e t h e r o r

n o t t h i c k - j u i c e s t o r a g e f o r s u b s e q u e n t p r o c e s s i n g i s e m p l o y e d , w h e t h e r o r n o t

s y r u p s a r e s o l d , e t c . I n t h e c o n t e m p o r a r y s u g a r i n d u s t r y , w h i t e s u g a r

manu fac tu re and t h e c l a s s i c a l o p e r a t i o n a r e d o m i n a n t , b e i n g o f t e n accompanied by

the p r o d u c t i o n o f d r i e d p u l p . Ou r t r e a t m e n t w i l l t h e r e f o r e c o n c e n t r a t e on w h i t e

Page 35: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

24

s u g a r f a c t o r i e s , w i t h p u l p d r y i n g t aken i n t o a c c o u n t .

R e t u r n i n g now t o t h e p rob lems t h a t a r e w e l l w i t h i n t h e scope o f t h i s b o o k ,

l e t us quo te t h e f o l l o w i n g a c c o u n t g i v e n by S c h i e b l ( r e f . 1) h a l f a c e n t u r y a g o :

" T h e h e a t i n g steam demand can be d e c r e a s e d i f t h e f o l l o w i n g c o n d i t i o n s a r e

s a t i s f i e d :

- t h e steam demand f o r a u x i l i a r y p u r p o s e s and f o r s u g a r wash i n c e n t r i f u g a l s i s

d e c r e a s e d ,

- t h e f a c t o r y i s o p e r a t e d a t low j u i c e d r a f t ,

- a h i g h c o n c e n t r a t i o n o f t h i c k j u i c e i s m a i n t a i n e d .

A t t h e p r e s e n t s t a t e o f deve lopment o f b e e t s u g a r t e c h n o l o g y , t h e r e a r e no o t h e r

p o s s i b i l i t i e s o f d e c r e a s i n g t h e h e a t demand."

T h i n g s have changed c o n s i d e r a b l y s i n c e t h e s e words were p u b l i s h e d . T h e r e i s

a v a s t l i t e r a t u r e d e v o t e d t o t he methods o f r e d u c i n g t he h e a t demand f o r s u g a r

m a n u f a c t u r e , and t he most i m p o r t a n t s o u r c e s w i l l be r e f e r r e d t o i n t h e

f o l l o w i n g .

I n s t e a d o f naming a few s e l e c t e d e n e r g y - s a v i n g m e a s u r e s , as S c h i e b l d i d ( a n d ,

a c t u a l l y , many o t h e r a u t h o r s t o o ) , l e t us adop t a top -down a p p r o a c h , f i r s t

t a k i n g a b r o a d e r v i e w o f t h e f i e l d o f e x i s t i n g p o s s i b i l i t i e s and t h e n t r y i n g t o

d e f i n e s m a l l e r a reas o f s p e c i a l i n t e r e s t . The n o t i o n o f t h e sum o f h e a t s t reams

can be u t i l i z e d as a s t a r t i n g p o i n t . F o r a s p e c i f i c s u g a r f a c t o r y , i t can be

c o n v e n i e n t l y s p l i t i n t o t h r e e components

where Q ] Q i s t h e sum o f h e a t s t reams t h a t a r e n e c e s s a r y f o r c a r r y i n g o u t u n i t

o p e r a t i o n s t o w h i c h hea t must be d e l i v e r e d , l i k e h e a t i n g , e v a p o r a t i o n ,

c r y s t a l l i z a t i o n and d r y i n g ; Q-j^ i s t h e t o t a l hea t s t ream needed t o b a l a n c e h e a t

d i s s i p a t i o n f rom t h e s e o p e r a t i o n s , and Q-j ^ i s t h e t o t a l h e a t s t ream needed t o

h e a t t h e rooms i n t h e f a c t o r y b u i l d i n g s .

The l a s t q u a n t i t y i s d e l i b e r a t e l y , even i f u n t y p i c a l l y , c o n s i d e r e d t o g e t h e r w i t h

t h e p r o c e s s h e a t demand. As f a r as t h e e n e r g y s u p p l y v i a t h e the rma l sys tem i s

c o n c e r n e d , t h e r e i s no r e a s o n f o r a s e p a r a t e t r e a t m e n t because room h e a t i n g i s

a l s o n e c e s s a r y f o r f a c t o r y o p e r a t i o n .

L e t us o b s e r v e t h a t a t d e f i n i t e p r o c e s s p a r a m e t e r s , components Q-j^ and Q-j^

may depend on f a c t o r s t h a t a r e n o t s p e c i f i c t o t h e p r o c e s s , l i k e t h e q u a l i t y o f

the rma l i n s u l a t i o n o r t h e e f f i c i e n c y o f room h e a t i n g e q u i p m e n t . C o n s e q u e n t l y , i t

may be p o s s i b l e t o c u t down Q-j^ and Q - , ^ , t hus r e d u c i n g t h e t o t a l h e a t s t r e a m ,

w i t h o u t i n t r o d u c i n g any changes t o t h e p r o c e s s . E n e r g y s a v i n g s o f t h i s k i n d a r e

t h e e a s i e s t t o a c h i e v e and w i l l be d i s c u s s e d f i r s t .

The component Q-j^ can be c u t down by a v a r i e t y o f t e c h n i q u e s , t h a t can be

g rouped w i t h r e g a r d t o t h e p r i n c i p l e s a c c o r d i n g t o w h i c h t h e e n e r g y i s s a v e d .

L e t us d e f i n e t h r e e g r o u p s :

Page 36: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

25

- r e d u c t i o n s o f t he w a t e r i n t a k e t o t h e s u g a r m a n u f a c t u r i n g p r o c e s s ,

- r e d u c t i o n s o f t he w a t e r t r a n s f e r f rom o t h e r f a c t o r y s e c t i o n s t o t h e s u g a r

h o u s e ,

- i n t r o d u c t i o n o f m o d i f i e d o r new e n e r g y - e f f i c i e n t p r o c e s s e s .

T h i s S e c t i o n i s d e v o t e d t o t h e e n e r g y - s a v i n g measures t h a t can be t a k e n

i n d e p e n d e n t l y o f , o r w i t h i n t he f ramework o f , t h e c o n v e n t i o n a l s u g a r

m a n u f a c t u r i n g p r o c e s s . M o d i f i e d o r new p r o c e s s e s a r e d i s c u s s e d i n C h a p t e r 4 .

1.3.2 H e a t i n g o f f a c t o r y b u i l d i n g s

I n t h o s e p a r t s o f t h e f a c t o r y b u i l d i n g s where a c o m f o r t a b l e t e m p e r a t u r e i s

needed f o r w o r k i n g p e o p l e , h e a t i n g may be n e c e s s a r y d u r i n g t h e o p e r a t i n g and

a p a r t o f t he o f f - s e a s o n p e r i o d . W h i l e t h e f a c t o r y i s i n o p e r a t i o n , t h e h e a t

demand Q ^ ^ i s a sma l l f r a c t i o n o f t h e sum o f t h e h e a t s t reams and t h u s n o t v e r y

i m p o r t a n t t o t he d e s i g n o f t h e the rma l s y s t e m , and c o n t r i b u t e s v e r y l i t t l e t o

the n e t h e a t demand o f t h e f a c t o r y . Depend ing on t h e c l i m a t i c c o n d i t i o n s and t h e

p r o c e s s h e a t demand, h o w e v e r , t he h e a t consumpt i on i n room h e a t i n g d u r i n g t h e

e n t i r e h e a t i n g p e r i o d may be r e s p o n s i b l e f o r 4-6% o f t he f a c t o r y ' s t o t a l annua l

e n e r g y c o n s u m p t i o n .

As c u t t i n g down the hea t demand i n room h e a t i n g i n s t a l l a t i o n s r e q u i r e s

s o l v i n g prob lems t h a t a r e n o t s p e c i f i c t o t h e s u g a r i n d u s t r y , no d e t a i l s w i l l be

d i s c u s s e d h e r e . The main p o i n t s t o be c o n s i d e r e d , p a r t i c u l a r l y i n o l d e r

f a c t o r i e s , a r e :

- improvements o f t he the rma l i n s u l a t i o n o f f a c t o r y b u i l d i n g s ,

- r e d u c t i o n o f t h e h e a t l o s s e s f rom t h e h e a t d i s t r i b u t i o n sys tem ( b y i m p r o v i n g

the rma l i n s u l a t i o n o f t h e h o t - w a t e r p i p e s , i n t r o d u c i n g e f f e c t i v e f l o w c o n t r o l

me thods , e t c . ) ,

- i n t r o d u c t i o n o f a u t o m a t i c r o o m - t e m p e r a t u r e c o n t r o l t o p r e v e n t l o c a l

o v e r h e a t i n g , t hus e l i m i n a t i n g h e a t l o s s e s caused by e x c e s s i v e v e n t i l a t i o n .

When s e l e c t i n g s u i t a b l e h e a t s o u r c e s t o c o v e r t h e hea t demand f o r h e a t i n g

p u r p o s e s , use can be made o f w a s t e - h e a t s u p p l i e s t h a t a r e c h a r a c t e r i s t i c o f t h e

s u g a r i n d u s t r y . As shown i n a s t u d y c a r r i e d o u t f o r a Swed ish s u g a r f a c t o r y

( r e f . 2 7 ) , more than 90% o f t h e hea t demand f o r room h e a t i n g d u r i n g o p e r a t i o n s

can be c o v e r e d by s u p p l y i n g h o t c o n d e n s a t e f rom vacuum p a n s . Unde r M i d d l e -

European c l i m a t i c c o n d i t i o n s , t h i s c o r r e s p o n d s t o 1/4 o f t h e f a c t o r y ' s annua l

hea t consumpt ion f o r h e a t i n g p u r p o s e s , o r an e q u i v a l e n t o f 1-1.5% o f t h e t o t a l

annual e n e r g y c o n s u m p t i o n .

U s i n g more advanced t e c h n i q u e s , t he was te h e a t can be accumu la ted d u r i n g

o p e r a t i o n s and u t i l i z e d f o r h e a t i n g d u r i n g t h e o f f - s e a s o n p e r i o d . F o r e x a m p l e ,

warm w a t e r can be s t o r e d u n d e r g r o u n d and l a t e r s u p p l i e d t o a h e a t pump. The

r e a l i z a b l e s a v i n g s have been e s t i m a t e d a t 60-70% o f t h e f a c t o r y ' s annua l h e a t

consumpt ion f o r h e a t i n g p u r p o s e s , t h a t i s , 2 .4-4 .2% o f t h e t o t a l annua l e n e r g y

Page 37: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

26

c o n s u m p t i o n . H o w e v e r , t h e economic p o t e n t i a l o f t h i s s o l u t i o n depends h e a v i l y on

f u e l and power p r i c e s , as w e l l as c a p i t a l c o s t . F o r e x a m p l e , a c o m b i n a t i o n o f

cheap f u e l and r e l a t i v e l y c o s t l y power c o u n t e r a c t s t h e p r o f i t a b i l i t y o f h e a t -

pump a p p l i c a t i o n s , j u s t i f y i n g r a t h e r t h e u t i l i z a t i o n , d u r i n g t h e o f f - s e a s o n

p e r i o d , o f a c o n v e n t i o n a l h e a t i n g sys tem i n w h i c h hea t i s g e n e r a t e d by b u r n i n g

f u e l i n a b o i l e r . F o r such a s o l u t i o n t o be c o m p e t i t i v e , a h i g h b o i l e r

e f f i c i e n c y i s r e q u i r e d .

1.3.3 Heat d i s s i p a t i o n f rom t h e p r o c e s s

Heat l o s s e s f rom t h e s u g a r m a n u f a c t u r i n g p r o c e s s t o t h e e n v i r o n m e n t a r e

caused b y :

- mass and h e a t exchange between t h e a tmosphere and f r e e s u r f a c e s o f h i g h -

t e m p e r a t u r e media i n open t a n k s , s i p h o n s and d i s t r i b u t o r s ,

- hea t exchange between t he a i r and t h e s u r f a c e s o f p r o c e s s equ ipment and

p i p i n g .

I n F i g . 1 .13, t h e e s t i m a t e d h e a t d i s s i p a t i o n f rom t h e w a t e r s u r f a c e i n an

open v e s s e l , a t t y p i c a l ambien t t e m p e r a t u r e , i s shown as a f u n c t i o n o f w a t e r

t e m p e r a t u r e ( r e f . 2 8 ) . A s i m i l a r r a t e o f h e a t d i s s i p a t i o n can be e x p e c t e d a t

20000

10 000

- 5000

o ω χ

2000

1000

500

200

water agi tated

\ \

W ( 3ter at rest

40 50 60 70 80

Water temperature (°C)

90 100

F i g . 1.13. Heat l o s s f rom t h e s u r f a c e o f w a t e r i n an open tank ( a f t e r r e f . 2 8 ) .

Page 38: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

27

f r e e j u i c e s u r f a c e s i n t h e j u i c e p u r i f i c a t i o n s t a t i o n , w h i l e t h e h e a t t r a n s f e r

between a i r and m a s s e c u i t e s u r f a c e s i n open v e s s e l s i s l e s s i n t e n s i v e . I f no

p r e c a u t i o n s a r e t a k e n , t h e combined e f f e c t o f h e a t l o s s e s f rom t h e f r e e s u r f a c e s

o f p r o c e s s media i n open v e s s e l s and s i p h o n s may e a s i l y a t t a i n a l e v e l

c o r r e s p o n d i n g t o h e a t i n g - s t e a m consumpt ion o f t h e o r d e r 1-3 kg/100 kg b e e t . I t

i s t hus a d v i s a b l e t o m i n i m i z e t h e a r e a o f f r e e c o n t a c t between a t m o s p h e r i c a i r

and h i g h - t e m p e r a t u r e med ia , by p r o p e r l y s h a p i n g t h e equ ipment u n i t s o r a p p l y i n g

s c r e e n s o r c o v e r s mounted on t h e e q u i p m e n t .

Heat l o s s e s f rom t h e s u r f a c e s o f p r o c e s s equ ipment and p i p i n g depend on t h e

t o t a l s u r f a c e a r e a and t he q u a l i t y o f t he rma l i n s u l a t i o n . When s h a p i n g t h e

equ ipment and p i p i n g i n new o r m o d e r n i z e d f a c t o r i e s , c a r e s h o u l d be t aken o f

t he t r a n s p o r t r o u t e s o f h i g h - t e m p e r a t u r e m e d i a , so t h a t t h e o u t e r s u r f a c e a r e a

o f t h e p i p e s i s m i n i m i z e d . Heat l o s s e s w i l l a l s o be reduced i f t h e number o f

ba re v a l v e s and o t h e r p i p i n g components a l o n g t h e t r a n s p o r t r o u t e s i s m i n i m i z e d .

N o r m a l l y , h e a t l o s s e s f rom a b a r e v a l v e a r e l a r g e r t han f rom 1 m o f t h e p i p e .

The p i p e - l e n g t h e q u i v a l e n t o f a h e a t - d i s s i p a t i n g b a r e f l a n g e i s u s u a l l y abou t

0.5 m. I n F i g . 1.14, t h e e s t i m a t e d h e a t d i s s i p a t i o n f rom b a r e p i p e s , a t t y p i c a l

ambient t e m p e r a t u r e , i s shown as a f u n c t i o n o f t h e t e m p e r a t u r e o f t h e f l u i d

c o n t a i n e d i n t h e p i p e s ( r e f . 2 8 ) .

I t i s d i f f i c u l t t o g i v e q u a n t i t a t i v e i n f o r m a t i o n on t he e n e r g y s a v i n g s w h i c h

4000

2000

_ 1000 4 α Q .

α Φ

100 150

Fluid temperature (°C)

200

F i g . 1.14. Heat l o s s f rom t h e s u r f a c e o f a b a r e p i p e ( a f t e r r e f . 2 8 ) .

Page 39: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

28

can be a t t a i n e d by i m p r o v i n g t h e the rma l i n s u l a t i o n , as t h i s depends on t h e

i n i t i a l l o s s l e v e l t o w h i c h t h e s a v i n g s must be compared . I n F i g . 1 .15, t h e

r e l a t i o n s h i p between hea t d i s s i p a t i o n and i n s u l a t i o n t h i c k n e s s a t a d e f i n i t e

p i p e d i a m e t e r i s shown ( r e f . 2 8 ) . Unde r g i v e n economic c o n d i t i o n s , t h e r e i s

a t r a d e - o f f between t h e c o s t o f i n s u l a t i o n and t h e c o s t o f e n e r g y l o s t t o t h e

e n v i r o n m e n t . Depending on l o c a l c o n d i t i o n s , t h e e c o n o m i c a l l y j u s t i f i e d l o s s

l e v e l ( t o be a c c o u n t e d f o r when c o n s i d e r i n g i n s u l a t i o n improvemen ts ) may v a r y

( r e f . 2 9 ) . I t can be e s t i m a t e d t h a t t h e " e n e r g y e q u i v a l e n t " o f t h e d i f f e r e n c e

between p o o r and s a t i s f a c t o r y i n s u l a t i o n o f p r o c e s s equ ipment and p i p i n g i s o f

t he o r d e r o f 4-6% o f t h e sum o f t h e h e a t s t r e a m s .

300

25 50 75 100 Insulat ion thickness (mm)

F i g . 1.15. Heat l o s s f rom t h e s u r f a c e o f an i n s u l a t e d p i p e as a f u n c t i o n o f i n s u l a t i o n t h i c k n e s s ( a f t e r r e f . 2 8 ) .

The hea t d i s s i p a t i o n can a l s o be e f f e c t i v e l y r educed by d e c r e a s i n g t h e

t e m p e r a t u r e l e v e l o f t h e p r o c e s s o r i t s s e c t i o n s . The hea t f l u x r e s u l t i n g f rom

f r e e c o n v e c t i o n f rom a s u r f a c e a t a b s o l u t e t e m p e r a t u r e Τ t o an e n v i r o n m e n t

c h a r a c t e r i z e d by a b s o l u t e t e m p e r a t u r e T ^ i s a f u n c t i o n o f t h e d i f f e r e n c e

ΔΤ = Τ - T g , namely

q ^ = Α ^ ( Δ Τ ) ^ · 2 5 ( ^ 5 )

where i s a c o n s t a n t depend ing on g e o m e t r i c f a c t o r s .

P r o v i d i n g t he t e m p e r a t u r e d i f f e r e n c e ΔΤ i s sma l l i n compar i son w i t h t h e s u r f a c e

t e m p e r a t u r e T , t h e r a d i a t i o n h e a t f l u x can be e x p r e s s e d by t h e f o l l o w i n g

a p p r o x i m a t e r e l a t i o n s h i p

= A ^ T V ( 1 . 6 )

where A ^ i s a c o n s t a n t depend ing on s u r f a c e p r o p e r t i e s and g e o m e t r i c f a c t o r s .

Page 40: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

29

I t f o l l o w s f rom t h e above f o r m u l a e t h a t i f t h e s u r f a c e t e m p e r a t u r e Τ i s

d e c r e a s e d a t a c o n s t a n t e n v i r o n m e n t t e m p e r a t u r e T ^ , t h e n t h e r e l a t i v e r e d u c t i o n

i n o v e r a l l h e a t f l u x + q^^ i s l a r g e r t h a n t h e r e l a t i v e r e d u c t i o n i n

t e m p e r a t u r e d i f f e r e n c e Τ - T ^ . T a k i n g i n t o a c c o u n t t h a t t he h e a t l o s s r e d u c t i o n

a p p l i e s t o a t o t a l o f 2-3% o f t h e sum o f t h e h e a t s t r e a m s , o n l y a s u b s t a n t i a l

t e m p e r a t u r e r e d u c t i o n i s r e a l l y i n t e r e s t i n g . O b v i o u s l y , any t e m p e r a t u r e changes

must be t r e a t e d c a u t i o u s l y because o f t he r i s k o f i n t e r f e r i n g w i t h t h e p r o c e s s .

I t has been d e m o n s t r a t e d i n p r a c t i c e t h a t t h e t e m p e r a t u r e i n t h e j u i c e

p u r i f i c a t i o n s t a t i o n can be s u b s t a n t i a l l y r e d u c e d . I n s s p e c i f i c f a c t o r y , t h i s

i s p o s s i b l e o n l y t o the e x t e n t w h i c h can be a c c e p t e d f rom t h e p o i n t o f v i e w o f

p u r i f i c a t i o n r e s u l t s . No g e n e r a l p r e s c r i p t i o n s can be g i v e n h e r e , as t h e

p r a c t i c a b l e t e m p e r a t u r e changes a r e c o n s t r a i n e d by such l o c a l f a c t o r s as b e e t

q u a l i t y and i t s v a r i a t i o n s , r e q u i r e d p u r i f i c a t i o n e f f e c t , equ ipment p r o p e r t i e s

and so o n . Under t h e c o n d i t i o n s c h a r a c t e r i s t i c o f Greek s u g a r f a c t o r i e s ,

p o s s i b l e t e m p e r a t u r e a d j u s t m e n t s have been d i s c u s s e d i n t h e l i t e r a t u r e ( r e f . 3 0 ) .

The p u r i f i c a t i o n method c o n s i d e r e d i s a c l a s s i c a l one c o m p r i s i n g p r o g r e s s i v e

p r e - l i m i n g , main l i m i n g , and d o u b l e - s t a g e c a r b o n a t a t i o n and f i l t r a t i o n . I n F i g .

1.16, t he j u i c e t e m p e r a t u r e i s shown as a f u n c t i o n o f t h e a v e r a g e t ime i t t akes

f o r t he j u i c e t o r e a c h c o n s e c u t i v e p r o c e s s s e c t i o n s . A t a g i v e n p r o c e s s i n g

c a p a b i l i t y , t h i s t ime r e p r e s e n t s t h e volume o f p r o c e s s equ ipment and p i p i n g as

40 60 T i m e ( m i n i

100

F i g . 1.16. J u i c e t e m p e r a t u r e v s . t ime i n j u i c e p u r i f i c a t i o n s t a t i o n s : A - w i t h h o t main l i m i n g o n l y , Β - w i t h c o l d and h o t main l i m i n g . 1 - e x t r a c t i o n , 2 -p r e - l i m i n g , 3 - h e a t i n g o f p r e - l i m e d j u i c e , 4 - main l i m i n g , 5 - 1 s t c a r b o n a t a t i o n , 6 - j u i c e h e a t i n g b e f o r e 1 s t f i l t r a t i o n , 7 - 1 s t f i l t r a t i o n , 8 -j u i c e h e a t i n g b e f o r e 2nd c a r b o n a t a t i o n , 9 - 2nd f i l t r a t i o n , 10 - h e a t i n g o f t h i n j u i c e ( a f t e r r e f . 3 0 ) .

Page 41: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

30

w e l l a s , by a n o n l i n e a r t r a n s f o r m a t i o n , t h e a r e a o f o u t e r s u r f a c e s o f equ ipment

and p i p i n g . The d iag ram v i s u a l i z i n g t e m p e r a t u r e as a f u n c t i o n o f t ime t h u s

demons t ra tes t h e h e a t d i s s i p a t i o n p o t e n t i a l o f t he j u i c e p u r i f i c a t i o n s t a t i o n .

As can be s e e n , t h i s p o t e n t i a l ( a p p r o x i m a t e l y r e p r e s e n t e d by t h e s u r f a c e a r e a

under t h e r e s p e c t i v e c u r v e ) i s much s m a l l e r i n case Β than i n case A . T h i s i s

a r e s u l t o f t he a p p l i c a t i o n o f main l i m i n g pe r fo rmed e s s e n t i a l l y a t a low

t e m p e r a t u r e , w i t h a smal l h i g h - t e m p e r a t u r e s e c t i o n o n l y . O t h e r c o n t r i b u t i n g

f a c t o r s a r e : s h o r t r e t e n t i o n t ime o f t h e f i l t r a t i o n o p e r a t i o n s , and a r e l a t i v e l y

low t e m p e r a t u r e o f t h e second c a r b o n a t a t i o n . I t i s r e a l i s t i c t o e x p e c t t h a t i n

case B, t he h e a t consumpt ion w i l l be l e s s t han h a l f o f t h a t i n case A . A l t h o u g h

t he e x a c t f i g u r e wou ld depend on l o c a l c o n d i t i o n s , i t can be e s t i m a t e d t h a t t h e

h e a t demand i n j u i c e p u r i f i c a t i o n w i l l be r e d u c e d t o as low a l e v e l as t h e

e q u i v a l e n t o f abou t 5 kg h e a t i n g steam p e r 100 kg b e e t .

A n o t h e r i n t e r e s t i n g s t u d y on p o s s i b l e t e m p e r a t u r e r e d u c t i o n s i n t h e j u i c e

p u r i f i c a t i o n s t a t i o n has been p u b l i s h e d by S o v i e t a u t h o r s ( r e f . 3 1 ) . I t has been

shown i n a s p e c i f i c s u g a r f a c t o r y t h a t t h e a v e r a g e t e m p e r a t u r e can be d e c r e a s e d

i f p r e - c a r b o n a t a t i o n i s i n t r o d u c e d a t 60°C w i t h t h e CaO r a t e abou t 45% o f t h e

t o t a l . A l t h o u g h t he t e m p e r a t u r e o f t h e f i r s t c a r b o n a t a t i o n remains unchanged a t

85°C, t he hea t l o s s o c c u r r i n g t h e r e i s s u b s t a n t i a l l y r e d u c e d due t o a l o w e r CaO

r a t e (40% o f t he t o t a l , a g a i n s t 80% i n t he o r i g i n a l p r o c e s s ) . The t e m p e r a t u r e o f

t h e second c a r b o n a t a t i o n i s d e c r e a s e d f rom 95^C t o 75^C. The r e s u l t i n g r e d u c t i o n

i n t he hea t d i s s i p a t e d f rom t h e j u i c e p u r i f i c a t i o n p r o c e s s t o t h e e n v i r o n m e n t

can be e s t i m a t e d a t abou t 60%.

P o t e n t i a l t e m p e r a t u r e r e d u c t i o n s i n o t h e r s e c t i o n s o f t h e s u g a r m a n u f a c t u r i n g

p r o c e s s a r e l i m i t e d , b u t s t i l l p o s s i b l e . A n o t h e r s t u d y by S o v i e t a u t h o r s ( r e f .

32) i n d i c a t e s t h a t i n a s p e c i f i c f a c t o r y , t h e b o i l i n g t e m p e r a t u r e s o f A , Β and C

m a s s e c u i t e s can be d e c r e a s e d by abou t 5 K, 10 Κ and 15 K, r e s p e c t i v e l y . A l t h o u g h

t h e new t e m p e r a t u r e reg ime i s aimed a t c u t t i n g down the s u g a r l o s s e s caused by

thermal decay o f s u c r o s e i n vacuum p a n s , t h e hea t d i s s i p a t i o n f rom t h e s u g a r

house can a l s o be r e d u c e d .

1.3.4 Water i n t a k e t o t he p r o c e s s

Most o f t he w a t e r s u p p l i e d t o t h e s u g a r m a n u f a c t u r i n g p r o c e s s i n b e e t s o r

o t h e r mass s t reams ( F i g . 1.17) must u l t i m a t e l y be removed , m a i n l y as v a p o u r o r

as h o t c o n d e n s a t e . The a s s o c i a t e d hea t e x p e n d i t u r e i s a p p r o x i m a t e l y p r o p o r t i o n a l

t o t he amount o f w a t e r s u p p l i e d . I f t h i s amount i s r e d u c e d , and p r o v i d i n g t h e r e

i s no s e r i o u s i n t e r f e r e n c e w i t h t h e p r o c e s s , t hen e n e r g y s a v i n g s can be

o b t a i n e d . The most i m p o r t a n t measures based on t h i s p r i n c i p l e a r e :

- r e d u c t i o n o f t he j u i c e d r a f t ,

- e l i m i n a t i o n o f u n n e c e s s a r y w a t e r a d d i t i o n s t o t h e j u i c e , p a r t i c u l a r l y i n t h e

j u i c e p u r i f i c a t i o n s t a t i o n .

Page 42: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

31

water

cosset tes pressed pulpl

..LX sludge

vapour vapour

sugar to d r y e r

molasses

condensate

F i g . 1.17. Main s t reams o f w a t e r and w a t e r - c o n t a i n i n g media e n t e r i n g o r l e a v i n g a s u g a r f a c t o r y . 1 - p r o c e s s a r e a , 2 - e x t r a c t i o n s t a t i o n , 3 - j u i c e p u r i f i c a t i o n s t a t i o n , 4 - e v a p o r a t o r , 5 - s u g a r h o u s e , 6 - c o n d e n s a t e t a n k , 7 - c o n d e n s e r .

- r e d u c t i o n o f t h e w a t e r i n t a k e t o t h e s u g a r h o u s e .

I t i s a l s o p o s s i b l e t o r educe t h e t o t a l w a t e r i n t a k e by i n t r o d u c i n g new

p r o c e s s e s ; e n e r g y - s a v i n g measures o f t h i s k i n d a r e c o n s i d e r e d i n C h a p t e r 4 .

The j u i c e d r a f t , i . e . t h e r a t i o o f r a w - j u i c e f l o w t o c o s s e t t e s f l o w , c a n n o t

be j u d g e d on t he b a s i s o f hea t e x p e n d i t u r e o n l y , as i t i s c e r t a i n l y one o f t h e

most i m p o r t a n t v a r i a b l e s g o v e r n i n g t h e e x t r a c t i o n p r o c e s s , i n f l u e n c i n g a l s o t h e

s u g a r l o s s i n e x h a u s t e d c o s s e t t e s . The s u g a r l o s s depends a l s o on b e e t q u a l i t y ,

c o s s e t t e s q u a l i t y , and on pH and t e m p e r a t u r e d i s t r i b u t i o n s i n t h e e x t r a c t o r , and

t h o s e f a c t o r s may v a r y d u r i n g t he o p e r a t i n g p e r i o d . I t may t h e r e f o r e be

n e c e s s a r y t o v a r y t h e j u i c e d r a f t so as t o keep t h e s u g a r l o s s a t an a c c e p t a b l y

low l e v e l , and t h i s r e q u i r e m e n t may e v e n t u a l l y c l a s h w i t h t h e e n e r g y - b a s e d

r e q u i r e m e n t o f d r a f t m i n i m i z a t i o n .

I f t h e e n e r g y s a v i n g s a r e l a r g e e n o u g h , t h e n t he l o c a l economic c o n d i t i o n s

may s t i m u l a t e d r a f t r e d u c t i o n even a t t h e c o s t o f i n c r e a s e d s u g a r l o s s

( p a r t i c u l a r l y i f s u g a r r e t e n t i o n i n c r e a s e s t h e v a l u e o f e x h a u s t e d c o s s e t t e s s o l d

as f o d d e r ) . T h i s s i t u a t i o n has been a n a l y s e d f o r t r o u g h - and t o w e r - t y p e

e x t r a c t o r s ( r e f . 3 3 ) . Assuming a s u g a r c o n t e n t i n p r e s s e d p u l p o f abou t 2%, i . e .

a s u g a r l o s s abou t 0.6%, j u i c e d r a f t v a l u e s as low as 95.5% f o r a t r o u g h - t y p e

e x t r a c t o r and 98.6% f o r a t o w e r - t y p e e x t r a c t o r have been c o n s i d e r e d . The

r e s u l t i n g e n e r g y s a v i n g s have been e s t i m a t e d a t 5-10% o f t h e f a c t o r y ' s demand

f o r p r i m a r y e n e r g y .

A c t u a l l y , t he p r i c e s o f f u e l s and s u g a r seem t o s t i m u l a t e f a c t o r y o p e r a t i o n

a t an e x t r a c t i o n l o s s s u b s t a n t i a l l y l o w e r t han t h e above v a l u e , so t h e j u i c e

d r a f t s h o u l d be reduced by m o d i f y i n g t h e e x t r a c t i o n p r o c e s s . T h i s depends m a i n l y

on equ ipment a d j u s t m e n t s ( s e e C h a p t e r 5 ) .

Page 43: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

32

The w a t e r i n t a k e t o t h e j u i c e p u r i f i c a t i o n s t a t i o n r e s u l t s m a i n l y f rom m i l k -

o f - l i m e a d d i t i o n s t o t he j u i c e and c a r b o n a t a t i o n s l u d g e s w e e t e n i n g - o f f i n t h e

f i l t e r s . A t y p i c a l m i l k - o f - l i m e c o m p o s i t i o n i s 20% CaO and 80% w a t e r , and t h e

CaO r a t e i s o f t h e o r d e r o f 2 kg p e r 1 kg b e e t . The w a t e r i n t a k e i n t h e m i l k - o f -

l ime can be m i n i m i z e d by m a i n t a i n i n g a low CaO r a t e and h i g h CaO c o n c e n t r a t i o n ,

b u t under no c i r c u m s t a n c e s can a r e d u c t i o n o f t h e j u i c e p u r i f i c a t i o n e f f e c t be

a l l o w e d . T h e r e f o r e , a p r e r e q u i s i t e f o r t h i s k i n d o f e n e r g y s a v i n g i s t o a p p l y

p r o p e r l y d e s i g n e d p r o c e s s equ ipment and e f f e c t i v e a u t o m a t i c c o n t r o l o f key

p r o c e s s v a r i a b l e s . U n n e c e s s a r y w a t e r can a l s o be l a r g e l y e l i m i n a t e d i f l i m e

s l a k i n g i s pe r fo rmed u s i n g j u i c e t apped f rom a p r o p e r l y s e l e c t e d p l a c e i n t h e

j u i c e p u r i f i c a t i o n s t a t i o n ( t y p i c a l l y , j u i c e s e p a r a t e d f rom s u b s i d e r s l u d g e i s

u s e d ) .

The s i t u a t i o n w i t h t he s l u d g e s w e e t e n i n g - o f f i s t o some e x t e n t s i m i l a r t o

t h a t w i t h c o s s e t t e s e x h a u s t i o n , namely t h a t t h e r e i s a t r a d e - o f f between t h e

amount o f w a t e r s u p p l i e d and t h e s u g a r l o s s i n s l u d g e . Depend ing on t h e

f i l t r a t i o n scheme and equ ipment u s e d , w a t e r i n t a k e can be l i m i t e d t o 2-4 kg p e r

100 kg b e e t , t h i s r e s u l t i n g i n a f i n a l s u g a r c o n t e n t o f t h e s l u d g e be low

0 .5-0 .7%.

Water i n t a k e t o t h e s u g a r house may be r e q u i r e d f o r :

- d i l u t i o n o f s y r u p s , when t h e p r o c e s s r e q u i r e m e n t s a r e t h a t t h e i r c o n c e n t r a t i o n

has t o be d e c r e a s e d t o a d e f i n i t e v a l u e ,

- s u g a r m e l t i n g ,

- s u g a r wash i n c e n t r i f u g a l s ,

- magma c o n c e n t r a t i o n c o n t r o l d u r i n g s u g a r b o i l i n g i n vacuum p a n s ,

- v i s c o s i t y c o n t r o l d u r i n g C - m a s s e c u i t e c r y s t a l l i z a t i o n ,

- i o n - e x c h a n g e p r o c e s s e s .

V a r i o u s components o f t h e w a t e r i n t a k e , and t h e i r p r o p o r t i o n s , depend on t h e

c r y s t a l l i z a t i o n scheme a p p l i e d . As t h e q u a l i t y o f t h i c k j u i c e and t h e p r o p e r t i e s

o f n o n - s u g a r s v a r y d u r i n g o p e r a t i o n s , i t may be n e c e s s a r y t o a d j u s t t h e s e

components a c c o r d i n g l y . F o r a g i v e n c r y s t a l l i z a t i o n scheme, s p e c i f i c measures

can be taken t o m i n i m i z e t h e t o t a l w a t e r i n t a k e .

The need f o r t h e d i l u t i o n o f s y r u p s u s u a l l y r e s u l t s f rom t h e f i l t r a t i o n

r e q u i r e m e n t s . F o r e x a m p l e , r e m e l t f i l t r a t i o n i s t y p i c a l l y pe r f o rmed a t a d r y

s u b s t a n c e c o n t e n t be low 68%, and i f t h e r e m e l t c o n c e n t r a t i o n exceeds t h i s v a l u e ,

t hen w a t e r must be added . Howeve r , t h e c r y s t a l l i z a t i o n schemes can be so

d e s i g n e d as t o m i n i m i z e o r even e l i m i n a t e t h e need f o r w a t e r a d d i t i o n t o s y r u p s

i n normal o p e r a t i n g c o n d i t i o n s . I t i s a l s o p o s s i b l e t o e l i m i n a t e t h e w a t e r

i n t a k e t o t h e m e l t i n g o p e r a t i o n , u s i n g t h i n j u i c e i n s t e a d .

The w a t e r i n t a k e t o t he vacuum pans can be reduced t o a n e g l i g i b l y sma l l

v a l u e , p r o v i d i n g o t h e r measures a r e t aken t o s e c u r e e f f i c i e n t s u p e r s a t u r a t i o n

Page 44: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

33

c o n t r o l d u r i n g t he s u g a r b o l i n g p r o c e s s . To some e x t e n t , t h i s depends on t h e

c r y s t a l l i z a t i o n scheme, b u t vacuum pan au toma t i on ( a u t o m a t i c b o i l i n g c o n t r o l )

seems t o be a d e c i s i v e f a c t o r . T h i s p rob lem i s a d d i t i o n a l l y d i s c u s s e d i n S e c t i o n

1.3.5 and C h a p t e r 6.

The amount o f w a t e r s u p p l i e d t o b a t c h c e n t r i f u g a l s can be o p t i m i z e d w i t h

r e s p e c t t o c r y s t a l l i z a t i o n n e e d s , t h a t i s , f o r maximum y i e l d o f c r y s t a l l i n e

s u g a r o f a d e f i n i t e q u a l i t y ( r e f s . 3 4 , 3 5 ) . A p r e r e q u i s i t e f o r t h e o p t i m i z a t i o n

i s t h a t t h e w a t e r wash o p e r a t i o n s h o u l d be t r e a t e d as a p a r t o f t h e c e n t r i f u g i n g

c y c l e i n w h i c h t i m e , r o t a t i o n a l v e l o c i t y and t h e a p p l i c a t i o n o f s y r u p wash can

a l s o c o n t r i b u t e t o t he f i n a l r e s u l t s . The w a t e r wash o p t i m i z e d i n t h i s manner

can a l s o be c o n s i d e r e d as o p t i m a l w i t h r e s p e c t t o t h e e n e r g y consumpt ion o f t h e

s u g a r h o u s e . E x p e r i e n c e p r o v e s , h o w e v e r , t h a t t h e o p t i m i z a t i o n r e s u l t s may be

v e r y s e n s i t i v e t o l o c a l c o n d i t i o n s . An example o f an o p t i m i z e d c y c l e f o r

A m a s s e c u i t e c e n t r i f u g i n g i n a s p e c i f i c b a t c h c e n t r i f u g a l i s shown i n F i g . 1.18.

Water i n t a k e t o C m a s s e c u i t e c r y s t a l 1 i z e r s t y p i c a l l y s e r v e s t h e p u r p o s e o f

b r i n g i n g down m a s s e c u i t e v i s c o s i t y . As t h e v i s c o s i t y a l s o depends on t h e

t e m p e r a t u r e , i t i s a l s o p o s s i b l e t o o b t a i n a v i s c o s i t y r e d u c t i o n by i n c r e a s i n g

the t e m p e r a t u r e o f t h e m a s s e c u i t e . T h i s app roach has i t s l i m i t a t i o n s , h o w e v e r ,

as t o o h i g h a t e m p e r a t u r e may a d v e r s e l y a f f e c t c r y s t a l l i z a t i o n e f f i c i e n c y .

A n o t h e r v i s c o s i t y - c o n t r o l method w h i c h r e d u c e s t h e w a t e r i n t a k e employs t h e

a d d i t i o n o f mo lasses t o t he m a s s e c u i t e .

I t s h o u l d be p o i n t e d o u t t h a t a n e t w a t e r i n t a k e may a l s o r e s u l t f rom d i r e c t

use o f steam i n t he s u g a r h o u s e . T h i s a p p l i e s t o such o p e r a t i o n s a s :

- vacuum-pan s t e a m i n g ,

- steam wash i n c e n t r i f u g a l s ,

- d i r e c t h e a t i n g o f s y r u p s i n s t o r a g e t a n k s .

1200 Γ

α 1000

800

600

400

200 o

er

^ / ii \ : J I I! 1 114 41-3 ι

I I I I . I I 1 I

\ ^ 4 ^.5

D 60 120 T ime ( s )

180

g r e e n w a s h

F i g . 1.18. O p t i m i z e d c e n t r i f u g i n g c y c l e f o r A m a s s e c u i t e . 1 - c h a r g i n g , 2 -s y r u p w a s h , 3 - w a t e r w a s h , 4 - d i s c h a r g i n g , 5 - c l e a n i n g ( c o u r t e s y D O S ) .

Page 45: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

34

T h e r e i s no doub t t h a t t h e s e o p e r a t i o n s s h o u l d be a v o i d e d , o r t h e equ ipment and

i n s t r u m e n t a t i o n s h o u l d make i t p o s s i b l e t o m i n i m i z e t h e steam c o n s u m p t i o n . F o r

e x a m p l e , t h i s can be done w i t h modern a i r - t i g h t s teaming sys tems w h i c h can a l s o

be i n s t a l l e d i n o l d e r vacuum p a n s .

1.3.5 T h i c k j u i c e c o n c e n t r a t i o n and c r y s t a l l i z a t i o n scheme

I t was ment ioned i n S e c t i o n 1.3.1 t h a t t h e hea t demand o f t h e c r y s t a l l i z a t i o n

p r o c e s s can be d e c r e a s e d by r e d u c i n g t h e w a t e r i n t a k e t o t h e s u g a r h o u s e . T h i s

i s a complex q u e s t i o n , o f w h i c h o n l y a p a r t b e l o n g s t o t h e p rob lem f i e l d

d i s c u s s e d i n t h e p r e c e d i n g S e c t i o n . The r e m a i n i n g p a r t s a r e :

- m a i n t a i n i n g a h i g h t h i c k - j u i c e c o n c e n t r a t i o n ,

- o p t i m i z i n g t he scheme and pa ramete rs o f t h e c r y s t a l l i z a t i o n p r o c e s s .

F i g u r e 1.19 shows t h e e s t i m a t e d r e l a t i o n s h i p between t h e hea t demand o f

a s u g a r house emp loy ing t h e c l a s s i c a l t h r e e - b o i l i n g scheme, and t h e

c o n c e n t r a t i o n o f t h i c k j u i c e . When r e d u c i n g t h e w a t e r i n t a k e i n t he t h i c k - j u i c e

s t ream by 50%, t h a t i s , f rom 11.60 t o 5.80 kg p e r 100 kg b e e t , t h e h e a t demand

can be d e c r e a s e d by n e a r l y 1/3 o f i t s i n i t i a l v a l u e (assumed t o c o r r e s p o n d t o

65% D S ) . T h i s i s an i n d i c a t i o n o f a c o n s i d e r a b l e e n e r g y - s a v i n g p o t e n t i a l

a s s o c i a t e d w i t h p o s s i b l e a d j u s t m e n t s o f t h e t h i c k - j u i c e c o n c e n t r a t i o n . H o w e v e r ,

i t s u t i l i z a t i o n depends on w h e t h e r o r n o t c e r t a i n c o n s t r a i n t s can be met .

W a t e r in t h i c k j u i c e ( kg /100 kg b )

11 10 9 8 7

62 64 66 68 70 72 74

C o n c e n t r a t i o n o f t h i c k j u i c e ( % D S )

F i g . 1.19. Heat demand o f t h e t h r e e - b o i l i n g c r y s t a l l i z a t i o n p r o c e s s , as a f u n c t i o n o f t h i c k - j u i c e c o n c e n t r a t i o n .

The d i f f i c u l t i e s appea r a l r e a d y i n t h e e v a p o r a t i o n p r o c e s s , as i n a s p e c i f i c

m u l t i p l e - e f f e c t e v a p o r a t o r , i n c r e a s e d o u t l e t c o n c e n t r a t i o n may r e q u i r e p r o l o n g e d

j u i c e r e t e n t i o n t i m e , and t h e f i n a l e f f e c t s have t o be o p e r a t e d a t i n c r e a s e d d r y

s u b s t a n c e c o n t e n t . T h i s i n d u c e s t h e r i s k o f e x c e s s i v e the rma l decay o f s u c r o s e

and c o l o u r b u i l d - u p , as w e l l as dangerous i n c r u s t a t i o n s w h i c h may be i n i t i a t e d

Page 46: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

35

by c o n c e n t r a t i o n f l u c t u a t i o n s i n t h e l a s t e f f e c t . When a t t e m p t i n g t o i n c r e a s e

t h e c o n c e n t r a t i o n o f t h i c k j u i c e , e v a p o r a t o r d e s i g n and t e m p e r a t u r e l e v e l s i n

a l l e f f e c t s , as w e l l as t h e e v a p o r a t o r c o n t r o l s y s t e m , s h o u l d be r e v i e w e d a n d ,

i f n e c e s s a r y , m o d i f i e d f o r s a f e r o p e r a t i o n . E x p e r i e n c e p r o v e s t h a t i t i s n o t

o n l y i n t he i n i t i a l e f f e c t s o p e r a t e d a t h i g h e s t t e m p e r a t u r e s , b u t a l s o i n t h e

f i n a l e f f e c t s , where t h e s i t u a t i o n may become c r i t i c a l w i t h r e s p e c t t o c o l o u r

b u i l d - u p . T h i s may n e c e s s i t a t e r e p l a c i n g t h e e v a p o r a t o r b o d i e s c o n c e r n e d by new

ones e n s u r i n g reduced j u i c e r e t e n t i o n t i m e .

A n o t h e r p rob lem i s a s s o c i a t e d w i t h t h i c k - j u i c e f i l t r a t i o n a t c o n c e n t r a t i o n s

e x c e e d i n g 65-67% DS. C o n v e n t i o n a l f i l t e r s a r e n o t s u i t e d t o h i g h e r

c o n c e n t r a t i o n s and s h o u l d pe rhaps be r e p l a c e d by c e n t r i f u g a l s e p a r a t o r s , wh i ch

have p r o v e d t o work s a t i s f a c t o r i l y i n numerous f a c t o r i e s . T h e r e i s a l s o

a p o s s i b i l i t y o f a p p l y i n g c o n v e n t i o n a l f i l t e r s , n o t n e x t t o t h e e v a p o r a t o r

o u t l e t bu t p r i o r t o t h e l a s t e v a p o r a t o r e f f e c t ; one p o s s i b l e a r rangemen t i s

shown i n F i g . 1.20 ( r e f . 3 6 ) .

e x h a u s t s t e a m

thin j u i ce ϊ [ U % D S . 125°C

r t 3a

Γ 5 5 ^ 6 0 % D S ^

110 °C

3b

] Γ t h i ck ju ice 7 5 % D S . 9 6 %

F i g . 1.20. J u i c e f i l t e r F between e v a p o r a t o r b o d i e s i n t h e t h i r d e f f e c t o f a " f o u r - a n d - a - h a l f - e f f e c t " e v a p o r a t o r ( a f t e r r e f . 3 6 ) .

As r e g a r d s t he o p t i m i z a t i o n o f t h e c r y s t a l l i z a t i o n scheme and p a r a m e t e r s ,

t h i s i s n e c e s s i t a t e d by i n c r e a s e d c o n c e n t r a t i o n s o f t h i c k j u i c e and s y r u p s

because new prob lems a r e c r e a t e d i n t h e b o i l i n g p r o c e s s . Wh i te s u g a r b o i l i n g i n

a b a t c h - t y p e vacuum pan can be r o u g h l y d i v i d e d i n t o t h r e e s t a g e s ( F i g . 1 . 2 1 ) :

( 1 ) E v a p o r a t i o n o f t he i n i t i a l l y drawn u n d e r s a t u r a t e d s o l u t i o n u n t i l a

s u p e r s a t u r a t i o n o f abou t 1.15 i s a t t a i n e d . A h i g h c o n c e n t r a t i o n o f t h i c k j u i c e

i s f a v o u r a b l e w i t h r e s p e c t t o e n e r g y economy, as i t r e s u l t s i n l e s s h e a t

consumed d u r i n g t h i s s t a g e .

( 2 ) Seed ing and c r y s t a l f o r m a t i o n , f o l l o w e d by s l o w c r y s t a l g r o w t h as t h e vacuum

pan i s l o a d e d t o i t s maximum c h a r g e . I n o r d e r t o m a i n t a i n t h e i n t e n s i v e

c i r c u l a t i o n r e q u i r e d f o r u n i f o r m s y r u p s u p e r s a t u r a t i o n and u n i f o r m magma

s t r u c t u r e , t he e v a p o r a t i o n i s c o n t i n u e d w i t h accompany ing i n t a k e s o f

u n d e r s a t u r a t e d s o l u t i o n s . T h e r e i s a r i s k t h a t t h e t h i c k j u i c e c o n c e n t r a t i o n may

Page 47: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

36

S t a g e s :

F i g . 1.21. S tages o f t h e w h i t e - s u g a r b o i l i n g p r o c e s s : 1 - e v a p o r a t i o n , 2 -s e e d i n g , c r y s t a l f o r m a t i o n and s l o w c r y s t a l g r o w t h , 3 - a c c e l e r a t e d c r y s t a l g r o w t h .

t u r n o u t t o be j u s t t o o h i g h f o r i n t a k e s meant t o b r i n g t h e s u p e r s a t u r a t i o n down

t o t he r e q u i r e d v a l u e .

( 3 ) A c c e l e r a t e d c r y s t a l g r o w t h as t h e s t r i k e i s t h i c k e n e d u n t i l t h e d e s i r e d

c r y s t a l c o n t e n t has been r e a c h e d . An e v e n t u a l i n t a k e o f h i g h - c o n c e n t r a t i o n t h i c k

j u i c e c o u l d a g a i n be f a v o u r a b l e .

Because o f t h e d i f f i c u l t i e s w h i c h may o c c u r i n s t a g e ( 2 ) , t h e i n t r o d u c t i o n o f

h i g h - c o n c e n t r a t i o n t h i c k j u i c e and s y r u p s c a n n o t be r e g a r d e d as a m ino r

m o d i f i c a t i o n o f t h e c r y s t a l l i z a t i o n p r o c e s s . The s u p e r s a t u r a t i o n can o f c o u r s e

be a d j u s t e d by t a k i n g i n w a t e r , b u t t h i s wou ld c o u n t e r a c t h e a t s a v i n g s . The

p rob lem becomes l e s s c r i t i c a l when s t i r r e d vacuum pans a r e u s e d , making i t

e a s i e r t o m a i n t a i n u n i f o r m s u p e r s a t u r a t i o n i n t h e e n t i r e s t r i k e vo lume .

O p e r a t i o n a l s a f e t y can be f u r t h e r improved by e q u i p p i n g t h e pans w i t h a u t o m a t i c

b o i l i n g c o n t r o l s . The b e s t s o l u t i o n seems t o be t o r e l y on c r y s t a l f o o t i n g ,

w h i c h can h a r d l y be r e g a r d e d as a l i m i t e d m o d i f i c a t i o n b u t r a t h e r as a new

p r o c e s s ; i t i s t h e r e f o r e d i s c u s s e d i n C h a p t e r 4 .

I f t he f o o t i n g p r o c e s s t u r n s o u t t o be t o o advanced w i t h r e g a r d t o t h e s u g a r

house equ ipment a v a i l a b l e , t hen t he c r y s t a l l i z a t i o n scheme w i t h two j u i c e

c o n c e n t r a t i o n s can be a p p l i e d ( r e f . 3 7 ) . I t s e s s e n t i a l i d e a c o n s i s t s o f

t h i c k e n i n g a p a r t o f t h e j u i c e f l o w t o a c o n c e n t r a t i o n e x c e e d i n g 70% DS, w h i l e

t h e r ema in i ng p a r t i s t apped i m m e d i a t e l y a f t e r f i l t r a t i o n , t h a t i s , a t

65-67% DS. H i g h - c o n c e n t r a t i o n j u i c e i s used f o r i n t a k e s d u r i n g t h e f i r s t and

t h i r d s t a g e s o f t h e b o i l i n g p r o c e s s , w h i l e t h e a v a i l a b i l i t y o f l o w - c o n c e n t r a t i o n

j u i c e makes i t e a s i e r t o p e r f o r m t h e c r i t i c a l second s t a g e . I t s h o u l d be made

c l e a r t h a t t h i s method does n o t a l l o w f u l l u t i l i z a t i o n o f t h e h e a t - s a v i n g

p o t e n t i a l o f t he c o n c e n t r a t i o n o f t h i c k j u i c e . I t has been r e p o r t e d t h a t i f

a h a l f o f t he t h i c k - j u i c e s t ream a f t e r f i l t r a t i o n i s t h i c k e n e d t o 74% DS and

t h e o t h e r h a l f remains a t 67% DS, t h e n t h e f a c t o r y ' s steam demand can be r e d u c e d

by abou t 2 kg/100 kg b ( r e f . 3 8 ) . I f t h e e n t i r e t h i c k - j u i c e s t r eam was t h i c k e n e d

Page 48: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

37

t o 74% DS, t hen a c c o r d i n g t o F i g . 1.18 a 15% r e d u c t i o n , t h a t i s , by

3.2 kg/100 kg b , w o u l d be p o s s i b l e .

1.4 POWER DEMAND

1.4.1 Scope o f t h e p rob lems

Wi th combined g e n e r a t i o n o f h e a t and e l e c t r i c i t y , t h e l a r g e r t h e steam f l o w

e x t r a c t e d f rom t h e t u r b i n e e x h a u s t , t h e more power can be p roduced i n t h e

e l e c t r i c a l g e n e r a t o r . I n a s u g a r f a c t o r y e q u i p p e d w i t h a p r o p e r l y d i m e n s i o n e d

t u r b o - g e n e r a t o r , and where t h e h e a t consump t i on e x c e e d s t h e e q u i v a l e n t o f

40-45 kg steam p e r 100 kg b e e t , t h e e l e c t r i c a l power s h o u l d be amp le .

The t r e n d towards f u e l s a v i n g s i m p l i e s a r e d u c e d steam f l o w t h r o u g h t h e

t u r b i n e . A t t h e same t i m e , economic f a c t o r s s t i m u l a t e a t e n d e n c y t o mechan ize

and automate a l l t h e u n i t o p e r a t i o n s i n t h e s u g a r i n d u s t r y , t h i s r e s u l t i n g i n

i n c r e a s e d power demand. The i n t r o d u c t i o n o f new e l e c t r i c i t y - c o n s u m i n g equ ipmen t

needed f o r e n v i r o n m e n t a l p r o t e c t i o n , l i k e s l u d g e p r e s s e s , w a s t e - w a t e r t r e a t m e n t

p l a n t s , e t c . , o r t h e a p p l i c a t i o n o f mechan ica l v a p o u r c o m p r e s s o r s , may a l s o

i n c r e a s e t h e power demand. C o n s e q u e n t l y , an i n c r e a s i n g number o f s u g a r f a c t o r i e s

a r e r e a c h i n g t h e p o i n t o f imba lance between t h e steam demand and power demand,

and s p e c i a l measures may be r e q u i r e d t o s e c u r e a r e l i a b l e e n e r g y s u p p l y . I t t hus

becomes i n c r e a s i n g l y i m p o r t a n t t o have s u f f i c i e n t i n f o r m a t i o n on t h e r e l a t i o n

between t h e power demand and t h e f a c t o r y ' s a b i l i t y t o g e n e r a t e i t s own power .

From t h e p o i n t o f v i e w o f e n e r g y b a l a n c e s , a d e s c r i p t i o n o f t h e power demand i n

terms o f t i m e - a v e r a g e d f i g u r e s i s n e e d e d . F o r t h e d i m e n s i o n i n g o f p o w e r -

g e n e r a t i n g and p o w e r - d i s t r i b u t i n g equ ipment and f o r r e l i a b l e c o n t r o l o f t h e

o p e r a t i o n o f t h e e n t i r e e l e c t r i c a l s u b s y s t e m , t h e i n s t a n t a n e o u s demand and i t s

v a r i a t i o n s s h o u l d a l s o be d e f i n e d .

1.4.2 Power ne twork

The e l e c t r i c i t y i s p r o d u c e d as a l t e r n a t i n g c u r r e n t i n a t h r e e - p h a s e s u p p l y .

When compared t o t h e d i r e c t - c u r r e n t i n s t a l l a t i o n s s t i l l i n use i n many

f a c t o r i e s , m o s t l y f o r h i s t o r i c a l r e a s o n s , a l t e r n a t i n g - c u r r e n t sys tems o f f e r t h e

advan tages o f :

- easy t r a n s f o r m a t i o n f rom h i g h t o low v o l t a g e ,

- economic s o l u t i o n f o r power t r a n s m i s s i o n and u t i l i z a t i o n i n l a r g e and medium-

s i z e u n i t s ,

- low c o s t o f t h e m o t o r s .

The s y n c h r o n o u s t h r e e - p h a s e g e n e r a t o r s employ t h r e e g r o u p s o f f i x e d w i n d i n g s

i n w h i c h t h e a l t e r n a t i n g c u r r e n t i s i n d u c e d , and a r o t a t i n g w i n d i n g s u p p l i e d

w i t h d i r e c t c u r r e n t f rom a dynamo ( e x c i t e r ) s i t u a t e d a t t h e end o f t h e r o t o r

s h a f t . The power o u t p u t o f t h e g e n e r a t o r i s c o n t r o l l e d by t h e e x c i t e r c u r r e n t .

S m a l l e r t u r b o - g e n e r a t o r s a r e g e n e r a l l y o f g e a r e d t y p e : t h e t u r b i n e runs a t up t o

Page 49: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

38

20 000 rpm a n d , t h r o u g h r e d u c t i o n g e a r s , d r i v e s a g e n e r a t o r r u n n i n g a t 1500 rpm.

A t h i g h e r o u t p u t r a t i n g s , t h e t u r b i n e runs a t 3000 rpm w i t h d i r e c t d r i v e t o

a g e n e r a t o r .

I n o r d e r t o m in im i ze e n e r g y l o s s e s , e l e c t r i c i t y g e n e r a t i o n and t r a n s m i s s i o n

s h o u l d be pe r fo rmed a t low c u r r e n t a n d , c o r r e s p o n d i n g l y , h i g h v o l t a g e . T y p i c a l

v o l t a g e l e v e l s employed a r e s e v e r a l t housands v o l t s . The t r a n s f o r m a t i o n t o t h e

v o l t a g e l e v e l o f motors and o t h e r power r e c e i v e r s ( i . e . power -consuming d e v i c e s )

t akes p l a c e i n t r a n s f o r m e r s w h i c h a r e c o n v e n i e n t l y p l a c e d w i t h i n c l o s e range o f

t h e r e c e i v e r s . The h i g h - v o l t age p a r t o f t he power ne twork i s s e p a r a t e d by

c i r c u i t - b r e a k e r s f rom e n e r g y s o u r c e s ( t h a t i s , g e n e r a t o r s o r s u p p l y l i n e s f rom

t h e e x t e r n a l g r i d ) and t r a n s f o r m e r s . The l o w - v o l t a g e w i n d i n g o f a t r a n s f o r m e r i s

t y p i c a l l y c o n n e c t e d v i a a power c a b l e o r b a r t o a s w i t c h b o a r d , f u r t h e r e n e r g y

d i s t r i b u t i o n t a k i n g p l a c e t o l o c a l s w i t c h b o a r d s o r d i r e c t l y t o l a r g e i n d i v i d u a l

r e c e i v e r s . P o s s i b l e power ne twork a r rangements and t h e i r c o n n e c t i o n s t o t h e

e x t e r n a l power g r i d a r e d i s c u s s e d i n t h e l i t e r a t u r e ( r e f . 3 9 ) .

Among t h e r e c e i v e r s c o n n e c t e d t o t h e power n e t w o r k , a s y n c h r o n o u s e l e c t r i c

motors a r e o f p a r t i c u l a r i m p o r t a n c e . The c o n v e r s i o n o f e l e c t r i c a l i n t o

mechan ica l e n e r g y t a k i n g p l a c e i n t h e s e motors i s accompanied by a l t e r n a t i n g

m a g n e t i z a t i o n o f t h e a c t i v e i r o n . Wi th t h e c h a r a c t e r i s t i c f r e q u e n c y o f t h e

c u r r e n t (50 Hz i n E u r o p e , 60 Hz i n U S ) , t he e l e c t r i c a l e n e r g y i s consumed and

r e c o v e r e d c o r r e s p o n d i n g t o m a g n e t i z a t i o n and c o u n t e r - m a g n e t i z a t i o n . As a r e s u l t ,

i n a d d i t i o n t o t h e f l o w o f e l e c t r i c a l power b e i n g c o n v e r t e d i n t o mechan i ca l work

( c a l l e d e f f e c t i v e power N ^ ) , m a g n e t i z a t i o n e n e r g y i s o s c i l l a t i n g between t h e

s o u r c e and t h e m o t o r s . T h i s i m p l i e s t h a t t he c o n d u c t o r s o f power c a b l e s a r e

c a r r y i n g some a d d i t i o n a l c u r r e n t ; t h e a d d i t i o n a l power i s c a l l e d t h e r e a c t i v e

p o w e r , N ^ . The a c t u a l l o a d o f t h e s o u r c e i s equa l t o t h e g e o m e t r i c sum o f

e f f e c t i v e and r e a c t i v e p o w e r , a l s o c a l l e d t h e a p p a r e n t power N ^ . T h i s phenomenon a

i s u s u a l l y c h a r a c t e r i z e d by t h e s o - c a l l e d power f a c t o r cos φ = Ng/Ng^ ( 1 . 7 )

where φ i s t he phase l a g between t h e e f f e c t i v e power and t h e a p p a r e n t p o w e r .

G e n e r a l l y , each power r e c e i v e r i n a power ne twork can be c h a r a c t e r i z e d , a t

each i n s t a n t , by a s p e c i f i c power f a c t o r . F o r t h r e e - p h a s e a s y n c h r o n o u s m o t o r s ,

w h i c h a r e by f a r t h e most i m p o r t a n t moto rs f o r s u g a r f a c t o r i e s , t h e power f a c t o r

i s a f u n c t i o n o f motor d e s i g n , power r a t i n g and l o a d f a c t o r . I n F i g . 1 .22 ,

a t y p i c a l r e l a t i o n s h i p between t h e power f a c t o r , power r a t i n g and l o a d f a c t o r i s

shown f o r e n c l o s e d - t y p e , 4 - p o l e motors o f J a p a n e s e make w o r k i n g a t 50 Hz ( r e f .

2 8 ) . As can be s e e n , t he l o a d d e v i a t i o n f rom t h e motor r a t i n g i s d e c i s i v e i n

r e d u c i n g cos φ.

The a v e r a g e d power f a c t o r s o f t he r e c e i v e r s d e f i n e t he power f a c t o r o f t h e

g e n e r a t o r . I n a f a c t o r y i n w h i c h no s p e c i a l measures a r e t aken t o improve i t .

Page 50: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

39

0.25 0.5 0.75 Load factor

1.0

F i g . 1.22. Power f a c t o r o f e n c l o s e d - t y p e , 4 - p o l e i n d u c t i o n motors o p e r a t e d a t 50 Hz ( a f t e r r e f . 2 8 ) .

cos φ i s u s u a l l y i n t h e range 0 . 6 5 - 0 . 7 0 . L e t us o b s e r v e t h a t t h e maximum

e f f e c t i v e power o f t h e g e n e r a t o r i s d e t e r m i n e d by t h e mechan ica l o u t p u t o f t h e

t u r b i n e . The e l e c t r i c d i m e n s i o n i n g o f t h e g e n e r a t o r m u s t , h o w e v e r , be adap ted

t o t he a p p a r e n t p o w e r , t h a t i s , t h e t u r b i n e o u t p u t d i v i d e d by t h e power f a c t o r .

I n an e x i s t i n g f a c t o r y , t h e r e a c t i v e power o s c i l l a t i n g i n t h e power ne two rk may

cause t h e a p p a r e n t power t o e x c e e d t h e l e v e l f o r w h i c h t h e g e n e r a t i n g and

d i s t r i b u t i n g equ ipment i s d i m e n s i o n e d , even i f t h e t u r b i n e o u t p u t i s

s u f f i c i e n t l y l a r g e t o s u p p l y t h e Sys tem w i t h e f f e c t i v e power . I n o r d e r t o

p r e v e n t t h i s s i t u a t i o n , t h e power f a c t o r o f t h e g e n e r a t o r can be m o d i f i e d by

g e n e r a t i n g r e a c t i v e power i n power c a p a c i t o r s . The c a p a c i t o r s can be c o n n e c t e d

e i t h e r t o t h e main s w i t c h b o a r d o f t h e power h o u s e , o r t o t h e l o c a l s w i t c h b o a r d s

where r e c e i v e r s r e s p o n s i b l e f o r a low power f a c t o r a r e c o n n e c t e d . As i n d i c a t e d

a b o v e , t h e s e r e c e i v e r s a r e a s y n c h r o n o u s motors and p a r t i c u l a r l y ones l o a d e d

be low t h e i r nominal o u t p u t s .

D i s r e g a r d i n g t h e case o f i m p r o p e r l y d i m e n s i o n e d m o t o r s , i t can t h u s be

c o n c l u d e d t h a t when a t t e m p t i n g t o max imize t h e power f a c t o r , c a r e s h o u l d be

taken o f :

- b a t c h c e n t r i f u g a l d r i v e s d u r i n g most o f t h e i r w o r k i n g c y c l e ,

- d r i v e s o f pumps and fans emp loy i ng f l o w c o n t r o l by t h r o t t l i n g d u r i n g t h e

p e r i o d s o f r educed f l o w .

L e t us n o t e t h a t t h e power f a c t o r s o f t h e moto rs men t ioned may v a r y as t h e i r

l oads a r e c h a n g e d , and i t may be n e c e s s a r y t o v a r y t h e r e a c t i v e power g e n e r a t e d

i n t he c a p a c i t o r s a c c o r d i n g l y . H o w e v e r , i f t h e o p e r a t i o n o f a g r o u p o f l a r g e

motors can be c o n t r o l l e d f o r n e a r l y c o n s t a n t t o t a l power c o n s u m p t i o n , i t may

Page 51: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

40

a l s o become e a s i e r t o c o n t r o l t h e o v e r a l l r e a c t i v e power o f t h e e n t i r e g r o u p .

T h i s p r i n c i p l e i s a p p l i e d i n t he g r o u p c o n t r o l o f b a t c h c e n t r i f u g a l d r i v e s ( s e e

S e c t i o n 1 . 4 . 3 ) .

1.4.3 Shap ing t he power demand

The s p e c i f i c power demand o f c o n t e m p o r a r y s u g a r f a c t o r i e s i s u s u a l l y o f t h e

o r d e r 2-4 kWh p e r 100 kg b e e t . I t i s i n t e r e s t i n g t o n o t e t h e i n f l u e n c e o f t h e

economy o f s c a l e , namely a l a r g e r p r o c e s s i n g c a p a b i l i t y u s u a l l y i m p l i e s a l o w e r

power demand p e r u n i t mass o f b e e t s p r o c e s s e d . I n F i g . 1 .23, t h e c o n t i n u o u s l i n e

r e p r e s e n t s S o v i e t da ta on t h e s o - c a l l e d b a s i c power demand ( e x c l u d i n g power

consumed i n p u l p d r y i n g and w a s t e - w a t e r t r e a t m e n t ) o f w h i t e - s u g a r m a n u f a c t u r e i n

f a c t o r i e s w i t h p r o c e s s i n g c a p a b i l i t i e s up t o 9000 t o n s p e r day ( r e f . 4 0 ) . The

d i s c r e t e p o i n t s i n t h e d iag ram r e p r e s e n t s t a t i s t i c a l d a t a on o v e r a l l power

c o n s u m p t i o n , i n c l u d i n g p u l p d r y i n g , i n a few West European w h i t e - s u g a r f a c t o r i e s

d u r i n g t he 1985 s e a s o n ; owing t o d i f f e r e n c e s i n p r o c e s s e s and equ ipment

e m p l o y e d , t he i n f l u e n c e o f t h e economy o f s c a l e i s n o t a p p a r e n t f rom t h e s e d a t a .

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

o o JZ

TD C Ό Ε α; •Ό

χ

3 4 5 6 7

P r o c e s s i n g c a p a b i l i t y ( 1 0 0 0 t / d )

F i g . 1.23. S p e c i f i c power demand as a f u n c t i o n o f t h e p r o c e s s i n g c a p a b i l i t y . The l i n e i n d i c a t e s S o v i e t da ta on w h i t e - s u g a r m a n u f a c t u r e , and t h e p o i n t s -s t a t i s t i c a l da ta on 5 West European f a c t o r i e s .

The c o n t r i b u t i o n s od v a r i o u s f a c t o r y s e c t i o n s t o t h e o v e r a l l power demand may

v a r y , depend ing on l o c a l c o n d i t i o n s . F o r e x a m p l e , t h e e n e r g y consumed by pump

d r i v e s depends on h e i g h t d i f f e r e n c e s between p i e c e s o f equ ipment l o c a t e d a l o n g

t h e t r a n s p o r t r o u t e s o f a l i q u i d . The f o l l o w i n g a p p r o x i m a t e i n d i c e s d e s c r i b e

a t y p i c a l s t r u c t u r e o f t he power demand o f w h i t e - s u g a r m a n u f a c t u r e i n f a c t o r i e s

w i t h p r o c e s s i n g c a p a b i l i t i e s o f 4000-6000 t o n s p e r d a y :

Page 52: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

41

- e x t r a c t i o n s t a t i o n 10-12%,

- j u i c e p u r i f i c a t i o n and j u i c e t r a n s p o r t 20-25%,

- s u g a r house 14-20%,

- l ime k i l n , m i l k - o f - l i m e p r e p a r a t i o n and k i l n - g a s pumping 12-16%,

- o t h e r p u r p o s e s 36-43%.

A t t h e p r e s e n t s t a t e o f deve lopmen t o f power ne two rks and t h e i r e q u i p m e n t ,

v a r i o u s t e c h n i q u e s can be used t o m o d i f y t h e power demand t owa rds b e t t e r e n e r g y

economy. F o u r app roaches can be e m p l o y e d .

( i ) I n t r o d u c t i o n o f a l t e r n a t i v e p r o c e s s e s c h a r a c t e r i z e d by a l o w e r power demand.

( i i ) A p p l i c a t i o n o f new equ ipment c h a r a c t e r i z e d by a b e t t e r e f f i c i e n c y o f power

u t i l i z a t i o n .

( i i i ) A p p l i c a t i o n o f a l t e r n a t i v e c o n t r o l methods a t t h e l o c a l (equipm.ent) l e v e l ,

p r e v e n t i n g t h e l o s s e s o f e n e r g y d e l i v e r e d t o e l e c t r i c a l l y d r i v e n e q u i p m e n t ,

p a r t i c u l a r l y unde r v a r i a b l e l o a d .

( i v ) I n t r o d u c t i o n o f new c o n t r o l methods a t t h e subsys tem o r sys tem l e v e l ,

making i t p o s s i b l e t o i n f l u e n c e t h e t ime v a r i a t i o n s o f power demand.

The p o s s i b i l i t i e s o f i n t r o d u c i n g a l t e r n a t i v e p r o c e s s e s v a r y f rom f a c t o r y t o

f a c t o r y , depend ing on t h e o p p o r t u n i t i e s t o i n v e s t , u s u a l l y i n c o n n e c t i o n w i t h

f a c t o r y e x t e n s i o n s . F o r e x a m p l e , h y d r a u l i c b e e t u n l o a d i n g and t r a n s p o r t ,

r e q u i r i n g t h a t abou t 3 m^ w a t e r p e r 1 t b e e t r e c e i v e d i s pumped, i s more e n e r g y -

i n t e n s i v e than d r y u n l o a d i n g and t r a n s p o r t . Power s a v i n g s r e p o r t e d f rom F r e n c h

f a c t o r i e s where t he d r y method has been implemented a r e o f t h e o r d e r o f 0 .3 kWh

p e r 100 kg b e e t ( r e f . 4 1 ) . D i f f e r e n t methods o f d i r t s e p a r a t i o n , h o w e v e r , may

d i f f e r w i t h r e s p e c t t o t h e power c o n s u m p t i o n .

I n t h e p a s t , t o o l i t t l e a t t e n t i o n was p a i d t o t h e power demands o f v a r i o u s

p r o c e s s e s . Now t h i s i s b e g i n n i n g t o c h a n g e , as has been i n d i c a t e d by some r e c e n t

p u b l i c a t i o n s i n w h i c h t h e i n f l u e n c e o f p r o c e s s pa rame te rs on t h e e n e r g y demand

i s s t u d i e d ( r e f s . 4 2 , 4 3 ) . The e n e r g y i n t e n s i t y o f new p r o c e s s e s i s a d d i t i o n a l l y

d i s c u s s e d i n C h a p t e r 4 .

As r e g a r d s t h e e l e c t r i c a l e q u i p m e n t , t h e o p e r a t i o n o f b a t c h c e n t r i f u g a l

d r i v e s w h i c h a r e t h e cause o f l o a d peaks i s p a r t i c u l a r l y i m p o r t a n t . F o r economic

r e a s o n s , a t r e n d has been e s t a b l i s h e d t o w a r d s l a r g e - c a p a c i t y m a c h i n e s , t o d a y

r e a c h i n g 1000-1700 kg p e r c h a r g e . The moments o f i n e r t i a o f r o t o r s i n t h e

l a r g e s t machines a r e o f t h e o r d e r 1000-1400 kg m . I n o r d e r t o a c c e l e r a t e such

r o t o r s t o t y p i c a l r o t a t i o n a l v e l o c i t i e s o f 1000-1500 rpm i n a b o u t 20 w o r k i n g

c y c l e s p e r h o u r , motors r e a c h i n g a power l e v e l o f 250-300 kW a r e r e q u i r e d . E v e r y

a c c e l e r a t i o n s e c t i o n o f t h e c e n t r i f u g i n g c y c l e causes a l a r g e t e m p o r a r y l o a d ,

w h i l e e v e r y d e c e l e r a t i o n s e c t i o n a l l o w s t h e p o s s i b i l i t y o f r e t u r n i n g power t o

t he e l e c t r i c a l subsys tem o f t h e f a c t o r y . The o p e r a t i o n o f b a t c h - c e n t r i f u g a l

d r i v e thus r e s u l t s i n t i m e - v a r y i n g e f f e c t i v e and r e a c t i v e l o a d s . I t i s t h e r e f o r e

Page 53: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

42

e s s e n t i a l t h a t d u r i n g t h e o p e r a t i o n o f a g r o u p o f c e n t r i f u g a l s , t h e c y c l e s o f

i n d i v i d u a l machines a r e c o o r d i n a t e d i n o r d e r t o a v o i d s i m u l t a n e o u s a c c e l e r a t i o n

o f s e v e r a l u n i t s .

The c o n t r o l o f b a t c h c e n t r i f u g a l s a c c o r d i n g t o t h i s p r i n c i p l e c o n s t i t u t e s

an example o f equ ipment o p e r a t i o n c o n t r o l a t t h e l o c a l ( equ ipmen t g r o u p , o r

s t a t i o n ) l e v e l . T h i s s o l u t i o n i s p a r t i c u l a r l y u s e f u l f o r l a r g e power r e c e i v e r s

c h a r a c t e r i z e d by s u b s t a n t i a l l o a d v a r i a t i o n s .

I n t h e c o n t e m p o r a r y s u g a r i n d u s t r y , pe rhaps t h e l a r g e s t p o w e r - s a v i n g

p o t e n t i a l i s a s s o c i a t e d w i t h t h e d r i v e s o f pumps and f a n s . On a v e r a g e , t h e s e

machines a r e r e s p o n s i b l e f o r abou t 60% o f t h e e l e c t r i c a l e n e r g y consumed i n

a s u g a r f a c t o r y . D imens ioned f o r t h e l a r g e s t p o s s i b l e f l o w s o f m e d i a , t h e pumps

and fans a r e c o n t r o l l e d u s i n g methods w h i c h i n d u c e e n e r g y l o s s e s , t h a t i s , f l o w

b y - p a s s i n g o r t h r o t t l i n g . T h i s i s a d e c i s i v e f a c t o r i n c a u s i n g i n c r e a s e d

s p e c i f i c power consumpt ion when t h e f a c t o r y ' s p r o c e s s i n g c a p a b i l i t y f a l l s be low

i t s nominal l e v e l ( F i g . 1 . 24 ) . Wi th modern d r i v i n g s y s t e m s , o l d e r c o n t r o l

methods can be r e p l a c e d by t h e v a r i a b l e speed c o n t r o l w h i c h i s d i s c u s s e d i n

C h a p t e r 6. T y p i c a l s a v i n g s a r e o f t h e o r d e r o f 20-40% o f t h e e n e r g y consumed

when u s i n g t h e o r i g i n a l methods .

o o " 1.6 •α

i 1. φ •o ir '• φ o

o- 1.0 50 60 70 80 90 100

A v e r a g e to nomina l d a i l y capab i l i t y ( % )

F i g . 1.24. R a t i o o f a c t u a l t o nominal s p e c i f i c power demand as a f u n c t i o n o f t h e u t i l i z a t i o n o f p r o c e s s i n g c a p a b i l i t y .

A t t h e f a c t o r y l e v e l , a t i m e - v a r y i n g t o t a l power demand may cause

d i f f i c u l t i e s i n s e c u r i n g a r e l i a b l e power s u p p l y . Load peaks e x c e e d i n g t h e

g e n e r a t i n g c a p a b i l i t y o f t h e e l e c t r i c a l subsys tem c a n n o t be met w i t h o u t

s u p p l y i n g power f rom t h e e x t e r n a l g r i d . I n o r d e r t o a v o i d u n n e c e s s a r y e n e r g y

p u r c h a s e s , o r i f no e l e c t r i c i t y s u p p l i e s f rom o u t s i d e t h e f a c t o r y a r e a v a i l a b l e ,

such peaks must be e l i m i n a t e d by t e m p o r a r i l y d i s c o n n e c t i n g c e r t a i n power

r e c e i v e r s . T h i s can be done w i t h o u t r e d u c i n g t h e t o t a l e n e r g y amount r e q u i r e d

f o r normal f a c t o r y o p e r a t i o n , t h a t i s , by c o n t r o l l i n g t h e power demand o n l y when

i t app roaches i t s maximum.

Page 54: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

43

The power r e c e i v e r s t o be d i s c o n n e c t e d a r e s e l e c t e d so as n o t t o cause any

damage t o normal f a c t o r y o p e r a t i o n . T y p i c a l l y , t h e s e a r e a e r a t o r s o f w a s t e - w a t e r

t r e a t m e n t p l a n t s , a i r c o n d i t i o n i n g sys tems o f s u g a r and p e l l e t s i l o s , and

e l e c t r i c room h e a t e r s .

E x p e r i e n c e p r o v e s t h a t c o n t r o l o f t h e maximum power demand can be e f f e c t i v e

o n l y i f automated l o a d - m o n i t o r i n g and l o a d - d i s c o n n e c t i n g equ ipment i s u s e d . The

n e c e s s a r y e l e c t r o n i c equ ipment can be r a t h e r i n e x p e n s i v e , as p r o v e d by

a p p l i c a t i o n examples p r e s e n t e d i n t h e l i t e r a t u r e ( r e f s . 4 5 , 4 6 ) . The sys tem i s

measur ing t h e i n s t a n t a n e o u s power demand and compar ing i t w i t h t h e g e n e r a t i n g

c a p a c i t y . I f a p r e d e t e r m i n e d c r i t i c a l d i f f e r e n c e between t h e s e two q u a n t i t i e s

i s a p p r o a c h e d , t h e n a g r o u p o f r e c e i v e r s i s d i s c o n n e c t e d . I n a b r o a d e r l o a d

r a n g e , t h e sys tem o p e r a t i o n i s u s u a l l y s e m i - a u t o m a t i c , a l l o w i n g f o r t h e

i n t e r v e n t i o n o f human o p e r a t o r s , and i t may a l s o i n c o r p o r a t e t r e n d m o n i t o r i n g ,

s i g n a l l i n g o f c r i t i c a l s i t u a t i o n s , p r i n t i n g o f p r o c o t o l s and r e p o r t s , e t c . As

an o p t i o n , t h e m o n i t o r i n g o f t he r e a c t i v e power and t h e a u t o m a t i c c o n t r o l o f

t he power c a p a c i t o r s t o improve t h e power f a c t o r can a l s o be i n c l u d e d .

1.5 INTERACTION BETWEEN POWER GENERATION AND HEAT ECONOMY

1.5.1 E n e r g y p o l i c y c o n s i d e r a t i o n s

The t a s k o f t h e power house can be u n d e r s t o o d as t r a n s f o r m i n g t h e p r i m a r y

e n e r g y s u p p l i e d t o t he f a c t o r y i n t o t h e n e c e s s a r y n e t h e a t i n p u t Q2 and power

i n p u t P ' . The n e t h e a t i n p u t i s o f t e n e x p r e s s e d as t h e mass f l o w o f steam

r e q u i r e d t o c a r r y i t ; t h i s f l o w w i l l be c a l l e d steam demand i n t h e f o l l o w i n g .

Assuming t h e s o - c a l l e d normal steam p a r a m e t e r s , t h a t i s , d r y s a t u r a t i o n s t a t e a t

tg = lOO^C and s p e c i f i c h e a t o f e v a p o r a t i o n r^ = 2256.9 k J / k g , t h e steam demand

can be d e f i n e d as

D' = Q2 / r3 ( 1 . 8 )

The above c o n v e n t i o n i s t o some e x t e n t s i m i l a r t o t h e use o f t h e w i d e l y known

c o n c e p t o f t h e demand f o r normal f u e l ( h e a t i n g v a l u e 29 300 k J / k g ) i n e x p r e s s i n g

t h e demand f o r p r i m a r y e n e r g y . I t s h o u l d be added t h a t i n t h e p r e s e n t b o o k , t h e

te rm "demand" u s u a l l y a p p l i e s t o a p r e d i c t e d o r c a l c u l a t e d q u a n t i t y . I f measured

i n an e x i s t i n g f a c t o r y , t he c o r r e s p o n d i n g q u a n t i t y w i l l r a t h e r be c a l l e d

" c o n s u m p t i o n " .

The most w i d e l y a p p l i e d method o f s u p p l y i n g t h e n e c e s s a r y e n e r g y i n p u t s i s t o

r e l y on combined g e n e r a t i o n o f h e a t and e l e c t r i c i t y i n a steam c y c l e e q u i p p e d

w i t h a b o i l e r and a b a c k - p r e s s u r e t u r b i n e , shown s c h e m a t i c a l l y i n F i g . 1.25

( r e f s . 3 8 , 4 6 , 4 7 ) . N e v e r t h e l e s s , t h e economic c o n d i t i o n s f o r t h i s method b e i n g

w o r k a b l e v a r y c o n s i d e r a b l y between d i f f e r e n t c o u n t r i e s and even between

d i f f e r e n t f a c t o r y l o c a t i o n s .

T a k i n g a g l o b a l p e r s p e c t i v e , t h e r e i s no d o u b t t h a t combined g e n e r a t i o n saves

Page 55: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

44

fue l

s t e a m l o s s f 10%

\ f u e l /100%|

c o n d e n s a t e a i r 0 .5%

' l o s s 1.1%

h e a t ^ 76 %

p o w e r 13.4%

F i g . 1.25. E n e r g y sys tem l a y o u t and Sankey d iag ram ( l i v e steam 80 b a r and 520 C , b a c k - p r e s s u r e 3 b a r ) f o r t h e a p p l i c a t i o n o f a b a c k - p r e s s u r e steam t u r b i n e . 1 - b o i l e r , 2 - t u r b i n e , 3 - p r o c e s s .

p r i m a r y e n e r g y and reduces a i r p o l l u t i o n . Where h e a t i n g i s n e c e s s a r y , power can

a d d i t i o n a l l y be o b t a i n e d , u s i n g t h i s me thod , a t t h e expense o f abou t h a l f as

much f u e l as i n a the rma l power p l a n t e q u i p p e d w i t h c o n d e n s i n g t u r b o - g e n e r a t o r s .

T h i s means a l s o t h a t h a l f as much b o i l e r f l u e gas i s d i s c h a r g e d t o t h e

a tmosphere .

A f t e r t h e b i t t e r l e s s o n s o f t h e 1970s, many c o u n t r i e s now r e c o g n i z e t h e

i n d u s t r i a l power houses as b e i n g i m p o r t a n t t o t h e i r e n e r g y p o l i c i e s and l o n g -

term p l a n n i n g i n t h i s f i e l d . Depending on t h e economic s i t u a t i o n and a v a i l a b l e

e n e r g y r e s o u r c e s , governments t r y t o cope w i t h w o r l d market deve lopmen ts by

i n f l u e n c i n g , d i r e c t l y o r i n d i r e c t l y ( e . g . by t a x r e g u l a t i o n s ) , t h e f u e l p r i c e s ,

power p r i c e , and c a p i t a l c o s t . The economic c o n d i t i o n s t hus c r e a t e d f o r power

house o p e r a t i o n may v a r y c o n s i d e r a b l y , as can be demons t ra ted by t h e examples o f

e l e c t r i c i t y p u r c h a s e s i n two i m p o r t a n t b e e t - s u g a r p r o d u c i n g c o u n t r i e s - USSR and

USA. I n t h e USA, a t y p i c a l s i t u a t i o n i s t h a t steam s a v i n g s s h o u l d n o t be

compromised t o keep the e l e c t r i c i t y and steam i n b a l a n c e , as p u r c h a s e d

e l e c t r i c i t y i s c h e a p e r than power g e n e r a t i o n w i t h o u t f u l l u t i l i z a t i o n o f t h e

e x h a u s t s team. C o n t r a r y t o t h a t , i t may be j u s t i f i e d i n t he USSR t o g e n e r a t e

e l e c t r i c i t y w i t h some steam b l o w - o f f even under normal o p e r a t i n g c o n d i t i o n s

( r e f s . 4 8 , 4 9 ) .

F l u c t u a t i n g f u e l p r i c e s s t i m u l a t e an i n t e r e s t i n g deve lopmen t w h i c h has become

v i s i b l e i n f u e l - i m p o r t i n g c o u n t r i e s , namely t h e d i v e r s i f i c a t i o n o f f u e l s t o

e l i m i n a t e t h e dependence on f u e l o i l w h i c h was dominant b e f o r e t h e o i l c r i s e s .

F r a n c e and Sweden can be named as examples o f c o u n t r i e s where t h e s u g a r

i n d u s t r i e s r educed t h e p e r c e n t a g e o f f u e l o i l i n t h e t o t a l e n e r g y consumpt i on

f rom more than 95% t o abou t 50%. I n bo th c o u n t r i e s , t he p e r c e n t a g e o f n a t u r a l

gas was c o n s i d e r a b l y i n c r e a s e d abou t 1985. I n t h e s u g a r i n d u s t r i e s i n o t h e r

c o u n t r i e s , l i k e Denmark, use o f b i t u m i n o u s c o a l as t h e main s u b s t i t u t e f o r f u e l

o i l was p r e f e r r e d .

As r e g a r d s t h e d e c i s i o n s on power house i n v e s t m e n t , w h i c h a r e u s u a l l y

a s s o c i a t e d w i t h l a r g e c a p i t a l e x p e n d i t u r e s , t h e f o l l o w i n g f a c t o r s s h o u l d be

c o n s i d e r e d :

Page 56: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

45

- t h e p o s s i b i l i t y o f p u r c h a s i n g power f rom t h e e x t e r n a l g r i d , g r i d r e l i a b i l i t y ,

and t he p o s s i b i l i t y o f s e l l i n g power t o t h e g r i d ,

- f u e l p r i c e ,

- t he r a t i o o f f u e l p r i c e t o power p r i c e ,

- c a p i t a l c o s t ,

- i f a p p l i c a b l e , t h e p r i c e o f power s o l d t o t h e g r i d .

As t h e p a y - b a c k p e r i o d s o f power house i n v e s t m e n t s may be r e l a t i v e l y l o n g , t h e r e

i s t h e r i s k o f f u t u r e f l u c t u a t i o n s o f t h e above f a c t o r s a f f e c t i n g t h e outcome o f

i n v e s t m e n t d e c i s i o n s . As a r e s u l t , t h e r e i s an i n c r e a s i n g i n t e r e s t i n

a l t e r n a t i v e t e c h n o l o g i e s f o r hea t and power g e n e r a t i o n t o r e p l a c e o r supp lement

t h e e x i s t i n g steam c y c l e s .

1.5.2 S o l u t i o n s based on c o n n e c t i o n t o a power g r i d

A s e e m i n g l y e x o t i c a l t e r n a t i v e i s t o a v o i d t h e use o f f u e l s and r e l y on t h e

e x t e r n a l g r i d as t h e o n l y s o u r c e o f e n e r g y . T h i s can be an o p t i m a l s o l u t i o n i f

cheap h y d r o e l e c t r i c power i s a v a i l a b l e , as d e m o n s t r a t e d by a B r a z i l i a n cane

s u g a r f a c t o r y u s i n g e l e c t r i c a l l y hea ted b o i l e r s t o g e n e r a t e steam ( r e f . 5 0 ) .

The a v a i l a b i l i t y o f h y d r o e l e c t r i c power a l s o p l a y e d a d e c i s i v e r o l e i n a d o p t i n g

t h e e x t e r n a l g r i d a l t e r n a t i v e i n t h e A a r b e r g f a c t o r y i n S w i t z e r l a n d n e a r l y f o u r

decades ago ( r e f . 5 1 , 5 2 ) . A s o p h i s t i c a t e d the rma l sys tem e m p l o y i n g v a p o u r

compress i on was a p p l i e d t h e r e i n o r d e r t o a c h i e v e e f f i c i e n t e n e r g y u t i l i z a t i o n

i n s u g a r m a n u f a c t u r e , and s p e c i a l a r rangemen ts were made t o s e l l p r e s s e d p u l p

w i t h o u t d r y i n g . F o l l o w i n g t he changes i n S w i t z e r l a n d ' s e n e r g y b a l a n c e , h o w e v e r ,

i n v e s t m e n t s were made i n t h e e a r l y 1970s p r e p a r i n g f u t u r e power s u p p l i e s f rom

a d e d i c a t e d g e n e r a t i n g u n i t . As h y d r o e l e c t r i c power i s now c o v e r i n g a b o u t 60% o f

t he c o u n t r y ' s e n e r g y demands, a steam c y c l e w i t h a b a c k - p r e s s u r e t u r b i n e has

been p u t i n t o o p e r a t i o n i n A a r b e r g ( r e f . 53) t o s u p p l y n e a r l y h a l f o f t h e power

consumed i n t h e f a c t o r y .

I n s p i t e o f t h e g l o b a l advan tages o f t h e combined g e n e r a t i o n o f h e a t and

e l e c t r i c i t y , l o c a l economic c o n d i t i o n s may j u s t i f y s o l u t i o n s c o n s i s t i n g o f steam

g e n e r a t i o n i n l o w - p r e s s u r e b o i l e r s and power p u r c h a s e s f rom t h e e x t e r n a l g r i d .

I f t h e g r i d r e l i a b i l i t y i s s u f f i c i e n t l y h i g h , t h i s s o l u t i o n i s f u l l y f l e x i b l e

w i t h r e g a r d t o t he r a t i o between h e a t and power consumed. When r e l y i n g on t h i s

a l t e r n a t i v e t o d a y , h o w e v e r , i t i s a d v i s a b l e t o keep open t h e o p t i o n t o a p p l y

combined g e n e r a t i o n i n t h e f u t u r e .

R e t u r n i n g now t o t h e a p p l i c a t i o n o f p o w e r - g e n e r a t i n g u n i t s based on t h e steam

c y c l e , l e t us o b s e r v e t h a t a b a c k - p r e s s u r e t u r b i n e i s j u s t a s p e c i a l case o f

a steam t u r b i n e . I f we d e f i n e A as t h e r a t i o o f steam demand D' ( k g / h ) t o power

demand P' (kW)

A = D ' / P ' ( 1 . 9 )

then f o r A>10, a b a c k - p r e s s u r e t u r b i n e i s u s u a l l y t h e b e s t c h o i c e . F o r A<10,

Page 57: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

46

a c o n d e n s i n g / e x t r a c t i o n t u r b i n e ( F i g . 1.26) s h o u l d be r e g a r d e d as a s e r i o u s

a l t e r n a t i v e . I t assumes the use o f e x t r a c t i o n steam i n s t e a d o f e x h a u s t steam

f rom a b a c k - p r e s s u r e u n i t , w h i l e t he r e m a i n i n g steam f l o w i n g t o t h e c o n d e n s e r

g e n e r a t e s some e x t r a power . A l t h o u g h t h i s s o l u t i o n i s e x p e n s i v e , i t can a l s o be

o p e r a t e d d u r i n g t h e o f f - s e a s o n p e r i o d i f power can be s o l d t o t h e e x t e r n a l g r i d .

T h i s seems t o be p a r t i c u l a r l y a t t r a c t i v e t o i n d u s t r i a l combines o f w h i c h t h e

s u g a r f a c t o r y i s o n l y a p a r t , and where h e a t and power a r e needed d u r i n g t h e

o f f - s e a s o n p e r i o d . Examples o f t h i s s o l u t i o n can be f ound i n t h e B u l g a r i a n and

S o v i e t s u g a r i n d u s t r i e s , as w e l l as i n cane s u g a r f a c t o r i e s i n r e g i o n s where

power s u p p l i e s t o t he g r i d a r e r e q u i r e d ( r e f s . 5 4 - 5 6 ) .

s t e a m

f u e l

1 L

1 til -Θ 3

Ί k ' . c o n d e n s a t e

F i g . 1.26. E n e r g y sys tem l a y o u t f o r t h e a p p l i c a t i o n o f a c o n d e n s i n g / e x t r a c t i o n t u r b i n e . 1 - b o i l e r , 2 - t u r b i n e , 3 - p r o c e s s , 4 - c o n d e n s e r .

1.5.3 S o l u t i o n s based on a b a c k - p r e s s u r e t u r b i n e

I n a s u g a r f a c t o r y e q u i p p e d w i t h i t s own power h o u s e , a mismatch p rob lem

between t h e power demand and power p r o d u c t i o n may o c c u r . The e l e c t r i c a l o u t p u t

Ρ o f a b a c k - p r e s s u r e t u r b o - g e n e r a t o r can be e x p r e s s e d as a f u n c t i o n o f steam

f l o w D

Ρ = D/S ( 1 . 1 0 )

where S i s t he steam r a t e , i . e . t he steam consumpt ion p e r u n i t power p r o d u c e d

( k g / k W h ) , o f t he t u r b o - g e n e r a t o r .

D i v i d i n g t h e above e q u a t i o n by t h e d a i l y p r o c e s s i n g c a p a b i l i t y o f t h e f a c t o r y

R, we o b t a i n

P/R = ( D / R ) / S ( 1 . 1 1 )

Assuming a c o n s t a n t steam r a t e , t h i s i s a l i n e a r r e l a t i o n s h i p i l l u s t r a t e d i n

F i g . 1.27. L e t us now e x p r e s s t h e f a c t o r y ' s e n e r g y demand by two i n d i c e s

p ' = P ' / R and d ' = D ' / R r e p r e s e n t i n g power demand and steam demand, r e s p e c t i v e l y ,

p e r u n i t d a i l y c a p a b i l i t y . Two d i f f e r e n t s i t u a t i o n s can be imag ined f o r a b a c k

p r e s s u r e t u r b o - g e n e r a t o r c h a r a c t e r i z e d by steam r a t e S :

( i ) P' < d ' / S

T h i s means t h a t t h e steam f l o w c o v e r i n g t h e f a c t o r y ' s hea t demand i s

Page 58: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

47

60 b a r / 5 0 0 ° C / 40 ba r7 420 °C

10 20 30 40 50 60

S team d e m a n d ( k g / I O O k g b )

F i g . 1.27. Power g e n e r a t e d as a f u n c t i o n o f t h e steam f l o w t h r o u g h a b a c k -- p r e s s u r e t u r b i n e .

s u f f i c i e n t l y l a r g e t o g e n e r a t e power needed (d-j i n F i g . 1 . 2 7 ) . The f a c t o r y i s

l i k e l y t o be s e l f - s u f f i c i e n t w i t h r e s p e c t t o power g e n e r a t i o n ,

( i i ) P' > d ' / S

The steam f l o w c o v e r i n g t h e f a c t o r y ' s h e a t demand i s t o o smal l t o s a t i s f y t h e

power demand ( d ^ i n F i g . 1 . 2 7 ) , and s e l f - s u f f i c i e n c y w i t h r e s p e c t t o power

g e n e r a t i o n i s i m p o s s i b l e o r v e r y d i f f i c u l t t o a c h i e v e .

Case ( i ) i s a f a v o u r a b l e s i t u a t i o n . I f no e l e c t r i c i t y s a l e s t o t h e e x t e r n a l

g r i d a r e p o s s i b l e , t hen a p a r t o f t he l i v e steam s h o u l d be d i r e c t e d t o

a t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n and s u p p l i e d t o t h e p r o c e s s , t h u s b y - p a s s i n g

t he t u r b i n e . T h i s i s t he most w i d e l y used s o l u t i o n ; i t i s e x t e n s i v e l y d e s c r i b e d

i n t he l i t e r a t u r e ( r e f . 3 9 ) .

Case ( i i ) n e c e s s i t a t e s a c r i t i c a l r e v i e w o f t h e s t r u c t u r e o f t h e power demand,

and a c t i o n s aimed a t s a v i n g power u s i n g t h e t e c h n i q u e s men t ioned i n S e c t i o n

1 .4 .3 . I f no m e a n i n g f u l improvements can be a t t a i n e d , t hen i t becomes n e c e s s a r y

t o m o d i f y t he power house c o n c e p t assumed. T h e r e a r e s e v e r a l p o s s i b l e s o l u t i o n s

i n w h i c h t h e b a c k - p r e s s u r e steam c y c l e remains dom inan t :

- e l e c t r i c i t y p u r c h a s e s f rom t h e e x t e r n a l g r i d t o c o v e r t h e d e f i c i t ;

- u s i n g steam f rom t h e t u r b i n e e x h a u s t t o h e a t combus t i on a i r s u p p l i e d t o t h e

b o i l e r s o r p u l p - d r y e r f u r n a c e , t hus i n c r e a s i n g t h e steam f l o w t h r o u g h t h e

t u r b i n e ;

- i n s t a l l i n g a new b a c k - p r e s s u r e t u r b i n e c h a r a c t e r i z e d by a l o w e r steam r a t e

( i n F i g . 1 .27, t h i s i s i n t e r p r e t e d as moving t o t h e t u r b i n e c h a r a c t e r i s t i c s

shown by t h e dashed l i n e ) ,

- i n s t a l l i n g a new b o i l e r g e n e r a t i n g steam a t a h i g h e r p r e s s u r e and an

a d d i t i o n a l " t o p p i n g " b a c k - p r e s s u r e t u r b i n e ( F i g . 1 . 2 8 ( a ) ) , and s u p p l y i n g steam

Page 59: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

48

(α)

fuel

fuel

c o n d e n s a t e

( b )

s t e a m 3 3 fue l

s t e a m

H 3

c o n d e n s a t e

F i g . 1.28. E n e r g y sys tem l a y o u t s f o r t h e m o d e r n i z a t i o n o f c o n v e n t i o n a l b a c k -- p r e s s u r e steam c y c l e s : ( a ) w i t h a t o p p i n g t u r b i n e , ( b ) w i t h a c o n d e n s i n g t u r b i n e . 1 - b o i l e r , 2 - t u r b i n e , 3 - p r o c e s s , 4 - c o n d e n s e r , 5 - t o p p i n g t u r b i n e , 6 - c o n d e n s i n g t u r b i n e .

f rom the e x h a u s t o f t h e " t o p p i n g " t u r b i n e t o t he e x i s t i n g t u r b i n e ;

- i n s t a l l i n g an a d d i t i o n a l c o n d e n s i n g t u r b i n e t o be s u p p l i e d w i t h a p a r t o f t h e

e x h a u s t steam f l o w ( F i g . 1 . 2 8 ( b ) ) ;

- i n cases where a the rma l c o n n e c t i o n between t h e f a c t o r y and an e x t e r n a l h e a t

r e c e i v e r ( e . g . a d i s t r i c t h e a t i n g s y s t e m ) i s p o s s i b l e , a p p l y i n g a b a c k - p r e s s u r e /

/ e x t r a c t i o n t u r b i n e ( r e f . 5 7 ) .

The complement ing power p u r c h a s e s f rom t h e e x t e r n a l g r i d a r e e c o n o m i c a l l y

a t t r a c t i v e , p r o v i d i n g t h e power p r i c e i s s u f f i c i e n t l y low i n r e l a t i o n t o t h e

f u e l p r i c e . T h i s s o l u t i o n i s w i d e l y used nowadays ; v a r i o u s a s p e c t s o f t h e

c o o p e r a t i o n w i t h t h e e x t e r n a l g r i d , i n c l u d i n g t e c h n i c a l d e t a i l s r e l a t e d t o t h e

power n e t w o r k , a r e d i s c u s s e d i n t h e l i t e r a t u r e ( r e f . 3 9 ) .

I n t e r e s t i n g deve lopments can be seen i n F r a n c e , where t h e power t a r i f f s a r e

d i f f e r e n t i a t e d depend ing on t h e t ime o f y e a r , t h e p r i c e s r i s i n g i n O c t o b e r and

November and r e a c h i n g a maximum i n December. T h i s s t i m u l a t e s power p u r c h a s e s i n

t h e i n i t i a l s t a g e o f t h e s e a s o n , w h i l e e l e c t r i c s e l f - s u f f i c i e n c y i s p r e f e r r e d

l a t e r o n . T h e r e f o r e , t i m e - d e p e n d e n t o p e r a t i o n o f t h e e n e r g y sys tems i n t h e s u g a r

i n d u s t r y i s p r o p o s e d so t h a t t h e power demand can v a r y ( r e f . 1 3 ) . D u r i n g t h e

i n i t i a l weeks o f t h e season power can be p u r c h a s e d t o o p e r a t e advanced v a p o u r -

compress i on c i r c u i t s , making i t p o s s i b l e t o m i n i m i z e t h e steam demand and t h u s

a l s o t he f u e l c o n s u m p t i o n . L a t e r o n , no power w i l l be p u r c h a s e d , and t h e f u e l

consumpt ion w i l l be a l l o w e d t o i n c r e a s e .

The second s o l u t i o n f rom t h e above l i s t can be a p p l i e d o n l y i f t h e i n s t a l l e d

b o i l e r and t u r b i n e c a p a c i t i e s a r e l a r g e enough t o a l l o w f o r a steam f l o w

i n c r e a s e . I t r e q u i r e s i n s t a l l i n g s t eam-hea ted a i r p r e h e a t e r s i n w h i c h t h e e n e r g y

o f t h e c o n d e n s i n g e x h a u s t steam can be t r a n s f e r r e d t o t h e combus t i on a i r . The

t e m p e r a t u r e range o v e r w h i c h a i r p r e h e a t i n g must be c o n t a i n e d i s l i m i t e d , t h u s

Page 60: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

49

l i m i t i n g t h e a t t a i n a b l e s t e a m - f l o w i n c r e a s e . Where a i r p r e h e a t i n g a p p l i e s t o t h e

b o i l e r s o n l y , t he power g e n e r a t i o n can be i n c r e a s e d by abou t 7-8%. An a n a l y s i s

o f r e l e v a n t e n e r g y b a l a n c e s , i n c l u d i n g t h e case o f p r e h e a t i n g o f a i r d i r e c t e d t o

t h e p u l p - d r y e r f u r n a c e , can be found i n t h e l i t e r a t u r e ( r e f . 5 8 ) .

The t h i r d s o l u t i o n , i . e . a b a c k - p r e s s u r e t u r b i n e w i t h an improved steam r a t e ,

can o n l y be a p p l i e d p r o v i d i n g t h e p r e s s u r e and t e m p e r a t u r e o f t h e l i v e steam a r e

i n c r e a s e d , w h i c h a l s o r e q u i r e s i n s t a l l i n g a new b o i l e r . F i g u r e 1.29 shows

a d iag ram i n d i c a t i n g t he steam r a t e , and t he r a t i o o f t h e e l e c t r i c a l e n e r g y

p roduced t o t he i n p u t o f p r i m a r y e n e r g y i n f u e l d e l i v e r e d , as f u n c t i o n s o f l i v e -

steam p r e s s u r e ( t h e r e may be some s c a t t e r i n t h e d a t a because t h e q u a l i t y o f

t u r b i n e s s u p p l i e d by v a r i o u s m a n u f a c t u r e r s may v a r y ) . L e t us n o t e t h a t t h e steam

r a t e can be r e d u c e d n o t o n l y by i n c r e a s i n g l i v e - s t e a m p r e s s u r e and t e m p e r a t u r e

b u t a l s o by a p p l y i n g t h e r e h e a t c y c l e . F o r a p r o p o s e d u n i t o p e r a t e d a t l i v e -

steam paramete rs 80 b a r and 500^0, w i t h r e h e a t a t 30 b a r and 450^0, an

e s t i m a t e d steam r a t e i s 5.5 kg/kWh ( r e f . 5 9 ) .

The r e m a i n i n g c o n c e p t s named a t t he end o f t h e above l i s t , r e q u i r i n g

r e l a t i v e l y complex power house l a y o u t s , m i g h t be c o n s i d e r e d when s o l v i n g f a c t o r y

e x t e n s i o n o r m o d e r n i z a t i o n p r o b l e m s . I t has been p r o v e d u n d e r s p e c i f i c economic

c o n d i t i o n s t h a t a t o p p i n g t u r b i n e o p e r a t e d a t steam pa rame te rs 100 b a r and 540°C,

h a v i n g t he advan tage o f l a r g e r power p r o d u c t i o n , may be a t l e a s t e c o n o m i c a l l y

e q u i v a l e n t t o an a d d i t i o n a l b a c k - p r e s s u r e t u r b i n e s u p p l i e d w i t h steam a t 40 b a r

and 440°C ( r e f . 6 0 ) . As r e g a r d s an a d d i t i o n a l c o n d e n s i n g t u r b i n e , t h i s i s a

t y p i c a l s o l u t i o n i n cane s u g a r f a c t o r i e s i n w h i c h a l l bagasse i s b u r n e d , and t h e

e l e c t r i c i t y s u r p l u s i s s o l d t o t he e x t e r n a l g r i d ( r e f s . 6 1 , 6 2 ) .

15

SI

o

£ o φ

LH

ι ^ 500

520 °C

\ \ x \

V \

500

\ \ x \

V \

X 4 0 ° C •

400 ° c / ' — ^

'360°C -

20 40 60 80

1 14

•D

L-- 12 0; — - 12 > >%

c . t : o υ

• o Ζ >Χ> cnSí

• 10 Φ^ C ο

φ D

LL Η 8

P r e s s u r e ( b a r )

F i g . 1.29. Steam r a t e , and p e r c e n t a g e o f f u e l e n e r g y c o n v e r t e d t o e l e c t r i c i t y , as f u n c t i o n s o f l i v e steam pa ramete rs a t b a c k - p r e s s u r e 3 b a r .

Page 61: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

50

I t s h o u l d be p o i n t e d o u t t h a t a new b o i l e r - t u r b i n e u n i t o p e r a t e d a t i n c r e a s e d

steam p a r a m e t e r s , o r an a d d i t i o n a l b o i l e r - t u r b i n e u n i t , r e q u i r e l a r g e

i n v e s t m e n t s , i n c l u d i n g c o s t l y f o u n d a t i o n s and pe rhaps b u i l d i n g s . I n o r d e r t o

a v o i d t h i s , a l t e r n a t i v e p o w e r - g e n e r a t i o n t e c h n o l o g i e s may be c o n s i d e r e d . The

a l t e r n a t i v e s o l u t i o n s a r e c h a r a c t e r i z e d by l o w e r i n v e s t m e n t c o s t s , and e l i m i n a t e

t h e r i g i d r e l a t i o n s h i p between t h e steam f l o w and t h e power g e n e r a t e d t h a t i s

c h a r a c t e r i s t i c o f t h e steam c y c l e .

1.5.4 C o m b u s t i o n - e n g i n e based s o l u t i o n s

A c o n c e p t w h i c h has r e c e i v e d much a t t e n t i o n i s t o a p p l y g a s - t u r b i n e d r i v e n

g e n e r a t i n g s e t s , w h i c h a r e a v a i l a b l e t o d a y w i t h power r a t i n g s up t o 100 MW. A t

t he p r e s e n t s t a t e o f deve lopmen t o f g a s - t u r b i n e t e c h n o l o g y , h o w e v e r , t h i s l i m i t s

t h e c h o i c e o f f u e l s t o l i q u i d o r gaseous t y p e s .

A g a s - t u r b i n e s e t i n c l u d e s a c o m p r e s s o r r a i s i n g t h e p r e s s u r e o f t h e

a t m o s p h e r i c a i r t o abou t 3-5 b a r and d e l i v e r i n g i t t o a combus t i on chamber where

t h e f u e l i s b u r n e d . Hot combus t i on gases s u b s e q u e n t l y expand i n a t u r b i n e , w h i c h

i s t y p i c a l l y mounted on t h e same s h a f t as t h e c o m p r e s s o r . The r o t a t i o n a l

v e l o c i t y may be as h i g h as 10 000 rpm, so t h e r e i s u s u a l l y a r e d u c i n g g e a r b o x

between t h e t u r b i n e - c o m p r e s s o r s e t and t h e e l e c t r i c a l g e n e r a t o r . The gas

p r e s s u r e i n t h e t u r b i n e e x h a u s t e q u a l s a t m o s p h e r i c p r e s s u r e , and t h e t e m p e r a t u r e

i s t y p i c a l l y abou t 430-550°C. The scheme o f a gas t u r b i n e s e t and a t y p i c a l

Sankey d iag ram a r e shown i n F i g . 1.30. The w e i g h t s and d i m e n s i o n s o f two g a s -

t u r b i n e d r i v e n c o n t i n u o u s - d u t y g e n e r a t i n g s e t s a r e g i v e n i n F i g . 1.31.

fuel

2 h

Qir I

-Θ exhaus t g a s compressor

work 38.3%

h e a t 7 0 . 6 %

IV p o w e r ^ 2 7 5 %

F i g . 1.30. Work ing p r i n c i p l e o f a g a s - t u r b i n e s e t and a c o r r e s p o n d i n g Sankey d i a g r a m . 1 - c o m p r e s s o r , 2 - combus t i on chamber , 3 - t u r b i n e .

An e a r l y i d e a was t o c o n n e c t t h e gas t u r b i n e t o a l o w - p r e s s u r e b o i l e r , i n

w h i c h t h e e n e r g y o f gases l e a v i n g t h e t u r b i n e e x h a u s t can be used t o g e n e r a t e

h e a t i n g s team, as shown s c h e m a t i c a l l y i n F i g . 1 . 32 (a ) ( r e f . 6 3 ) . From t h e p o i n t

o f v i e w o f t h e e n e r g y economy, t h i s s o l u t i o n e n s u r e s t h e l a r g e s t power o u t p u t a t

a g i v e n hea t demand. H o w e v e r , a b o i l e r hea ted by gases a t a r e l a t i v e l y l ow

i n i t i a l t e m p e r a t u r e i s so c o s t l y t h a t t h e economic r e s u l t m i g h t be q u e s t i o n a b l e .

Page 62: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

51

(α) (b )

- c 1?

7m 15m

F i g . 1.31. Examples o f g a s - t u r b i n e d r i v e n g e n e r a t i n g s e t s , ( a ) r a t i n g 2.5 MW, w e i g h t 18 t , ( b ) 6.2 MW, 60 t . 1 - a i r i n l e t , 2 - gas o u t l e t , 3 - g e n e r a t o r .

(a) I f u e l I

( b )

2 3 2 3

I f ue l I

0 - 1

g a s g a s

p o w e r 2 7 5 %

heaf 41.6%

p o w e r 2 7 5 %

h e a t 61.7%

p o w e r 20 .0%

"hea t 69 .4%

F i g . 1.32. E n e r g y sys tem l a y o u t s and t y p i c a l Sankey d iagrams f o r t h e a p p l i c a t i o n o f gas t u r b i n e s , ( a ) i n c o n n e c t i o n t o a l o w - p r e s s u r e steam b o i l e r , ( b ) i n c o n n e c t i o n t o a p u l p d r y e r , ( c ) as a t o p p i n g u n i t . 1 - gas t u r b i n e , 2 - s team b o i l e r , 3 - p r o c e s s , 4 - p u l p d r y e r , 5 - steam t u r b i n e .

Page 63: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

52

A more a t t r a c t i v e s o l u t i o n c o n s i s t s o f s u p p l y i n g t h e gases f rom t h e t u r b i n e

e x h a u s t d i r e c t l y t o p u l p d r y i n g , as i l l u s t r a t e d i n F i g . 1 . 3 2 ( b ) ( r e f s . 6 4 - 6 7 ) .

A p r o t o t y p e i n s t a l l a t i o n w i t h a gas t u r b i n e r a t e d a t 1200 kW i s o p e r a t e d i n

a F r e n c h f a c t o r y ( r e f . 4 1 ) . Assuming t h a t t h e t o t a l amount o f p u l p p r e s s e d t o

22% DS i s d r i e d t o 90% DS, and t h e e n e r g y b a l a n c e o f t h e t u r b i n e i s e s s e n t i a l l y

i d e n t i c a l t o t h a t shown i n F i g . 1.30, power can be g e n e r a t e d a t t h e r a t e o f

abou t 1.9 kWh p e r 100 kg b e e t .

The most advanced and e c o n o m i c a l l y a t t r a c t i v e c o n c e p t i s based on t h e

a p p l i c a t i o n o f a t o p p i n g g a s - t u r b i n e f rom w h i c h t h e e x h a u s t gases a r e s u p p l i e d

t o a steam b o i l e r e q u i p p e d w i t h i t s own f u r n a c e , as shown s c h e m a t i c a l l y i n

F i g . 1 . 3 2 ( c ) . By b u r n i n g a d d i t i o n a l f u e l i n t h e b o i l e r f u r n a c e , t he t e m p e r a t u r e

o f t h e gases can be r a i s e d , w h i c h a l l o w s t h e h e a t t r a n s f e r s u r f a c e s t o be made

as compact as i n a c o n v e n t i o n a l b o i l e r and t hus no more c o s t l y . The g a s - t u r b i n e

s e t and t he s t e a m - t u r b i n e s e t t o g e t h e r g e n e r a t e more power t han a c o n v e n t i o n a l

steam c y c l e . An i n t e r e s t i n g f e a t u r e o f t h i s s o l u t i o n , demons t ra ted i n a f u l l -

s c a l e i n d u s t r i a l a p p l i c a t i o n i n t h e chemica l i n d u s t r y ( r e f . 6 9 ) , i s t h a t t h e

t o p p i n g g a s - t u r b i n e can be c o n n e c t e d t o a c o n v e n t i o n a l b o i l e r a f t e r m o d e s t l y

e x p e n s i v e b o i l e r m o d i f i c a t i o n s .

The economic j u s t i f i c a t i o n o f t h e t h r e e v a r i a n t s d e s c r i b e d depends on f u e l

and e l e c t r i c i t y p r i c e s , as w e l l as c a p i t a l c o s t . I n s p e c i a l economic c o n d i t i o n s ,

namely h i g h power p r i c e , low D i e s e l - o i l p r i c e and a r e l a t i v e l y l a r g e power

demand d u r i n g t h e o f f - s e a s o n p e r i o d , i t m igh t be p r a c t i c a l t o c o n s i d e r a t o p p i n g

D i e s e l e n g i n e c o n n e c t e d t o a b a c k - p r e s s u r e steam c y c l e , o r t o a p u l p d r y e r

e q u i p p e d w i t h an a u x i l i a r y f u r n a c e ( r e f s . 7 0 , 7 1 ) . D u r i n g t h e o f f - s e a s o n p e r i o d ,

t h e e n g i n e can be o p e r a t e d f o r t h e p u r p o s e o f power g e n e r a t i o n o n l y .

A l t h o u g h r e l y i n g on e x i s t i n g t e c h n o l o g y , t h e f e a s i b i l i t y o f t h e a p p l i c a t i o n

o f D i e s e l e n g i n e and gas t u r b i n e i n t h e s u g a r i n d u s t r y y e t remains t o be

demons t ra ted i n p r a c t i c e . I t can be n o t e d t h a t a f t e r t h e f i r s t wave o f i n t e r e s t

i n c o m b u s t i o n - e n g i n e based s o l u t i o n s i n t h e l a t e 1970s, no l a r g e - s c a l e

i n v e s t m e n t s were u n d e r t a k e n , and some s c e p t i c i s m based on economic

c o n s i d e r a t i o n s was e x p r e s s e d i n t h e l i t e r a t u r e ( r e f . 7 2 ) .

1.5.5 U n c o n v e n t i o n a l t he rma l c o u p l i n g between t h e power house and t h e hea t

economy

A c o n v e n t i o n a l app roach t o t h e l i n k between t h e power house and t h e s u g a r

m a n u f a c t u r i n g p r o c e s s assumes t h a t t h e power house i s f u n c t i o n i n g as an e n e r g y

s o u r c e , and t h e p r o c e s s as an e n e r g y r e c e i v e r . An e n e r g y s t ream f l o w i n g i n t h e

r e v e r s e d i r e c t i o n , namely t h e c o n d e n s a t e r e t u r n e d f rom t h e e v a p o r a t o r t o t h e

b o i l e r s , i s se ldom t r e a t e d as a p a r t o f e n e r g y c o n v e r s i o n and u t i l i z a t i o n

p r o c e s s e s b u t r a t h e r as an a r rangemen t t o s e c u r e p r o p e r q u a l i t y o f t h e b o i l e r

f e e d w a t e r .

Page 64: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

53

A c o n s i d e r a b l e e n e r g y - s a v i n g p o t e n t i a l i s a s s o c i a t e d w i t h t h e p o s s i b i l i t y o f

r e c u p e r a t i n g l o w - t e m p e r a t u r e h e a t f rom c e r t a i n s e c t i o n s o f t h e p r o c e s s and

r e t u r n i n g i t f o r r e - u s e i n o t h e r s e c t i o n s . A d i f f i c u l t y i n h e r e n t i n t h i s

app roach i s t o f i n d p r o c e s s media w i t h t e m p e r a t u r e s low enough t o make t h e

a b s o r p t i o n o f t h e r e c u p e r a t e d h e a t p o s s i b l e . ( I t i s p r e c i s e l y f o r t h i s r e a s o n

t h a t l o w - t e m p e r a t u r e p u l p d r y i n g i s so i n t e r e s t i n g as an e n e r g y - s a v i n g m e a s u r e ,

because a i r d i r e c t e d t o a l o w - t e m p e r a t u r e d r y e r i s h e a t e d by w a s t e h e a t w h i c h

wou ld o t h e r w i s e be d i s s i p a t e d t o t h e e n v i r o n m e n t . )

The l o w - t e m p e r a t u r e h e a t can a l s o be r e t u r n e d t o t h e power h o u s e , by h e a t i n g

combus t ion a i r s u p p l i e d t o t h e b o i l e r f u r n a c e s . By making i t p o s s i b l e t o c u t

down t he f u e l consumpt ion i n t h e b o i l e r s , t h i s s o l u t i o n can be e c o n o m i c a l l y

j u s t i f i e d i f t h e f u e l s a v i n g i s l a r g e enough t o pay back t h e i n v e s t m e n t i n t h e

h e a t - r e c u p e r a t i n g and a i r - h e a t i n g e q u i p m e n t .

The d e t a i l s o f t h e the rma l c o u p l i n g between t h e power house and t h e h e a t

economy may v a r y . A s o l u t i o n implemented i n a B e l g i a n f a c t o r y has been d e s c r i b e d

i n t h e l i t e r a t u r e ( r e f . 7 3 ) . The hea t i s r e c o v e r e d f rom s p e n t c a r b o n a t a t i o n gas

i n a d i r e c t - c o n t a c t h e a t e r where t h e t e m p e r a t u r e o f c i r c u l a t i n g w a t e r i s r a i s e d

f rom 50'^C t o a b o u t 80°C ( s e e a l s o S e c t i o n 4 . 2 . 2 ) . Water i s s u b s e q u e n t l y pumped

t o a i r p r e h e a t e r s c o n n e c t e d t o t h e b o i l e r s ( a l t e r n a t i v e l y , i t can be pumped t o

a i r p r e h e a t e r s c o n n e c t e d t o t h e s u g a r d r y e r ) . F u e l s a v i n g s o f t h e o r d e r o f

0.1 kg normal f u e l p e r 100 kg b e e t have been r e p o r t e d f o r t h i s s o l u t i o n .

A i r p r e h e a t e r s can a l s o be s u p p l i e d w i t h h e a t r e c o v e r e d f rom vacuum-pan

v a p o u r s c o n d e n s i n g i n a s p e c i a l c o n d e n s e r ( r e f . 7 4 ) . The t e m p e r a t u r e o f h e a t -

c a r r y i n g w a t e r a t t h e c o n d e n s e r o u t l e t i s a b o u t 58-59°C. F o r t h i s r e a s o n , t h e

economic j u s t i f i c a t i o n o f t h i s s o l u t i o n m igh t be more d i f f i c u l t t o e s t a b l i s h .

F o r a compar i son w i t h o t h e r methods o f u t i l i z a t i o n o f vacuum-pan v a p o u r , see

S e c t i o n 3 . 3 . 1 .

REFERENCES

1 K. S c h i e b l , W 'á rmewi r t scha f t i n d e r Z u c k e r i n d u s t r i e , Τ . S t e i n k o p f f V e r l a g , D r e s d e n / L e i p z i g , 1939.

2 Β. K a r r e n , The p o t e n t i a l f o r e n e r g y s a v i n g i n t h e b e e t s u g a r i n d u s t r y . S u g a r J . , 4 4 ( 1 ) (1981) 8 -13 .

3 T . B a l o h , W ä r m e w i r t s c h a f t , i n : F . S c h n e i d e r ( E d . ) , T e c h n o l o g i e des Z u c k e r s , S c h a p e r V e r l a g , H a n n o v e r , 1968, p p . 705-776.

4 S . Z a g r o d z k i , Gospodarka C i e p l n a C u k r o w n i , WNT, Warszawa , 1979. 5 K. U r b a n i e c , S p r e z a n i e oparow w g o s p o d a r c e c i e p l n e j c u k r o w n i , G a z . C u k r o w . ,

90 (9 ) (1982) 134-136. 6 T . D . E a s t o p and A . McConkey , A p p l i e d Thermodynamics f o r E n g i n e e r i n g

T e c h n o l o g i s t s , 3 rd e d n . , Longman, London and New Y o r k , 1978. 7 G . J . Van Wylen and R . E . S o n n t a g , Fundamenta ls o f C l a s s i c a l T h e r m o d y n a m i c s ,

3 rd e d n . , W i l e y , New Y o r k , 1985. 8 T . B a l o h , Wärmeat las f ü r d i e Z u c k e r i n d u s t r i e , S c h a p e r V e r l a g , H a n n o v e r , 1975. 9 P. V a l e n t i n , E n e r g y c o n s e r v a t i o n s t u d i e s i n t h e b e e t s u g a r i n d u s t r y . I n t .

Sugar J . , 82(982) (1980) 303-309.

Page 65: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

54

10 Ε. H u g o t , Handbook o f Cane S u g a r E n g i n e e r i n g , 3 rd e d n . , E l s e v i e r , Amsterdam, 1986.

11 P. V a l e n t i n , U b e r d i e B e e i n f l u s s u n g des P r i m ä r e n e r g i e v e r b r a u c h s i n d e r Z u c k e r i n d u s t r i e , Ζ . Z u c k e r i n d . , 26 (8 ) (1976) 525-534.

12 P. Mosel ( e t a l . ) , O p t i m i e r u n g von E i n d i c k u n g s p r o z e s s e n i n d e r Z u c k e r i n d u s t r i e , Z u c k e r i n d . , 104(12) (1979) 1101-1107.

13 P. G i r a u d , R e d u i r e l e s c o u t s e n e r g e t i q u e s p a r 1 ' u t i l i s a t i o n de l ' e l e c t r i c i t e , I n d . A l i m . A g r i e , 102 (7 -8 ) (1985) 707-710.

14 Κ . Ε . A u s t m e y e r , B rüdenkompress ion i n d e r Z u c k e r i n d u s t r i e , Z u c k e r i n d . , 108(8) (1983) 715-728.

15 R. M i c h e l , P h . T e r n y n c k and P h . B o n n e n f a n t , R e a l i s a t i o n du p o s t e d ' e v a p o r a t i o n dans une u s i n e de 12 000 t / j de b e t t e r a v e s s t o c k a n t 60% du s i r o p p r o d u i t en campagne, I n d . A l i m . A g r i e , 9 4 ( 7 - 8 ) (1977) 701-705.

16 R e p e r t o i r e des S u c r e r i e s e t R a f f i n e r i e s b e i g e s , S u c r . B e i g e , (102) (1984) 21-74.

17 P. C h r i s t o d o u l o u , B e t r i e b s e r f a h r u n g e n m i t dem E i n s a t z e i n e r Wärmepumpe i n V e r d a m p f s t a t i o n e i n e r Z u c k e r f a b r i k , Z u c k e r i n d . , 109(7) (1984) 628-634.

18 P. Ho f fman, O p t i m a l i z a c e e n e r g e t i c k e h o h o s p o d a r s t v i c u k r o v a r u L o v o s i c e , L i s t y C u k r . , 102(7) (1986) 155-161.

19 F. Baunack , T r o c k n u n g , i n : F . S c h n e i d e r ( E d . ) , T e c h n o l o g i e des Z u c k e r s , Schape r V e r l a g , H a n n o v e r , 1968, p p . 845-883.

20 T h . C r o n e w i t z , Wege z u r r a t i o n e l l e n E n e r g i e v e r w e n d u n g b e i d e r S c h n i t z e l -t r o c k n u n g i n d e r Z u c k e r i n d u s t r i e , Z u c k e r i n d . , 105(2) (1980) 129-139.

21 F . Amding, Abwärmenutzung z u r Saf tanwärmung im Zusammenhang m i t d e r S c h n i t z e l t r o c k n u n g , Z u c k e r i n d . , 110(8) (1985) 675-679.

22 P. V e r m e u l e n , Sa f t e i ndamp fung m i t t e l s T r o c k n u n g s a b g a s be i dessen R e i n i g u n g , Z u c k e r i n d . , 110(8) (1985) 681-685.

23 K . E . Aus tmeye r and W. P o e r s c h , N i e d e r t e m p e r a t u r t r o c k n u n g - G r u n d l a g e n und B e t r a c h t u n g e n z u r W i r t s c h a f t l i c h k e i t , Z u c k e r i n d . , 108(9) (1983) 861-868, 108(11) (1983) 1033-1041, 109(5) (1984) 411-419, 110(1) (1985) 28-34.

24 E. S c h r ö t e r , D ie N i e d e r t e m p e r a t u r t r o c k n u n g i n L e h r t e - F u n k t i o n s w e i s e und E r f a h r u n g e n , Z u c k e r i n d . , 111(6) (1986) 545-548.

25 K . E . Aus tmeye r and U . B u n e r t , Abwärmenutzung im Zusammenhang m i t d e r S c h n i t z e l t r o c k n u n g , Z u c k e r i n d . , 110(8) (1985) 659-670.

26 M. Kunz and P. V a l e n t i n , S c h n i t z e l t r o c k n u n g ohne P r i m ä r e n e r g i e e i n s a t z u n t e r a u s s c h l i e s s l i c h e r Nu tzung d e r Abwärme- und E i n d a m p f p o t e n t i a l e d e r Z u c k e r f a b r i k , Z u c k e r i n d . , 111(8) (1986) 741-750.

27 G . F e l t b o r g , Ä t g ä r d e r f ö r a t t minska u p p v ä r m n i n g s k o s t n a d e r n a v i d e t t s o c k e r b r u k , S o c k e r b o l a g e t r e p o r t , 1985.

28 Gu ide Book f o r F a c t o r y E n g i n e e r s on E n e r g y C o n s e r v a t i o n D i a g n o s i s , UNIDO Document I S . 4 4 9 , V i e n n a , 1984.

29 J . S . Hogg ( e t a l . ) . The r o l e o f t h e r m o g r a p h i c s u r v e y i n g i n e n e r g y c o n s e r v a t i o n . I n t . Suga r J . , 85(1011) (1983) 67-71.

30 P. C h r i s t o d o u l o u , D ie O p t i m i e r u n g d e r E n e r g i e w i r t s c h a f t i n d e r Z u c k e r f a b r i k , Ζ . Z u c k e r i n d . , 27 (7 ) (1977) 441-446, 27 (8 ) (1977) 509-515.

31 O . V . M o r o z , A . A . L i p e t s and D.M. K o r i l k e v i c h , P u t i umensheniya p o t e r t e p l a na s t a n t s i i d e f e k o s a t u r a t s i i , Sakh . P r o m . , ( 9 ) (1985) 45-47 .

32 Y u . D . Kot ( e t a l . ) , P r o i z v o d s t v e n n y e i s p y t a n i y a n i z k o t e m p e r a t u r n o g o r e z h i m a , Sakh . P r o m . , ( 2 ) (1985) 20-22 .

33 P . - V . Schmid t and E. Manzke , Zu F r a g e n d e r E n e r g i e w i r t s c h a f t be i d e r T e i l e x t r a k t i o n , L e b e n s m i t t . - I n d . , 2 4 ( 1 ) (1977) 21 -24 , 2 4 ( 2 ) (1977) 77-80.

34 T . P . Ma t v i enko ( e t a l . ) , P r o b e l i v a n i e sakha ra s pr imenen iem v t o r o g o o t t e k a u t f e l y a I k r i s t a l l i z a t s i i , Sakh . P r o m . , ( 8 ) (1984) 31-34.

35 P. M o s e l , H . - R . Kemter and T h . C r o n e w i t z , Z u r Anwendung e i n e r S i r u p d e c k e b e i p e r i o d i s c h a r b e i t e n d e n Z e n t r i f u g e n , Z u c k e r i n d . , 111(3) (1986) 211-216.

36 H. V o g e l e r . E i n Weg z u r hohen D i c k s a f t d i c h t e und d e r e n w i r t s c h a f t l i c h e N u t z u n g , Z u c k e r , 30(12) (1977) 676-683.

37 H . - J . Krombach, M ö g l i c h k e i t e n z u r Senkung des H e i z d a m p f V e r b r a u c h e s im Z u c k e r h a u s , Z u c k e r i n d . , 106(9) (1981) 793-804.

38 W. L e k a w s k i , M o d e r n i z a c j a G o s p o d a r k i C i e p l n e j C u k r o w n i , S T C , Warszawa , 1986.

Page 66: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

55

39 W. v . P r o s k o w e t z , K r a f t z e n t r a l e , i n : F . S c h n e i d e r ( E d . ) , T e c h n o l o g i e des Z u c k e r s , S c h a p e r V e r l a g , H a n n o v e r , 1968, p p . 676-704.

40 B . P . E f a n o v and A . G . K u t k o v o y , N o r m i r o v a n i e r askhoda e l e k t r i c h e s k o i e n e r g i i V s a k h a r n o i p r o m y s h l e n n o s t i , S a k h . P r o m . , ( 2 ) (1986) 39-43.

41 C . Longue E p e e , L e c t u r e p r e s e n t e d a t t h e I n t e r n a t i o n a l E x h i b i t i o n SVEKLOVODSTVO, K i e v , May 1986.

42 B. M a y r h o f e r and P. K n e d l i k , D ie R e i n i g u n g von Z u c k e r r ü b e n m i t t e l s L u f t s t r o m , Z u c k e r i n d . , 108(2) (1983) 138-140, 111(2) (1986) 128-132.

43 A . I . Khomenko, O t e p l o v o i e k o n o m i c h n o s t i s i s t e m d i f f u z i y a - d e f e k a t s i y a , S a k h . P r o m . , (11 ) (1983) 42 -47 .

44 V . N . F i l o n e n k o and A . N . Z a g o r u y k o , N e r i t m i c h n o s t r a b o t y s v e k l o s a k h a r n o g o zavoda i u d e l n y e r a s k h o d y e n e r g o r e s u r s o v , S a k h . P r o m . , ( 6 ) (1986) 37-40.

45 U . Zimmer and A . Dambach, S t rombezugsüberwachung im Werk P l a t t l i n g d e r Süddeu tschen Z u c k e r - A G , Z u c k e r i n d . , 108(10) (1983) 940-942.

46 R . A . H . C h i l v e r s , C o n t r o l o f maximum e n e r g y demand u s i n g a m i c r o p r o c e s s o r s y s t e m , P r o c . SASTA, 58 (1984) 111-115.

47 G . H . P i a t t , Steam t u r b i n e deve lopmen t i n t h e b e e t s u g a r i n d u s t r y . I n t . S u g a r J . , 82(982) (1980) 297-302.

48 B . L . K a r r e n , E f f i c i e n c y c o n s i d e r a t i o n s i n t h e use o f p r o c e s s s t e a m . S u g a r J . , 4 7 ( 2 ) (1984) 13-15.

49 V . N . F i l o n e n k o , E f f e k t i v n o s t m e r o p r i y a t i i po s n i z h e n y u r a s k h o d a e n e r g o r e s u r s o v i s b a l a n s i r o v a n n o s t e n e r g o p o t r e b l e n i y a sakha rnogo z a v o d a , Sakh . P r o m . , ( 7 ) (1986) 43-46.

50 J . A . B e z e r r a , The use o f e l e c t r i c b o i l e r s i n s u g a r r e f i n e r i e s as an a l t e r n a t i v e s o u r c e o f s t eam. S u g a r I n d . T e c h n o l . , 44 (1985) 277-297.

51 H . R . B r u n n e r , W. Hoppe and G . v . L e n g y e l - K o n o p i , B e t r a c h t u n g e n z u r E n t w i c k l u n g d e r e n e r g e t i s c h e n K o n z e p t i o n d e r Z u c k e r f a b r i k + R a f f i n e r i e A a r b e r g A G , Z u c k e r i n d . , 106(1) (1981) 42 -47 .

52 H . R . B r u n n e r , D ie Thermokompress ion i n d e r Z u c k e r f a b r i k + R a f f i n e r i e A a r b e r g A G , G e s c h i c h t e - E n t w i c k l u n g - A u s b l i c k , Z u c k e r i n d . , 108(8) (1983) 729-736.

53 H . R . B r u n n e r ( e t a l . ) . D ie V e r d a m p f s t a t i o n d e r Z u c k e r f a b r i k + R a f f i n e r i e A a r b e r g AG und das M u l t i - E n e r g i e - S c h e m a , Z u c k e r i n d . , 110(5) (1985) 393-398.

54 W. L e i b i g , B a s i c e n e r g y and i t s u t i l i z a t i o n i n t h e cane s u g a r i n d u s t r y , Z u c k e r i n d . , 103(5) (1978) 412-416.

55 G . D e r m a l , E n e r g y i n a cane s u g a r c o m p l e x : an o r i g i n a l t e c h n i c a l s o l u t i o n f o r i t s most e f f i c i e n t u s e . Suga r J . , 4 4 ( 6 ) (1981) 5 -8 .

56 T . T o r i s s o n , The p o t e n t i a l f o r g e n e r a t i o n o f p u b l i c e l e c t r i c i t y i n cane s u g a r f a c t o r i e s . S u g a r y A z ú c a r , 7 9 ( 4 ) (1984) 21-31.

57 L. B e r g f o r s , H. H u t t u n e n and J . V i l j a n e n , 20 J a h r e Fernwärmeerzeugung i n d e r Z u c k e r f a b r i k T u r e n k i , Z u c k e r i n d . , 109(7) (1984) 634-637.

58 Κ . Ε . Aus tmeye r and U . B u n e r t , M ö g l i c h k e i t e n z u r V e r b e s s e r u n g d e r E n e r g i e w i r t s c h a f t b e i d e r Z u c k e r g e w i n n u n g , i n : P r o c . 17th C I T S , C o p e n h a g e n , 1983, p p . 333-369.

59 Ε. O t o r o w s k i , R a c j o n a l n e g o s p o d a r o w a n i e p a r a ζ k o t l o w , G a z . C u k r o w . , 9 3 ( 2 ) (1985) 204-206.

60 V . S . Mokhor t and V . N . C h i k i r i s o v , T e k h n i k o - e k o n o m i c h e s k o e s r a v n e n i e r e k o n s t r u k t s i i TEC sakha rnykh z a v o d o v s u s t a n o v k o i n a d s t r o y k i v y s o k o g o d a v l e n i y a , Sakh . P r o m . , ( 7 ) (1983) 40 -42 .

61 R. A n t o i n e , E l e c t r i c i t y e x p o r t f rom cane s u g a r f a c t o r i e s , i n : F . O . L i c h t s Gu ide t o t h e S u g a r F a c t o r y Mach ine I n d u s t r y , F . O . L i c h t GmbH, R a t z e b u r g , 1984, p p . A75-A88.

62 T . E n g b e r g , Steam and power g e n e r a t i o n i n t h e s u g a r i n d u s t r y . I n t . S u g a r J . , 86(1031) (1984) 286-287.

63 N. M a r i g n e t t i and G . M a n t o v a n i , B e t r a c h t u n g e n ü b e r den E i n s a t z d e r G a s t u r b i n e i n d e r Z u c k e r i n d u s t r i e , Z u c k e r , 2 7 ( 9 ) (1974) 470-474.

64 U . H a n t s c h , E i n s a t z von G a s t u r b i n e n i n Z u c k e r f a b r i k e n , Z . Z u c k e r i n d . , 25 (1 ) (1975) 31-32.

65 H. P o h l e r t , D ie Verwendung von G a s t u r b i n e n i n Z u c k e r f a b r i k e n , Z u c k e r , 30(2 ) (1977) 75-76.

Page 67: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

56

66 W . J . L e i b i g , Use o f gas t u r b i n e s i n t h e s u g a r i n d u s t r y . S u g a r J . , 40 (12 ) (1978) 13-15.

67 M. B r u h n s , B e i t r a g z u r w i r t s c h a f t l i c h e n B e u r t e i l u n g e i n e r Z u c k e r f a b r i k m i t B rüdenkompress ion und G a s t u r b i n e i n d e r S c h n i t z e l t r o c k n u n g , Z u c k e r i n d . , 107(10) (1982) 945-957.

68 H. L ö f f e l and D. T h i n i u s , G a s t u r b i n e n e i n s a t z im Rahmen d e r K r a f t - W ä r m e -K o p p l u n g , BWK, 37(12) (1985) 482-487.

69 H. L ö f f e l and M. S c h u l z , G a s t u r b i n e f ü r E n e r g i e v e r s o r g u n g s s y s t e m e i n e s I n d u s t r i e b e t r i e b e s , BWK, 36 (6 ) (1984) 243-248.

70 H. Huber and H. L i c h a , E i n Weg z u r Sommerst romerzeugung i n d e r Z u c k e r i n d u s t r i e , Z u c k e r i n d . , 104(1) (1979) 25-29.

71 H . - U . R e i c h e l , Gedanken z u r E n t w i c k l u n g des P r i m ä r e n e r g i e e i n s a t z e s - Dampf und St rom i n d e r Z u c k e r i n d u s t r i e , Z u c k e r i n d . , 107(10) (1982) 936-939.

72 P. V a l e n t i n , D i s k u s s i o n s b e i t r a g z u "Wärmepumpen i n d e r Z u c k e r i n d u s t r i e " , Z u c k e r i n d . , 108(8) (1983) 746-748.

73 Anonymous, R e c u p e r a t i o n t he rm ique s u r buees de seconde c a r b o n a t a t i o n a l a R a f f i n e r i e Notre-Dame a O r e y e , S u c r . B e l g e , 103 (1985) 5-11.

74 T e c h n i c a l i n f o r m a t i o n f rom Wiegand K a r l s r u h e GmbH, E t t l i n g e n , 1986.

Page 68: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

57

C h a p t e r 2

ENERGY BALANCES

2.1 PRINCIPLES OF ESTABLISHING ENERGY BALANCES

The e n e r g y b a l a n c e o f a s u g a r f a c t o r y , o r a p a r t o f i t , can be a n a l y s e d on

t h e b a s i s o f t h e f i r s t law o f t h e r m o d y n a m i c s , w h i c h i s e s s e n t i a l l y a s t a t e m e n t

o f t h e p r i n c i p l e o f t he c o n s e r v a t i o n o f e n e r g y . The f i r s t law o f thermodynamics

can be r i g o r o u s l y s t a t e d i n t h e fo rm o f a ma themat i ca l e q u a t i o n , p r o v i d e d t h e

o b j e c t unde r c o n s i d e r a t i o n i s unamb igous l y d e f i n e d as a thermodynamic s y s t e m

( r e f s . 1 , 2 ) . As a l r e a d y ment ioned i n S e c t i o n 1.1, t h e i d e n t i f i c a t i o n o f a

p r e s c r i b e d and i d e n t i f i a b l e bounda ry i s n e c e s s a r y f o r sys tem d e f i n i t i o n ; t h e

boundary s e p a r a t e s t h e sys tem f rom i t s s u r r o u n d i n g s . Once t h e b o u n d a r y has been

d e f i n e d , t h e f i r s t law o f thermodynamics s t a t e s s i m p l y t h a t i n any p r o c e s s , t h e

e n e r g y d e l i v e r e d t o t h e sys tem must equa l t h e sum o f t h e e n e r g y s t o r e d i n i t and

t he e n e r g y removed t o t h e s u r r o u n d i n g s . The mathemat i ca l f o r m u l a t i o n t akes

a c c o u n t o f t h e f a c t t h a t e n e r g y can be a t t r i b u t e d t o m a t t e r c o n t a i n e d i n t h e

sys tem o r , p o s s i b l y , f l o w i n g a c r o s s i t s b o u n d a r y , and t h a t e n e r g y can a l s o be

t r a n s f e r r e d t o and f rom t h e s u r r o u n d i n g s as h e a t and w o r k . I f t h e b o u n d a r y has

been so d e f i n e d t h a t t h e r e i s no mass t r a n s f e r a c r o s s i t , t h e n t h e sys tem i s

s a i d t o be c l o s e d . E n e r g y can e n t e r o r l e a v e a c l o s e d sys tem o n l y as h e a t o r

w o r k .

I n most p rob lems d i s c u s s e d i n t h i s b o o k , h o w e v e r , a t y p i c a l s i t u a t i o n i s t h a t

t he o b j e c t unde r c o n s i d e r a t i o n has t o be i n t e r p r e t e d as an open s y s t e m , t h a t i s ,

i t s boundary has t o be d e f i n e d so as t o a l l o w f o r mass t r a n s f e r t o and f rom t h e

s u r r o u n d i n g s . Such a bounda ry i s sometimes c a l l e d a c o n t r o l s u r f a c e and t h e

sys tem encompassed , a c o n t r o l vo lume .

A p r e r e q u i s i t e f o r d e t e r m i n i n g t h e e n e r g y b a l a n c e o f an open sys tem i s t h a t

t he mass f l o w s c r o s s i n g t h e sys tem bounda ry a r e known. I n c e r t a i n e n g i n e e r i n g

p r o b l e m s , h o w e v e r , i t may i n i t i a l l y be n e c e s s a r y t o c a l c u l a t e some unknown mass

f l o w s . I f t h i s i s t he c a s e , t hen one has t o use a mass b a l a n c e e q u a t i o n w h i c h i s

an e x p r e s s i o n o f t h e law o f mass c o n s e r v a t i o n

M 3 = Δ Μ + ( 2 . 1 )

where i s t h e mass d e l i v e r e d t o t he s y s t e m , Δ Μ i s t h e i n c r e a s e o f t h e s y s t e m

mass, and i s t h e mass removed f rom t h e s y s t e m .

The above e q u a t i o n h o l d s f o r t h e f i n i t e t ime p e r i o d d u r i n g w h i c h t h e

measurements t o d e t e r m i n e M ^ , Δ Μ and have been p e r f o r m e d . I n t h e p rob lems

c o n s i d e r e d h e r e , mass i n f l o w and o u t f l o w u s u a l l y r e s u l t f rom m u l t i p l e mass f l o w s

^ s l ' ^ s 2 » - * ' ^ s p e n t e r i n g t he sys tem and G ^ ^ ^ r 2 " * ' ^ r q " '^s iv ing i t ( F i g . 2 . 1 ) .

Page 69: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

58

mass flows entering the system BOUNDARY

niass Uows leaving the systenn

work

F i g . 2 .1 . Mass and e n e r g y b a l a n c e s o f an open thermodynamic s y s t e m .

I t may t h e r e f o r e be c o n v e n i e n t t o e x p r e s s t h e mass b a l a n c e f o r u n i t t ime

% } ' Gsp = ^V^t + ^ ^ + + . . + G , q ( 2 . 2 )

where M^ i s t h e sys tem mass, i . e . t h e mass c o n t a i n e d w i t h i n t h e sys tem b o u n d a r y .

A t y p i c a l case o f an open sys tem i s a s t e a d y - s t a t e sys tem w h i c h i s

c h a r a c t e r i z e d by t i m e - i n v a r i a n t mass and c o n s t a n t mass f l o w s . As t h e t ime

d e r i v a t i v e o f t h e sys tem mass e q u a l s z e r o , t h e b a l a n c e e q u a t i o n becomes

^ s i ^ h z ^1 ^ ^ 2 ^ - - ^ ^ q ( 2 . 3 )

Hav ing de te rm ined t h e mass f l o w s c r o s s i n g t h e sys tem b o u n d a r y , we can r e t u r n

t o t h e main p r o b l e m . A g e n e r a l fo rm o f t h e e n e r g y b a l a n c e e q u a t i o n i s

E3 = ΔΕ + E^ ( 2 . 4 )

where E^ i s t h e e n e r g y d e l i v e r e d t o t h e s y s t e m , ΔΕ i s t h e i n c r e a s e o f t h e

s y s t e m ' s e n e r g y , and E^, i s t h e e n e r g y removed f rom t h e s y s t e m .

U s i n g t h e mass f l o w s and e x p r e s s i n g t h e b a l a n c e f o r u n i t t i m e , we o b t a i n f o r

t h e sys tem shown i n F i g . 2.1

- ^V^t ^ L + G^^h^T . G^^VZ qVq ' ( 2 - 5 )

where h ^ ^ . . , h^p and h ^ - j , . . , h^^ a r e t h e e n t h a l p i e s p e r u n i t mass i n i n f l o w i n g

and o u t f l o w i n g s t r e a m s , E^ i s t h e e n e r g y a s s o c i a t e d w i t h t h e m a t t e r c o n t a i n e d

w i t h i n t h e sys tem b o u n d a r y , L i s t h e mechan ica l power (work p e r u n i t t i m e ) and

Q i s t h e the rma l power ( h e a t p e r u n i t t i m e ) d e l i v e r e d t o t h e s y s t e m . I n s t e a d y -

s t a t e s y s t e m s , t h e t ime d e r i v a t i v e o f E^ i s z e r o , a l l t h e q u a n t i t i e s c o n c e r n e d

a r e c o n s t a n t , and the e n e r g y b a l a n c e e q u a t i o n becomes

• ^ s l ^ s l ' %2\2 h p h , - L * ^ ^ ^ ^ - \ 2 \ 2 ' - ^ V r q " ^ ( ^ . 6 )

I t i s assumed i n e q n s . ( 2 . 5 ) and ( 2 . 6 ) t h a t t h e s i g n o f t h e work i s p o s i t i v e i f

i t i s removed f rom t h e s y s t e m , w h i l e t h e s i g n o f t h e h e a t i s p o s i t i v e i f i t i s

Page 70: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

59

d e l i v e r e d t o t h e s y s t e m . The r e s u l t s o f t h e c a l c u l a t i o n s i n w h i c h t h e s e

e q u a t i o n s a r e used a r e c o r r e c t o n l y i f t h i s s i g n c o n v e n t i o n i s o b s e r v e d . One

s h o u l d a l s o be aware o f c e r t a i n i n h e r e n t l i m i t a t i o n s o f t h e b a l a n c e e q u a t i o n s ,

as w e l l as o f t h e c o n d i t i o n s f o r t h e i r c o r r e c t u s e . The d e t a i l s o f t h e prob lems

may v a r y , depend ing on t h e p u r p o s e f o r w h i c h t h e e q u a t i o n s a r e s e t u p , as

e x p l a i n e d b e l o w .

( i ) I n t h e d e s i g n a n a l y s e s , i t i s u s u a l l y assumed t h a t t h e e q u i p m e n t , i n c l u d i n g

a u x i l i a r y d e v i c e s , i s w o r k i n g i n a c c o r d a n c e w i t h t h e t e c h n i c a l s p e c i f i c a t i o n s ,

i . e . t h a t t h e r e a r e no m a l f u n c t i o n i n g steam t r a p s , u n r e l i a b l e v a l v e s , l e a k i n g

p a c k i n g s , e t c . A n o t h e r t y p i c a l assump t i on i s t h a t t h e p r o c e s s i n g c a p a b i l i t y i s

c o n s t a n t (most o f t e n , t h e nominal o r maximum c a p a b i l i t y v a l u e i s assumed) . Even

t h e s e s e e m i n g l y o b v i o u s a s s u m p t i o n s , h o w e v e r , c o n s t i t u t e an i d e a l i z a t i o n o f t h e

e n e r g y p r o c e s s e s a n a l y s e d . The r e a l p r o c e s s e s w i l l c e r t a i n l y be c h a r a c t e r i z e d by

f l u c t u a t i n g p a r a m e t e r s , t h e p r o c e s s i n g c a p a b i l i t y may d e v i a t e f rom t h e v a l u e

assumed, and t h e r e w i l l be some unknown f l o w s o f t h e p r o c e s s media l e a k i n g

between sys tem p a r t s and f rom t h e sys tem t o t h e s u r r o u n d i n g s . Unde r such

c i r c u m s t a n c e s , a l t h o u g h i t i s e s s e n t i a l n o t t o i n t r o d u c e any s i g n i f i c a n t

s y s t e m a t i c e r r o r s i n t o t h e b a l a n c e r e l a t i o n s h i p s , i t i s a l s o m e a n i n g l e s s t o

c o m p l i c a t e t h e b a l a n c e e q u a t i o n s by i n t r o d u c i n g f a c t o r s w h i c h can a c t u a l l y be

n e g l e c t e d w i t h o u t i n c r e a s i n g t h e o v e r a l l u n c e r t a i n t y m a r g i n . T h i s a p p l i e s , i n

t he f i r s t p l a c e , t o t h e e n e r g y s t reams a s s o c i a t e d w i t h t h e h e a t o f

c r y s t a l l i z a t i o n o f s u g a r and t h e mechan ica l work s u p p l i e d t o t h e p r o c e s s

e q u i p m e n t , as t h e i r o r d e r o f magn i tude may be comparab le w i t h t h a t o f t h e

unknown l o s s e s t o t he s u r r o u n d i n g s .

( i i ) I n t h e p r o c e s s m o n i t o r i n g a p p l i c a t i o n s , a number o f d i f f e r e n t s i t u a t i o n s

s h o u l d be r e c o g n i z e d . When i n v e s t i g a t i n g an e x i s t i n g f a c t o r y t o be m o d e r n i z e d ,

t h e c a l c u l a t i o n e r r o r s s h o u l d n o t e x c e e d t h e u n c e r t a i n t y m a r g i n c h a r a c t e r i s t i c

o f t h e s u b s e q u e n t d e s i g n c a l c u l a t i o n s . I n t h e r o u t i n e m o n i t o r i n g t a s k s aimed a t

p r o v i d i n g t h e f a c t o r y managers w i t h i n f o r m a t i o n on how e f f i c i e n t l y t h e e n e r g y i s

u t i l i z e d , t h e s p e c i f i c r e q u i r e m e n t s may v a r y depend ing on t h e e x p e c t e d f a c t o r y

p e r f o r m a n c e . U s u a l l y , t h e d e s i r e d a c c u r a c y i s s i m i l a r t o t h a t t y p i c a l o f t h e

d e s i g n p r o b l e m s . H o w e v e r , t h e r e may be s p e c i a l cases i n w h i c h r a t h e r h i g h

a c c u r a c y i s r e q u i r e d , f o r e x a m p l e , when t h e g u a r a n t e e t e s t s o f equ ipment u n i t s

o r e n t i r e s t a t i o n s have t o be m o n i t o r e d .

( i i i ) As a r u l e , t h e b a l a n c e c a l c u l a t i o n s r e l a t i n g t o s u g a r f a c t o r i e s , o r p a r t s

o f them, a r e pe r f o rmed unde r t h e assump t i on o f s t e a d y - s t a t e c o n d i t i o n s , u s i n g

e q n s . ( 2 . 3 ) and ( 2 . 6 ) . W h i l e t h i s may be p e r f e c t l y c o r r e c t i n most c a s e s , g r e a t

c a r e i s recommended i n i n t e r p r e t i n g t h e r e s u l t s o f e x p e r i m e n t a l i n v e s t i g a t i o n s .

I f t he measurements have been pe r fo rmed w i t h o u t s t r i c t l y m a i n t a i n i n g s t e a d y -

s t a t e c o n d i t i o n s , t h e n n e g l e c t o f t i m e - d e r i v a t i v e s o f and E^ i n e q n s . ( 2 . 2 )

Page 71: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

60

and ( 2 . 5 ) , r e s p e c t i v e l y , may become a s o u r c e o f e r r o r s .

2.2 INPUT DATA FOR ENERGY BALANCE CALCULATIONS

2.2.1 N a t u r e o f t he i n p u t d a t a

The c a l c u l a t i o n p r i n c i p l e s p r e s e n t e d i n t h e p r e v i o u s S e c t i o n can be a p p l i e d

t o any thermodynamic sys tem w i t h i n a s u g a r f a c t o r y . F o r a p a r t i c u l a r s y s t e m ,

a s e t o f b a l a n c e e q u a t i o n s can be f o r m u l a t e d , making i t p o s s i b l e t o d e t e r m i n e

t h e v a l u e s o f as many unknown v a r i a b l e s as t h e r e a r e e q u a t i o n s i n t h e s e t . F o r

each e n e r g y b a l a n c e p r o b l e m , an a p p r o p r i a t e s e t o f i n p u t d a t a must be a v a i l a b l e .

I f some r e q u i r e m e n t s have been imposed on t h e s t r u c t u r i n g o f t h e b a l a n c e

r e s u l t s , t h a t i s , i f t h e sys tem i s t o be c o n s i d e r e d as t h e sum o f s p e c i f i c

s u b s y s t e m s , bo th t h e s e t o f e q u a t i o n s and t he s e t o f i n p u t d a t a s h o u l d be

p r e p a r e d i n a manner making i t p o s s i b l e t o s a t i s f y t h e s e r e q u i r e m e n t s . T h i s

i m p l i e s , i n t u r n , t h e n e c e s s i t y n o t o n l y t o a c c o u n t f o r t h e s y s t e m s t r u c t u r e ,

b u t a l s o t o s a t i s f y t h e c o n s t r a i n t s t h a t a r e c h a r a c t e r i s t i c o f t h e s u g a r

m a n u f a c t u r i n g p r o c e s s . F i n a l l y , t h e i n p u t da ta s h o u l d be c o m p l e t e , t h a t i s ,

among t he q u a n t i t i e s a p p e a r i n g i n t h e b a l a n c e e q u a t i o n s , o n l y as many can be

l e f t unknown as t h e r e a r e e q u a t i o n s i n t h e s e t .

The g u i d e l i n e s f o r a d e s c r i p t i o n o f t h e s t r u c t u r e o f a thermodynamic s y s t e m

and i t s subsys tems have been f o r m u l a t e d i n S e c t i o n 1.1, and t y p i c a l s t r u c t u r a l

e lements e n c o u n t e r e d i n the rma l sys tems o f s u g a r f a c t o r i e s have been d i s c u s s e d

i n S e c t i o n 1.2.

C l o s e l y a s s o c i a t e d w i t h t h e i n f o r m a t i o n on t h e sys tem s t r u c t u r e i s t h e

i n f o r m a t i o n on t h e thermodynamic p r o p e r t i e s o f t h e p r o c e s s media and on t h e

equ ipment c h a r a c t e r i s t i c s . I n t h e e q u a t i o n s p r e s e n t e d i n t h e p r e c e d i n g S e c t i o n ,

t h e e n t h a l p i e s o f t h e p r o c e s s media a p p e a r . The e n t h a l p i e s can be d e t e r m i n e d as

f u n c t i o n s o f t e m p e r a t u r e , p r e s s u r e o r o t h e r p a r a m e t e r s . I n p r a c t i c a l

c a l c u l a t i o n s , i n v e r s e f u n c t i o n s may a l s o be n e e d e d , as w e l l as a number o f o t h e r

thermodynamic f u n c t i o n s n o t n e c e s s a r i l y r e l a t e d t o t h e n o t i o n o f e n t h a l p y . The

thermodynamic f u n c t i o n s can be f ound i n d iag ram o r t a b u l a r fo rm i n t h e

l i t e r a t u r e , and t h e i r n u m e r i c a l a p p r o x i m a t i o n s a r e d i s c u s s e d i n A p p e n d i c e s 1

and 2.

As r e g a r d s t h e equ ipment d a t a , two k i n d s o f them a r e o f p a r t i c u l a r

i m p o r t a n c e :

- h e a t l o s s c o e f f i c i e n t s ,

- e q u a t i o n s e x p r e s s i n g t h e o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t s .

A p o s s i b l e app roach t o t h i s p a r t o f t h e e n e r g y - b a l a n c e da ta w i l l be p r e s e n t e d i n

t h e r e m a i n i n g S e c t i o n s o f t h i s C h a p t e r , The v a l u e s o f t h e h e a t l o s s c o e f f i c i e n t s

and t he e q u a t i o n s d e s c r i b i n g t h e h e a t t r a n s f e r c h a r a c t e r i s t i c s o f t h e equ ipment

a r e d i s c u s s e d i n Append i x 3.

As r e g a r d s t h e p r e p a r a t i o n o f da ta on t h e s u g a r m a n u f a c t u r i n g p r o c e s s .

Page 72: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

61

t he use o f e q u a t i o n s o f p r o c e s s mass b a l a n c e s h o u l d be named f i r s t . The mass

f l o w s o f t h e p r o c e s s media r e p r e s e n t e d i n t h e e n e r g y b a l a n c e e q u a t i o n s have t o

s a t i s f y t h e e q u a t i o n s o f t h e p r o c e s s mass b a l a n c e . A p r a c t i c a l consequence i s

t h a t t h e m a s s - b a l a n c e i n v e s t i g a t i o n - e x p e r i m e n t a l , t h e o r e t i c a l , o r a

c o m b i n a t i o n o f b o t h - must be comp le ted b e f o r e t h e e n e r g y - b a l a n c e p rob lem i s

a p p r o a c h e d .

S e t t i n g up t h e e q u a t i o n s o f t h e mass b a l a n c e o f a s u g a r m a n u f a c t u r i n g p r o c e s s

can be a d i f f i c u l t p r o b l e m i n i t s e l f . U s u a l l y , i t r e q u i r e s i d e n t i f y i n g t h e

p r o c e s s scheme and c a l c u l a t i n g t h e f l o w s o f mass componen ts : w a t e r , d r y m a t t e r ,

s u c r o s e , and - i f a p p l i c a b l e - s u c r o s e c r y s t a l s . The c a l c u l a t i o n s can be

pe r fo rmed m a n u a l l y ; p o s s i b l y , t w o - o r t h r e e - c o m p o n e n t d iag rams f o r s u g a r

s o l u t i o n s can be used t o s i m p l i f y t h e manual w o r k . Examples o f t h e u p - t o - d a t e

app roach t o t h i s t y p e o f c a l c u l a t i o n method can be f ound i n t h e l i t e r a t u r e

( r e f s . 3 - 5 ) . I n c r e a s i n g l y o f t e n , h o w e v e r , t h e p r o c e s s mass b a l a n c e s a r e

c a l c u l a t e d w i t h t h e a i d o f computer p rog rams . The methods used i n c o m p u t e r i z e d

c a l c u l a t i o n s a r e based e i t h e r on t h e p r o c e s s s i m u l a t i o n app roach ( r e f s . 6 -8 ) o r

on t h e s o l u t i o n o f a sys tem o f l i n e a r e q u a t i o n s ( r e f . 9 ) .

2 .2 .2 Example

The s u g a r m a n u f a c t u r i n g p r o c e s s i s t o be c o n s i d e r e d f o r a f a c t o r y f e a t u r i n g

a t r o u g h - t y p e e x t r a c t o r , a c l a s s i c a l j u i c e p u r i f i c a t i o n s t a t i o n w i t h s u b s e q u e n t

j u i c e d e c a l c i f i c a t i o n and a s t a n d a r d - l i q u o r - b a s e d , t h r e e - b o i l i n g c r y s t a l l i z a t i o n

scheme. The pa rame te rs d e f i n i n g t h e o v e r a l l p r o c e s s c h a r a c t e r i s t i c s a r e g i v e n i n

T a b l e 2 .1 . The scheme o f t h e b e e t house i s shown i n F i g . 2.2 and t h e

c o r r e s p o n d i n g mass b a l a n c e da ta a r e p r e s e n t e d i n T a b l e 2 . 2 . The scheme o f t h e

s u g a r house i s shown i n F i g . 2.3 and t h e mass b a l a n c e d a t a a r e p r e s e n t e d i n

T a b l e 2 . 3 . L e t us a n a l y s e t h e p r o c e s s scheme and t h e mass b a l a n c e d a t a f rom t h e

p o i n t o f v i e w o f t h e i r s u i t a b i l i t y as i n p u t da ta f o r e n e r g y b a l a n c e

c a l c u l a t i o n s .

TABLE 2.1

E s s e n t i a l p r o c e s s da ta f o r t h e Examp le .

Name D imens ion V a l u e

P o l a r i z a t i o n o f c o s s e t t e s % 18.0 J u i c e d r a f t % 110.0 CaO r a t e :

p r e - l i m i n g kg/100 kg b 0.28 main l i m i n g

kg/100 kg b 1.52

2nd c a r b o n a t a t i o n II II 0.22 T h i c k j u i c e c o n c e n t r a t i o n % DS 56.0 Mo lasses p u r i t y % 62.0

Page 73: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

62

feed water

ΙΛ

o c !5

Ε

en TD

-D (Λ

Χ )

cossettes

EXTRACTOR

HEATER i_

HEATER I

y. L - w e t pulp raw juice

4

press water

PRESSES

pressed pulp

HEATERS to drying

sweet water

PRE-LIMING

HEATERS

MAIN LIMING

1

Φ

Φ

•σ

to lime slaking

i Φ Φ

CARBONATATION I

HEATERS

THICKENERS I

ju ice

VACUUM FILTERS

HEATER

Φ Φ

ω

water -

CARBONATATION I I

THICKENERS Π

s ludge^

thin ju ice to heating and evapora t ion .

SAFETY FILTERS

DECALCI FICATION

1 SULPHITATION

thin juice to sugar house^

ju ice

F i g . 2 . 2 . Scheme o f t he b e e t house c o n s i d e r e d i n t h e Examp le .

Page 74: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

63

TABLE 2.2

Mass b a l a n c e o f t h e b e e t house i n t h e Example

No. St ream name T o t a l f l o w

(kg /100 kg b ) C o n c e n t r a t i o n

(% DS) P u r i t y

(%)

1 C o s s e t t e s 100.00 86.90 2 Wet p u l p 84.60 3 P r e s s e d p u l p 27.04 19.00 4 D r i e d p u l p 5.58 92.00 5 P r e s s w a t e r 57.56 0.90 74.50 6 Feed w a t e r 37.04 7 Raw j u i c e 110.00 18.16 88.11 8 J u i c e t o main l i m i n g 135.84 17.88 9 J u i c e t o c a r b o n a t a t i o n I 143.46 17.99

10 J u i c e f rom vacuum f i l t e r s 13.73 12.00 92.38 11 J u i c e t o t h i c k e n e r s I 157.19 17.47 12 J u i c e t o c a r b o n a t a t i o n I I 124.50 16.28 91.48 13 S u b s i d e r s l u d g e I 32.69 20.00 14 Subs i d e r s l u d g e I t o vacuum f i l t e r s 20.69 15 S w e e t e n i n g - o f f w a t e r t o vacuum

f i l t e r s 12.72

16 S l u d g e 8.48 50.00 17 Sweet w a t e r f rom vacuum f i l t e r s 11.02 7.00 89.00 18 J u i c e t o t h i c k e n e r s I I 127.30 92.04 19 S u b s i d e r s l u d g e I I t o p r e - l i m i n g 3.59 18.00 20 J u i c e t o s a f e t y f i l t e r s 125.42 15.76 92.03 21 J u i c e t o s u l p h i t a t i o n 123.71 22 J u i c e t o d e c a l c i f i c a t i o n 118.50 16.68 92.03 23 S w e e t e n i n g - o f f w a t e r t o

d e c a l c i f i c a t i o n 7.00

24 Sweet w a t e r f rom d e c a l c i f i c a t i o n 3.50 1.08 88.00 25 T h i n j u i c e t o e v a p o r a t i o n 122.00 15.51 92.04 26 M i l k - o f - l i m e t o p r e - l i m i n g 1.41 27 " main l i m i n g 7.62 28 " " c a r b o n a t a t i o n I I 1.09 29 K i l n gas t o c a r b o n a t a t i o n I 3.80 30 II II II II J J 0.79

The scheme and t h e da ta d e s c r i b i n g t h e b e e t house p r o v i d e a comp le te

d e f i n i t i o n o f a l l t he mass s t reams t o w h i c h h e a t s h o u l d be d e l i v e r e d . I t i s

p o s s i b l e t o d e t e r m i n e , f o r each s t r e a m , t h e mass f l o w and t h e m a t e r i a l

p r o p e r t i e s a f f e c t i n g t h e e n t h a l p y ( o r t h e s p e c i f i c h e a t ) . No t e m p e r a t u r e s a r e

g i v e n , h o w e v e r , t h i s i m p l y i n g t h a t t h e t e m p e r a t u r e r e q u i r e m e n t s s h o u l d be

s e p a r a t e l y c o n s i d e r e d , p o s s i b l y t o g e t h e r w i t h t h e s t r u c t u r e o f t h e p a r t o f t h e

therma l sys tem w h i c h i s a s s o c i a t e d w i t h t h e b e e t h o u s e .

The scheme o f t h e s u g a r house seems t o be i n c o m p l e t e , as no h e a t i n g

o p e r a t i o n s a r e s p e c i f i e d . The mass b a l a n c e d a t a d e f i n e c o m p l e t e l y a l l t h e t i m e -

a v e r a g e d mass f l o w s o f media w i t h i n t h e s u g a r h o u s e . Once t h e h e a t i n g

o p e r a t i o n s have been s p e c i f i e d ( t y p i c a l l y , h e a t i n g o f t h i c k j u i c e d e l i v e r e d t o

t he s u g a r house and s y r u p s s t o r e d i n i n t e r m e d i a t e t anks i s r e q u i r e d ) , i t w i l l be

p o s s i b l e t o i d e n t i f y a l l t h e mass f l o w s and m a t e r i a l p r o p e r t i e s t h a t a r e

Page 75: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

64

thick juice

MELTER

FILTER

standard liquor

VACUUM PANS A 1

1 MIXERS A

1 CENTRIFUGALS A

sugar A

green " syrup A "

1 1 Γ

Q . 13

sz ΙΛ O

VACUUM PANS Β

MIXERS Β 1

1 CENTRIF UGALS Β

sugar Β

1 σ ι >>

3 ί VACUUM PANSC

I

MAGMA MIXER

• white sugar

MIXERS C

z r : CENTRIFUGALS C

L- sugar C —-I

- magma-

molasses

F i g . 2 . 3 . Scheme o f t h e s u g a r house c o n s i d e r e d i n t h e Examp le .

TABLE 2.3

Mass b a l a n c e o f t h e s u g a r house i n t h e Examp le .

No. S t ream name T o t a l f l o w

(kg /100 kg b ) C o n c e n t r a t i o n

{% DS) P u r i t y

{%)

1 T h i c k j u i c e 33.61 56.00 92.02 2 S t a n d a r d l i q u o r 39.88 62.62 93.60 3 A m a s s e c u i t e 29.09 92.50 93.46 4 Green s y r u p A t o vacuum pans C 2.79 82.50 84.60 5 II II II II II g 5.80 82.50 84.60 6 · magma 3.82 82.50 84.60 7 Wash s y r u p A 2.65 75.50 91.96 8 A s u g a r 14.80 99.10 99.85 9 Β m a s s e c u i t e 13.35 92.80 87.18

10 Green s y r u p Β 6.25 83.80 74.20 11 Wash s y r u p Β 1.26 79.50 86.18 12 Β s u g a r 6.27 98.10 98.40 13 C m a s s e c u i t e 7.92 93.50 76.94 14 C s u g a r 3.62 97.10 93.50 15 Magma 7.44 89.60 89.29 16 Mo lasses 4.66 83.50 62.00

Page 76: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

65

r e l e v a n t t o t h e e n e r g y b a l a n c e c a l c u l a t i o n s . A g a i n , t h e t e m p e r a t u r e r e q u i r e m e n t s

can c o n v e n i e n t l y be s p e c i f i e d when d e f i n i n g t h e s t r u c t u r e o f t h e a s s o c i a t e d p a r t

o f t he the rma l s y s t e m .

2.3 EXTERNAL ENERGY BALANCE OF A SUGAR FACTORY

The e n e r g y demand i n a s u g a r f a c t o r y i s u l t i m a t e l y d e t e r m i n e d by t h e

i n t e r a c t i o n s between t he s u g a r m a n u f a c t u r i n g p r o c e s s , t h e the rma l sys tem and t h e

power h o u s e . When s o l v i n g c e r t a i n e n g i n e e r i n g p r o b l e m s , i t may be o f i n t e r e s t t o

i n v e s t i g a t e key i n t e r a c t i o n pa ramete rs and t o i d e n t i f y o r e v a l u a t e e s s e n t i a l

p r o p e r t i e s o f t h e t h r e e f a c t o r y subsys tems named, w i t h o u t a n a l y s i n g t h e i r

d e t a i l s . T h i s can be done by s e t t i n g up t h e s o - c a l l e d e x t e r n a l mass and e n e r g y

b a l a n c e o f t h e f a c t o r y . Examples o f a p p l i c a t i o n o f t h i s app roach can be f ound i n

t he l i t e r a t u r e ( r e f s . 1 0 , 1 1 ) .

L e t us c o n s i d e r an open thermodynamic s y s t e m c o m p r i s i n g t h e main p r o c e s s

equ ipment and the rma l equ ipment f rom t h e e x t r a c t i o n s t a t i o n t o t h e s u g a r h o u s e ,

t h a t i s , e x c l u d i n g t h e b e e t wash ing and s l i c i n g s t a t i o n , s u g a r áryer^ l i m e k i l n ,

power h o u s e , b a r o m e t r i c c o n d e n s e r and b a r o m e t r i c - w a t e r c o o l i n g c i r c u i t . A b l o c k

d iagram r e p r e s e n t i n g t h e sys tem i s shown i n F i g . 2 . 4 . I t can be seen t h a t most

mass f l o w s t o and f rom t h e sys tem a r e r o u t i n e l y measured f o r p r o c e s s c o n t r o l

pu rposes o r can be deduced f rom such measurements , so o n l y a few mass f l o w s

s h o u l d be a d d i t i o n a l l y de te rm ined i n o r d e r t o d e s c r i b e t h e mass b a l a n c e f u l l y .

SYSTEM BOUNDARY

Spen t q a s from 1 s f / 2 n d carb.

vapour I 4-

1 cosseHes ^

E S 1

1 E S

1 1 —

o •α α χί 1 δ

J P

^ \ — s i

vapour

EV SH

steann

VQPOur

I sugar

molasse^

F i g . 2 . 4 . B l o c k scheme i l l u s t r a t i n g t h e e x t e r n a l e n e r g y b a l a n c e o f a s u g a r f a c t o r y . ES - e x t r a c t i o n s t a t i o n , JP - j u i c e p u r i f i c a t i o n s t a t i o n , EV -e v a p o r a t o r , SH - s u g a r h o u s e . 1 - b e e t wash ing and s l i c i n g e q u i p m e n t , 2 - l ime k i l n and m i l k - o f - l i m e s t a t i o n , 3 - power h o u s e , 4 - s u g a r d r y i n g and packag ing s t a t i o n , 5 - c o n d e n s e r and c o o l i n g c i r c u i t .

Page 77: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

66

The number o f t e m p e r a t u r e ( a n d , p o s s i b l y , p r e s s u r e ) measurements r e q u i r e d t o

i d e n t i f y t h e e n t h a l p i e s o f f l o w i n g media i s a l s o s m a l l .

The i n t e r n a l c o m p l e x i t i e s o f t h e sys tem d e f i n e d above need n o t be known f o r

t h e e x t e r n a l e n e r g y b a l a n c e , w h i c h can be d e s c r i b e d by i n t r o d u c i n g t h e

q u a n t i t i e s c h a r a c t e r i z i n g t h e f l o w i n g media i n t o e q n s . ( 2 . 5 ) o r ( 2 . 6 ) . The n e t

h e a t demand i s r e p r e s e n t e d by t h e h e a t s t ream i n t h e steam d e l i v e r e d f rom t h e

power house and we a r e f r e e t o s t u d y how t o r e d u c e i t by a d j u s t i n g o t h e r

s t r e a m s . O f c o u r s e , i t i s d e s i r a b l e t h a t t h e sum o f o u t f l o w i n g e n e r g y s t reams

s h o u l d be as sma l l as p o s s i b l e , w h i c h can be o b t a i n e d by l i m i t i n g t h e o u t f l o w i n g

mass f l o w s a n d / o r d e c r e a s i n g t h e t e m p e r a t u r e s o f t h e media l e a v i n g t h e s y s t e m .

I n t h e f i r s t p l a c e t h i s a p p l i e s t o v a p o u r s t r e a m s , because t h e v a p o u r e n t h a l p i e s

a r e h i g h e s t . I t i s t h u s e s s e n t i a l t o m i n i m i z e t h e v a p o u r f l o w f rom t h e l a s t

e v a p o r a t o r e f f e c t t o t h e c o n d e n s e r , and t h e e n e r g y o f t h e vacuum pan v a p o u r s

s h o u l d be u t i l i z e d as much as p o s s i b l e b e f o r e t h e v a p o u r s e n t e r t h e c o n d e n s e r .

S i m i l a r recommendat ions a p p l y t o e x c e s s c o n d e n s a t e f rom t h e e v a p o r a t o r , and

s p e n t c a r b o n a t a t i o n g a s .

An i m p o r t a n t c o n c l u s i o n can be drawn f rom t h e e x t e r n a l e n e r g y b a l a n c e , namely

t h a t as l ong as e x c e s s c o n d e n s a t e (ammoniacal w a t e r ) f rom t h e e v a p o r a t o r i s

s u p p l i e d as f r e s h w a t e r t o t h e e x t r a c t i o n s t a t i o n , and t h e c o n d e n s e r l o s s f rom

t h e l a s t e v a p o r a t o r e f f e c t i s h e l d c o n s t a n t , t h e n e t hea t demand i s i n d e p e n d e n t

o f t he amount o f w a t e r e v a p o r a t e d i n t h e e v a p o r a t o r . I f t h e above c o n d i t i o n s a r e

s a t i s f i e d , t hen t h e j u i c e d r a f t can be i n c r e a s e d o r c o n d e n s a t e can be added t o

j u i c e w i t h o u t n e c e s s a r i l y i n c r e a s i n g t h e n e t h e a t demand. On t h e o t h e r h a n d , any

i n t a k e o f e x t r a w a t e r f rom o u t s i d e t h e s y s t e m , f o r example t o vacuum p a n s ,

i n e v i t a b l y i n c r e a s e s t h e n e t hea t demand.

As r e g a r d s t h e c a l c u l a t i o n s o f t h e e n e r g y s t r e a m s , i t s h o u l d be o b s e r v e d t h a t

i f a h i g h a c c u r a c y o f t he e x t e r n a l b a l a n c e i s r e q u i r e d , t h e n i t i s n e c e s s a r y t o

a c c o u n t f o r t h r e e e n t r i e s w h i c h a r e t r a d i t i o n a l l y n e g l e c t e d i n e n g i n e e r i n g

a n a l y s e s .

( i ) Heat o f c a r b o n a t a t i o n r e a c t i o n . Assuming t h a t i t i s g e n e r a t e d a t t h e r a t e o f

70 k J p e r 1 mol o f CaO and t h a t t h e e f f e c t i v e CaO r a t e i s 1.9%, we o b t a i n an

e n e r g y s t ream o f abou t 2400kJ/100 kg b , t h i s b e i n g e q u i v a l e n t t o 1.1 kg steam

p e r 100 kg b.

( i i ) Heat o f c r y s t a l l i z a t i o n o f s u g a r . A t 75°C, t h i s i s 82 k J / k g . M u l t i p l e

c r y s t a l l i z a t i o n - d i s s o l v i n g o p e r a t i o n s i n t h e s u g a r house can be d i s r e g a r d e d , on

t h e assumpt ion t h a t t h e h e a t g e n e r a t e d e q u a l s t h e h e a t a b s o r b e d . H o w e v e r , t h e

s u g a r s t ream l e a v i n g t h e s u g a r house c o r r e s p o n d s t o a d e f i n i t e amount o f h e a t

g e n e r a t e d . A t a t y p i c a l s u g a r y i e l d , t h i s c o r r e s p o n d s t o abou t 0.5 kg steam p e r

100 kg b.

( i i i ) Mechan i ca l work s u p p l i e d t o t he p r o c e s s . Power consumed by t h e motors

Page 78: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

67

d r i v i n g t h e pumps, s t i r r e r s and o t h e r equ ipment i s c o n v e r t e d t o mechan i ca l work

and f i n a l l y d i s s i p a t e d - a p a r t t o t h e p r o c e s s m e d i a , and t h e r e s t t o t h e

e n v i r o n m e n t . Assuming a t y p i c a l equ ipment c o n f i g u r a t i o n and a 50:50 e n e r g y

d i s s i p a t i o n , t h e s t ream o f mechan ica l work a b s o r b e d by t h e p r o c e s s media can be

e s t i m a t e d a t abou t 0.8 kg steam p e r 100 kg b.

TABLE 2.4

E x t e r n a l mass and e n e r g y b a l a n c e s o f a s u g a r f a c t o r y c o n s i d e r e d as a thermodynamic sys tem shown s c h e m a t i c a l l y i n F i g . 2 . 4 .

Mass f l o w T e m p e r a t u r e E n t h a l p y E n t h a l p y s t ream No. Name (kg /100 kg b ) ( O Q ) ( k J / k g ) ( M J / l O O kg b )

I n f l o w i n g s t reams

1 C o s s e t t e s 100.0 12 45 4.5 2 M i l k - o f - l i m e 11.9 40 150 1.8 3 K i l n gas 5.3 35 80 0.4 4 Heat o f - - - 2.4

c a r b o n a t a t i o n r e a c t i o n 5 Wash w a t e r t o c e n t r i f u g a l s 1.4 15 63 0.1 6 Wash steam (7 b a r ) t o 1.2 165 2762 3.3

c e n t r i f u g a l s 7 C r y s t a l l i z a t i o n h e a t - - - 1.2 8 Mechan i ca l work t o p r o c e s s - - - 1.8 9 Steam ( 3 . 4 b a r ) t o 52.0 138 2730 142.0

e v a p o r a t o r and vacuum pan s teaming

T o t a l 1-9 171.8 _ _ 157.5

O u t f l o w i n g s t reams

10 P r e s s e d p u l p 14.35% DS 34.3 40 160 5.5 11 C a r b o n a t a t i o n s l u d g e 8.5 60 150 1.3

50% DS 12 Sweet w a t e r t o l ime 6.7 65 267 1.8

s l a k i n g 13 Gas f rom l s t / 2 n d 6.3 82/92 7.3

c a r b o n a t a t i o n 14 Vacuum f i l t e r v a p o u r 0.6 65 2618 1.6 15 V a p o u r f rom t h e l a s t 8.4 90 2660 22.3

e v a p o r a t o r e f f e c t 16 Condensa te t o b o i l e r s 60.2 114 478 28.8 17 Vacuum pan v a p o u r 20.3 62 2613 53.0 18 Suga r f rom c e n t r i f u g a l s 14.2 70 97 1.4 19 H e a t i n g v a p o u r t o s u g a r 0.9 125 2713 2.4

d r y e r 20 Mo lasses 5.0 50 115 0.6 21 C o o l i n g o f C m a s s e c u i t e - - - 0.6 22 Wash steam d i s s i p a t e d f rom 1.0 165 2762 2.8

c e n t r i f u g a l s 23 Steam d i s s i p a t e d f rom 0.5 138 2730 1.4

vacuum pans

T o t a l 10-23 166.9 - - 130.8

24 V a r i o u s l e a k s and h e a t 4 .9 - - 26.7 l o s s e s

T o t a l 10-24 171.8 - - 157.5

Page 79: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

68

A q u e s t i o n may be posed abou t t h e pu rpose o f a c c o u n t i n g f o r t h e s e r e l a t i v e l y

smal l i ncoming e n e r g y s t r e a m s , w h i l e s i m u l t a n e o u s l y c a l c u l a t i n g n o t - s o - w e l l

d e f i n e d l o s s e s caused by t h e l e a k s o f media and t h e h e a t t r a n s f e r t o t h e

e n v i r o n m e n t . The answer i s t h a t i t i s o n l y when a l l t h e incoming e n e r g y s t reams

a r e known t h a t i t becomes p o s s i b l e t o e v a l u a t e t h e l o s s e s r e a l i s t i c a l l y . O f

c o u r s e , one can a l s o imag ine e n g i n e e r i n g p rob lems i n w h i c h a p p r o x i m a t e

c a l c u l a t i o n s o f t h e e n e r g y b a l a n c e a r e s u f f i c i e n t t o a r r i v e a t a c o r r e c t

s o l u t i o n , t h i s i m p l y i n g t h a t v e r y sma l l e n e r g y s t reams need n o t be t aken i n t o

a c c o u n t .

I n T a b l e 2 . 4 , an example i s p r e s e n t e d o f t h e e x t e r n a l e n e r g y b a l a n c e w i t h t h e

h e a t o f t h e c a r b o n a t a t i o n r e a c t i o n , h e a t o f c r y s t a l l i z a t i o n o f s u g a r and

mechan ica l work taken i n t o a c c o u n t . As can be s e e n , t h e u n c o n t r o l l a b l e e n e r g y

l o s s e s c o r r e s p o n d t o abou t 19% o f t h e e n e r g y s t ream d e l i v e r e d i n t h e h e a t i n g

s team. Had t h e sma l l i ncoming s t reams been n e g l e c t e d , t h e l o s s e s wou ld have been

c a l c u l a t e d a t abou t 15% o f t h e steam e n e r g y , t h i s b e i n g a c l e a r u n d e r e s t i m a t e .

L e t us o b s e r v e a l s o t h a t t h e d e f i n i t i o n o f t h e thermodynamic sys tem so as t o

e x c l u d e t h e s u g a r d r y e r i s a m a t t e r o f c o n v e n i e n c e . The h e a t demand o f t h e d r y e r

can be c a l c u l a t e d s e p a r a t e l y f rom t h e w a t e r c o n t e n t i n s u g a r l e a v i n g t h e

c e n t r i f u g a l s . Had t h e d r y e r been i n c l u d e d , i t wou ld have been n e c e s s a r y t o

a c c o u n t f o r t h e s t reams o f a i r e n t e r i n g and l e a v i n g t h e s y s t e m , a i r e n t h a l p y

b e i n g a f u n c t i o n o f h u m i d i t y and t e m p e r a t u r e . T h i s wou ld make t h e b a l a n c e

c a l c u l a t i o n s a l i t t l e more l a b o r i o u s .

I t s h o u l d be f i n a l l y no ted t h a t t h e t o t a l hea t demand a n d , c o n s e q u e n t l y ,

t h e e f f e c t i v e n e s s r a t i o o f t h e therma l sys tem c a n n o t be c a l c u l a t e d f rom t h e

e x t e r n a l e n e r g y b a l a n c e . T h i s i s i l l u s t r a t e d by T a b l e 2.4 w h i c h c o n t a i n s t h e

i n f l o w i n g and o u t f l o w i n g e n e r g y s t reams b u t n o t t h e ones c i r c u l a t i n g i n t h e

p r o c e s s .

2.4 MASS AND HEAT BALANCES OF HEAT RECEIVERS

2.4.1 I n t r o d u c t o r y remarks

I t i s o f t e n n e c e s s a r y t o i n v e s t i g a t e t h e mass and h e a t b a l a n c e s o f a s u g a r

f a c t o r y i n o r d e r t o d e t e r m i n e t h e d e t a i l s c o r r e s p o n d i n g t o t h e i n d i v i d u a l

equ ipment u n i t s . Such a s i t u a t i o n may a r i s e when d e s i g n i n g a new the rma l sys tem

f o r g i v e n paramete rs o f t he s u g a r m a n u f a c t u r i n g p r o c e s s , o r when a n a l y s i n g t h e

e n e r g y econorny o f an e x i s t i n g s u g a r f a c t o r y . I n o r d e r t o a r r i v e a t a s o l u t i o n ,

i t i s n e c e s s a r y t o i d e n t i f y a l l t h e h e a t s t reams q^. d e f i n e d i n S e c t i o n 1 . 2 . 2 ;

t h i s makes i t a l s o p o s s i b l e t o c a l c u l a t e t h e t o t a l h e a t demand, t h e n e t h e a t

demand and t he e f f e c t i v e n e s s r a t i o o f t h e the rma l s y s t e m . Examples o f

f o r m u l a t i o n o f t h i s k i n d o f p rob lem can be found i n t h e l i t e r a t u r e ( r e f s .

1 2 - 1 4 ) .

V i r t u a l l y a l l the rma l sys tems i n c o r p o r a t e such equ ipment as j u i c e h e a t e r s .

Page 80: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

69

e x t r a c t o r s , hea ted i n t e r m e d i a t e s t o r a g e tanks and vacuum p a n s . G e n e r a l f o r m u l a e

used i n b a l a n c e c a l c u l a t i o n s o f t h e equ ipment u n i t s named a r e p r e s e n t e d i n t h e

f o l l o w i n g . The b a l a n c e s o f o t h e r e q u i p m e n t , n o t c o n s i d e r e d h e r e , can be m o d e l l e d

i n a s i m i l a r manner.

2 .4 .2 J u i c e h e a t e r s

J u i c e h e a t e r s a r e c e r t a i n l y among t h e most i m p o r t a n t components o f t h e

therma l s y s t e m s , as i t i s v i a t h e h e a t e r s t h a t a l a r g e p a r t o f t h e t o t a l h e a t

demand i s t r a n s f e r r e d t o t h e p r o c e s s . The b a l a n c e c a l c u l a t i o n f o r a h e a t e r i s

r a t h e r s i m p l e , b u t t h e p rob lem o f c o o r d i n a t i n g i t w i t h t h e c a l c u l a t i o n s o f o t h e r

p a r t s o f t he the rma l sys tem may be d i f f i c u l t t o s o l v e .

L e t us c o n s i d e r t h e e v a l u a t i o n o f t h e h e a t exchange i n a h e a t e r c h a r a c t e r i z e d

by a g i v e n h e a t i n g s u r f a c e a r e a F and o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t k,

s u p p l i e d w i t h h e a t i n g v a p o u r a t t e m p e r a t u r e t ^ , w h i l e t h e r e q u i r e d f i n a l

t e m p e r a t u r e o f t h e f l u i d hea ted i s t ^ . The q u a n t i t i e s d e t e r m i n i n g t h e mass and

h e a t b a l a n c e s o f t he h e a t e r a r e i n d i c a t e d i n F i g . 2 . 5 ( a ) . ( I t s h o u l d be n o t e d

t h a t t h e c a l c u l a t i o n p r o c e d u r e t o be a p p l i e d i n t h e case o f an unknown h e a t i n g

s u r f a c e a rea i s g i v e n i n r e f . 1 4 . )

(a) (b)

G , t i ,

G v i t v ^ -h-i-H-

iliü i Μ i! ι ι ι ; ι

-h-i-H-

iliü i Μ i! ι ι ι ; ι Ι Μ I I

t2 ,

G c . t c i , t t t t t Miii liiii t t t t t Miii liiii ι ι ι ι ι M i l l

F i g . 2 . 5 . P r i n c i p l e o f mass and h e a t b a l a n c e s o f j u i c e h e a t e r s : ( a ) v a p o u r -h e a t e d , ( b ) c o n d e n s a t e - h e a t e d .

I f t h e f l u i d t e m p e r a t u r e a t t h e h e a t e r i n l e t i s t - j , t h e n t h e r e s u l t i n g f i n a l

t e m p e r a t u r e w i l l be

t2 = - ( t v - t i ) e x p ( - F k / ( ( l + n ) G C ) ) ( 2 . 7 )

where η i s t he h e a t l o s s c o e f f i c i e n t and C i s t h e j u i c e s p e c i f i c h e a t .

N e g l e c t i n g condensa te s u b c o o l i n g , t h e mean l o g a r i t h m i c t e m p e r a t u r e d i f f e r e n c e

can be c a l c u l a t e d as

A t = ( t ^ - t i ) / l n ( ( t ^ - t^)/(t^ - t 2 ) ) ( 2 . 8 )

T a k i n g t he s u b c o o l i n g i n t o a c c o u n t , t h e a p p r o x i m a t e v a l u e o f t h e o u t l e t

t e m p e r a t u r e o f t he c o n d e n s a t e i s

^ c = + 1 ^ ^ 2 ) / δ ( 2 . 9 )

Page 81: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

70

D e n o t i n g t h e e n t h a l p y o f d r y s a t u r a t e d steam a t t e m p e r a t u r e t by h " ( t ) , v a p o u r

e n t h a l p y i s t h u s h^ = h " ( t ^ ) , and assuming a l l t h e e n t h a l p i e s a r e e x p r e s s e d i n

k J / k g , condensa te e n t h a l p y i s h^= 4.19 t ^ .

The h e a t t r a n s f e r r e d f rom v a p o u r t o j u i c e i n t h e h e a t e r i s

q = (1 + n ) G C ( t 2 - t ^ ) ( 2 . 1 0 )

and t he h e a t i n g v a p o u r demand

Gv = q / ( h v - \ ) ( 2 . 1 1 )

The f u r t h e r c o u r s e o f t h e c a l c u l a t i o n s depends now on t h e r e l a t i o n between t h e

two f i n a l t e m p e r a t u r e s , t h e r e q u i r e d t ^ and r e s u l t i n g t 2 . Too low a t2 v a l u e i s

an i n d i c a t i o n o f i n s u f f i c i e n t hea t s u p p l y . I n o r d e r t o e n s u r e c o r r e c t h e a t i n g ,

t h e h e a t i n g s u r f a c e a r e a s h o u l d be i n c r e a s e d , o r a n o t h e r h e a t e r s h o u l d be

p l anned n e x t t o t h e one b e i n g e v a l u a t e d ; i n e i t h e r c a s e , i t i s n e c e s s a r y t o

r e p e a t t h e c a l c u l a t i o n a c c o r d i n g t o e q n s . ( 2 . 7 ) - ( 2 . 1 1 ) w i t h a new s e t o f i n p u t

d a t a . I f t ^ t u r n s o u t t o be t o o h i g h , t h e n t h e c o n c l u s i o n c o u l d be drawn t h a t

t o o much hea t w i l l be t r a n s f e r r e d t o t h e j u i c e . I t i s p o s s i b l e t o l e a v e t h e

h e a t i n g s u r f a c e a r e a u n c h a n g e d , h o w e v e r , as i n r e a l i t y , t h e t e m p e r a t u r e c o n t r o l

c i r c u i t w i l l a d j u s t t h e v a p o u r consumpt ion so as t o o b t a i n t h e r e q u i r e d f i n a l

j u i c e t e m p e r a t u r e t ^ . C o n s e q u e n t l y , t h e h e a t t r a n s f e r r e d becomes

q ^ = (1 + n ) G C ( t ^ - t ^ ) ( 2 . 1 2 )

and t h e r e s u l t i n g l o g a r i t h m i c t e m p e r a t u r e d i f f e r e n c e i s

A t ^ = ( t f - t ^ ) / l n ( ( t f - t ^ ) / ( t ^ - t 2 ) ) ( 2 . 1 3 )

The r e s u l t i n g t e m p e r a t u r e and e n t h a l p y o f t h e c o n d e n s a t e a r e

t ^ ^ = ( 6 t ^ + t ^ + t i ) / 8 ( 2 . 1 4 )

and

h ^ f = 4.19 t ^ ^ ( 2 . 1 5 )

and t h e h e a t i n g v a p o u r demand i s

G v f = q f / ( h v - h ^ f ) ( 2 . 1 6 )

I t i s a l s o p o s s i b l e t o d e t e r m i n e t h e e f f e c t i v e ( i . e . , minimum r e q u i r e d ) h e a t i n g

s u r f a c e a r e a as

= q ^ / ( k A t ^ ) ( 2 . 1 7 )

I n t h e case o f c o n d e n s a t e - h e a t e d h e a t e r s , t h e c o u r s e o f t h e c a l c u l a t i o n s and

t h e s u b s e q u e n t d e c i s i o n - m a k i n g p r o c e d u r e may be d i f f e r e n t . T y p i c a l l y , c o n d e n s a t e

mass f l o w G ^ and i n l e t t e m p e r a t u r e t^-j a r e known, a l o n g w i t h h e a t i n g s u r f a c e

a r e a F , o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t k and r e q u i r e d f i n a l t e m p e r a t u r e t ^

o f t h e l i q u i d h e a t e d . The q u a n t i t i e s d e t e r m i n i n g t h e mass and h e a t b a l a n c e s o f

t h e h e a t e r a r e i n d i c a t e d i n F i g . 2 . 5 ( b ) . C o u n t e r - c u r r e n t o p e r a t i o n o f t h e h e a t e r

i s assumed.

Page 82: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

71

The d i f f i c u l t y i n i n i t i a t i n g t h e c a l c u l a t i o n s i s t h e u n c e r t a i n t y abou t t h e

f i n a l t e m p e r a t u r e s o f bo th t h e l i q u i d hea ted and t h e c o n d e n s a t e . I t can be

r e s o l v e d by making an i n i t i a l guess t2^- on t h e o u t l e t t e m p e r a t u r e o f t h e l i q u i d

( l a t e r o n , we w i l l be a b l e t o check how good t h e guess i s ) . I t t hus becomes

p o s s i b l e t o e s t i m a t e t h e o u t l e t t e m p e r a t u r e o f t h e c o n d e n s a t e

\ 2 = ^ c l - ^ " ) ^ ^ ( ^ 2 i - t i ) ) / ( 4 . 1 9 ( 2 . 1 8 )

The r e s u l t i n g mean l o g a r i t h m i c t e m p e r a t u r e d i f f e r e n c e i s t h u s

At = ( ( t ^ T - t^^) - ( t ^ 2 - ^ ΐ ) ) / " ' " ( ( ^ ο 1 " ^ 2 i ) / ( ^ c 2 - ^ l ) ) ( 2 · ^ ^ )

and t he h e a t t r a n s f e r r e d can be e s t i m a t e d as

q = kFAt ( 2 . 2 0 )

I t now becomes p o s s i b l e t o c a l c u l a t e an improved a p p r o x i m a t i o n o f t h e f i n a l

t e m p e r a t u r e o f t h e l i q u i d hea ted

t2 = t^ + q / ( ( l + n ) G C ) ( 2 . 2 1 )

I f | t 2 - t2^-| > t ^ , where t ^ i s t h e assumed t e m p e r a t u r e - e r r o r t o l e r a n c e , t h e n

a new guess on t h e v a l u e o f t2^- s h o u l d be made and t h e c a l c u l a t i o n s s h o u l d be

r e p e a t e d , s t a r t i n g f rom e q n . ( 2 . 1 8 ) . Once an a c c e p t a b l e v a l u e o f t 2 has been

f o u n d , t h e c o u r s e o f t h e c a l c u l a t i o n s depends on t h e r e l a t i o n between t2 and

t h e r e q u i r e d f i n a l t e m p e r a t u r e t ^ . I f t 2 i s t o o l o w , t h e n t h e h e a t i n g s u r f a c e

a r e a s h o u l d be i n c r e a s e d , o r a n o t h e r h e a t e r s h o u l d be p l anned i m m e d i a t e l y

f o l l o w i n g t he one b e i n g e v a l u a t e d . I n e i t h e r c a s e , t h e c a l c u l a t i o n s a c c o r d i n g

t o e q n s . ( 2 . 1 8 ) - ( 2 . 2 1 ) must be r e p e a t e d w i t h a new s e t o f i n p u t d a t a . Too h i g h

a t2 v a l u e s h o u l d be i n t e r p r e t e d as an i n d i c a t i o n o f t o o l a r g e a c o n d e n s a t e

f l o w o r t oo l a r g e a h e a t i n g s u r f a c e a r e a . The r e a l i s t i c v a l u e o f t h e h e a t

t r a n s f e r r e d i s

q ^ = (1 + n ) G C ( t ^ - t ^ ) ( 2 . 2 2 )

and t h e f i n a l c o n d e n s a t e t e m p e r a t u r e can be c a l c u l a t e d as

^c2 = ^ c l ^ V ( ^ - ^ ^ ^ c ) ( 2 . 2 3 )

The r e s u l t i n g mean l o g a r i t h m i c t e m p e r a t u r e d i f f e r e n c e i s

Lt^ = ( ( t ^ ^ - t ^ ) - ( t ^ 2 - t i ) ) / l n ( ( t c l - t f ) / ( t c 2 • ^ l ) ) ( 2 . 2 4 )

and t he e f f e c t i v e h e a t i n g s u r f a c e a r e a can be d e t e r m i n e d as

= q ^ / ( k A t f ) ( 2 . 2 5 )

A c o n v e n i e n t f e a t u r e o f t h e f o r m u l a e g i v e n above i s t h a t t h e y a r e e a s y t o

a r r a n g e i n a manner f a c i l i t a t i n g t h e c a l c u l a t i o n s f o r a g r o u p o f h e a t e r s

s u p p l i e d w i t h v a r i o u s h e a t i n g med ia . T y p i c a l l y , a d e f i n i t e t e m p e r a t u r e o f t h e

l i q u i d i s r e q u i r e d a t t h e l a s t h e a t e r o u t l e t and t h e h e a t t r a n s f e r s u r f a c e

a reas a r e g i v e n f o r a l l t h e h e a t e r s . The c a l c u l a t i o n s can be c o m p u t e r i z e d

a c c o r d i n g t o t he f l o w d iag ram shown i n F i g . 2 . 6 . I f t h e i n i t i a l assump t i ons a r e

c o r r e c t , then the temperatures of the l i q u i d between heaters are d e t e r m i n e d and

Page 83: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

72

" d e n s a t e W heated L

assign evaporator

effect

t2,ec^n.(2.7)

At^.tcf^^r^vf'^f eans.(2.12)-

(2.17) eons. ( 2 . 8 ) -

(2.11)

set next t^ ecj,ual to

STQP1 ^ 1= ί +1

guess

ecins.(2-ie)-C2.21)

eans. (2 .22) -(2.25)

i CANNOT BE ,ATTAIN ED

I ^ STOP 2 ^

new t 2 i

F i g . 2 . 6 . F low d iag ram o f t h e c a l c u l a t i o n s f o r a g r o u p o f j u i c e h e a t e r s .

Page 84: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

73

STOP 1 i s r e a c h e d . I f t h e c a l c u l a t i o n s p r o v e t h a t t h e r e q u i r e d f i n a l t e m p e r a t u r e

o f t he l i q u i d canno t be a t t a i n e d , t h e n a message i s o u t p u t and t h e a c t i o n i s

t e r m i n a t e d a t STOP 2 , t h i s i m p l y i n g t h a t t h e i n p u t da ta must be m o d i f i e d . I t

s h o u l d be o b s e r v e d t h a t a s i n g l e h e a t e r can be c a l c u l a t e d as a s p e c i a l case o f

a h e a t e r g r o u p , t h i s making i t p o s s i b l e t o a p p l y t h e a l g o r i t h m t o most h e a t e r

a r rangements e n c o u n t e r e d i n t he s u g a r i n d u s t r y .

2 . 4 . 3 E x t r a c t o r

A c h a r a c t e r i s t i c f e a t u r e o f t he mass and hea t b a l a n c e s o f t h e e x t r a c t o r i s

t h a t i t may be n e c e s s a r y t o s p l i t t he c a l c u l a t i o n s i n t o p a r t s c o r r e s p o n d i n g t o

v a r i o u s p r o c e s s r e q u i r e m e n t s imposed on e x t r a c t o r p a r t s . The d e t a i l s depend on

e x t r a c t o r d e s i g n , and may v a r y f rom f a c t o r y t o f a c t o r y . C a l c u l a t i o n s o f a t o w e r -

t y p e e x t r a c t o r have been d e s c r i b e d i n t h e l i t e r a t u r e ( r e f . 1 3 ) . I n t h e

f o l l o w i n g , a p o s s i b l e p r o c e d u r e o f t h e a p p r o x i m a t e b a l a n c e c a l c u l a t i o n s o f

a t r o u g h - t y p e (DOS) e x t r a c t o r i s p r e s e n t e d .

The q u a n t i t i e s d e t e r m i n i n g t h e mass and h e a t b a l a n c e s a r e i n d i c a t e d i n

F i g . 2 . 7 . The i d e a o f s p l i t t i n g t h e e q u a t i o n s i n t o two g roups stems f rom t h e

f a c t t h a t c o r r e c t e x t r a c t i o n depends on e f f e c t i v e h e a t i n g o f t h e incoming

c o s s e t t e s i n e x t r a c t o r zone A ; t h i s can be r e f l e c t e d by a r e q u i r e m e n t t h a t t h e

t e m p e r a t u r e s o f t h e j u i c e and c o s s e t t e s between zones A and Β be s u f f i c i e n t l y

h i g h .

cosseites

req,ulrecl temperatures: cossettes t juice t^j

fresh v\ oter Gw.tw pulp

vapour

F i g . 2 . 7 . P r i n c i p l e o f mass and e n e r g y b a l a n c e s o f a t r o u g h - t y p e e x t r a c t o r .

The t o t a l hea t demand o f t h e e x t r a c t o r i s a p p r o x i m a t e l y

Q = (1 + « . ) ( G j h j . GpCptp - 4 . 1 9 ( G ^ t ^ - G p ^ t p J - G ^ C ^ t ^ ) ( 2 . 2 6 )

where m i s t he h e a t l o s s c o e f f i c i e n t , h j i s t h e e n t h a l p y o f j u i c e a t t e m p e r a t u r e

t j , Cp i s t h e s p e c i f i c h e a t o f p u l p , and C^^ i s t h e s p e c i f i c h e a t o f c o s s e t t e s .

Page 85: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

74

The e s t i m a t e d t e m p e r a t u r e and e n t h a l p y o f t h e c o n d e n s a t e a t t h e o u t l e t o f zone A

can be c a l c u l a t e d as

t c A = ( " ^ A ' C jtj - Stb) / (S- ' ' (Vj ^ *rb)/2)/8 ( 2 . 2 7 )

= 4.19 t , , ( 2 . 2 8 )

The r e s u l t i n g h e a t demand o f zone A i s

Qa = (1 + m)(G^^Cj^( t^^ - t ^ ) - G.(h^. - h.}) (2.29)

and t he h e a t i n g v a p o u r demand i n zone A i s

S = V ( ^ A - ^ca) (2.30) The t e m p e r a t u r e and e n t h a l p y o f t h e c o n d e n s a t e a t t h e o u t l e t o f zone Β a r e

e s t i m a t e d as

tcB = ("^B ' ( V j ' Vb)/2 - ( V „ - GpwSw ' W^^% ' Sw ' (2-31)

The hea t demand o f zone Β i s t hus

Qb = Q - Qa

and t h e h e a t i n g v a p o u r demand i n zone Β i s

% = v ( ^ B • ^ b )

(2.32)

(2.33)

(2.34)

2.4.4 S u g a r house equ ipment

The e n e r g y p r o c e s s e s i n t h e s u g a r house a r e dominated by t h e h e a t consumpt i on

i n t h e vacuum p a n s , t y p i c a l l y b a t c h p a n s . I n t h e mass and h e a t b a l a n c e

c a l c u l a t i o n s , t h e d i s c r e t e n a t u r e o f vacuum pan h e a t i n g i s u s u a l l y d i s r e g a r d e d

and t he c a l c u l a t i o n s a r e pe r f o rmed f o r t h e e n t i r e m a s s e c u i t e s t reams i n t h e

r e s p e c t i v e s t r i k e s . The q u a n t i t i e s d e t e r m i n i n g t h e mass and h e a t b a l a n c e s o f a

f i c t i v e c o n t i n u o u s pan r e p r e s e n t i n g b a t c h pans a r e i n d i c a t e d i n F i g . 2 . 8 ( a ) .

( Q ) a evaporated water Ge.te

syrups:

(b)

G v > t v ^

Ac

G,b,-t,

massecuite

F i g . 2.8. P r i n c i p l e o f mass and h e a t b a l a n c e s o f s u g a r house e q u i p m e n t : ( a ) ( a ) vacuum p a n , ( b ) s y r u p t a n k .

Page 86: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

75

From the p r o c e s s d a t a , t h e sum o f i ncoming mass f l o w s o f s y r u p s and t h e a v e r a g e

v a l u e s o f t h e i r s p e c i f i c h e a t s , i n i t i a l t e m p e r a t u r e s and c o n c e n t r a t i o n s can be

de te rm ined as

G = Σ G . ( 2 . 3 5 )

^a = ( 2 . 3 6 )

t ^ = ( Σ G . C . t . ) / ( G C ^ ) ( 2 . 3 7 )

b^ = ( Σ G . b . ) / G ( 2 . 3 8 )

The mass f l o w o f t h e e v a p o r a t e d w a t e r ( i . e . , vacuum pan v a p o u r ) i s

= G ( l - b ^ / b ^ ) ( 2 . 3 9 )

Hav ing d e t e r m i n e d t h e s p e c i f i c h e a t o f t h e m a s s e c u i t e C ^ , and t h e e n t h a l p y o f

t he vacuum-pan v a p o u r h^ = h " ( t g ) , t h e t i m e - a v e r a g e d h e a t demand i s e x p r e s s e d as

q = (1 + u ) ( G ^ h g + (G - G g ) C ^ t ^ - G C ^ t ^ ) ( 2 . 4 0 )

where u i s t h e h e a t l o s s c o e f f i c i e n t .

L e t us o b s e r v e t h a t even t hough t h e h e a t o f s u g a r c r y s t a l l i z a t i o n i s n e g l e c t e d

h e r e , t h e f o r m u l a can y i e l d c o r r e c t h e a t demand v a l u e s p r o v i d i n g t h e h e a t l o s s

c o e f f i c i e n t i s a p p r o p r i a t e l y d e f i n e d . The e s t i m a t e d v a l u e s o f t h e t e m p e r a t u r e

and e n t h a l p y o f t h e c o n d e n s a t e a r e

^ c = ^ ^ ^ V)/^ ( 2 . 4 1 )

h^ = 4.19 t ^ ( 2 . 4 2 )

and t he t i m e - a v e r a g e d h e a t i n g v a p o u r demand i s

% = q / ( ^ - ^ ) ( 2 - 4 3 )

A s u b s t a n t i a l s h a r e o f t h e h e a t demand o f t h e s u g a r house i s a s s o c i a t e d w i t h t h e

tanks i n w h i c h t h i c k j u i c e , r u n - o f f , r e m e l t a n d , p o s s i b l y , o t h e r media a r e

t e m p o r a r i l y s t o r e d and hea ted t o d e f i n i t e t e m p e r a t u r e s . The q u a n t i t i e s

d e t e r m i n i n g t h e mass and h e a t b a l a n c e s o f an i n d i r e c t l y hea ted tank s u p p l i e d

w i t h h e a t i n g v a p o u r a t t e m p e r a t u r e t ^ a r e i n d i c a t e d i n F i g . 2 . 8 ( b ) . A f t e r

d e t e r m i n i n g t h e i n l e t and o u t l e t e n t h a l p i e s o f t h e s y r u p h-j and h ^ , and assuming

t h e hea t l o s s c o e f f i c i e n t m i s known, t h e h e a t demand can be c a l c u l a t e d as

q = (1 + m)G(h2 - h^ ) ( 2 . 4 4 )

The t e m p e r a t u r e and e n t h a l p y o f t h e c o n d e n s a t e can be e s t i m a t e d as

= (^S ^ 1 ^ ^ 2 ) / ^ (2 - ' ^5 )

h^ = 4.19 t ^ ( 2 . 4 6 )

and t h e h e a t i n g v a p o u r demand i s

^ = q / ( ^ - h^ ) ( 2 . 4 7 )

Page 87: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

76

2.5 MASS AND HEAT BALANCES OF A M U L T I P L E - E F F E C T EVAPORATOR

2 . 5 . Ί I n t r o d u c t i o n

The m u l t i p l e - e f f e c t e v a p o r a t o r i s a p r o c e s s s t a t i o n i n w h i c h j u i c e t h i c k e n i n g

takes p l a c e ; i t can a l s o be seen as a b u i l d i n g b l o c k p l a y i n g a d e c i s i v e r o l e i n

t h e m u l t i p l e u t i l i z a t i o n o f e n e r g y i n t h e the rma l s y s t e m . The a c c u r a c y o f t h e

c a l c u l a t i o n s o f e v a p o r a t o r b a l a n c e s d e t e r m i n e s t h e a c c u r a c y w i t h w h i c h t h e mass

and hea t f l o w s w i t h i n t he therma l sys tem can be c a l c u l a t e d . I t s h o u l d t h e r e f o r e

be no ted t h a t i n t h e l i t e r a t u r e , two t e n d e n c i e s c o n c e r n i n g t h e methods o f

e v a p o r a t o r c a l c u l a t i o n s can be i d e n t i f i e d .

( i ) R e l y i n g on s i m p l i f i e d mathemat ica l models w h i c h e n a b l e one t o make

c a l c u l a t i o n s m a n u a l l y , o r w i t h t h e a i d o f a p o c k e t c a l c u l a t o r . A l t h o u g h such

methods a r e c e r t a i n l y u s e f u l i n many a p p l i c a t i o n s , t h e r e i s t h e r i s k t h a t t h e

u s e r may be unaware o f t h e magn i tude o f t h e e r r o r m a r g i n . Because o f t h e

c a l c u l a t i o n e r r o r , i t may be i m p o s s i b l e t o use t h e s e methods i n c e r t a i n d e s i g n

prob lems o r i n t h e o p t i m i z a t i o n o f e v a p o r a t o r s .

( i i ) U s i n g d e t a i l e d mathemat ica l models w h i c h may r e q u i r e t h e c a l c u l a t i o n s t o be

c o m p u t e r i z e d . A number o f models o f t h i s k i n d have been d e s c r i b e d i n t h e

l i t e r a t u r e . H o w e v e r , i t may sometimes be d i f f i c u l t t o use them because t h e

p u b l i c a t i o n s do n o t s p e c i f y model a c c u r a c y and no i n f o r m a t i o n i s g i v e n on the

numer i ca l p rob lems o f model u s e . I n t h e case o f c a l c u l a t i o n methods r e l y i n g on

t h e i t e r a t i v e improvements o f i n i t i a l l y guessed v a l u e s o f unknown v a r i a b l e s ,

an i m p r o p e r l y chosen n u m e r i c a l p r o c e d u r e may c a r r y t h e r i s k o f u n c o n t r o l l a b l e

n u m e r i c a l e r r o r s .

Both app roaches men t ioned w i l l be s t u d i e d i n t h e f o l l o w i n g . A c o n v e n i e n t

s t a r t i n g p o i n t i s t h e s o - c a l l e d g e n e r a l i z e d e v a p o r a t o r s t r u c t u r e . I t can be

u n d e r s t o o d as a s e t o f a l l p o s s i b l e components and t h e i r c o n n e c t i o n s i n

a m u l t i p l e - e f f e c t e v a p o r a t o r . Once a mathemat ica l model o f t h e g e n e r a l i z e d

s t r u c t u r e has been f o r m u l a t e d , one can e a s i l y g e n e r a t e a u n i q u e model o f a

s p e c i f i c e v a p o r a t o r v e r s i o n .

F i g u r e 2.9 shows s c h e m a t i c a l l y a r e p e t i t i v e b l o c k o f t h e s t r u c t u r e o f a c o -

c u r r e n t ( p a r a l l e l f l o w ) m u l t i p l e - e f f e c t e v a p o r a t o r c o m p r i s i n g an a r b i t r a r y

number o f e f f e c t s . The f o l l o w i n g c o n n e c t i o n s between t h e b l o c k and i t s

s u r r o u n d i n g s ( i n c l u d i n g n e i g h b o u r i n g b l o c k s ) can be taken i n t o a c c o u n t :

- v a p o u r w i t h d r a w a l f o r h e a t i n g pu rposes and c o n d e n s a t e r e t u r n f rom h e a t

r e c e i v e r s ,

- s u p p l y o f v a p o u r o b t a i n e d by c o n d e n s a t e f l a s h e v a p o r a t i o n ,

- condensa te w i t h d r a w a l f o r h e a t i n g o r o t h e r p u r p o s e s ( t o t h e r e c e i v e r s o u t s i d e

t h e e v a p o r a t o r ) ,

- condensa te s u p p l y t o t h e c o n d e n s a t e tank i n t h e n e x t e v a p o r a t o r e f f e c t .

I n t h e f o l l o w i n g , t he e f f e c t s o f an N - e f f e c t e v a p o r a t o r w i l l be numbered

Page 88: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

77

extracted vapour I

steam I or ;

heating vapour t '

ν ν

i - th effect

to condenser

juice I G Ó . ^ ¿ , b t G'. t.' b.' i I Ά "ί-ΐ ' ί-ΐ' i-1 • I ψ t ' Β

condensate' flash vapouH^

condensatej

returned I condensate

extracted \ condensate!

i - r 1-1

I L

G i , t ¿ • \ EVAPORATOR BOUNDARY

F i g . 2 . 9 . Scheme o f t h e i - t h r e p e t i t i v e b l o c k i n an N - e f f e c t e v a p o r a t o r and t h e symbols used i n t h e mathemat i ca l m o d e l .

1 , 2 , . . , N . C e r t a i n v a r i a b l e s w i l l be i n d e x e d 0 a t i n l e t and N+1 a t o u t l e t .

A t y p i c a l s e t o f i n p u t da ta f o r e v a p o r a t o r c a l c u l a t i o n s c o m p r i s e s t h e

f o l l o w i n g p a r a m e t e r s :

- t h i n j u i c e mass f l o w G ^ ,

- c o n c e n t r a t i o n o f t h i n j u i c e and t h i c k j u i c e Bj^,

- t h i n j u i c e t e m p e r a t u r e t ¿ .

The mass f l o w o f w a t e r t o be e v a p o r a t e d can be c a l c u l a t e d as

G = G¿(1 - b Q / B ^ ) ( 2 . 4 8 )

The f o l l o w i n g p r o c e s s pa ramete rs a r e i n d e p e n d e n t o f t h e mass and e n e r g y b a l a n c e s

and must be s p e c i f i e d b e f o r e b e g i n n i n g t h e c a l c u l a t i o n s :

- t e m p e r a t u r e and p r e s s u r e o f t h e h e a t i n g steam s u p p l i e d t o t h e f i r s t e f f e c t 4-S „ s

P p

- t e m p e r a t u r e d i f f e r e n c e s A t ^ A t 2 , . . , ät^ be tween t h e h e a t i n g steam o r v a p o u r ,

and t he v a p o u r g e n e r a t e d f rom j u i c e ; a l t e r n a t i v e l y , t e m p e r a t u r e d i f f e r e n c e s

between t he h e a t i n g steam o r v a p o u r , and t h e j u i c e , can be s p e c i f i e d .

From the c a l c u l a t i o n s o f o t h e r components o f t h e the rma l s y s t e m , t h e

f o l l o w i n g da ta must a l s o be known:

- mass f l o w s o f v a p o u r s w i t h d r a w n f rom t h e i n d i v i d u a l e f f e c t s f o r h e a t i

pu rposes G ^ , G ^ , . . , G ^ ; ng

Page 89: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

78

- mass f l o w s and t e m p e r a t u r e s o f c o n d e n s a t e s r e t u r n e d t o t h e c o n d e n s a t e t a n k s ,

G!|*, G 2 9 . . J GJJ and tp t 2 j . . j tjj;

- c o n d e n s a t e w i t h d r a w a l / s u p p l y c o e f f i c i e n t s r ^ i ^ 2 " * » ' ^Ν '

F o r t h e i - t h e f f e c t , r^ = 0 means t h a t t he e n t i r e c o n d e n s a t e s t r e a m i s w i t h d r a w n

t o t h e s u r r o u n d i n g s , w h i l e r . = 1 means t h a t t he e n t i r e c o n d e n s a t e s t ream i s

s u p p l i e d t o t h e tank i n t h e e f f e c t numbered ( i + 1 ) .

F o r known e v a p o r a t o r d e s i g n s and known c h a r a c t e r i s t i c s o f t h e the rma l

i n s u l a t i o n i n t he i n d i v i d u a l e f f e c t s , t h e f o l l o w i n g the rma l d a t a can be

s p e c i f i e d :

- s u b c o o l i n g ( r e l a t i v e t o t h e s a t u r a t i o n t e m p e r a t u r e ) o f t h e condensa tes l e a v i n g

t he c o n s e c u t i v e h e a t i n g chambers s ^ S 2 » . . , S j ^ ;

- v a p o u r t e m p e r a t u r e d rops due t o t h r o t t l i n g i n t h e p i p e s l i n k i n g n e i g h b o u r i n g

e f f e c t s d p d 2 , . . , d^^;

- hea t l o s s c o e f f i c i e n t s o f t h e e v a p o r a t o r b o d i e s e ^ e 2 , . . , ej^ and c o n d e n s a t e

tanks C p 0 2 » . . > C j^ .

Hav ing s p e c i f i e d a l l t h e i n p u t d a t a , one i s a b l e t o d e t e r m i n e t he v a p o u r

t e m p e r a t u r e s i n t h e e n t i r e e v a p o r a t o r ( f o r e f f e c t s numbered i = 1, 2 , . . , N) as

tV = t ? - A t . ( 2 . 4 9 )

t l , - t ^ - d,. ( 2 . 5 0 )

I t now becomes p o s s i b l e t o c o n s t r u c t a mathemat i ca l d e s c r i p t i o n o f t h e m u l t i

s t a g e e v a p o r a t i o n p r o c e s s , i n t h e fo rm o f a sys tem o f e q u a t i o n s c o n t a i n i n g

unknown mass f l o w s , t e m p e r a t u r e s and j u i c e c o n c e n t r a t i o n s i n o r between t h e

i n d i v i d u a l e v a p o r a t o r e f f e c t s . The f o l l o w i n g thermodynamic f u n c t i o n s must be

known i n o r d e r t o f o r m u l a t e t h e e n e r g y b a l a n c e r e l a t i o n s h i p s :

- h ' ^ ( t , b ) , j u i c e e n t h a l p y as a f u n c t i o n o f t e m p e r a t u r e and c o n c e n t r a t i o n ,

- A T ( t , b ) , b o i l i n g p o i n t e l e v a t i o n as a f u n c t i o n o f t e m p e r a t u r e and

c o n c e n t r a t i o n ,

- h " ( t ) , e n t h a l p y o f d r y s a t u r a t e d steam as a f u n c t i o n o f t e m p e r a t u r e ,

- h ' ( t ) , e n t h a l p y o f s a t u r a t e d w a t e r as a f u n c t i o n o f t e m p e r a t u r e .

2 .5 .2 S i m p l i f i e d model

The mathemat ica l d e s c r i p t i o n o f a s i n g l e e v a p o r a t o r e f f e c t becomes much

e a s i e r t o h a n d l e i f t h e h e a t l o s s e s and c o n d e n s a t e r e t u r n s a r e n e g l e c t e d and t h e

amount o f v a p o u r e v a p o r a t e d f rom j u i c e i s s e t equa l t o t h e amount o f h e a t i n g

v a p o u r o r steam condensed ( t h a t i s , t h e i n f l u e n c e o f t h e t e m p e r a t u r e and

c o n c e n t r a t i o n on t h e j u i c e e n t h a l p y i s d i s r e g a r d e d ) . These assumpt i ons can be

w r i t t e n down, f o r i = 1, 2 , . . , N, as e.¡ = c^. = 0 , οξ* = 0 , and

G^ = G^ - GT + G^^ . , ( 2 . 5 1 )

where G Í i s t h e mass f l o w o f c o n d e n s a t e f l a s h v a p o u r , t o be c a l c u l a t e d f rom t h e

Page 90: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

79

r e l a t i o n s h i p

= ( G ' + G ^ _ ^ ) ( h ^ ^ - h ^ ) / ( h [ - h^ ) ( 2 . 5 2 )

where t h e e n t h a l p i e s h ^ ^ , h9 and h t a p p l y t o t h e s u b c o o l e d c o n d e n s a t e l e a v i n g

t h e h e a t i n g chamber , t h e condensa te i n t h e t a n k , and t h e f l a s h v a p o u r ,

r e s p e c t i v e l y . These e n t h a l p i e s a r e d e t e r m i n e d as

h ^ ' = h ' ( t ^ - s . ) ( 2 . 5 3 )

= h ' ( t ^ ^ ^ ) ( 2 . 5 4 )

h f = h " ( t ^ ^ T ) ( 2 . 5 5 )

The mass f l o w o f c o n d e n s a t e t o t h e tank i n t h e n e x t e f f e c t i s

G? = r . ( G ^ + G ^ . ^ - G f ) ( 2 . 5 6 )

The mass b a l a n c e o f t he e v a p o r a t o r can now be d e t e r m i n e d by s o l v i n g an e q u a t i o n

w i t h t he mass f l o w o f t h e l a s t - e f f e c t v a p o u r t o t h e c o n d e n s e r , G ^ ^ ^ , as t h e

unknown v a r i a b l e . L i n k i n g t h e mass b a l a n c e s o f t h e e f f e c t s numbered

N, N - 1 , . . , i , f o r m u l a t e d i n a c c o r d a n c e w i t h e q n . ( 2 . 5 1 ) , we o b t a i n

= ¿ « ^ N - k - i k ) ^ ( 2 . 5 7 )

On t h e o t h e r h a n d , we can c o n c l u d e f rom t h e mass b a l a n c e o f t h e e n t i r e

e v a p o r a t o r t h a t

G ^ ^ l = (G - ^ E ^ i ( G y - G Í ) ) / N ( 2 . 5 8 )

where G i s d e f i n e d by e q n . ( 2 . 4 8 ) .

The m a s s - b a l a n c e e q u a t i o n can now be o b t a i n e d by s u b s t i t u t i n g , f o r

i = Ν , N - 1 , . . , 1, e q n s . ( 2 . 5 3 ) - ( 2 . 5 6 ) i n t o e q n . ( 2 . 1 1 ) , t hus d e t e r m i n i n g g [ as

f u n c t i o n s o f G ^ _ ^ ^ , and s u b s e q u e n t l y s u b s t i t u t i n g t h e s e f u n c t i o n s i n t o e q n .

( 2 . 5 8 ) . F o r a s p e c i f i c number o f e f f e c t s N, t h i s can be done a n a l y t i c a l l y . I t i s

a l s o p o s s i b l e t o d e v i s e a s i m p l e a l g o r i t h m d e l i v e r i n g n u m e r i c a l s o l u t i o n s f o r

a r b i t r a r y N , as shown i n F i g . 2 . 1 0 ( a ) . The a l g o r i t h m i s based on a c h a i n o f

s u b s t i t u t i o n s g e n e r a t i n g an e q u a t i o n o f t h e fo rm

" l l -η<^Μ) ( 2 - 5 9 )

T h i s e q u a t i o n can be s o l v e d by i t e r a t i v e l y i m p r o v i n g a p p r o x i m a t e s o l u t i o n s t o

s a t i s f y t h e c o n d i t i o n

IG^^I - f ( G ^ ^ ^ ) | < g ( 2 . 6 0 )

where g i s a s u f f i c i e n t l y sma l l number.

In o r d e r t o s i m p l i f y t h e f l o w d i a g r a m , t h e c a l c u l a t i o n o f t h e c o n d e n s a t e

mass f l o w a c c o r d i n g t o e q n . ( 2 . 5 6 ) i s n o t shown i n F i g . 2 . 1 0 ( a ) . As t h i s

Page 91: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

8 0

(α) eqn.(2A8)

(b )

for i = 1.2. . . . N

eqns.{2.49).(2.58)

{2.53)- (2.55)

Gi = 0

for i=N,N-1,..,1

eqn.(2.57) eqn.(2.52)

- J -

G ^ ^ ^ from(2.58)

eqn.(2A8)

for i=1.2, . . . N

eqns.{2.49).(2.50)

(2.53)-(255).(2.80)

initial guesses

for G ^ , ^

F i g . 2 . 1 0 . F low d iag ram o f t h e a l g o r i t h m s o f e v a p o r a t o r c a l c u l a t i o n s : ( a ) u s i n g t h e s i m p l i f i e d m o d e l , ( b ) u s i n g t h e d e t a i l e d m o d e l .

c a l c u l a t i o n i s pe r f o rmed b e f o r e c h e c k i n g c o n d i t i o n ( 2 . 6 0 ) , t h e mass b a l a n c e o f

t h e e v a p o r a t o r becomes unamb iguous l y d e f i n e d . Known v a p o u r and c o n d e n s a t e f l o w s

make i t p o s s i b l e t o c a l c u l a t e j u i c e f l o w s and c o n c e n t r a t i o n s , f o r

i = 2 , 3 , . . , N - 1 , as

= Q J . ^ - G ? ( 2 . 6 1 )

C o n s e q u e n t l y , b o i l i n g p o i n t e l e v a t i o n s and e f f e c t i v e t e m p e r a t u r e d i f f e r e n c e s i n

t h e e f f e c t s numbered i = 1 , 2 , . . , Ν a r e

Δ Τ . = AT(tr, b . ) ( 2 . 6 3 )

Page 92: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

81

A t . = t^ - (tV + Δ Τ . ) ( 2 . 6 4 )

Known t e m p e r a t u r e s and j u i c e c o n c e n t r a t i o n s now make i t p o s s i b l e t o e s t i m a t e

o v e r a l l hea t t r a n s f e r c o e f f i c i e n t s k . i n each e f f e c t , u s i n g g raphs o r f o r m u l a e

c h a r a c t e r i z i n g t h e e v a p o r a t o r d e s i g n a p p l i e d . C o n s e q u e n t l y , h e a t t r a n s f e r

s u r f a c e a reas can be c a l c u l a t e d as

F,. = G^ (h? - h f ) / ( k . A t . ) ( 2 . 6 5 )

2 .5 .3 D e t a i l e d model

I t was o b s e r v e d a l ong t ime ago t h a t t h e a c c u r a c y o f t h e s i m p l i f i e d model may

be i n s u f f i c i e n t when s o l v i n g c e r t a i n e n g i n e e r i n g p rob lems ( r e f . 1 5 ) . The

s y s t e m a t i c e r r o r i n h e r e n t i n t h e s i m p l i f i e d model r e s u l t s m a i n l y f rom n e g l e c t e d

changes i n j u i c e e n t h a l p y between c o n s e c u t i v e e v a p o r a t o r e f f e c t s , n e g l e c t e d h e a t

l o s s e s t o t h e s u r r o u n d i n g s , and i n c o m p l e t e d e s c r i p t i o n o f t h e c o n d e n s a t e f l a s h .

More d e t a i l e d mathemat i ca l models have been c o n s i d e r e d by v a r i o u s a u t h o r s

( r e f s . 1 6 - 1 8 ) . A comp le te s e t o f e q u a t i o n s d e s c r i b i n g a s i n g l e e v a p o r a t o r e f f e c t

i s p r e s e n t e d b e l o w . I t i s assumed t h a t t h e j u i c e c o n c e n t r a t i o n i s known, w h i c h

i m p l i e s t h a t some h i g h e r - o r d e r a l g o r i t h m must s u p p l y c o n c e n t r a t i o n s f o r each

c a l c u l a t i o n s t e p c o r r e s p o n d i n g t o a s i n g l e e f f e c t . T h e r e f o r e , t h e model may

i n c l u d e e q n s . ( 2 . 6 3 ) and ( 2 . 6 4 ) . The e n t h a l p y o f t h e j u i c e i s

h * = h J ( t ^ ' , b . ) ( 2 . 6 6 )

The mass f l o w o f t h e v a p o u r o b t a i n e d i s

G? = G- - G ( + G ^ ^ ^ ( 2 . 6 7 )

The mass f l o w o f t h e h e a t i n g v a p o u r r e q u i r e d t o e v a p o r a t e t h i s amount o f w a t e r

can be c a l c u l a t e d as

G^ = ((1 + e . ) / ( h ^ - h f ) ) ( G ? ( h y - hl^) - G J ( h J _ ^ - h J ) ) ( 2 . 6 8 )

where t h e e n t h a l p y h ? ^ i s d e f i n e d by e q n . ( 2 . 5 3 ) and t h e e n t h a l p y hV o f v a p o u r

g e n e r a t e d i s d e f i n e d as

= h " ( t ^ ) ( 2 . 6 9 )

The t o t a l mass f l o w o f t h e c o n d e n s a t e e n t e r i n g t h e tank i s

G - ^ = G^_. , + G^ + G C ( 2 . 7 0 )

and i t s a v e r a g e t e m p e r a t u r e can be c a l c u l a t e d a p p r o x i m a t e l y as

t f = ( G ? ( t ^ - s . ) + G ^ . ^ t ^ . ^ + G ; ' t ^ ) / G f ( 2 . 7 1 )

The condensa te e n t h a l p y a t t h e a v e r a g e t e m p e r a t u r e i s

h f = h ' ( t f ) ( 2 . 7 2 )

Page 93: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

82

The mass f l o w o f t h e condensa te f l a s h v a p o u r i s

= G f ( h f - h ^ ) / ( ( h i - h ^ ) ( l + c . ) ) ( 2 . 7 3 )

and t he mass f l o w o f t he c o n d e n s a t e w i t h d r a w n t o t h e s u r r o u n d i n g s i s

G^ = G9^ - - G ^ ( 2 . 7 4 )

I t i s now p o s s i b l e t o d e t e r m i n e t he mass f l o w o f t h e j u i c e a t t h e o u t l e t as

GJ = G J . ^ - G? ( 2 . 7 5 )

and t he j u i c e c o n c e n t r a t i o n a t t h e o u t l e t as

b i = b ^ - i G ^ - j / G ^ ' ( 2 . 7 6 )

As i n t he s i m p l i f i e d m o d e l , t h e above e q u a t i o n s can be f o r m u l a t e d f o r t h e

e f f e c t s numbered 1, 2 , . . , Ν and t h e n combined i n t o one e q u a t i o n ( w i t h one

unknown v a r i a b l e G^^^^) ana logous t o e q n . ( 2 . 5 9 ) . As t h e c h a i n o f s u b s t i t u t i o n s

i s r a t h e r c o m p l i c a t e d , t h e e q u a t i o n can o n l y be s o l v e d n u m e r i c a l l y . C o n t r a r y t o

t h e s i m p l i f i e d m o d e l , d i r e c t i t e r a t i o n s may n o t c o n v e r g e ; i t i s t h e r e f o r e

n e c e s s a r y t o use o t h e r n u m e r i c a l methods . The e q u a t i o n i s c o n v e n i e n t l y r e w r i t t e n

i n t h e fo rm

'^l,-n^l^)-0 ( 2 . 7 7)

I n F i g . 2 . 1 0 ( b ) , t h e f l o w d iag ram o f t h e a l g o r i t h m based on a p p l i c a t i o n o f t h e

s e c a n t method i s shown. A p r e r e q u i s i t e f o r a s u c c e s s f u l i t e r a t i v e c o m p u t a t i o n i s

t o f i n d two i n i t i a l a p p r o x i m a t i o n s o f t h e unknown v a r i a b l e f o r w h i c h e r r o r s o f

e q n . ( 2 . 7 7 ) have o p p o s i t e s i g n s . I t i s u s u a l l y p o s s i b l e t o s e t G ^ ^ ^ = 0 as t h e

f i r s t a p p r o x i m a t i o n , and G^^-j r e s u l t i n g f rom t h e i n i t i a l c h a i n o f s u b s t i t u t i o n s

as t he s e c o n d . When c o m p u t e r i z i n g t h e a l g o r i t h m , i t i s recommended t o check t h e

e r r o r s i g n s f o r bo th a p p r o x i m a t i o n s a n d , i f n e c e s s a r y , t o m o d i f y one o f them

b e f o r e t h e i t e r a t i v e p r o c e s s i s s t a r t e d . Some i n i t i a l a p p r o x i m a t i o n s have a l s o

t o be found f o r s e v e r a l o t h e r v a r i a b l e s whose v a l u e s a r e n o t known as l o n g as

G ^ ^ ^ i s unknown. B e f o r e e n t e r i n g t h e i t e r a t i o n l o o p , i t can be assumed t h a t f o r

i = 2 , 3 , . . , N-1 , t he c o n c e n t r a t i o n s and t h e mass f l o w s o f t h e j u i c e a r e

b. = b._^ + ( B ^ - b Q ) / N ( 2 . 7 8 )

and

G J = G J . ^ b . . i / b . ( 2 . 7 9)

The i n i t i a l guesses f o r t h e mass f l o w s o f t h e f l a s h v a p o u r s f o r i = 1, 2 , . . , N-1

can be

G f = 0.005 G^ ( 2 . 8 0 )

The i t e r a t i o n s i n t h e i n t e r n a l l o o p can be t e r m i n a t e d i f , i n two s u b s e q u e n t

Page 94: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

83

i t e r a t i o n s numbered n-1 and n , t h e j u i c e c o n c e n t r a t i o n s a t t h e e v a p o r a t o r o u t l e t

do n o t d i f f e r by more t h a n t h e assumed t o l e r a n c e b^

|bi") - b ( " - 1 ) | < ( 2 . 8 1 )

A f t e r c o m p l e t i n g t h e i t e r a t i o n l o o p c o n t r o l l e d by t h e s e c a n t me thod , a l l t h e

mass f l o w s w i t h i n t h e m u l t i p l e - e f f e c t e v a p o r a t o r a r e known. E q u a t i o n s ( 2 . 6 4 ) and

( 2 . 6 5 ) can t h e n be used t o d e t e r m i n e t h e h e a t exchange a r e a s i n t h e i n d i v i d u a l

e v a p o r a t o r b o d i e s .

2 .5 .4 Example

The d i f f e r e n c e between t h e s i m p l i f i e d model and t h e d e t a i l e d model can be

demons t ra ted by a n u m e r i c a l examp le . The i n p u t d a t a f o r a q u i n t u p l e - e f f e c t

e v a p o r a t o r a r e shown i n T a b l e 2 . 5 , and t h e r e s u l t s o f t h e c a l c u l a t i o n s p e r f o r m e d

u s i n g bo th models a r e shown i n T a b l e 2 . 6 . As can be s e e n , w h i l e t h e r e s u l t s

p roduced by t h e d e t a i l e d model a r e f u l l y a c c e p t a b l e , t h e s i m p l i f i e d model y i e l d s

a n e g a t i v e v a p o u r f l o w f rom t h e l a s t e v a p o r a t o r e f f e c t t o t h e c o n d e n s e r , w h i c h

i s p h y s i c a l l y i m p o s s i b l e .

TABLE 2.5

Main i n p u t da ta f o r t h e mass and h e a t b a l a n c e s o f a q u i n t u p l e - e f f e c t e v a p o r a t o r .

T h i n j u i c e mass f l o w ( t / h ) 219.9 T h i n j u i c e t e m p e r a t u r e ( O C ) 127.0 T h i n j u i c e c o n c e n t r a t i o n {% DS) 14.1 T h i c k j u i c e c o n c e n t r a t i o n (% DS) 52.0 H e a t i n g steam t e m p e r a t u r e ( O C ) 139.0

E f f e c t No. 1 2 3 4 5

Mass f l o w o f v a p o u r w i t h d r a w n ( t / h ) 4.75 49.00 8.10 8.10 6.93 Tempera tu re d i f f e r e n c e between h e a t i n g ( K ) 9.2 8.1 6.8 12.3 13.5 s t e a m / v a p o u r and v a p o u r g e n e r a t e d

( K )

TABLE 2.6

E x c e r p t s f rom t h e c a l c u l a t e d mass and e n e r g y b a l a n c e s o f a q u i n t u p l e - e f f e c t e v a p o r a t o r ( a l l mass f l o w s i n t / h ) .

Q u a n t i t y E f f e c t No. S i m p l i f i e d

model D e t a i l e d

model

Mass f l o w o f v a p o u r g e n e r a t e d 1 67.60 66.85 2 64.01 63.22 3 16.09 15.60 4 9.11 9.66 5 3.10 5.03

Mass f l o w o f c o n d e n s a t e f l a s h 1 1.16 0.98 v a p o u r 2 1.08 0.76

3 1.13 1.00 4 2.08 2.28 5 2.26 2.67

Mass f l o w o f v a p o u r t o t h e c o n d e n s e r - 1 . 5 8 0.76

Page 95: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

84

I t s h o u l d be n o t e d t h a t t h e d i f f e r e n c e i n v a p o u r f l o w s t o t h e c o n d e n s e r r e s u l t s

f rom d i f f e r e n t app roaches o f t h e models t o t h e j u i c e f l a s h phenomenon a t t h e

i n l e t t o each s t a g e . As t h i s phenomenon i s d i s r e g a r d e d i n t h e s i m p l i f i e d model

( t h e i n f l u e n c e o f t e m p e r a t u r e and c o n c e n t r a t i o n on j u i c e e n t h a l p y i s n e g l e c t e d ) ,

t h e t o t a l amount o f v a p o u r s g e n e r a t e d i n t h e e v a p o r a t o r i s u n d e r e s t i m a t e d , and

so i s t he v a p o u r f l o w f rom t h e l a s t e f f e c t .

2.6 MASS AND HEAT BALANCES OF A THERMAL SYSTEM

2.6.1 P r i n c i p l e s o f u t i l i z a t i o n o f t h e r e s u l t s o f b a l a n c e c a l c u l a t i o n s

The a l g o r i t h m s used t o c a l c u l a t e t h e m u l t i p l e - e f f e c t e v a p o r a t o r and t h e h e a t

r e c e i v e r s can be combined i n t o one a l g o r i t h m o f a d e t a i l e d mass and h e a t

b a l a n c e o f t h e the rma l s y s t e m . To make a d i s t i n c t i o n f rom t h e e x t e r n a l e n e r g y

b a l a n c e , t h i s p r i n c i p l e i s sometimes c a l l e d e v a p o r a t o r - r e c e i v e r a p p r o a c h . I n

o r d e r t o t u r n t he combined a l g o r i t h m i n t o a t o o l f o r e n g i n e e r i n g a n a l y s e s , i t

s h o u l d be g e n e r a l enough t o make i t p o s s i b l e t o c a l c u l a t e t h e b a l a n c e s o f

v a r i o u s h y p o t h e t i c a l t he rma l s y s t e m s . The a l g o r i t h m s h o u l d a l s o make i t e a s y

f o r t h e u s e r t o h a n d l e p r a c t i c a l s i t u a t i o n s a s s o c i a t e d w i t h s o l v i n g e n g i n e e r i n g

p r o b l e m s . F o r e x a m p l e , when d e s i g n i n g a new the rma l s y s t e m , t h e r e s u l t s o f t h e

c a l c u l a t i o n o f an e v a p o r a t o r m igh t p r o v e t h a t t h e assumed d i s t r i b u t i o n o f

v a p o u r s t o t h e i n d i v i d u a l r e c e i v e r s i s i n c o m p a t i b l e w i t h t h e r e q u i r e d v a l u e o f

t h i c k j u i c e c o n c e n t r a t i o n . A l t e r n a t i v e l y , f o r o t h e r s e t s o f i n p u t d a t a , t h e

r e s u l t s m igh t i n d i c a t e t h a t t he j u i c e t e m p e r a t u r e s assumed i n c e r t a i n p l a c e s

c a n n o t be r e a c h e d . I n b o t h c a s e s , t h e d e s i g n p r o c e d u r e r e q u i r e s t h a t some

changes t o t h e i n p u t da ta be i n t r o d u c e d , and two b a s i c t y p e s o f changes can be

i m a g i n e d : c o r r e c t i o n s o f t h e mass b a l a n c e , o r m o d i f i c a t i o n s o f t h e s t r u c t u r e o f

t he the rma l s y s t e m . Once t h e i n p u t d a t a have been c h a n g e d , t h e c a l c u l a t i o n s must

be r e p e a t e d .

A s l i g h t l y d i f f e r e n t s i t u a t i o n a r i s e s when i n v e s t i g a t i n g t h e mass and h e a t

b a l a n c e s o f an e x i s t i n g s y s t e m . U s u a l l y , t h e b a l a n c e s can be c a l c u l a t e d f rom

i n p u t da ta w h i c h i n c l u d e o n l y a p a r t o f t h e d a t a o b t a i n e d f rom t h e measurements .

The r e s u l t s a r e t hen s e t a g a i n s t t h e r e m a i n i n g measurement d a t a , and an a t t e m p t

i s made t o i n t e r p r e t p o s s i b l e d i s c r e p a n c i e s . Once a h y p o t h e s i s f o r t h e cause o f

t h e d i s c r e p a n c i e s has been f o r m u l a t e d , changes t o t h e i n p u t d a t a a r e i n t r o d u c e d

and t he b a l a n c e c a l c u l a t i o n s a r e r e p e a t e d . ( T h e a p p l i c a t i o n s o f t h i s p r o c e d u r e

a r e men t ioned i n C h a p t e r 3 . )

I t can be c o n c l u d e d f rom t h e above examples t h a t t h e a n a l y s e s o f e n e r g y

b a l a n c e s o f t e n r e q u i r e r e p e t i t i v e c a l c u l a t i o n s . T h i s must be seen i n c o n n e c t i o n

w i t h t he h a n d l i n g o f c o n s i d e r a b l e vo lumes o f d a t a and t h e r e p e t i t i v e use o f

thermodynamic f u n c t i o n s . The p r e s e n t a t i o n o f t h e b a l a n c e r e s u l t s i s a l s o a n o n -

t r i v i a l p r o b l e m , because i t i s n e c e s s a r y t o show a l l t h e d e t a i l s w h i c h may be

needed t o a n a l y s e t h e c o r r e c t n e s s o f t h e b a l a n c e and t o i d e n t i f y t h e n e c e s s a r y

Page 96: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

85

changes i n t he i n p u t d a t a .

2 . 6 . 2 C o m p u t e r - a i d e d b a l a n c e c a l c u l a t i o n s

The c h a r a c t e r i s t i c f e a t u r e s o f t h e e n g i n e e r i n g t a s k s d i s c u s s e d i n t h e

p r e c e d i n g S e c t i o n j u s t i f y t h e use o f computers t o automate d a t a h a n d l i n g ,

c a l c u l a t i o n s and p r e s e n t a t i o n o f r e s u l t s . Con tempora ry c o m p u t e r s , i n c l u d i n g t h e

s o - c a l l e d p r o f e s s i o n a l p e r s o n a l c o m p u t e r s , a r e v e r y w e l l s u i t e d t o t h i s k i n d o f

a p p l i c a t i o n . As r e g a r d s t h e d a t a h a n d l i n g , t h e p rob lems can c o n v e n i e n t l y be

s o l v e d u s i n g s t a n d a r d d a t a - b a s e programs t o c r e a t e and upda te t h e d a t a f i l e s .

The c a l c u l a t i o n p r o g r a m , i n c l u d i n g t h e thermodynamic f u n c t i o n s , can be w r i t t e n

i n some h i g h - l e v e l programming l a n g u a g e , l i k e B a s i c , F o r t r a n o r P a s c a l . The

program s h o u l d r e a d most i n p u t d a t a f rom t h e f i l e s , p o s s i b l y a c c e p t i n g t h e

r e m a i n i n g d a t a f rom t h e k e y b o a r d , and t h e r e s u l t s s h o u l d p r e f e r a b l y be s t o r e d i n

t h e f i l e s . I t i s a l s o i m p o r t a n t t o have h i g h l y f l e x i b l e p r e s e n t a t i o n programs

a v a i l a b l e , t o make i t p o s s i b l e t o s e l e c t f rom t h e f i l e s and t o d i s p l a y o r p r i n t

o n l y t h e p a r t o f t h e r e s u l t s w h i c h i s r e a l l y needed a t a p a r t i c u l a r moment.

I t s h o u l d be p o i n t e d o u t t h a t t o c o m p u t e r i z e t h e b a l a n c e c a l c u l a t i o n s i s

pe rhaps more a p rob lem o f o r g a n i z a t i o n t han o f t h e e n g i n e e r i n g a c t i v i t i e s

c o n t e n t . T h e r e f o r e , no s p e c i f i c g u i d e l i n e s on p rogram d e s i g n w i l l be d i s c u s s e d

h e r e , as i t i s n e v e r p o s s i b l e t o e l i m i n a t e t h e need f o r a c a r e f u l a n a l y s i s o f

t h e p r a c t i c a l r e q u i r e m e n t s and c o n d i t i o n s f o r p rog ram u s e . I t may be o f some

i n t e r e s t , h o w e v e r , t o t ake a l o o k a t t h e main f e a t u r e s o f a p r o g r a m , d e v e l o p e d

w i t h t h e p a r t i c i p a t i o n o f t h e p r e s e n t a u t h o r , and l a t e r used i n hund reds o f

a p p l i c a t i o n s ( r e f . 1 9 ) . Most a p p l i c a t i o n cases were r e l a t e d t o d e s i g n p r o b l e m s ,

b u t s e v e r a l dozens o f mass and h e a t b a l a n c e s were a l s o c a l c u l a t e d when

i n v e s t i g a t i n g e n e r g y economy prob lems i n e x i s t i n g s u g a r f a c t o r i e s .

The p rogram was g r a d u a l l y improved d u r i n g t h e p e r i o d 1975-1980, as i t was

d e s i g n e d and coded f o r new v e r s i o n s o f m i c r o c o m p u t e r s . A s i m p l i f i e d f l o w d i a g r a m

v i s u a l i z i n g t h e e s s e n t i a l a c t i o n s and d e c i s i o n s l e f t t o t h e p rogram u s e r and t h e

e s s e n t i a l b l o c k s o f r o u t i n e s p e r f o r m e d by t h e compu te r i s shown i n F i g . 2 .11 . I t

can be seen t h a t t h e d i a l o g u e between t h e u s e r and t h e compute r p l a y s an

i m p o r t a n t r o l e i n t h e f u n c t i o n i n g o f t h e p r o g r a m . I n a d d i t i o n , i t has been t aken

i n t o a c c o u n t t h a t a comp le te a p p l i c a t i o n c y c l e c o m p r i s i n g d a t a i n p u t ,

c a l c u l a t i o n s , p o s s i b l e da ta m o d i f i c a t i o n s and r e - c a l c u l a t i o n s , p r e s e n t a t i o n o f

i n t e r m e d i a t e and f i n a l r e s u l t s , and f i n a l p rob lem a n a l y s i s may r e q u i r e

a c o n s i d e r a b l e t i m e . T h e r e f o r e , i t has been made p o s s i b l e t o i n t e r r u p t , and

l a t e r r e s t a r t , p rog ram a c t i o n a t s e v e r a l p o i n t s between t h e r o u t i n e b l o c k s . The

r e s u l t i n g f l e x i b i l i t y o f p rogram use t u r n e d o u t t o be a c r u c i a l f a c t o r i n i t s

s u c c e s s f u l a p p l i c a t i o n s .

Much a t t e n t i o n has been p a i d t o t h e u s e r ' s c o n v e n i e n c e when u t i l i z i n g t h e

da ta i n p u t r o u t i n e s , as l a r g e d a t a vo lumes a r e a l w a y s a s s o c i a t e d w i t h t h e r i s k

Page 97: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

86

key in update

calculations of heat receivers, printouts

:ey in data on thernnal

syslenr) details

corrected At

F i g . 2 .11. S i m p l i f i e d f l o w d iag ram o f a computer program c a l c u l a t i n g t h e mass and hea t b a l a n c e s o f the rma l sys tems o f s u g a r f a c t o r i e s . The boxes marked * deno te d i s k e t t e memory.

o f t y p i n g e r r o r s . I n p u t d a t a a r e l o g i c a l l y d i v i d e d i n t o segments r e l a t e d t o t h e

p r o c e s s mass b a l a n c e , equ ipment p a r a m e t e r s , p r o c e s s h e a t i n g r e q u i r e m e n t s and

the rma l sys tem s t r u c t u r e . W i t h i n each segmen t , a s e r i e s o f e r g o n o m i c a l l y

Page 98: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

87

o p t i m i z e d s c r e e n f o rma ts p r o v i d e s g u i d a n c e f o r t h e u s e r and c r o s s - c h e c k s on d a t a

c o r r e c t n e s s and c o n s i s t e n c y , as w e l l as a l l o w i n g c o n v e n i e n t i n t r o d u c t i o n o f a l l

n e c e s s a r y changes and c o r r e c t i o n s t o t h e d a t a a l r e a d y s t o r e d i n t h e compute r

memory.

C o n c e r n i n g t h e o u t p u t s , bo th t o v i d e o s c r e e n and h a r d c o p y , a number o f

o p t i o n s have been i n t r o d u c e d t o e n a b l e t h e u s e r t o choose t h e volume and t h e

fo rm o f t he o u t p u t i n f o r m a t i o n . Among o t h e r s , i t i s p o s s i b l e t o choose f rom f o u r

l anguages f o r o u t p u t d e s c r i p t i o n s . A s e c t i o n o f p r i n t o u t w i t h t h e t e x t i n

E n g l i s h i s shown i n F i g . 2 .12 .

I F A B L Ö ü f E V A P O R A T O R P A R A M E T E R S T A B L E 1

P A F ; : A M E T E R D E S C R I P T I O N

14 Η e 3 1 I. Ι Ί SI S t e a M t E ΐϊι Ρ e r a t Υ E

2 . V a Ρ o u r t e in Ρ E & t u r e

3 . J Υ ;J. C E t E ι ϊ ι ρ e A t ϊ · e

4 • L H I E f U I t θ iTi Ρ E A t . d i f f E r E N c e 5 . E.' V 3 Ρ o a t :I. o Η E F f e C t

¿ . Ε Η t r y S B E Β ι ϊ ι q i.j A i ί t I t \:i 7 *\}aFOIJ r f o r hea t i η η e e d S

8 . J U I C E Q u a n t i t y a f t e r E F F E C T

9. J U i C e C O Ι Ί C E ι ί t r *aF tEr ef f ect 1 0 . U A Ρ O IJ Ρ e S S Υ ν e

1 1 . Τ A Γι S F e r e d H e a t Α Υ a γί t i t y

U N I T

C

C

C

C

% P B

% P B

% P B

% P B

B X

M P A

A T A

KW

E F F E C T N U M B E R

1 ! 2 ! 3 : 4 : 5 136. 0 ! 1 2 8 . 8 Ί 1 2 1 . 5 1110 . 4 ! 9 9 . 8

I I I I I I I I 1 2 9 . 8 ! 1 2 2 . 5 1 1 1 1 . 4 1 1 0 0 . 8 ! 9 0 . 1 I I I I I I I I 1 3 0 . 3 ! 1 2 3 . 2 Ί 1 1 3 . 9 ! 1 0 4 . 4 I 9 4 . 5

5 . 7 ! 5 . 5 ! 7 . 3 ! 5 . 4 ! 4 . 4

J I J J

3 2 . 1 9 ! 2 0 . 3 5 ! 2 5 . 1 5 ! 4 . 3 4 ! 1 . 8 1

! ! ! ! 3 3 . 1 1 Ί 2 5 . 6 5 ! 2 4 . 6 1 ! 3 . 9 4 ! 1 . 4 6

I I I ! 7 . 0 2 ! 2 . 3 6 ! 2 1 . 7 7 ! 4 . 2 3 ! 1 . 8 2

8 2 . 8 3 ! 5 6 . 4 8 ! 3 1 . 3 2 ! 2 6 . 9 9 ! 2 5 . 1 8

1 9 . 7 6 ! 2 8 . 9 8 ! 5 2 . 2 5 ! 6 0 . 6 4 ! 6 5 . 0 1

! ! ! ! 0 . 2 6 8 ! 0 . 2 1 4 ! 0 . 1 5 0 ! 0 . 1 0 4 ! 0 . 0 7 1

2 . 7 3 ! 2 . 1 8 ! 1 . 5 3 ! 1 . 0 6 ! 0 . 7 ; ;

2 0 5 4 7 ! 1 6 0 6 6 ! 1 5 5 6 2 ! 2 5 2 8 ! 9 4 7

F i g . 2 .12 . P a r t o f a p r i n t o u t f rom a compute r p rogram c a l c u l a t i n g t h e mass and hea t b a l a n c e s o f the rma l sys tems o f s u g a r f a c t o r i e s ( c o u r t e s y Chemadex) .

2.7 EXERGY BALANCES

2.7.1 T h e o r e t i c a l backg round

When i n t r o d u c i n g t h e e n e r g y b a l a n c e e q u a t i o n s ( 2 . 5 ) and ( 2 . 6 ) , we have i n

f a c t a c c e p t e d a c o n v e n t i o n a c c o r d i n g t o w h i c h t h e r e p r e s e n t a t i o n o f t h e e n e r g y

f l o w i s based on t he e n t h a l p y o f m a t t e r e n t e r i n g o r l e a v i n g t h e thermodynamic

s y s t e m . The same c o n v e n t i o n i s used when r e p r e s e n t i n g t h e e n e r g y f l o w i n

Page 99: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

88

a Sankey d i a g r a m . L e t us o b s e r v e , n o w e v e r , t h a t i f t h e r e f e r e n c e pa rame te rs i n

t h e d e f i n i t i o n o f t h e e n t h a l p y a r e changed ( f o r e x a m p l e , z e r o e n t h a l p y assumed

a t 20°C i n s t e a d o f a t O ^ C ) , t h e n t h e r e p r e s e n t a t i o n o f t h e e n e r g y f l o w i s

changed t o o , even though t h e e s s e n c e o f t h e e n e r g y b a l a n c e does n o t change a t

a l l . I n o r d e r t o a c c e n t u a t e t h e f a c t t h a t t h e e n e r g y b a l a n c e r e p r e s e n t a t i o n i s

so dependent on t h e n o t i o n o f e n t h a l p y , some a u t h o r s have adop ted t h e terms

" e n t h a l p y b a l a n c e " and " e n t h a l p y f l o w d i a g r a m " ( r e f s . 1 4 , 2 0 ) .

The e n t h a l p y - b a s e d e n e r g y b a l a n c e s a r e i n d i s p e n s a b l e t o t h e d e s i g n a n a l y s e s ,

and p a r t i c u l a r l y t o t h e p r e p a r a t i o n o f t h e d a t a f o r equ ipment s e l e c t i o n

d e c i s i o n s . The same a p p l i e s t o t h e m o n i t o r i n g o f e n e r g y p r o c e s s e s , i n c l u d i n g

t h e d e t e r m i n a t i o n o f t he e n e r g y c o n s u m p t i o n . I n a n a l y s e s aimed a t t h e

i d e n t i f i c a t i o n o f t h e e n e r g y - s a v i n g p o t e n t i a l o f p o s s i b l e the rma l sys tem

improvemen ts , h o w e v e r , t h e e n t h a l p y - b a s e d b a l a n c e s can be e x p e c t e d t o d e l i v e r

o n l y a p a r t o f t h e i n f o r m a t i o n r e q u i r e d . The r e a s o n i s t h a t i n r e a l - l i f e

s y s t e m s , t h e e f f i c i e n c y o f e n e r g y u t i l i z a t i o n can be r e d u c e d n o t o n l y by d i r e c t

h e a t l o s s e s t o t h e e n v i r o n m e n t , b u t a l s o by i n d i r e c t l o s s e s known as t h e

the rma l d e g r a d a t i o n o f e n e r g y . F o r e x a m p l e , i f a c e r t a i n amount o f e n e r g y has

been t r a n s f e r r e d f rom a h i g h - t e m p e r a t u r e medium t o a l o w - t e m p e r a t u r e o n e , t h e n

t h e range o f p o s s i b i l i t i e s f o r t h e u t i l i z a t i o n o f t h i s amount o f e n e r g y i s

n a r r o w e d . A s i m i l a r e f f e c t i s o b t a i n e d when t h e f l o w o f an e n e r g y - c a r r y i n g

medium i s t h r o t t l e d down f rom a h i g h e r t o a l o w e r p r e s s u r e . G e n e r a l l y , t h e

p r o c e s s e s r e s u l t i n g i n t h e the rma l d e g r a d a t i o n o f e n e r g y a r e c a l l e d i r r e v e r s i b l e

p r o c e s s e s .

W h i l e t he d i r e c t e n e r g y l o s s e s can be q u a n t i t a t i v e l y d e s c r i b e d on t h e

c o n c e p t u a l b a s i s p r o v i d e d by t h e f i r s t law o f t h e r m o d y n a m i c s , t h e i n d i r e c t

l o s s e s c a n n o t . A q u a n t i t a t i v e d e s c r i p t i o n o f t h e i n d i r e c t e n e r g y l o s s e s r e q u i r e s

use o f t h e n o t i o n s a s s o c i a t e d w i t h t h e second law o f t h e r m o d y n a m i c s , and

p a r t i c u l a r l y t h e n o t i o n o f e n t r o p y . F o r a thermodynamic sys tem w h i c h i s i s o l a t e d

f rom i t s s u r r o u n d i n g s , t h e second law s p e c i f i e s t h a t f o r any i n f i n i t e s i m a l l y

sma l l change o f s t a t e o f t h e s y s t e m , t h e change o f e n t r o p y ( d e n o t e d S ) must be

n o n - n e g a t i v e

dS > 0 ( 2 . 8 1 )

where t h e i n e q u a l i t y s i g n a p p l i e s t o i r r e v e r s i b l e , and t h e e q u a l i t y s i g n t o

r e v e r s i b l e , p r o c e s s e s . I n a f i n i t e p r o c e s s i n i t i a t e d a t s t a t e 1 and t e r m i n a t e d

a t s t a t e 2 , t h e e n t r o p y i n c r e a s e

2 AS = / dS ( 2 . 8 2 )

1

can be u n d e r s t o o d as a measure o f t h e e n e r g y d e g r a d a t i o n caused by t h e p r o c e s s .

As t h e e n t r o p y i s a lways a t t r i b u t e d t o t h e m a t t e r c o n t a i n e d i n t h e s y s t e m , i t

can a l s o be e x p r e s s e d p e r 1 kg mass; i t w i l l t h e n be c a l l e d s p e c i f i c e n t r o p y .

Page 100: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

8 9

and deno ted s .

I n an a t t emp t t o c o n s t r u c t a u n i f i e d t h e o r e t i c a l app roach t o b o t h d i r e c t

e n e r g y l o s s e s and e n e r g y d e g r a d a t i o n , a new thermodynamic f u n c t i o n c a l l e d e x e r g y

has been i n t r o d u c e d w i t h t he d e f i n i t i o n

e = h - hQ - T Q ( S - S Q ) ( 2 . 8 3)

where s u b s c r i p t 0 deno tes t h e s t a t e o f thermodynamic e q u i l i b r i u m w i t h t h e

e n v i r o n m e n t . T Q t hus deno tes t h e e n v i r o n m e n t t e m p e r a t u r e and h g , S Q t h e e n t h a l p y

and e n t r o p y , r e s p e c t i v e l y , a t t h e pa rame te rs c o r r e s p o n d i n g t o t h e s t a t e o f

e q u i l i b r i u m ; h and s deno te e n t h a l p y and e n t r o p y , r e s p e c t i v e l y , a t t h e

pa ramete rs f o r w h i c h e x e r g y i s d e f i n e d .

An e x e r g y l o s s t a k i n g p l a c e i n a p r o c e s s can be i n t e r p r e t e d as an i n d i c a t i o n

t h a t , f o l l o w i n g d i r e c t e n e r g y l o s s e s o r t he rma l d e g r a d a t i o n o f e n e r g y ( t h i s

r e s u l t i n g i n e n t h a l p y c h a n g e , e n t r o p y change o r a c o m b i n a t i o n o f b o t h ) , t h e

s t a t e o f t h e sys tem moves c l o s e r t o thermodynamic e q u i l i b r i u m w i t h t h e

e n v i r o n m e n t . O b v i o u s l y , t h i s i s a s s o c i a t e d w i t h a r e d u c t i o n o f t h e range o f

p o s s i b i l i t i e s f o r t h e u t i l i z a t i o n o f sys tem e n e r g y .

U s i n g t h e n o t i o n o f e x e r g y , t h e p r o c e s s e s o f e n e r g y c o n v e r s i o n and

d i s t r i b u t i o n can be d e s c r i b e d by e x e r g y b a l a n c e s . A g r a p h i c a l r e p r e s e n t a t i o n o f

t h e e x e r g y b a l a n c e ( t h a t i s , t h e e x e r g y f l o w d i a g r a m ) i s known as t h e Grassmann

d i a g r a m . I t can g e n e r a l l y be s t a t e d t h a t t h e e x e r g y - b a s e d app roach i s v e r y

g r a p h i c and u s e f u l i n compar i sons o f d i s s i m i l a r s o l u t i o n s o f e n e r g y p r o c e s s e s .

Examples o f s u c c e s s f u l a p p l i c a t i o n s o f e x e r g y a n a l y s e s t o s u g a r t e c h n o l o g y

prob lems can be f ound i n t h e l i t e r a t u r e ( r e f s . 2 2 , 2 3 ) .

As r e g a r d s i n d u s t r i a l p r a c t i c e , i t can be o b s e r v e d t h a t once a few s o l u t i o n

c o n c e p t s have been s e l e c t e d f o r an e n e r g y p r o c e s s , i t becomes n e c e s s a r y t o

d e t e r m i n e t h e p r o c e s s p a r a m e t e r s , s e l e c t t h e equ ipment and e s t i m a t e t h e c o s t s .

O f c o u r s e , c o s t e s t i m a t e s s h o u l d be based on t h e e n t h a l p y b a l a n c e s , p o s s i b l y

p r e p a r e d i n p a r a l l e l w i t h t h e e x e r g y b a l a n c e s . I f t h e f i e l d o f p o s s i b l e

s o l u t i o n s i s l i m i t e d , as i s r a t h e r c h a r a c t e r i s t i c o f t h e s u g a r i n d u s t r y , t h e n

t he e n t h a l p y b a l a n c e a l o n e i s e f f e c t i v e enough as a t o o l f o r s o l v i n g most e n e r g y

e n g i n e e r i n g p r o b l e m s . A f t e r a l l , t h e e x e r g y b a l a n c e i s n o t h i n g more t han a n o t h e r

c o n v e n t i o n f o r d e s c r i b i n g t h e e n e r g y p r o c e s s e s .

2 . 7 . 2 Example

Compare e n t h a l p y - f l o w and e x e r g y - f l o w r e p r e s e n t a t i o n s o f e n e r g y c o n v e r s i o n

and u t i l i z a t i o n i n t h e p u l p d r y i n g p r o c e s s . The amount o f p u l p d e l i v e r e d t o

a d r u m - t y p e d r y e r i s 2 4 kg p e r 1 0 0 kg b e e t , t h e d r y s u b s t a n c e c o n t e n t changes

f rom 2 0 % t o 9 0 % , t h e gas t e m p e r a t u r e i n t h e drum i s 9 0 0 ° C a t i n l e t and l l O ^ C a t

o u t l e t , and t h e e n e r g y consumpt ion i s 2 9 0 0 k J p e r kg w a t e r removed . O t h e r d a t a

a re as f o l l o w s : f u e l used - o i l , f u r n a c e e f f i c i e n c y 0 . 9 3 , h e a t l o s s c o e f f i c i e n t

Page 101: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

90

o f t h e d r y e r drum 0 . 0 3 , e n v i r o n m e n t t e m p e r a t u r e 20 C .

E n e r g y c o n v e r s i o n and u t i l i z a t i o n i n t he p u l p d r y i n g p r o c e s s can be d i v i d e d

i n t o t h r e e s t e p s : f u e l c o m b u s t i o n , a i r adm ix i ng t o t h e combus t i on g a s , and

d r y i n g . The Sankey d iag ram ( e n t h a l p y f l o w r e p r e s e n t a t i o n ) i s shown i n

F i g . 2 . 1 3 ( a ) and t h e Grassmann d iag ram ( e x e r g y f l o w r e p r e s e n t a t i o n ) i n

F i g . 2 . 1 3 ( b ) .

( a ) ( b )

fuel 100% fue l 100%

loss Λ ) .

7% VI

loss I

L.

exhaust gas 102.1% exhaus t gas 11.9%

, . pressed Η pulp 0.4%

dr ied pulp 0.1%

F i g . 2 .13 . E n t h a l p y - f l o w ( a ) and e x e r g y - f l o w ( b ) r e p r e s e n t a t i o n s o f t h e p u l p d r y i n g p r o c e s s . 1 - f u r n a c e , 2 - m i x i n g chamber , 3 - d r y e r d rum.

The e n t h a l p y - f l o w app roach seems t o s u g g e s t t h a t s i g n i f i c a n t e n e r g y s a v i n g s

c o u l d o n l y be o b t a i n e d by c u t t i n g down t h e e n t h a l p y f l o w i n t h e gas a t t h e d r y e r

o u t l e t , as t he d i r e c t e n e r g y l o s s e s a r e s m a l l .

I n t h e e x e r g y - f l o w r e p r e s e n t a t i o n , h o w e v e r , c o n s i d e r a b l e e x e r g y l o s s e s a r e

a t t r i b u t e d t o t h e f u r n a c e , t h e m i x i n g chamber and t h e d r y e r d rum. S t a r t i n g f rom

t h e l a s t p r o c e s s s t e p , t h e e x e r g y l o s s i n t h e d r y e r c o u l d be r e d u c e d by

d e c r e a s i n g t h e i n i t i a l gas t e m p e r a t u r e . T h e n , i n t h e m i x i n g chamber , one c o u l d

imag ine t h e e l i m i n a t i o n o f a i r a d m i x i n g , w h i c h i s t h e cause o f t h e e x e r g y l o s s

o c c u r r i n g t h e r e . I n s t e a d , gas c o o l i n g by h e a t exchange w i t h a s t e a m - g e n e r a t i n g

t ube bund le c o u l d be a p p l i e d , and by d e l i v e r i n g steam t o a t u r b o - g e n e r a t o r ,

e l e c t r i c a l e n e r g y c o u l d be p roduced w i t h o u t any e x t r a e n e r g y s u p p l y f rom t h e

e n v i r o n m e n t . F i n a l l y , i n t h e f u r n a c e , t h e e x e r g y l o s s i s u n a v o i d a b l e , as i t i s

a s s o c i a t e d w i t h t h e v e r y n a t u r e o f t h e combus t i on p r o c e s s .

2.8 ANALYSIS OF TRANSIENT ENERGY PROCESSES USING COMPUTER SIMULATION

I n e n g i n e e r i n g prob lems r e l a t e d t o t h e a u t o m a t i c c o n t r o l and m o n i t o r i n g o f

e n e r g y p r o c e s s e s , i t may be n e c e s s a r y t o s t u d y t he dynamic b e h a v i o u r o f t h e

the rma l sys tem unde r c h a n g i n g o p e r a t i n g c o n d i t i o n s . F o r e x a m p l e , i t may be

Page 102: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

91

n e c e s s a r y t o e v a l u a t e p o s s i b l e consequences o f t h e a p p l i c a t i o n s o f v a r i o u s

c o n t r o l sys tems w i t h r e s p e c t t o t h e e n e r g y l o s s e s accompany ing t r a n s i e n t s t a t e s

o f t h e e v a p o r a t o r . Prob lems o f t h i s k i n d can be a n a l y s e d w i t h t h e a i d o f

computer s i m u l a t i o n methods .

The e s s e n c e o f computer s i m u l a t i o n i s i l l u s t r a t e d by t h e scheme i n F i g . 2 .14 .

F o r t h e sys tem unde r i n v e s t i g a t i o n ( i . e . , an equ ipment u n i t , a p r o c e s s s t a t i o n

o r a f a c t o r y s e c t i o n ) , an adequate mathemat i ca l model must be f o r m u l a t e d i n

terms o f v a r i a b l e s r e p r e s e n t i n g t h e key p r o c e s s pa rame te rs and t h e e x p r e s s i o n s

( i . e . , e q u a t i o n s , i n e q u a l i t i e s and f u n c t i o n s ) r e p r e s e n t i n g t h e r e l a t i o n s h i p s

between t h e p a r a m e t e r s . Hav ing t r a n s f o r m e d t h e model i n t o a compute r p r o g r a m ,

one i s a b l e t o c a r r y o u t c a l c u l a t i o n s o f t h e b e h a v i o u r o f t h e sys tem i n s t e a d y -

s t a t e and dynamic c o n d i t i o n s .

SYSTEM

1^ II 11

MATHEMATICAL MODEL

input data reflecting operating conditions

_ L _ COMPUTER PROGRAM

' I engineering decisions regarding

sysfenrTproperties.automatic controls, etc.

simulation results predicting system behaviour

F i g . 2 .14 . P r i n c i p l e o f t h e i n v e s t i g a t i o n o f o p e r a t i o n a l c h a r a c t e r i s t i c s o f t e c h n o l o g i c a l sys tems w i t h t h e a i d o f compute r s i m u l a t i o n .

S i m u l a t i o n o f t h e e v a p o r a t o r can be r e g a r d e d as a r e p r e s e n t a t i v e example o f

s i m u l a t i o n prob lems r e l a t e d t o t he e n e r g y economy. The p e r t i n e n t l i t e r a t u r e

r e f l e c t s t h e deve lopmen t o f compute r s i m u l a t i o n t e c h n i q u e s d u r i n g t h e l a s t two

d e c a d e s . I n an e a r l y s t u d y , a l i n e a r i z e d e v a p o r a t o r model s u i t e d t o programming

on an ana log computer was p r o p o s e d ( r e f . 2 4 ) . L a t e r o n , a l e a n i n g t o w a r d s

d i g i t a l computers has been g e n e r a l l y a d o p t e d . S e v e r a l p u b l i c a t i o n s can be named

where e v a p o r a t o r models a r e d e s c r i b e d u s i n g d i f f e r e n t i a l e q u a t i o n s s o l v e d by

such n u m e r i c a l methods as t h e o r t h o g o n a l c o l l o c a t i o n method ( r e f . 2 5 ) , t h e

c o r r e c t o r - p r e d i c t o r method ( r e f . 26) and R u n g e - K u t t a i n t e g r a t i o n ( r e f . 2 7 ) . The

models assume t h e use o f s p e c i a l computer p r o g r a m s , w r i t t e n i n t h e F o r t r a n

l a n g u a g e . To t he knowledge o f t h e p r e s e n t a u t h o r , h o w e v e r , none o f t h e s e

programs has been w i d e l y a p p l i e d .

An a l t e r n a t i v e app roach t o e v a p o r a t o r s i m u l a t i o n assumes t h e a p p l i c a t i o n o f

w i d e l y c i r c u l a t e d g e n e r a l - p u r p o s e s i m u l a t i o n p r o g r a m s . Such programs e n a b l e one

Page 103: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

92

t o s o l v e t y p i c a l d i f f e r e n t i a l e q u a t i o n s e n c o u n t e r e d i n t h e s i m u l a t i o n o f

t r a n s i e n t s t a t e s o f v a r i o u s t e c h n o l o g i c a l s y s t e m s . A p r e r e q u i s i t e f o r s u c c e s s f u l

a p p l i c a t i o n o f a s p e c i f i c p rogram i s t o f o r m u l a t e t h e e v a p o r a t o r model i n

a manner c o m p a t i b l e w i t h t h e r e q u i r e m e n t s adop ted by t h e program d e s i g n e r . T h i s

app roach has been implemented i n p r a c t i c e u s i n g a w i d e l y known IBM program

( r e f . 2 8 ) .

Examples o f s i m u l a t i o n r e s u l t s d e s c r i b i n g t h e dynamic b e h a v i o u r o f m u l t i p l e -

e f f e c t e v a p o r a t o r s a r e g i v e n i n F i g . 2 .15 .

( a ) ( b )

iJllUUlr vapour flow

withdrawn from 3rd effect

j r d effect

ju ice temperatures

vapour flow withdrawn from 2nd effect

I

1000 2000

T i m é i s )

3000 4000

3rd effect

vapour consumption

5th effect

5 10

Time (min)

15

F i g . 2 .15 . Examples o f s i m u l a t i o n r e s u l t s d e s c r i b i n g t h e dynamic b e h a v i o u r o f q u i n t u p l e - e f f e c t e v a p o r a t o r s , ( a ) j u i c e t e m p e r a t u r e s a t v a r i a b l e v a p o u r w i t h d r a w a l f rom t h e t h i r d e f f e c t , d i s c h a r g e - c o n t r o l l e d j u i c e l e v e l s ( a f t e r r e f . 2 6 ) , ( b ) consumpt ion o f h e a t i n g v a p o u r s a t v a r i a b l e v a p o u r w i t h d r a w a l f rom t h e second e f f e c t , f e e d - c o n t r o l l e d j u i c e l e v e l s ( a f t e r r e f . 2 8 ) .

REFERENCES

1 T . D . E a s t o p and A . McConkey , A p p l i e d Thermodynamics f o r E n g i n e e r i n g T e c h n o l o g i s t s , 3 rd e d n . , Longman, London and New Y o r k , 1978.

2 G . J . Van Wylen and R . E . S o n n t a g , Fundamenta ls o f C l a s s i c a l The rmodynam ics , 3 rd e d n . , W i l e y , New Y o r k , 1985.

3 J . C u e l , Le b i l a n t he rm ique en s u c r e r i e , S u c r . F r . , 119(21) (1978) 424-434, 119(22) (1978) 455-466.

4 P.W. van d e r Poel ( e t a l . ) , Z u c k e r h a u s s c h e m a t a , e i n B e i s p i e l von I n f o r m a t i o n s v e r b e s s e r u n g m i t H i l f e d e r e l e k t r o n i s c h e n D a t e n v e r a r b e i t u n g , Z u c k e r , 28 (3 ) (1975) 122-131.

5 T . B a l o h , Z u c k e r t e c h n o l o g i s c h e Rechnungen m i t dem Dre ikomponen ten -D iag ramm, Z u c k e r i n d . , 107(6) (1982) 515-525.

6 A . K u b a s i e w i c z , W. Lekawski and K. U r b a n i e c , Automated d e s i g n c a l c u l a t i o n s o f b e e t s u g a r p l a n t s u s i n g m i c r o c o m p u t e r COMPUCORP 425 G , P r o c . 3 rd Symp. Use o f Computers i n Chemica l E n g i n e e r i n g , G l i w i c e , 1974, p p . 213-217.

7 L.W. W e i s s , Computer p rogram t o a i d s u g a r end o p e r a t i o n s . Paper p r e s e n t e d a t 21s t ASSBT M e e t i n g , San D i e g o , 1981.

8. H . R . D e l a n e y , D. G o t t h a r d and J . B . N i c h o l s , Use o f an e n e r g y model i n s u g a r r e f i n i n g . I n t . Suga r J . , 85(1014) (1983) 171-176.

9 R . G . H o e k s t r a , A f l e x i b l e computer p rogram f o r f o u r - c o m p o n e n t m a t e r i a l b a l a n c e s i n s u g a r i n d u s t r y b o i l i n g h o u s e s . I n t . Suga r J . , 85(1016) (1983) 227-232, 85(1017) (1983) 262-265.

Page 104: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

93

10 P.M. S i l i n , V o p r o s y T e k h n o l o g i i Sakha rnykh V e s h c h e s t v , P i s h c h e p r o m i z d a t , Moskva , 1950.

11 W. Lekawski and K. U r b a n i e c , M o d e r n i s i e r u n g d e r W 'á rmewi r t scha f t i n Z u c k e r f a b r i k e n , Z u c k e r i n d . , 108(4) (1983) 338-343.

12 Κ. U r b a n i e c and Α . K u b a s i e w i c z , Mode le matematyczne d í a p r o j e k t o w a n i a w i e l o d z i a l o w y c h i n s t a l a c j i w y p a r n y c h , I n z . C h e m . , 7 ( 1 ) (1977) 207-221.

13 T . B a l o h , W ä r m e w i r t s c h a f t , i n : F . S c h n e i d e r ( E d . ) , T e c h n o l o g i e des Z u c k e r s , S c h a p e r V e r l a g , H a n n o v e r , 1968, p p . 705-776.

14 Τ . B a l o h , Wärmeat las f ü r d i e Z u c k e r i n d u s t r i e , S c h a p e r V e r l a g , H a n n o v e r , 1975.

15 A . L . Webre , E v a p o r a t i o n and h e a t i n g , i n : D. S p e n c e r and G . P . Meade ( E d s . ) , Cane Suga r Handbook, W i l e y , New Y o r k , 1948, p p . 134-174.

16 Τ . B a l o h , Wärmetechn ische Berechnung d e r V e r d a m p f s t a t i o n , Z u c k e r - B e i h e f t e , 3 ( 2 ) (1956) 29-74.

17 G . K imenov, E n e r g e t i s c h e U n t e r s u c h u n g e n an e i n e r m e h r s t u f i g e n Ve rdamp f s t a t i o n a l s DampfUmformer, Z u c k e r , 2 5 ( 7 ) (1972) 225-230.

18 V . U r b a n , Matemat i cky model c u k r o v a r n i c k e p r u t o k o v e o d p a r k y p r a c u j i c i se s t o u p a j i c i v r s t v o u , L i s t y C u k r . , 8 9 ( 6 ) (1973) 114-118.

19 G . B a t o r and K. U r b a n i e c , P r o j e k t i e r u n g von Ve rdamp fan lagen i n Z u c k e r f a b r i k e n m i t H i l f e von Compu te rn , Z u c k e r i n d . , 103(12) (1978) 1035-1042.

20 T . B a l o h , E n e r g i e w i r t s c h a f t b e i E i n d a m p f u n g s - und T r o c k n u n g s p r o z e s s e n , Z u c k e r i n d . , 105(1) (1980) 50-61.

21 T . B a l o h , Me thod ik be i e x e r g e t i s c h e n U n t e r s u c h u n g e n i n Z u c k e r f a b r i k e n , Z u c k e r i n d . , 106(1) (1981) 29-40.

22 0. A u e r s w a l d , E x e r g e t i s c h e A n a l y s e e i n e r Z u c k e r f a b r i k m i t B rüdenkompress ion am B e i s p i e l d e r Z u c k e r f a b r i k A a r b e r g , S c h w e i z , Z u c k e r i n d . , 106(9) (1981) 804-815.

23 T . B a l o h , S t u d i e e i n e r Z u c k e r f a b r i k m i t B r ü d e n k o m p r e s s i o n , Z u c k e r i n d . , 109(4) (1984) 285-294.

24 0. W i k l u n d , The c a l c u l a t i o n and c o n t r o l o f m u l t i p l e e f f e c t e v a p o r a t o r s . S o c k e r H a n d l . , 22 (1 ) (1968) 1-22.

25 υ. B o l m s t e d t and Α . J e r n q v i s t , S i m u l a t i o n o f t h e s t e a d y - s t a t e and dynamic b e h a v i o u r o f m u l t i p l e e f f e c t e v a p o r a t i o n p l a n t s . Comp. A i d e d D e s . , 8 ( 3 ) (1976) 142-148, 9 ( 1 ) (1977) 29-40.

26 Μ. M ä k e l ä , Ma temat i sches F o r m u l i e r e n und d i g i t a l e s S i m u l i e r e n e i n e r V e r d a m p f s t a t i o n i n d e r R ü b e n z u c k e r i n d u s t r i e , Z u c k e r i n d . , 106(11) (1981) 989-993.

27 A . L e b e r t ( e t a l . ) , S i m u l a t i o n s u r o r d i n a t e u r d ' u n e v a p o r a t e u r de s u c r e r i e a m u l t i p l e e f f e t s , I n d . A l i m . A g r i e , 9 7 ( 7 - 8 ) (1980) 691-698.

28 Κ. U r b a n i e c and M. S z c z e n i o w s k i , N a c h b i l d u n g e i n e r m e h r s t u f i g e n Ve rdamp f s t a t i o n u n t e r Verwendung des CSMP-Sys tems, Z u c k e r i n d . , 105(7) (1980) 628-631.

Page 105: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

94

C h a p t e r 3

SELECTED PROBLEMS OF HEAT ECONOMY

3.1 ANALYSIS AND EVALUATION OF THE HEAT ECONOMY

3.1.1 M e t h o d o l o g i c a l h i n t s

Any a t t emp t t o improve t h e hea t economy o f a s u g a r f a c t o r y b e g i n s w i t h t h e

a c q u i s i t i o n o f i n f o r m a t i o n on t h e e x i s t i n g s t a t e o f t h i n g s , and an i n i t i a l

e f f o r t may be needed t o e s t a b l i s h t h e t y p e and amount o f i n f o r m a t i o n t h a t w i l l

be s u f f i c i e n t . The aim o f an i n i t i a l i n v e s t i g a t i o n i s t o r e a c h a c e r t a i n l e v e l

o f knowledge o f t h e s t r u c t u r e o f t he the rma l s y s t e m , i t s mass and h e a t b a l a n c e s ,

and t he c h a r a c t e r i s t i c s o f t h e equ ipmen t . T h i s s h o u l d e n a b l e one t o p e r f o r m an

o v e r a l l e v a l u a t i o n and t o f o r m u l a t e a d i a g n o s i s o f t he d e f i c i e n c i e s o f t h e h e a t

economy.

L e t us o b s e r v e t h a t i f t h e d i a g n o s i s can be made v e r y a c c u r a t e , t hen i t may

become e a s i e r t o o u t l i n e p o s s i b l e improvements and t h e way t h e y can be

implemented i n t h e f a c t o r y . T h e r e f o r e , i t i s a l w a y s a d v i s a b l e t o have more t han

minimum i n f o r m a t i o n a t h a n d , and a d e t a i l e d knowledge o f t h e scheme o f t h e s u g a r

m a n u f a c t u r i n g p r o c e s s , t h e v a l u e s o f p r o c e s s p a r a m e t e r s , and t h e c h a r a c t e r i s t i c s

o f p r o c e s s equ ipment and c o n t r o l sys tems i s p a r t i c u l a r l y u s e f u l .

I t can t h u s be g e n e r a l l y c o n c l u d e d t h a t t h e more d e t a i l e d a r e t h e a v a i l a b l e

d a t a , t he e a s i e r i t i s t o p e r f o r m an a n a l y s i s o f t h e e x i s t i n g s t a t e o f t h e h e a t

economy. T h e r e i s no p o i n t , h o w e v e r , i n i n v e s t i g a t i n g d e t a i l s w h i c h may be

c o s t l y t o o b t a i n b u t w i l l e v e n t u a l l y t u r n o u t i r r e l e v a n t t o t h e p rob lems o f

i n t e r e s t . T h i s a p p l i e s , i n p a r t i c u l a r , t o t h e mass and h e a t b a l a n c e s , t h e

d e t a i l s o f w h i c h may be d i f f i c u l t t o e s t a b l i s h u n l e s s t ime -consum ing and c o s t l y

measurements a r e p e r f o r m e d . E x p e r i e n c e p r o v e s t h a t a s a t i s f a c t o r y l e v e l o f

knowledge o f t h e b a l a n c e d a t a can o f t e n be o b t a i n e d t h r o u g h a p p r o x i m a t e a n a l y s e s

o f thermodynamic sys tems p r o p e r l y d e f i n e d w i t h i n a f a c t o r y . A p p r o x i m a t e b a l a n c e

c a l c u l a t i o n s can be pe r fo rmed on t h e b a s i s o f e s s e n t i a l d a t a e x t r a c t e d f rom

r o u t i n e f a c t o r y r e c o r d s . I f t he a n a l y s i s i s i n t e n d e d t o c r e a t e a b a s i s f o r

l i m i t e d m o d i f i c a t i o n s o f an e x i s t i n g f a c t o r y , t h i s app roach i s o f t e n , b u t n o t

a l w a y s , e f f e c t i v e enough . A d i s c u s s i o n o f l i m i t e d - s c a l e m o d i f i c a t i o n s o f the rma l

s y s t e m s , i n c l u d i n g p r a c t i c a l e x a m p l e s , i s g i v e n i n C h a p t e r 8.

A d i f f e r e n t s i t u a t i o n a r i s e s when t h e u n d e r l y i n g i n t e n t i o n i s t o m o d e r n i z e

t h e f a c t o r y e x t e n s i v e l y . I n t h i s c a s e , i n - d e p t h s t u d i e s o f new s o l u t i o n s ,

i n c l u d i n g mass and hea t b a l a n c e s c o r r e s p o n d i n g t o bo th t he e x i s t i n g s t a t e and

t he mode rn i zed f a c t o r y , a r e i n d i s p e n s a b l e .

A summary o f i n f o r m a t i o n r e q u i r e m e n t s a s s o c i a t e d w i t h t y p i c a l m o d e r n i z a t i o n s ,

i n c l u d i n g p r a c t i c a l e x a m p l e s , i s g i v e n i n C h a p t e r 9. The need t o a n a l y s e more

Page 106: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

95

da ta does n o t n e c e s s a r i l y mean, h o w e v e r , t h a t t h e i n i t i a l s t a t e o f t h e hea t

economy must be known i n f u l l d e t a i l . A g a i n , a p p r o x i m a t e b a l a n c e c a l c u l a t i o n s

t u r n o u t t o be e f f e c t i v e enough i n t y p i c a l m o d e r n i z a t i o n c a s e s .

A p r a c t i c a l c o r r e l a t i o n seems t o e x i s t between t he l e v e l o f s o p h i s t i c a t i o n o f

t h e hea t economy and t he amount o f work needed t o p r e p a r e a d e c i s i o n on t h e most

s u i t a b l e and c o s t - e f f e c t i v e improvemen ts . When t a l k i n g t o t h e managers o f

e n e r g y - e f f i c i e n t f a c t o r i e s , one can u s u a l l y c o n c l u d e t h a t t h e y have a g r a s p o f

t h e s i t u a t i o n and a r e w e l l aware o f t h e a r e a s where improvements a r e n e e d e d , as

w e l l as t he s o l u t i o n s t h a t may come i n t o q u e s t i o n . On t h e o t h e r h a n d , i n a n o t -

s o - e f f i c i e n t f a c t o r y , i t may be t h a t t h e m a n a g e r ' s p e r c e p t i o n o f e n e r g y p rob lems

i s i n c o m p l e t e , no p rob lem h i e r a r c h y e x i s t s and t h e r e i s a l o t o f u n c e r t a i n t y

abou t p o s s i b l e c o u r s e s o f a c t i o n .

F o r an e n e r g y s p e c i a l i s t , t he l a t t e r case c o n s t i t u t e s a r e a l l y c h a l l e n g i n g

s i t u a t i o n . L e t us assume t h a t t he s t a r t i n g p o i n t o f t he i n v e s t i g a t i o n o f a h e a t

economy i s t h e m a n a g e r ' s d i s s a t i s f a c t i o n w i t h t h e e x i s t i n g s t a t e , b u t t h a t t h e r e

i s no c l e a r i d e a o f t h e e x t e n t o f t h e r a t i o n a l i z a t i o n measures needed and t h e

p r i o r i t i e s o f t h e p rob lems t o be s o l v e d . P r i o r t o f o r m u l a t i n g a d i a g n o s i s and

p r o p o s i n g a s e t o f r e m e d i e s , i t i s n e c e s s a r y t o c o l l e c t i n f o r m a t i o n r e l a t e d t o

t he f o l l o w i n g q u e s t i o n s :

( i ) C o n s i d e r i n g t he e x i s t i n g p o s s i b i l i t i e s and l i m i t a t i o n s r e s u l t i n g f rom i t s

l a y o u t and t h e c h a r a c t e r i s t i c s o f t h e e q u i p m e n t , does t h e r e a l pe r f o rmance o f

t h e the rma l sys tem match t h e e x p e c t e d pe r fo rmance ? I f n o t , what a r e t h e r e a s o n s

and how can t h e y be e l i m i n a t e d ?

( i i ) What a r e t h e d e c i s i v e f a c t o r s e n a b l i n g t h e the rma l sys tems t o s a t i s f y t h e

a c t u a l t o t a l hea t demand a t t h e n e t h e a t demand r e c o r d e d , and how can t h e

e f f e c t i v e n e s s r a t i o be i n c r e a s e d ?

( i i i ) What a re t he l i m i t a t i o n s imposed on t h e e n e r g y economy by t he e x i s t i n g

scheme and pa rame te rs o f t h e s u g a r m a n u f a c t u r i n g p r o c e s s and by t h e

c h a r a c t e r i s t i c s o f p r o c e s s equ ipment and c o n t r o l sys tems ? How can t h e s e f a c t o r s

be a d j u s t e d t o r e d u c e t h e t o t a l hea t demand ?

( i v ) How e f f e c t i v e a r e t h e e n e r g y m o n i t o r i n g p r o c e d u r e s based on t h e e x i s t i n g

i n s t r u m e n t a t i o n , and what a c t i o n s can be taken t o improve them ?

I n p r a c t i c e , i t i s n o t p o s s i b l e t o o b t a i n d i r e c t l y p i e c e s o f i n f o r m a t i o n t h a t

f a l l n e a t l y i n t o one o f t h e f o u r c a t e g o r i e s m e n t i o n e d . V e r y o f t e n , one has t o

i d e n t i f y , i n t e r p r e t and s o r t symptoms w h i c h may p o i n t a t some i n f o r m a t i o n

r e l a t e d t o more t han one c a t e g o r y .

T h e r e a r e t h r e e main t e c h n i q u e s o f i d e n t i f y i n g t he symptoms w h i c h

c h a r a c t e r i z e t h e f u n c t i o n i n g o f t he the rma l s y s t e m :

- t o a n a l y s e t h e d a t a i n t h e r o u t i n e f a c t o r y r e c o r d s , t o q u e s t i o n t h e managers

and the t e c h n i c a l p e r s o n n e l , and t o i n s p e c t t he f a c t o r y ( p r e f e r a b l y when i n

Page 107: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

96

o p e r a t i o n ) ,

- t o s e t up and t o i n v e s t i g a t e t h e e x t e r n a l mass and e n e r g y b a l a n c e s o f t h e

f a c t o r y ,

- t o a n a l y s e t h e mass and h e a t b a l a n c e s o f t h e the rma l sys tem and i t s

components .

I n more c o m p l i c a t e d c a s e s , i t may be u s e f u l t o s p l i t t h e s y m p t o m - f i n d i n g

p r o c e d u r e i n t o two p a r t s . I n i t i a l l y , b a s i c d a t a a r e c o l l e c t e d t o make t he

b a l a n c e c a l c u l a t i o n s p o s i b l e . Once t h e mass and e n e r g y b a l a n c e s have been

e s t a b l i s h e d , t he f i g u r e s o b t a i n e d and t h e p r e l i m i n a r y d i a g n o s i s a r e compared

w i t h t h e r e a l i t y .

As r e g a r d s t he a n a l y s e s o f t he b a l a n c e f i g u r e s , a v a r i e t y o f t e c h n i q u e s can

be c o n s i d e r e d . I t i s p o p u l a r t o d e f i n e s e v e r a l s e t s o f i n p u t d a t a i n a manner

a l l o w i n g t h e changes o f c e r t a i n i m p o r t a n t f a c t o r s t o be s t u d i e d , and t o

c a l c u l a t e s e v e r a l mass and e n e r g y b a l a n c e s f rom w h i c h i n f o r m a t i o n on t h e

impor tance o f t h e s e f a c t o r s can be e x t r a c t e d . More advanced methods f o r e n e r g y

a n a l y s e s a r e d i s c u s s e d i n C h a p t e r 9.

3 .1 .2 C o l l e c t i n g e s s e n t i a l i n f o r m a t i o n

I n a d d i t i o n t o the r e q u i r e m e n t s men t ioned i n t h e p r e c e d i n g S e c t i o n , i t

f o l l o w s f rom t h e d i s c u s s i o n p r e s e n t e d i n C h a p t e r s 1 and 2 t h a t i n f o r m a t i o n on

t h e e n e r g y economy s h o u l d a l s o be w e l l s t r u c t u r e d . T h i s can be a c h i e v e d u s i n g

t h e top -down a p p r o a c h , t h a t i s , p r e s e n t i n g t h e o v e r a l l p i c t u r e f i r s t , t h e n

a n a l y s i n g t h e e s s e n t i a l b u i l d i n g b l o c k s o f t he therma l s y s t e m , and f i n a l l y

i n v e s t i g a t i n g the c h a r a c t e r i s t i c s o f t h e equ ipment u n i t s .

The f i r s t s t e p s h o u l d be d e v o t e d t o i d e n t i f i c a t i o n o f t h e schemes and

pa ramete rs o f t he s u g a r m a n u f a c t u r i n g p r o c e s s and t he e n e r g y p r o c e s s e s . A l l t h e

d a t a taken f rom t h e e x i s t i n g documents s h o u l d be v e r i f i e d , p r e f e r a b l y d u r i n g

normal f a c t o r y o p e r a t i o n when any changes o r m o d i f i c a t i o n s r e l a t i v e t o t he

documented s t a t e can e a s i l y be o b s e r v e d . When document ing t h e d a t a a c q u i r e d , i t

i s a d v i s a b l e t o p r e s e n t them i n fo rms f a c i l i t a t i n g easy i d e n t i f i c a t i o n o f t he

i n f o r m a t i o n s t r u c t u r e and t he r e l a t i o n s between i m p o r t a n t segments o f

i n f o r m a t i o n . A l t h o u g h t he c o n v e n t i o n a l schemes and t a b l e s l i k e t h o s e used i n t h e

p r e s e n t book a r e s u f f i c i e n t l y e f f e c t i v e i n most p r a c t i c a l a p p l i c a t i o n s , i t may

p r o v e u s e f u l t o combine them w i t h o t h e r fo rms e n a b l i n g one t o l o o k a t t he d a t a

f rom a d i f f e r e n t a n g l e . F i g u r e 3.1 shows an example o f a d iag ram w h i c h makes i t

p o s s i b l e t o match t he a v a i l a b l e h e a t i n g media t o t h e p r o c e s s media t h a t must be

hea ted ( r e f . 1 ) .

Among t h e main f e a t u r e s o f t h e the rma l s y s t e m , t h e s t a b i l i t y o f t h e

o p e r a t i n g pa rame te rs i s o f u tmost i m p o r t a n c e . I n most f a c t o r i e s , pa ramete r

f l u c t u a t i o n s may o c c u r even under p e r f e c t l y normal o p e r a t i n g c o n d i t i o n s , m o s t l y

because t h e r e a r e v a p o u r demand f l u c t u a t i o n s due t o t he b a t c h w i s e o p e r a t i o n

Page 108: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

97

c o s s e t t e s

rec i rcu lated ju ice * . p r e s s w a t e r

m a k e - u p water

p re - l imed j u i c e σ J l imed j u i c e ~ c l e a r j u i c e —

t h i n j u i c e TD Φ Ε ω υ o

ju ice in 1 s t e f fec t v a c u u m p a n s A χ

s y r u p s — v a c u u m p a n s Β χ

room h e a t i n g

1s t -e f fec t v a p o u r 2 n d - e f f e c t v a p o u r

c o n d e n s ó t e 3 r d - e f f e c t v a p o u r χ

n o n c o n d e n s a b l e s — v a p o u r f rom vacuum pans A χ

r ec i r cu la ted j u i c e p r e s s w a t e r —

•o Ε en c o

15 20 30 AO 50 60 70 80 90 100 110 120 130

T e m p e r a t u r e { °C )

' i n the e x t r a c t i o n s t a t i o n

F i g . 3 .1 . G r a p h i c a l compendium o f t h e p r o c e s s media t o be h e a t e d , o r hea t r e c e i v e r s , and t he h e a t i n g med ia .

o f vacuum p a n s . Any paramete r change i n t r o d u c i n g a d e v i a t i o n f rom a b a l a n c e d

s t a t e o f t h e the rma l sys tem c r e a t e s t h e r i s k o f i n c r e a s e d e n e r g y l o s s .

T y p i c a l l y , t h e immediate causes o f t h e l o s s a r e i n c r e a s e d v a p o u r f l o w f rom t h e

l a s t e v a p o r a t o r e f f e c t t o t he c o n d e n s e r , o r r e d u c e d t h i c k - j u i c e c o n c e n t r a t i o n

w h i c h r a i s e s t h e h e a t demand o f t h e s u g a r h o u s e . A t v e r y r a p i d pa ramete r

c h a n g e s , t h e r e may be u n f a v o u r a b l e emergency d i s c h a r g e s o f h i g h - t e m p e r a t u r e

media w i t h i n t he therma l sys tem o r even d i r e c t l y t o t h e e n v i r o n m e n t ( e x a m p l e s :

open ing s a f e t y v a l v e s on a steam p i p e l i n e o r on an e v a p o r a t o r b o d y , o v e r f l o w i n g

h o t - j u i c e t a n k s , e t c . ) .

I t f o l l o w s f rom t h e above i n t r o d u c t i o n t h a t a b n o r m a l l y l a r g e pa ramete r

f l u c t u a t i o n s w h i c h a r e d i f f i c u l t t o dampen s h o u l d be t r e a t e d as a symptom o f

dange rous d e f i c i e n c i e s o f t h e the rma l s y s t e m . The u n d e r l y i n g f a c t o r s a r e most

f r e q u e n t l y as f o l l o w s :

- t o o smal l a h e a t i n g s u r f a c e a r e a i n t h e e v a p o r a t o r e f f e c t f rom w h i c h v a p o u r i s

s u p p l i e d t o vacuum p a n s ,

- a f a u l t y c o n t r o l sys tem i n t h e t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n , w h i c h i s

d e c i s i v e i n s t a b i l i z i n g t h e p r e s s u r e and t e m p e r a t u r e o f t he e x h a u s t s team,

- a f a u l t y c o n d e n s a t e d r a i n a g e subsys tem c a u s i n g p e r i o d i c a c c u m u l a t i o n o f t he

condensa te i n t h e h e a t i n g chambers o f e v a p o r a t o r b o d i e s .

The e n e r g y consumpt ion o f a s u g a r f a c t o r y may be i n f l u e n c e d n o t o n l y by

Page 109: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

98

u n c o n t r o l l a b l e paramete r f l u c t u a t i o n s b u t a l s o by r o u t i n e pa ramete r a d j u s t m e n t s ,

l i k e t h o s e a s s o c i a t e d w i t h a t e m p o r a r i l y i n t r o d u c e d r e d u c t i o n o f t h e p r o c e s s i n g

c a p a b i l i t y . G e n e r a l l y , t h e r e s p o n s e s o f a the rma l sys tem t o changes o f t h i s

k i n d a r e w o r t h s t u d y i n g as an i n d i c a t i o n o f p o s s i b l e sys tem d e f i c i e n c i e s t h a t

need t o be c o r r e c t e d . On t h e o t h e r h a n d , even c o r r e c t l y f u n c t i o n i n g sys tems

w i t h p e r f e c t pa ramete r s t a b i l i z a t i o n a r e a d v e r s e l y a f f e c t e d by c o n t i n u e d

d e v i a t i o n s f rom t h e i r nominal o p e r a t i n g p a r a m e t e r s . T h i s phenomenon s h o u l d be

s t u d i e d w i t h t h e aim o f i d e n t i f y i n g p o s s i b l e i n d i c a t i o n s o f t he e x i s t e n c e o f an

e n e r g y - s a v i n g s t r a t e g y f o r t h e f a c t o r y o p e r a t i o n . Most n o t a b l y , a d a i l y

p r o c e s s i n g c a p a b i l i t y f a l l i n g be low i t s nominal l e v e l u s u a l l y causes t h e e n e r g y

consumpt ion p e r u n i t mass o f b e e t s p r o c e s s e d t o i n c r e a s e . T h e r e a r e r a t h e r few

f a c t o r i e s , h o w e v e r , where t h e managers a r e f u l l y aware o f t h e c o n s e q u e n c e s , i n

te rms o f a d d i t i o n a l f u e l bu rned p e r u n i t mass o f b e e t s p r o c e s s e d , o f a d e c i s i o n

t o reduce t he p r o c e s s i n g c a p a b i l i t y . A n o t h e r i m p o r t a n t f a c t o r i s t he j u i c e

d r a f t , w h i c h a f f e c t s bo th t h e s u g a r l o s s i n e x h a u s t e d c o s s e t t e s and the e n e r g y

demand o f t h e p r o c e s s .

F i g u r e s 3.2 and 3.3 show t h e r e s u l t s o f s t u d i e s o f t h e f u e l consumpt ion under

chang ing o p e r a t i n g c o n d i t i o n s i n two s u g a r f a c t o r i e s w i t h d i f f e r e n t p r o c e s s i n g

c a p a b i l i t i e s . S t a t i s t i c a l d a t a f rom 9 seasons were taken t o c o n s t r u c t t he

d i a g r a m s , and b r a c k e t s deno te seasons c h a r a c t e r i z e d by abnormal c l i m a t i c

c o n d i t i o n s , unusua l b e e t p r o p e r t i e s , e t c .

The a b i l i t y o f t h e therma l s y s t e m ' s p i p i n g t o c r e a t e c o r r e c t f l o w c o n d i t i o n s

f o r a l l t he e n e r g y - c a r r y i n g media i s a n o t h e r i m p o r t a n t p o i n t t o be i n v e s t i g a t e d .

I t i s n o t o n l y t he f l o w c o n d i t i o n s d u r i n g normal f a c t o r y o p e r a t i o n , b u t a l s o

t h o s e i n d u c e d by f a c t o r y s t a r t - u p o r pa ramete r f l u c t u a t i o n s , t h a t may a f f e c t

e n e r g y l o s s e s and equ ipment s a f e t y . The symptoms o f a b n o r m a l i t i e s a re pa ramete r

i n s t a b i l i t i e s , e x c e s s i v e p i p e v i b r a t i o n s , h y d r a u l i c s h o c k s , e t c . G e n e r a l l y ,

t h r e e f a c t o r s a r e o f c r i t i c a l impo r tance t o t he f u n c t i o n i n g o f t h e p i p i n g :

( i ) The d i m e n s i o n s o f t h e p i p e s d e t e r m i n e t he f l o w v e l o c i t i e s under bo th normal

and abnormal o p e r a t i n g c o n d i t i o n s . F low v e l o c i t i e s , i n t u r n , d e t e r m i n e p r e s s u r e

l o s s e s t h a t may e a s i l y become a cause o f d i s t u r b a n c e s i n the rma l sys tem

o p e r a t i o n , such as p r e s s u r e l o s s e s i n t h e v a p o u r p i p e s l i n k i n g t h e e v a p o r a t o r

w i t h t h e vacuum p a n s , o r i n t h e p i p e l i n e s between t h e vacuum pans and t h e

c o n d e n s e r . I t i s recommended t o keep t h e p r e s s u r e l o s s between t h e e v a p o r a t o r

and t he vacuum pans be low 0.1 b a r , w h i c h c o r r e s p o n d s t o a c o n d e n s a t i o n -

t e m p e r a t u r e d rop o f l e s s t han 2 K. ( L e t us o b s e r v e t h a t i n bo th cases m e n t i o n e d ,

t h e p i p e d i m e n s i o n s s h o u l d be based on maximum v a p o u r f l o w s . ) F low v e l o c i t i e s

w h i c h can be recommended f o r d i f f e r e n t p i p e d i m e n s i o n s a r e d i s c u s s e d i n t h e

l i t e r a t u r e ( r e f s . 3 , 4 , 6 ) .

( i i ) The s l o p e s o f h o r i z o n t a l s e c t i o n s o f t he p i p e l i n e s a l l o w g r a v i t a t i o n a l f l o w

Page 110: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

99

4.3

A . 2 h

4.1

cn O O

4.0

3.9

cn ^. 3.8

o Ε Ιο c

3.7

c o α Ε D (Λ C O

o

3.6

3.5

3.4

(71)

3.3

3.2

94 96 98 100 102 104

A v e r a g e to n o m i n a l d a i l y c a p a c i t y { % )

F i g . 3 . 2 . Fue l consumpt ion v s . a v e r a g e d a i l y c a p a c i t y i n two s u g a r f a c t o r i e s w i t h nominal c a p a c i t i e s o f 2100 t / d ( p o i n t s ) and 5800 t / d ( c r o s s e s ) .

o f t he condensa te t o take p l a c e . The recommended s l o p e o f c o n d e n s a t e l i n e s i s a t

l e a s t 2%. The h o r i z o n t a l s e c t i o n s o f steam and v a p o u r l i n e s s h o u l d be i n c l i n e d

t o o , i n o r d e r t o make i t p o s s i b l e t o d r a i n t h e c o n d e n s a t e f o r m i n g t h e r e d u r i n g

t he s t a r t - u p o f t he therma l s y s t e m .

( i i i ) Condensa te d r a i n a g e equ ipment a t t a c h e d t o steam and v a p o u r l i n e s i s

e s s e n t i a l . T h i s i s a p r e r e q u i s i t e f o r a s a f e s t a r t - u p o f t h e the rma l s y s t e m .

An i n s p e c t i o n o f t he p i p i n g aimed a t c h e c k i n g t h e d i m e n s i o n s and s l o p e s , and

t he a v a i l a b i l i t y o f a u x i l i a r y equ ipment ( s e e a l s o S e c t i o n 7 . 7 . 4 ) , can be

combined w i t h a p r e l i m i n a r y i n s p e c t i o n o f t h e the rma l i n s u l a t i o n and can

p r e f e r a b l y be e x t e n d e d t o i n c l u d e an i n s p e c t i o n o f t he i n s u l a t i o n o f t h e main

f a c t o r y equ ipmen t . W h i l e i t i s r e l a t i v e l y e a s y t o g e t a g e n e r a l q u a l i t a t i v e

Page 111: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

100

4.3

0 0 ,4 .0

^ § 39

1 ^-^

3.8 [

120 122 124 126 128 130 132 Average juice draft (% )

F i g . 3 . 3 . Fue l consumpt ion v s . a v e r a g e j u i c e d r a f t i n a 2100 t / d f a c t o r y .

p i c t u r e o f t h e s t a t e o f the rma l i n s u l a t i o n , t h e magn i tude o f h e a t d i s s i p a t i o n

l o s s e s remains unknown u n l e s s a s p e c i a l i n v e s t i g a t i o n i s u n d e r t a k e n . A v e r y

e f f e c t i v e t e c h n i q u e w h i c h can be u t i l i z e d f o r t h i s pu rpose i s t h e r m o g r a p h i c

s u r v e y i n g w i t h t he a i d o f i n f r a - r e d - s e n s i t i v e cameras . The u n d e r l y i n g

p r i n c i p l e s , and examples o f t he a p p l i c a t i o n o f t he rmography i n B r i t i s h s u g a r

f a c t o r i e s , a r e p r e s e n t e d i n t he l i t e r a t u r e ( r e f . 2 ) .

A n o t h e r i m p o r t a n t f e a t u r e o f t h e the rma l sys tem i s i t s a b i l i t y t o g u a r a n t e e

s a f e b o i l e r o p e r a t i o n w i t h o u t u n n e c e s s a r y e n e r g y l o s s e s . N o r m a l l y , t h e

condensa tes f rom the t anks i n t h e f i r s t and second e v a p o r a t o r e f f e c t s a r e

s u p p l i e d as f e e d w a t e r t o t he b o i l e r s . I f t he q u a l i t y o f t he c o n d e n s a t e i n a

c e r t a i n tank becomes u n a c c e p t a b l e w i t h r e g a r d t o s a f e b o i l e r o p e r a t i o n , t h e n t h e

e n t i r e amount o f t he h o t condensa te must be removed f rom t h i s p a r t i c u l a r t ank

and f rom the therma l s y s t e m . When r e p l a c i n g i t by make-up w a t e r , abou t 20 kg o f

normal f u e l must be burned i n o r d e r t o hea t 1 m^ w a t e r t o t h e r e q u i r e d

t e m p e r a t u r e .

T h e r e a re s e v e r a l p o s s i b l e causes o f t he d e g r a d a t i o n o f t he q u a l i t y o f

c o n d e n s a t e :

( a ) Too much o f t he gaseous p r o d u c t s o f therma l decay o f s u c r o s e , o r c e r t a i n

nonsuga rs p r e s e n t i n v a p o u r and d i s s o l v e d i n t he c o n d e n s a t e . T h i s phenomenon

endangers the q u a l i t y o f t he condensa te o b t a i n e d f rom f i r s t - e f f e c t v a p o u r .

( b ) J u i c e p e n e t r a t i n g t he h e a t i n g chambers o f t h e e v a p o r a t o r b o d i e s o r h e a t e r s

t h r o u g h l e a k i n g t u b e s . N o r m a l l y , t h e p r e s s u r e d i f f e r e n c e between t he h e a t i n g

chamber and t h e j u i c e space i n an e v a p o r a t o r body wou ld p r e s s t he c o n d e n s a t e

i n t o j u i c e , bu t t he d i r e c t i o n o f l e a k s may be t e m p o r a r i l y r e v e r s e d due t o

p r e s s u r e f l u c t u a t i o n s .

Page 112: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

101

( c ) F i r s t - e f f e c t j u i c e c a r r i e d o v e r as foam o r sma l l d r o p l e t s t o t h e h e a t i n g

chamber o f t h e second e f f e c t . T h i s may be caused by e x c e s s i v e f o a m i n g , t o o h i g h

f l o w v e l o c i t y i n t h e v a p o u r chamber o f t h e f i r s t e f f e c t a n d / o r i n e f f i c i e n t

e n t r a i n m e n t s e p a r a t o r s . I t s h o u l d be emphas ized t h a t no s e p a r a t o r can be

c o n s i d e r e d as f u l l y r e l i a b l e a t t o o h i g h v a p o u r - f l o w v e l o c i t i e s ( e x c e e d i n g

1-1.2 m/s i n t h e v a p o u r c h a m b e r ) . I t may t h e r e f o r e happen t h a t a s e p a r a t o r works

p e r f e c t l y w e l l under normal o p e r a t i n g c o n d i t i o n s , b u t j u i c e c a r r y o v e r o c c u r s a t

a b n o r m a l l y low v a p o u r p r e s s u r e s i n d u c e d by pa ramete r f l u c t u a t i o n s i n t h e the rma l

s y s t e m .

The r i s k o f j u i c e c a r r y o v e r i s a l w a y s p r e s e n t i n t h e h e a t i n g chamber o f t h e

second e v a p o r a t o r e f f e c t . I n the rma l sys tems emp loy i ng v a p o u r c o m p r e s s i o n , t h e

f i r s t e f f e c t may a l s o be e n d a n g e r e d . S p e c i a l p r e c a u t i o n s must be t aken t o

m i n i m i z e t h e consequences o f condensa te p o l l u t i o n i n such sys tems ( s e e S e c t i o n

3 . 4 . 4 ) .

A p a r t f rom t h e immediate causes o f t h e p r e s e n c e o f unwanted s u b s t a n c e s i n

t h e c o n d e n s a t e , i t s h o u l d be p o s s i b l e t o d e t e c t t h e danger and t o r e a c t q u i c k l y ,

p r e v e n t i n g b o i l e r damage. To a l a r g e e x t e n t , t h i s depends on t h e i n s t r u m e n t a t i o n

and m o n i t o r i n g p r o c e d u r e s r e l a t i n g t o t h e c o n d e n s a t e c o n t r o l , as w e l l as on t he

p r o c e d u r e s o f r e p l a c i n g t he d i s c a r d e d c o n d e n s a t e by make-up w a t e r .

3 .1 .3 I n t e r p r e t i n g e x t e r n a l b a l a n c e s

By a n a l y s i n g t he e x t e r n a l e n e r g y b a l a n c e and t h e p r o c e s s mass b a l a n c e

t o g e t h e r , i t becomes p o s s i b l e t o d e t e r m i n e c e r t a i n f a c t o r s c a u s i n g e x c e s s i v e

e n e r g y consumpt ion i n a f a c t o r y . These f a c t o r s may be r e l a t e d t o any o f t h e f o u r

q u e s t i o n s l i s t e d i n S e c t i o n 3 . 1 . 1 . As an e x a m p l e , l e t us c o n s i d e r t he e x t e r n a l

e n e r g y b a l a n c e shown i n C h a p t e r 2 , T a b l e 2 . 4 , t o g e t h e r w i t h t he d e s i g n d a t a on

t he p r o c e s s mass b a l a n c e summarized i n T a b l e 3 .1 .

The consumpt ion o f h e a t i n g steam i s c e r t a i n l y v e r y l a r g e ; when c o n v e r t e d t o

normal s team, i t amounts t o 46.7 kg/100 kg b. The main r e a s o n s can be summar ized

as f o l l o w s :

( i ) The t h i c k - j u i c e c o n c e n t r a t i o n o f 65% DS i s r e l a t i v e l y l o w ; t h i s i s c e r t a i n l y

one o f t he p r o c e s s c o n s t r a i n t s w h i c h c o u l d be m o d i f i e d t o d e c r e a s e t h e t o t a l

h e a t demand. Even a t t h i s c o n c e n t r a t i o n , h o w e v e r , t he mass f l o w o f vacuum-pan

v a p o u r s ( T a b l e 2 . 4 , e n t r y 16) i s t o o l a r g e , e x c e e d i n g t he d e s i g n v a l u e ( T a b l e

3 .1 , e n t r y 35) by n e a r l y 13%. T h i s may be caused by t o o l a r g e a w a t e r i n t a k e t o

t he vacuum pans a n d , p r o b a b l y , t o o much wash w a t e r s u p p l i e d t o t h e c e n t r i f u g a l s .

E x c e s s i v e w a t e r i n t a k e s t o t he s u g a r house can a l s o be r e g a r d e d as a p r o c e s s

c o n s t r a i n t t o be m o d i f i e d .

( i i ) The e l e v a t e d t e m p e r a t u r e i n t h e p r e - l i m i n g tank i s m a i n t a i n e d by r e c y c l i n g

a l a r g e f l o w o f h o t j u i c e a f t e r f i r s t c a r b o n a t a t i o n ( T a b l e 3 .1 , e n t r y 9 ) . T h i s

i s a p r o c e s s c o n s t r a i n t p r e v e n t i n g t h e raw j u i c e f rom b e i n g hea ted by l o w -

Page 113: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

102

TABLE 3.1

Summary o f t h e d e s i g n da ta on p r o c e s s mass b a l a n c e o f t he f a c t o r y d e s c r i b e d by t h e e x t e r n a l e n e r g y b a l a n c e shown i n T a b l e 2 . 4 .

No. St ream name T o t a l f l o w

(kg /100 kg b) C o n c e n t r a t i o n

(% DS)

1 C o s s e t t e s , p o l . 17.5% 100.0 2 Wet p u l p 90.0 3 P r e s s e d p u l p 34.3 14.35 4 P r e s s w a t e r 55.7 5 Feed w a t e r ( c o n d e n s a t e ) 49.3 6 Raw j u i c e , p u r i t y 88% 115.0 7 J u i c e t o main l i m i n g 176.4 8 J u i c e t o c a r b o n a t a t i o n I 188.3 9 J u i c e f rom c a r b o n a t a t i o n I r e c y c l e d t o

p r e - 1 i m i n g 40.0 10 J u i c e t o d e c a n t e r 148.0 11 S u b s i d e r s l u d g e I t o vacuum f i l t e r s 21.3 12 ^ S u b s i d e r s l u d g e I r e c y c l e d t o p r e - l i m i n g 15.0 13 J u i c e t o s a f e t y f i l t e r s I 130.2 14 J u i c e t o c a r b o n a t a t i o n I I 129.8 15 J u i c e t o t h i c k e n e r s I I 129.0 16 S u b s i d e r s l u d g e I I r e c y c l e d t o p r e - l i m i n g 5.0 17 T h i n j u i c e t o b u f f e r tank 124.0 18 Water ( c o n d e n s a t e ) added f o r c o n t r o l

p u r p o s e s 5.0 19 T h i n j u i c e t o e v a p o r a t o r 129.0 14.3 20 M i l k - o f - l i m e t o p r e - l i m i n g 1.4 21 M i l k - o f - l i m e t o main l i m i n g 9.9 22 M i l k - o f - l i m e t o c a r b o n a t a t i o n I I 0.6 23 T h i c k j u i c e 24.8 65.0 24 Water ( c o n d e n s a t e ) t o r e m e l t Β 3.8 25 Wash w a t e r t o c e n t r i f u g a l s 1.2 26 Condensa te f rom steam wash 0.2 27 Water ( c o n d e n s a t e ) added t o m a s s e c u i t e C 0.3 28 Condensa te f rom vacuum-pan s teaming 0.2 29 Water ( c o n d e n s a t e ) i n t a k e t o vacuum pans 2.5 30 Condensa te f rom d i r e c t h e a t i n g o f s y r u p s 1.1 31 Sugar A t o d r y i n g 14.2 99.1 32 M o l a s s e s 5.0 33 Vapou rs f rom s e l f - e v a p o r a t i o n o f s y r u p s 0.5 34 Water e v a p o r a t e d i n vacuum pans 18.0

t e m p e r a t u r e v a p o u r s f rom t h e l a s t e v a p o r a t o r e f f e c t o r f rom t h e vacuum p a n s . I f

t h i s c o n s t r a i n t can be e l i m i n a t e d , t hen improved u t i l i z a t i o n o f l o w - t e m p e r a t u r e

v a p o u r s becomes p o s s i b l e .

( i i i ) The v a p o u r f l o w f rom t h e l a s t e v a p o r a t o r e f f e c t t o t he c o n d e n s e r ( T a b l e

2 . 4 , e n t r y 14) i s v e r y l a r g e . I t i s ha rd t o b e l i e v e t h a t t h i s can be c o m p a t i b l e

w i t h t h e i n t e n t i o n o f t he d e s i g n e r o f t h e the rma l sys tem o r w i t h t h e w i s h e s o f

t h e o p e r a t i n g p e r s o n n e l . I f an i n s u f f i c i e n t u t i l i z a t i o n o f t h e l a s t - e f f e c t

v a p o u r f o r h e a t i n g p u r p o s e s had i n d e e d been p l a n n e d , i t wou ld have t o be

i n t e r p r e t e d as a thermal sys tem d e f i c i e n c y r e q u i r i n g immediate a c t i o n . More

l i k e l y a r e t he f o l l o w i n g r e a s o n s :

Page 114: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

103

- v a p o u r l e a k s t h r o u g h condensa te d r a i n a g e l i n e s i n t he e v a p o r a t o r a r e a , and

pe rhaps t o o much v a p o u r i s w i t h d r a w n a l o n g w i t h t h e n o n c o n d e n s a b l e gases f rom

t h e p r e c e d i n g e v a p o r a t o r e f f e c t , t o g e t h e r c a u s i n g an u n c o n t r o l l a b l e v a p o u r

i n f l o w t o t h e l a s t e f f e c t ,

- f l u c t u a t i o n s i n t h e t h i n - j u i c e f l o w , i n c o m b i n a t i o n w i t h t o o sma l l a volume o f

t he t h i n - j u i c e tank b e f o r e t he e v a p o r a t o r , t h u s f o r c i n g condensa te i n t a k e s t o

t he j u i c e as t h e j u i c e l e v e l i n t h e t ank f a l l s t o o low o r t h e c o n c e n t r a t i o n o f

t h i c k j u i c e becomes t o o h i g h .

The f a c t o r s named above must be seen as i n d i c a t i o n s t h a t t h e therma l sys tem i s

n o t w o r k i n g as o r i g i n a l l y p l a n n e d because o f d e f i c i e n c i e s o f t h e a u x i l i a r y

equ ipmen t .

( i v ) Poor c o n d i t i o n o f t he the rma l i n s u l a t i o n , d i r e c t hea t d i s s i p a t i o n f rom open

t anks c o n t a i n i n g h i g h - t e m p e r a t u r e med ia , and u n c o n t r o l l a b l e l e a k s o f v a p o u r o r

condensa te cause r e l a t i v e l y l a r g e h e a t l o s s e s t o t h e e n v i r o n m e n t ( T a b l e 2 . 4 ,

e n t r y 2 3 ) . A f a c t - f i n d i n g v i s i t t o t he f a c t o r y i n q u e s t i o n w o u l d p r o b a b l y l e a d

t o t he c o n c l u s i o n t h a t bo th t he the rma l sys tem and t h e p r o c e s s equ ipment s h o u l d

be improved i n t h a t r e s p e c t .

3 .1 .4 I n t e r p r e t i n g e v a p o r a t o r - r e c e i v e r b a l a n c e s

I t i s p e r f e c t l y normal t h a t t h e r e a l steam consumpt ion o f an e v a p o r a t o r i s

1-2 kg/100 kg b g r e a t e r than t h e steam demand d e t e r m i n e d f rom t h e m a s s - b a l a n c e

and e n e r g y - b a l a n c e c a l c u l a t i o n s . T h i s i s a r e s u l t o f f l u c t u a t i o n s o f t h e

o p e r a t i n g pa rame te rs t h a t a r e d i s r e g a r d e d i n t h e b a l a n c e e q u a t i o n s based on t h e

s t e a d y - s t a t e a p p r o a c h . A d i f f e r e n c e l a r g e r t han t h a t named a b o v e , h o w e v e r , may

i n d i c a t e t h a t t h e the rma l sys tem does n o t work as d e s i g n e d and p l a n n e d . I t i s

i m p o s s i b l e t o s t u d y t he r e a s o n s f o r t h i s s i t u a t i o n u s i n g t he e x t e r n a l - b a l a n c e

approach o n l y . I n o r d e r t o o b t a i n more i n f o r m a t i o n on t h e e n e r g y p r o c e s s e s , t h e

mass and e n e r g y b a l a n c e s o f t h e e v a p o r a t o r and v a p o u r r e c e i v e r s s h o u l d be

d e t e r m i n e d and a n a l y s e d .

L e t us c o n s i d e r an e x t e n s i o n o f t he example p r e s e n t e d i n t h e p r e c e d i n g

S e c t i o n . I n F i g . 3 . 4 , t h e v a p o u r and c o n d e n s a t e d i s t r i b u t i o n scheme o f t h e same

f a c t o r y i s shown t o g e t h e r w i t h t h e r e s u l t s o f mass- and h e a t - b a l a n c e

c a l c u l a t i o n s pe r f o rmed u s i n g t h e e v a p o r a t o r - r e c e i v e r a p p r o a c h .

As i t t u r n s o u t , t he c a l c u l a t e d steam demand i s 2.0 kg/100 kg b l e s s t han t h e

consumpt ion i n d i c a t e d i n t h e e x t e r n a l b a l a n c e , w h i l e t h e c a l c u l a t e d mass f l o w o f

l a s t - e f f e c t v a p o u r d i r e c t e d t o t h e c o n d e n s e r i s 3.9 kg/100 kg b l e s s t h a n t h e

e x t e r n a l - b a l a n c e v a l u e . T h i s may be an i n d i c a t i o n o f steam and v a p o u r l e a k s

t h r o u g h t h e steam t r a p s i n t h e c o n d e n s a t e d r a i n a g e l i n e s a n d / o r t h r o u g h t h e

v e n t i n g l i n e s , o r t h r o u g h c e r t a i n v a l v e s w h i c h may be c l o s e d b u t a r e n o t f u l l y

t i g h t . ( A d d i t i o n a l i n d i c a t i o n s o f l e a k s o f steam o r h e a t i n g v a p o u r can be

Page 115: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

104

sugar house 1.1

O , 00

Ö σι c % Ε σ Ι ο 'S öl c 3

50.8 A9.0

heater 3.1 ex t r .2 .^ 39.4

127'C

137'"C

vacuum pons 19.9 heaters 9.1

heaters11.4 8.8

115°C

126*C

o I

ö

extr. 0.8

1.5 2.9

lorc

114'C

|115°C h |115°C

90°C

100'C

. Γ—in Λ — 1-(^iorcH^90°c

18.0

JO.O 0j 0.0

tn! CD CM*

86.7 to COndensate receivers

condensate returns

F i g . 3 . 4 . E x c e r p t s f rom mass and h e a t b a l a n c e s o f t he the rma l sys tem p r e v i o u s l y c o n s i d e r e d i n S e c t i o n 3 .1 .3 ( f l o w s g i v e n i n kg/100 kg b ) .

o b t a i n e d by c h e c k i n g t e m p e r a t u r e s and p r e s s u r e s i n t h e e v a p o r a t o r e f f e c t s .

U s u a l l y , v a p o u r l e a k i n g t o a s p e c i f i c e f f e c t i n d u c e s a t e n d e n c y t o w a r d s

t e m p e r a t u r e and p r e s s u r e i n c r e a s e s w h i c h a r e accompanied by r e d u c e d e v a p o r a t i o n .

I f t h e l e a k s a r e s i g n i f i c a n t , t hen i t may be d i f f i c u l t t o m a i n t a i n a h i g h t h i c k -

j u i c e c o n c e n t r a t i o n a t t h e e v a p o r a t o r o u t l e t . )

F i g u r e 3.5 shows t h e r e s u l t s o f mass- and h e a t - b a l a n c e c a l c u l a t i o n s p e r f o r m e d

f o r t h e same therma l sys tem under t h e f o l l o w i n g assump t i ons c o n c e r n i n g t h e steam

and v a p o u r l e a k s :

( i ) E x h a u s t steam l e a k i n g , a t t h e r a t e o f 1 kg/100 kg b , t h r o u g h a steam t r a p i n

t h e f i r s t e f f e c t and a c o n d e n s a t e f l a s h p i p e t o second e f f e c t v a p o u r .

( i i ) E x h a u s t steam l e a k i n g , a t t h e r a t e o f 1 kg/100 kg b , t h r o u g h t h e same steam

t r a p as above and a n o t h e r steam t r a p a t t h e o u t l e t o f t h e c o n d e n s a t e t ank i n t h e

f i r s t e f f e c t , t o t h e condensa te tank i n t h e f o u r t h e f f e c t .

( i i i ) F i r s t - e f f e c t v a p o u r l e a k i n g , a t t h e r a t e o f 1 kg/100 kg b , t h r o u g h a steam

t r a p i n t he second e f f e c t t o s e c o n d - e f f e c t v a p o u r .

( i v ) S e c o n d - e f f e c t v a p o u r l e a k i n g , a t t h e r a t e o f 5 kg/100 kg b , t h r o u g h a

f a u l t y condensa te d r a i n a g e subsys tem i n t h e vacuum-pan s t a t i o n , t o t h i r d - e f f e c t

v a p o u r .

As can be s e e n , t h e c a l c u l a t e d steam demand i s now 52.9 kg/100 kg b and t h e mass

f l o w o f t h e l a s t - e f f e c t v a p o u r t o t h e c o n d e n s e r i s 7.4 kg/100 kg b ; b o t h v a l u e s

Page 116: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

105

sugar house 1.1

QO d

I •5 o in

Oil

Ε

I 53.7 51.9

heater 3 J extr. 2 .6 A 0.2

il27.5t

138 C

v a c u u m pans 19 .9-^5.0 heaters 9.1

heaterslLA 4.3

CN II A

W 5 t h \w..sX.^9-\iWc

S i

1lA.5t

126.5 C

CO |Γ- = ·

extr. 0 . 8 1.6

liase

C S l | CD

m.5°c h h i A . s t H » H i 0 4 ' c 1-0-19o°c

9 0 °C

103°C

18 .0

10.0

condensate returns

I I 8 5 . 3 to condensate receivers ~ ^

F i g . 3 . 5 . E x c e r p t s f rom mass and h e a t b a l a n c e s o f t h e the rma l sys tem p r e v i o u s l y c o n s i d e r e d i n S e c t i o n 3 . 1 . 3 , w i t h steam and v a p o u r l e a k s taken i n t o a c c o u n t .

a r e p r e t t y c l o s e t o t he r e a l f i g u r e s .

Steam and v a p o u r l e a k s o c c u r r i n g i n t h e c o n d e n s a t e d r a i n a g e subsys tem

c o n s t i t u t e j u s t one p o s s i b l e t y p e o f d e v i a t i o n f rom t h e c o r r e c t o p e r a t i o n o f t h e

therma l s y s t e m . A n o t h e r t y p e o f d e v i a t i o n i s a s s o c i a t e d w i t h l e a k i n g e v a p o r a t o r

t u b e s . As t h e condensa te i s p r e s s e d i n t o j u i c e , t h e r e q u i r e d t h i c k - j u i c e

c o n c e n t r a t i o n may be i m p o s s i b l e t o m a i n t a i n , b u t t h e r e a s o n w i l l be d i f f i c u l t t o

i d e n t i f y . Depend ing on t h e methods o f b a l a n c e c a l c u l a t i o n s a p p l i e d , t h e mass and

e n e r g y b a l a n c e s d e r i v e d f rom t h e v a l u e s o f t h e pa rame te rs measured may i n d i c a t e ,

f o r examp le , t h a t t h e r e i s a c e r t a i n v a p o u r f l o w e n t e r i n g t h e e v a p o r a t o r (when

u s i n g t h e e v a p o r a t o r - b a l a n c e a l g o r i t h m p r e s e n t e d i n C h a p t e r 2 , a r e v e r s e d v a p o u r

f l o w f rom t h e c o n d e n s e r t o t h e l a s t e v a p o r a t o r e f f e c t may be o b t a i n e d ) .

The i n v e s t i g a t i o n s o f e v a p o r a t o r - r e c e i v e r b a l a n c e s can c o n v e n i e n t l y be

e x t e n d e d by d e t e r m i n i n g t h e o v e r a l l hea t t r a n s f e r c o e f f i c i e n t s i n t h e e v a p o r a t o r

b o d i e s , j u i c e h e a t e r s , vacuum pans and o t h e r e q u i p m e n t . ( T h e methods o f

m o n i t o r i n g t h e n e c e s s a r y d a t a and c a l c u l a t i n g t h e c o e f f i c i e n t s a r e d i s c u s s e d i n

C h a p t e r 7 . ) A b n o r m a l l y low h e a t t r a n s f e r i n t e n s i t i e s may be caused by t h e

f o l l o w i n g f a c t o r s e n c o u n t e r e d i n a l l t y p e s o f e v a p o r a t o r s and h e a t e x c h a n g e r s :

- s c a l e b u i l d - u p a f f e c t i n g h e a t i n g s u r f a c e s ;

- t o o h i g h a condensa te l e v e l i n t h e h e a t i n g chamber , due t o i n e f f i c i e n t

condensa te d r a i n a g e ;

Page 117: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

106

- d e c r e a s e d v a p o u r c o n d e n s a t i o n t e m p e r a t u r e , due t o t h e p r e s e n c e o f

noncondensab le g a s e s ;

- d e c r e a s e d v a p o u r c o n d e n s a t i o n t e m p e r a t u r e due t o t h e t h r o t t l i n g o f t h e v a p o u r

f l o w .

I n R o b e r t - t y p e e v a p o r a t o r s , t h e o v e r a l l hea t t r a n s f e r c o e f f i c i e n t s a r e

r e d u c e d when t o o h i g h j u i c e l e v e l s a re m a i n t a i n e d . Too low a h e a t t r a n s f e r

c o e f f i c i e n t i n t he f i r s t e v a p o r a t o r e f f e c t may a l s o i n d i c a t e t h a t t h e j u i c e

t e m p e r a t u r e a t t he e v a p o r a t o r i n l e t i s t o o l o w .

I n m u l t i p l e - p a s s t u b u l a r h e a t e r s , t h e hea t t r a n s f e r i n t e n s i t y may be

d e c r e a s e d when t he j u i c e - s i d e s e a l s between t h e passes a r e l e a k i n g . Leaky s e a l s

may cause t h e j u i c e f l o w i n c e r t a i n passes t o d e c r e a s e , w h i c h i s e q u i v a l e n t t o

a r e d u c t i o n o f t he e f f e c t i v e h e a t i n g s u r f a c e a r e a .

3.2 FUNDAMENTALS OF CORRECT OPERATION OF A THERMAL SYSTEM

3.2.1 Condensa te d r a i n a g e

One o f t he e s s e n t i a l r e q u i r e m e n t s o f p r o p e r steam o r v a p o u r h e a t i n g i s a

r e l i a b l e c o n d e n s a t e d r a i n a g e . W h i l e no condensa te s h o u l d accumu la te i n t h e

h e a t i n g chambers o f t he e q u i p m e n t , as t h i s wou ld r educe t h e e f f e c t i v e o v e r a l l

h e a t t r a n s f e r c o e f f i c i e n t , n e i t h e r s h o u l d v a p o u r o r steam be a l l o w e d t o f l o w

t h r o u g h condensa te l i n e s , as t h i s w o u l d be e q u i v a l e n t t o s h o r t - c i r c u i t i n g t h e

therma l s y s t e m . These c o n d i t i o n s can be s a t i s f i e d p r o v i d i n g t h e e n t i r e d r a i n a g e

subsys tem i s p r o p e r l y d e s i g n e d and m a i n t a i n e d . I m p o r t a n t p o i n t s a r e t h e

d imens ions o f t he components , t he l o c a t i o n s o f t h e c o n d e n s a t e - o u t l e t n o z z l e s ,

t h e p o s i t i o n i n g o f t h e condensa te p i p e s and t h e i r v e n t i n g , t h e t y p e , d i m e n s i o n s

and p o s i t i o n i n g o f t h e steam t r a p s and c o n n e c t i o n o f t h e c o n d e n s a t e p i p e s t o

c o r r e c t l y s e l e c t e d r e c e i v e r s . I n t h e e x i s t i n g l i t e r a t u r e , t h e r e a r e r e l a t i v e l y

few s o u r c e s i n w h i c h p r o p e r a t t e n t i o n has been p a i d t o t h e s e p rob lems ( r e f s .

3 , 4 ) .

The d e t a i l s o f a condensa te d r a i n may v a r y , depend ing on t h e p r e s s u r e l e v e l

i n t h e a s s o c i a t e d h e a t i n g chamber. A t h i g h e r p r e s s u r e s c o r r e s p o n d i n g t o e x h a u s t

steam and f i r s t - o r s e c o n d - e f f e c t v a p o u r , t h e c o n d e n s a t e u s u a l l y f l o w s o u t by

g r a v i t y and t h e escape o f v a p o u r i s p r e v e n t e d by a steam t r a p . F u r t h e r d e t a i l s

may depend on t h e t y p e o f steam t r a p s e l e c t e d . Fou r t y p e s a r e most w i d e l y

a p p l i e d i n b e e t - s u g a r f a c t o r i e s :

- f l o a t t y p e ;

- n o z z l e t y p e ;

- N i e s s n e r co lumns ;

- l e v e l c o n t r o l c i r c u i t s a c t i n g as steam t r a p s .

O t h e r d e s i g n s a r e a l s o known ( r e f s . 3 , 4 ) and new deve lopmen ts have r e c e n t l y been

r e p o r t e d ( r e f . 5 ) .

Page 118: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

107

A f l o a t - t y p e steam t r a p as shown i n F i g . 3 . 6 ( a ) i s a v e r y p o p u l a r d e v i c e .

A f l o a t opens o r c l o s e s t h e d i s c h a r g e v a l v e , depend ing on t h e c o n d e n s a t e l e v e l

i n t he t r a p . P r o v i d i n g i t i s w e l l m a i n t a i n e d and i t s s i z e has been c o r r e c t l y

chosen w i t h r e g a r d t o t h e a c t u a l o p e r a t i n g c o n d i t i o n s , t h i s d e v i c e e n s u r e s

a r e l i a b l e condensa te d r a i n a g e even a t l a r g e f l o w c h a n g e s . I t s h o u l d be p o i n t e d

o u t , h o w e v e r , t h a t t h e t r a p t h r o u g h p u t depends n o t o n l y on i t s s i z e , b u t a l s o

on t he p r e s s u r e d i f f e r e n c e between t he i n l e t and o u t l e t n o z z l e s .

M a l f u n c t i o n s o f f l o a t - t y p e steam t r a p s a r i s e m o s t l y because o f wear i n t h e

moving p a r t s . A damaged v a l v e s e a t o r v a l v e head may cause v a p o u r l e a k s , and

a damaged l e v e r sys tem may r e s u l t i n v a l v e l o c k - o u t , c a u s i n g i n s u f f i c i e n t

condensa te d r a i n a g e o r steam l e a k s . I t s h o u l d a l s o be remembered t h a t b e f o r e

normal s t e a m - t r a p o p e r a t i o n i s a t t a i n e d d u r i n g a f a c t o r y s t a r t - u p , v e n t i n g o f

t he t r a p chamber i s n e c e s s a r y . C o n s e q u e n t l y , t h e a p p l i c a t i o n s o f f l o a t - t y p e

steam t r a p s a r e a s s o c i a t e d w i t h a r e q u i r e m e n t f o r a c a r e f u l m a i n t e n a n c e . I t i s

t h e r e f o r e n e c e s s a r y t o i n s t a l l t h e d e v i c e s i n e a s i l y a c c e s s i b l e p l a c e s and t o

e q u i p t he d r a i n a g e l i n e s w i t h s h u t - o f f v a l v e s and b y - p a s s s e c t i o n s . I f t h e s e

c o n d i t i o n s a r e n o t s a t i s f i e d , t hen l e a k y steam t r a p s may e a s i l y become a cause

o f r e d u c e d e v a p o r a t o r t h r o u g h p u t o r i n c r e a s e d steam c o n s u m p t i o n .

( a ) ( b )

3J 2 \

F i g . 3 . 6 . Steam t r a p s : ( a ) f l o a t t y p e , ( b ) n o z z l e t y p e . 1 - i n l e t , 2 - o u t l e t , 3 - v e n t , 4 - v a l v e , 5 - f l o a t , 6 - d i a p h r a g m s , 7 - t h r o u g h p u t a d j u s t m e n t s p i n d l e .

A n o t h e r t y p e o f steam t r a p i s t h e n o z z l e d e s i g n shown i n F i g . 3 . 6 ( b ) . I t s

w o r k i n g p r i n c i p l e c o n s i s t s o f t h r o t t l i n g t h e v a p o u r f l o w w h i l e a l l o w i n g f o r a

r e l a t i v e l y f r e e c o n d e n s a t e f l o w . The t h r o t t l i n g e f f e c t i s o b t a i n e d i n a n o z z l e

e q u i p p e d w i t h a sys tem o f d iaphragms w i t h h o l e s o f a r e a s a d j u s t e d t o t h e

o p e r a t i n g c o n d i t i o n s . T h i s d e v i c e i s sma l l and e a s y t o i n s t a l l , and as t h e r e a r e

no c o n s t a n t l y moving p a r t s , a h i g h mechan ica l r e l i a b i l i t y i s e n s u r e d . H o w e v e r ,

t he e f f i c i e n c y o f t he steam t r a p may v a r y w i t h v a r i a b l e o p e r a t i n g c o n d i t i o n s .

Page 119: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

108

and f o r condensa te f l o w s w e l l be low t h e i r nominal v a l u e , v a p o u r l e a k s a r e

u n a v o i d a b l e .

I n c e r t a i n d e s i g n s , i t i s p o s s i b l e t o a d j u s t t h e p o s i t i o n o f t he d iaphragms

f o r changed t h r o u g h p u t . T h r o t t l i n g t h e f l o w t o o much, h o w e v e r , may cause t h e

condensa te l e v e l i n t he h e a t i n g chamber t o r i s e e x c e s s i v e l y . N o z z l e - t y p e steam

t r a p s a r e t h e r e f o r e p r e f e r r e d where condensa te d r a i n a g e f rom equ ipment hea ted

w i t h an a lmos t c o n s t a n t steam f l o w , l i k e e v a p o r a t o r s , i s r e q u i r e d .

Vapour l e a k s caused by r a p i d f l o w changes o f s h o r t d u r a t i o n can be e l i m i n a t e d

i f t he n o z z l e - t y p e t r a p i s p r e c e d e d by a w a t e r s e a l i n a U - t u b e , F i g . 3 . 7 ( a ) .

A t r educed f l o w , t he condensa te l e v e l i n t h e i n l e t l e g o f t h e U - t u b e i s l o w e r e d ,

r e d u c i n g t h e p r e s s u r e d i f f e r e n c e a c r o s s t h e steam t r a p and t h u s r e d u c i n g i t s

t h r o u g h p u t . T h i s s o l u t i o n can be recommended f o r t h e c o n n e c t i o n s between t h e

condensa te t anks c o l l e c t i n g t h e c o n d e n s a t e s f rom t h e i n d i v i d u a l e v a p o r a t o r

e f f e c t s . S i m i l a r a r rangemen ts a r e a l s o n e c e s s a r y when a p p l y i n g n o z z l e - t y p e steam

t r a p s i n t h e condensa te d r a i n s a t t a c h e d t o b a t c h vacuum p a n s , where p e r i o d i c

changes o f t he condensa te f l o w o c c u r . T h i s a p p l i c a t i o n case i s s c h e m a t i c a l l y

shown i n F i g . 3 . 7 ( b ) .

( a )

Ε in

I- l . J

(b )

Ε

i - t h e f f e c t v a p o u r

1 t o ( i * l ) t h e f f e c t

1 ' "

L.J

v a p o u r

F i g . 3 . 7 . Recommended a r rangemen ts o f condensa te d r a i n s f e a t u r i n g n o z z l e - t y p e steam t r a p s : ( a ) between two condensa te t a n k s , ( b ) between a vacuum pan and a condensa te m a n i f o l d . 1 - steam t r a p , 2 - n o n - r e t u r n v a l v e , 3 - vacuum p a n , 4 - condensa te m a n i f o l d .

A N i e s s n e r column i s a s i m p l e and s e l f - r e g u l a t i n g d e v i c e r e q u i r i n g o n l y t h a t

enough space i s a v a i l a b l e f o r i t s i n s t a l l a t i o n . The p l a c i n g o f t h e column

r e l a t i v e t o t he h e a t i n g chamber i s shown i n F i g . 3 . 8 . The e f f e c t i v e h e i g h t Η

s h o u l d be l a r g e enough t o g u a r a n t e e t h a t t h e w a t e r s e a l can work p r o p e r l y even

i f t he p r e s s u r e d i f f e r e n c e between t h e h e a t i n g chamber and t h e c o l u m n ' s v a p o u r

chamber i n c r e a s e s due t o pa ramete r f l u c t u a t i o n s o r t o f o u l e d h e a t i n g s u r f a c e s

i n t h e e v a p o r a t o r s t a t i o n . Component s h o u l d be n o t l e s s t han 3 m t o

compensate f o r t h e p r e s s u r e f l u c t u a t i o n s , and component s h o u l d be sma l l

enough t o p r e v e n t t he condensa te f rom a c c u m u l a t i n g i n t he h e a t i n g chamber a t

Page 120: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

109

c o n d e n s a t e

F i g . 3 .8 . Scheme o f a condensa te d r a i n a g e l i n e f e a t u r i n g a N i e s s n e r co lumn. 1 - e v a p o r a t o r , 2 - l e v e l g a u g e , 3 - t h r o t t l i n g v a l v e .

a r e d u c e d p r e s s u r e d i f f e r e n c e a c r o s s t h e co lumn . These r e q u i r e m e n t s can be

s t a t e d i n t h e form o f i n e q u a l i t i e s

where Δρ and Δρ . a r e t h e maximum and minimum p r e s s u r e d i f f e r e n c e s , γ i s max mi η c

t h e d e n s i t y o f c o n d e n s a t e i n t h e c e n t r a l p i p e , and g i s t h e a c c e l e r a t i o n o f

g r a v i t y .

I f t h e h e i g h t i s t o o s m a l l , t h e e f f i c i e n c y o f t h e column can be improved by

i n s t a l l i n g a t h r o t t l i n g v a l v e a t t h e c o n d e n s a t e i n l e t . T h i s causes t h e

condensa te l e v e l i n t h e i n l e t p i p e t o r i s e , t h u s c r e a t i n g an a d d i t i o n a l

s a f e g u a r d a g a i n s t v a p o u r e n t e r i n g t he co lumn .

A l l t h e s h o r t c o m i n g s o f t h e c l a s s i c a l steam t r a p s can be a v o i d e d by a p p l y i n g

a c o n t r o l c i r c u i t c o n s i s t i n g o f a l e v e l t r a n s d u c e r , c o n t r o l l e r and c o n t r o l

v a l v e . I t i s a r r a n g e d t o m a i n t a i n a s t a b l e w a t e r s e a l i n t h e d r a i n a g e l i n e . Such

a d e v i c e i s h i g h l y r e l i a b l e , and e a s y t o o p e r a t e and m a i n t a i n . When used i n

a condensa te d r a i n a g e subsys tem c o n n e c t e d t o a m u l t i p l e - e f f e c t e v a p o r a t o r , i t

can e l i m i n a t e t h e steam o r v a p o u r l e a k s between t h e e v a p o r a t o r e f f e c t s

c o m p l e t e l y . A q u a d r u p l e - e f f e c t e v a p o r a t o r w i t h a c o n d e n s a t e d r a i n a g e subsys tem

emp loy ing t h i s i d e a i s shown s c h e m a t i c a l l y i n F i g . 3 . 9 . The c o n d e n s a t e d r a i n a g e

f rom the f i r s t and second e f f e c t s , and t he c o n d e n s a t e f l o w between t h e

condensa te t a n k s , a r e l e v e l - c o n t r o l l e d .

Page 121: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

110

to main condensate tank

condensate re turned from heaters and vacuum pans

F i g . 3 . 9 . Scheme o f a condensa te d r a i n a g e subsys tem f e a t u r i n g l e v e l - c o n t r o l l e d h y d r a u l i c s e a l s and condensa te t a n k s .

I n a condensa te d r a i n c o n n e c t e d t o a h e a t i n g chamber o p e r a t e d a t a low

p r e s s u r e , t he escape o f v a p o u r can be e f f e c t i v e l y p r e v e n t e d w i t h o u t u s i n g a

steam t r a p ; i t i s enough t o c o n n e c t t he d r a i n a g e p i p e t o t h e bot tom p a r t o f a

c l o s e d c o n d e n s a t e tank i n w h i c h a c e r t a i n minimum l e v e l o f t he c o n d e n s a t e i s

a l w a y s m a i n t a i n e d . Sometimes t h e d r a i n a g e p i p e can be formed as a U - t u b e , o r

s i p h o n , w i t h t h e two l i q u i d columns i n t h e l e g s o f t he U - t u b e a c t i n g as a

p r e s s u r e - b a l a n c i n g d e v i c e and a h y d r a u l i c s e a l . The s i p h o n can a l s o be used t o

l e t t h e condensa te f l o w f rom one v e s s e l t o a n o t h e r when a d e f i n i t e p r e s s u r e

d i f f e r e n c e between t he v e s s e l s i s t o be m a i n t a i n e d . I t i s i m p o r t a n t t o choose

t h e h e i g h t o f t h e s i p h o n w i t h a s u f f i c i e n t s a f e t y marg in o f a t l e a s t 50%, making

i t p o s s i b l e t o n e u t r a l i z e t h e p r e s s u r e f l u c t u a t i o n s and t h e condensa te f l a s h i n

t h e l o w - p r e s s u r e l e g o f t h e U - t u b e . I n o r d e r t o a v o i d t h e r i s k o f t h e l i q u i d

column b e i n g d e s t r o y e d by t he f l a s h v a p o u r , t he d i a m e t e r o f t h e l o w - p r e s s u r e l e g

s h o u l d be s u f f i c i e n t l y l a r g e t o l i m i t t h e f l o w v e l o c i t y o f t h e c o n d e n s a t e

(assumed t o be f r e e o f v a p o u r b u b b l e s ) t o abou t 0.6 m/s .

I n t he condensa te d r a i n a g e subsys tem shown i n F i g . 3 . 9 , t h e f l o w o f

c o n d e n s a t e s f rom t h e t h i r d and f o u r t h e v a p o r a t o r e f f e c t s and f rom t h e j u i c e

h e a t e r s s u p p l i e d w i t h s e c o n d - , t h i r d - and f o u r t h - e f f e c t v a p o u r s i s

g r a v i t a t i o n a l . As t he condensa te t a n k s a r e l e v e l - c o n t r o l l e d , t h e d r a i n a g e p i p e s

can be c o n n e c t e d t o t h e condensa te t a n k s w i t h o u t u s i n g s i p h o n s .

S p e c i a l condensa te d r a i n a g e p rob lems a r e a s s o c i a t e d w i t h i n t e r m i t t e n t

o p e r a t i o n o f t he b a t c h vacuum p a n s , t h e l a r g e d i s t a n c e between t h e pans and t h e

Page 122: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

in

e v a p o r a t o r be ing a c o n t r i b u t i n g f a c t o r . The r e a s o n i s t h a t t h e p r e s s u r e i n t h e

h e a t i n g chambers o f t h e i n d i v i d u a l pans i s s u b j e c t t o l a r g e f l u c t u a t i o n s . D u r i n g

s teaming and o t h e r a u x i l i a r y phases o f t h e b o i l i n g c y c l e , t h e v a p o u r s u p p l y

v a l v e i s c l o s e d w h i l e t he v e n t i n g v a l v e rema ins o p e n , t h i s c a u s i n g t h e p r e s s u r e

i n t h e h e a t i n g chamber t o f a l l . D u r i n g t h e s y r u p - t h i c k e n i n g p h a s e , when t h e h e a t

demand i s l a r g e s t , a l a r g e v a p o u r f l o w r e s u l t s i n a c o n s i d e r a b l e p r e s s u r e l o s s

i n t he s u p p l y l i n e . As t h e v a p o u r f l o w i s much s m a l l e r d u r i n g t h e c r y s t a l - g r o w t h

p h a s e , t he c o r r e s p o n d i n g p r e s s u r e l o s s i s a l s o s m a l l e r . As a c o n s e q u e n c e , even

i f a l l t h e vacuum pans a r e s u p p l i e d w i t h v a p o u r f rom t h e same e v a p o r a t o r e f f e c t ,

t he p r e s s u r e d i f f e r e n c e between t he h e a t i n g chambers o f two vacuum p a n s , one o f

them i n t h e s y r u p - t h i c k e n i n g and t h e o t h e r i n t h e c r y s t a l - g r o w t h p h a s e , may

e a s i l y a t t a i n v a l u e s abou t 0.5 b a r .

I f a condensa te d r a i n c a n n o t a d e q u a t e l y r e s p o n d t o p r e s s u r e f l u c t u a t i o n s ,

t h e r e may be a t e n d e n c y t o w a r d s c o n d e n s a t e a c c u m u l a t i o n i n t h e h e a t i n g chamber

d u r i n g t h e p e r i o d s o f d e c r e a s e d p r e s s u r e . On t h e o t h e r h a n d , when t h e p r e s s u r e

i s r a i s e d , a v a p o u r l e a k may o c c u r i n t h e c o n d e n s a t e l i n e . D r a i n a g e m a l f u n c t i o n s

a re p o s s i b l e even w i t h c o r r e c t l y w o r k i n g steam t r a p s , when t h e d e v i c e s a r e

i n s t a l l e d t o o h i g h ( r e l a t i v e t o t h e h e a t i n g chamber) o r t h e i r o u t l e t s a r e

c o n n e c t e d t o a m a n i f o l d o f t o o smal l a d i a m e t e r .

L e t us a n a l y s e t h e o p e r a t i o n o f a c o n d e n s a t e d r a i n a g e subsys tem e q u i p p e d w i t h

f l o a t - t y p e steam t r a p s , as shown i n F i g . 3 .10 . The c o n d e n s a t e m a n i f o l d i s

c o n n e c t e d t o t h e c o n d e n s a t e tank i n t h e e v a p o r a t o r e f f e c t n e x t t o t h e one

s u p p l y i n g t h e h e a t i n g v a p o u r . Even though t h e c o n d e n s a t e l e a v i n g t h e h e a t i n g

i-th effect vapour

\ Ζ 7 to( i^1) th effect^ vapour

F i g . 3 .10 . P r i n c i p l e o f c o n d e n s a t e d r a i n a g e f rom vacuum pans u s i n g f l o a t - t y p e steam t r a p s and a c o n d e n s a t e m a n i f o l d c o n n e c t e d t o a t a n k .

chambers o f t h e vacuum pans may be s u b c o o l e d , t h a t i s , i t s t e m p e r a t u r e may be

l o w e r t han t h a t o f t he h e a t i n g v a p o u r , i t b e g i n s t o b o i l as soon as i t has

passed t he t r a p and i s e x p o s e d t o t h e p r e s s u r e c o r r e s p o n d i n g t o t h e n e x t

e v a p o r a t o r e f f e c t . The r e s u l t i n g i n c r e a s e o f a v e r a g e s p e c i f i c vo lume i n d u c e s an

Page 123: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

112

i n c r e a s e d f l o w v e l o c i t y and a l a r g e r p r e s s u r e l o s s i n t h e m a n i f o l d , t h i s l e a d i n g

t o a r e d u c e d sys tem t h r o u g h p u t and a t e n d e n c y t o w a r d s c o n d e n s a t e a c c u m u l a t i o n i n

t h e i n d i v i d u a l d r a i n s and h e a t i n g chambers .

The s i t u a t i o n d e s c r i b e d can be p r e v e n t e d by i n c r e a s i n g t h e h e i g h t o f t h e

condensa te l e g i n t h e l i n e c o n n e c t i n g t h e h e a t i n g chamber and t h e steam t r a p ,

t h a t i s , by i n s t a l l i n g t h e steam t r a p a t l e a s t 5-6 m be low t h e c o n d e n s a t e o u t l e t

n o z z l e . I n l a r g e - c a p a c i t y s u g a r f a c t o r i e s where t h e vacuum pans must be l o c a t e d

a t a r e l a t i v e l y l ong d i s t a n c e f rom the e v a p o r a t o r , i t i s a d v i s a b l e t o i n s t a l l

a s e p a r a t e condensa te tank c o l l e c t i n g t he c o n d e n s a t e f rom the vacuum p a n s .

Mutua l i n t e r f e r e n c e between t h e pans can be p r e v e n t e d by e l i m i n a t i n g t h e

m a n i f o l d , t h a t i s , c o n n e c t i n g t h e i n d i v i d u a l d r a i n a g e l i n e s d i r e c t l y t o t h e

condensa te t a n k .

Among o t h e r d r a i n a g e v e r s i o n s , a s o l u t i o n based on t h e a p p l i c a t i o n o f a n o n

r e t u r n v a l v e i n s t e a d o f a steam t r a p i s p a r t i c u l a r l y s e n s i t i v e t o t h e r e l a t i o n

between t he l e v e l d i f f e r e n c e and t h e magn i tude o f p r e s s u r e f l u c t u a t i o n s .

R e l i a b l e o p e r a t i o n can be a c h i e v e d u s i n g t h e c o n f i g u r a t i o n shown i n F i g . 3 .11 ,

where t he l e v e l - c o n t r o l p r i n c i p l e i s i n t r o d u c e d t o e l i m i n a t e t h e v a p o u r l e a k s

accompany ing p r e s s u r e peaks i n t h e h e a t i n g chambers o f t he p a n s .

10-12m

F i g . 3 .11. Scheme o f condensa te d r a i n a g e f rom vacuum pans u s i n g n o n - r e t u r n v a l v e s and a l e v e l - c o n t r o l l e d condensa te t a n k .

3 .2 .2 V e n t i n g o f n o n c o n d e n s a b l e s

The e l e v a t e d j u i c e t e m p e r a t u r e i n t h e e v a p o r a t o r causes the rma l decay o f

am ides , b i c a r b o n a t e s , i n v e r t s u g a r and s u c r o s e . As a r e s u l t , ammonia and c a r b o n

d i o x i d e a r e p r o d u c e d . I n a d d i t i o n , p r e s s u r e d r o p s a s s o c i a t e d w i t h j u i c e f l o w

between t he c o n s e c u t i v e e v a p o r a t o r e f f e c t s c o n t r i b u t e t o t h e l i b e r a t i o n o f a i r

d i s s o l v e d i n t h e j u i c e . The p r e s e n c e o f t h e s e gases (known as n o n c o n d e n s a b l e s )

i n h e a t i n g v a p o u r s s h o u l d be r e g a r d e d as an i m p o r t a n t f a c t o r t o be k e p t under

c o n t r o l .

I t i s d i f f i c u l t t o e v a l u a t e t h e amount o f n o n c o n d e n s a b l e s p r o d u c e d i n t h e

e v a p o r a t o r . The amount o f ammonia was e s t i m a t e d a t 0.015 kg/100 kg b by C l a a s s e n

Page 124: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

113

( r e f . 7) and 0.005-0.017 kg/100 kg b by D o b r z y c k i ( r e f . 8 ) . The t o t a l amount o f

noncondensab les was e s t i m a t e d a t 0 .024-0.032 kg/100 kg b by Gorokh ( r e f . 9 ) .

An e s t i m a t e g i v e n by Koren ( r e f . 1 0 ) o f t h e c o n c e n t r a t i o n o f n o n c o n d e n s a b l e s i n

t h i r d - e f f e c t v a p o u r f rom a q u a d r u p l e - e f f e c t e v a p o r a t o r was 2 .0-5 .6%. I t seems

t h a t t he a c t u a l f i g u r e s c h a r a c t e r i z i n g t h e p r o c e s s i n g o f b e e t s o f i n f e r i o r

q u a l i t y ( f o l l o w i n g p r o l o n g e d s t o r a g e o r f r o s t damage) may be even h i g h e r .

A t a c o n s t a n t t o t a l p r e s s u r e o f t h e g a s / v a p o u r m i x t u r e i n t h e h e a t i n g chamber

o f an e v a p o r a t o r b o d y , t h e b u i l d - u p o f n o n c o n d e n s a b l e s causes t he p a r t i a l

p r e s s u r e o f v a p o u r t o d e c r e a s e . As a r e s u l t , t h e c o n d e n s a t i o n t e m p e r a t u r e

d e c r e a s e s and t h e e f f e c t i v e t e m p e r a t u r e d i f f e r e n c e between h e a t i n g v a p o u r and

j u i c e i s r e d u c e d . L e t us o b s e r v e t h a t when a t y p i c a l t e m p e r a t u r e d i f f e r e n c e o f

10 Κ i s r e d u c e d by as l i t t l e as 1 .5-2.0 K, t h e r e s u l t i n g r e d u c t i o n o f t h e amount

o f hea t t r a n s f e r r e d i s 15-20%. More d a t a i l l u s t r a t i n g t h e impac t o f

noncondensab les on t h e t e m p e r a t u r e d i f f e r e n c e a f f e c t i n g t he hea t t r a n s f e r a r e

p r e s e n t e d i n T a b l e 3 . 2 .

I t s h o u l d be p o i n t e d o u t t h a t t h e r e a r e a l s o o t h e r d i s a d v a n t a g e o u s

consequences o f t h e p r e s e n c e o f n o n c o n d e n s a b l e s . W h i l e t he f i l m c o e f f i c i e n t o f

h e a t t r a n s f e r a t a h e a t i n g s u r f a c e where t h e c o n d e n s a t i o n o f pu re steam t a k e s

p l a c e i s o f t h e o r d e r o f 10 000 W / ( m ^ K ) , i t does n o t e x c e e d 100 W/(m^K) a t

a s u r f a c e exposed t o a i r . C o n s e q u e n t l y , when t h e s u r f a c e i s exposed t o a m i x t u r e

o f v a p o u r and n o n c o n d e n s a b l e s , t h e f i l m c o e f f i c i e n t o f h e a t t r a n s f e r may be

s u b s t a n t i a l l y r e d u c e d . A t 0 .5-1.0% n o n c o n d e n s a b l e s i n t h e m i x t u r e , t h e r e d u c t i o n

o f t he c o e f f i c i e n t r e l a t i v e t o i t s p u r e - v a p o u r v a l u e i s abou t 50-60%. G e n e r a l l y ,

t h e f i l m c o e f f i c i e n t o f hea t t r a n s f e r i s i n v e r s e l y p r o p o r t i o n a l t o t h e s q u a r e

r o o t o f t h e mass c o n c e n t r a t i o n o f n o n c o n d e n s a b l e s ( r e f . 1 2 ) .

I n o r d e r t o p r e v e n t an e x c e s s i v e c o n c e n t r a t i o n o f n o n c o n d e n s a b l e s , t h e g a s /

v a p o u r m i x t u r e s h o u l d be c o n t i n u o u s l y v e n t e d . W h i l e i t i s p o p u l a r i n p r a c t i c e t o

d i s c h a r g e t h e m i x t u r e t o t h e c o n d e n s e r o r d i r e c t l y t o t h e a t m o s p h e r e , cascade

v e n t i n g between c o n s e c u t i v e e v a p o r a t o r e f f e c t s has been recommended by some

a u t h o r s . The a d v a n t a g e s o f t h i s method a r e h i g h l y d u b i o u s because o f t h e

a c c u m u l a t i o n o f n o n c o n d e n s a b l e s i n f i n a l e v a p o r a t o r e f f e c t s , t h i s making i t

n e c e s s a r y t o v e n t t o t he c o n d e n s e r anyway . A n o t h e r consequence o f cascade

v e n t i n g i s t h a t a t c o n s t a n t h e a t i n g - v a p o u r demand i n t h e the rma l s y s t e m , w a t e r

e v a p o r a t i o n i n t h e e v a p o r a t o r i s r e d u c e d because t h e v a p o u r v e n t e d r e p l a c e s

a p a r t o f t h e v a p o u r w h i c h w o u l d o t h e r w i s e be g e n e r a t e d i n t he a c t u a l e v a p o r a t o r

e f f e c t i t s e l f .

The most e f f e c t i v e method t o v e n t t h e e v a p o r a t o r b o d i e s i s t o l e t t h e e n t i r e

amount o f v a p o u r f rom the p r e c e d i n g e f f e c t f l o w t h r o u g h t h e h e a t i n g chamber i n

t he n e x t e f f e c t . As a p a r t o f t he n o n c o n d e n s a b l e s becomes d i s s o l v e d i n t h e

c o n d e n s a t e , t h e r e s t i s s u p p l i e d i n t h e h e a t i n g v a p o u r t o t h e j u i c e h e a t e r s .

Page 125: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

114

TABLE 3.2

R e d u c t i o n o f t h e e f f e c t i v e t e m p e r a t u r e d i f f e r e n c e due t o t h e p r e s e n c e o f a i r i n t h e c o n d e n s i n g v a p o u r , as a f u n c t i o n o f mass c o n c e n t r a t i o n o f a i r , t o t a l p r e s s u r e and t h e o r e t i c a l t e m p e r a t u r e d i f f e r e n c e A t .

( b a r ) ( K ) 2.5 5 7.5 10

0.3 5 11.5 22.9 34.8 48.1 10 5.8 11.5 17.4 24.0 15 3.8 7.6 11.6 16.0 20 2.9 5.7 8.7 12.0

0.5 5 12.6 25.4 39.0 52.1 10 6.3 12.7 19.5 26.0 15 4 .2 8.5 13.0 17.4 20 3.2 6.4 9.8 13.0

0.75 5 13.3 27.2 41.2 55.0 10 6.7 13.6 20.6 27.5 15 4 .4 9.1 13.7 18.3 20 3.3 6.8 10.3 13.8

1.0 5 14.7 28.6 43.9 58.4 10 7.3 14.3 21.9 29.2 15 4 .9 9.5 14.6 19.5 20 3.7 7.1 11.0 14.7

1.5 5 15.2 30.9 46.6 62.4 10 7.6 15.5 23.3 31.2 15 5.1 10.3 15.5 20.8 20 3.8 7.8 11.7 15.6

2.0 5 15.8 32.2 48.8 66.0 10 7.9 16.1 24.4 33.0 15 5.3 10.7 16.3 22.0 20 4 .0 8.1 12.2 16.5

2.5 5 16.6 33.6 51.0 69.0 10 8.3 16.8 25.5 34.5 15 5.5 11.2 17.0 23.0 20 4 .2 8.2 12.8 17.9

3.0 5 17.0 35.0 52.6 71.2 10 8.5 17.5 26.3 35.6 15 5.7 11.7 17.5 23.7 20 4 .3 8.8 13.5 17.8

3.5 5 17.8 35.6 54.0 73.2 10 8.9 17.8 27.0 36.6 15 5.9 11.9 18.0 24.4 20 4 .5 8.9 13.5 18.3

vacuum pans and o t h e r r e c e i v e r s . An i n c r e a s e d c o n c e n t r a t i o n o f n o n c o n d e n s a b l e s

i n t h e h e a t i n g chambers o f h e a t r e c e i v e r s causes l e s s i n c o n v e n i e n c e t h e r e t han

i n t h e e v a p o r a t o r , because t h e a c t u a l t e m p e r a t u r e d i f f e r e n c e s a r e l a r g e r t han

t h o s e c h a r a c t e r i s t i c o f t h e e v a p o r a t o r b o d i e s .

A v e n t i n g sys tem based on v a p o u r w i t h d r a w a l f rom t h e h e a t i n g chambers o f

Page 126: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

115

a q u a d r u p l e - e f f e c t e v a p o r a t o r i s shown s c h e m a t i c a l l y i n F i g . 3.12 ( r e f . 6 ) . The

e n t i r e amount o f n o n c o n d e n s a b l e s l i b e r a t e d i n t h e f i r s t e f f e c t and abou t h a l f o f

t he gases f rom t h e second e f f e c t a r e d i r e c t e d t o t h e h e a t e r b e f o r e t h e second

c a r b o n a t a t i o n . T h i r d - e f f e c t v a p o u r and n o n c o n d e n s a b l e s w i t h d r a w n f rom t h e

h e a t i n g chamber o f t h e f o u r t h e f f e c t a r e s u p p l i e d t o t h e h e a t e r b e f o r e h o t main

l i m i n g . I n o r d e r t o m i n i m i z e v a p o u r l o s s e s when v e n t i n g t h e h e a t i n g chambers o f

t h e h e a t e r s named, a u t o m a t i c c o n t r o l can be a p p l i e d by u t i l i z i n g t h e phenomenon

o f c o n d e n s a t i o n t e m p e r a t u r e changes accompany ing t h e changes o f gas

c o n c e n t r a t i o n . The s i g n a l f rom t h e j u i c e - t e m p e r a t u r e c o n t r o l l e r i s a c t i n g , v i a

c o r r e c t i o n e l e m e n t s , on a c o n t r o l v a l v e i n t h e v a p o u r s u p p l y l i n e and a n o t h e r i n

t h e v e n t i n g l i n e . The c o r r e c t i o n e lemen ts a r e t r a n s f o r m i n g t h e s i g n a l i n such

a way t h a t a t t o o h i g h a j u i c e t e m p e r a t u r e , t h e v e n t i n g v a l v e c l o s e s f i r s t and

t h e v a p o u r v a l v e s e c o n d . A t t o o low a j u i c e t e m p e r a t u r e , t h e v a p o u r v a l v e opens

f i r s t and t h e v e n t i n g v a l v e s e c o n d .

Media heated:

α - thin juice

b - clear juice

c - limed juice

steam iL

Pi to the

condenser

F i g . 3 .12 . Scheme o f a v e n t i n g subsys tem f e a t u r i n g a u t o m a t i c c o n t r o l o f t h e d i s c h a r g e o f n o n c o n d e n s a b l e s f rom t h e h e a t i n g chambers o f j u i c e h e a t e r s .

P r a c t i c a l e x p e r i e n c e w i t h t h e above s o l u t i o n i s s a t i s f a c t o r y . N o r m a l l y , t h e

v e n t i n g v a l v e opens o n l y t e m p o r a r i l y , a t t o o low j u i c e t e m p e r a t u r e s i n d u c e d by

j u i c e - f l o w f l u c t u a t i o n s . When t h e v e n t i n g v a l v e c l o s e s , t h e c o n c e n t r a t i o n o f

n o n c o n d e n s a b l e s i n t h e h e a t i n g chamber i s i n c r e a s e d t o a l e v e l e n a b l i n g t h e

gases t o become d i s s o l v e d i n t h e c o n d e n s a t e and d r a i n e d w i t h o u t v a p o u r l o s s .

Howeve r , t h e c o n d e n s a t e s h o u l d be d i r e c t e d t o t h e ammonia-water t ank r a t h e r t han

t o t he condensa te t a n k , because t h e gases l i b e r a t e d by t h e c o n d e n s a t e f l a s h may

o t h e r w i s e r e - e n t e r t h e e v a p o r a t o r .

A n o t h e r c o n t r o l method f o r t h e v e n t i n g o f n o n c o n d e n s a b l e s f rom t h e h e a t i n g

chambers o f e v a p o r a t o r b o d i e s has been t e s t e d i n t h e P o l i s h s u g a r i n d u s t r y

Page 127: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

116

( r e f . 1 3 ) . The b u i l d - u p o f n o n c o n d e n s a b l e s t a k i n g p l a c e i n a h e a t i n g chamber can

be d e t e c t e d by compar ing t he t e m p e r a t u r e s o f t h e h e a t i n g v a p o u r f l o w i n g i n t h e

i n l e t n o z z l e and t h a t c o n d e n s i n g a t t h e h e a t i n g s u r f a c e . The s i g n a l f rom a

s p e c i a l t r a n s m i t t e r measur ing t h e t e m p e r a t u r e d i f f e r e n c e may be s u p p l i e d t o an

a u t o m a t i c c o n t r o l l e r open ing t h e v e n t i n g v a l v e .

3 .2 .3 S c a l e p r e v e n t i o n and removal

A c o n s i d e r a b l e q u a n t i t y o f t h e i m p u r i t i e s p r e s e n t i n t h i n j u i c e becomes l e s s

s o l u b l e as t he c o n c e n t r a t i o n o f t h e j u i c e r i s e s , and some o f t h e s e i m p u r i t i e s

may d e p o s i t on t h e h e a t i n g s u r f a c e s o f t he e v a p o r a t o r b o d i e s , f o r m i n g a h a r d

s c a l e . Be ing a poo r c o n d u c t o r o f h e a t , t h e s c a l e d e c r e a s e s t h e h e a t t r a n s f e r

c o e f f i c i e n t s a c r o s s t h e h e a t i n g s u r f a c e s . C o n s e q u e n t l y , t h e e v a p o r a t o r

t h r o u g h p u t i s r e d u c e d and can be a d j u s t e d t o t h e r e q u i r e d v a l u e o n l y i f t h e

t e m p e r a t u r e d i f f e r e n c e s a re i n c r e a s e d , w i t h i n c r e a s e d steam consumpt ion as a

r e s u l t .

The d i s a d v a n t a g e o u s e f f e c t s o f s c a l e f o r m a t i o n depend on t h e the rma l

c o n d u c t i v i t y o f d e p o s i t s and t he s c a l e t h i c k n e s s . The g o v e r n i n g e q u a t i o n i s

k = l / ( l / a ^ + ό / λ + ό ^ / λ ^ + Ι / α ^ ) ( 3 . 4 )

where k i s t h e o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t , a-j and a r e t h e f i l m

c o e f f i c i e n t s o f h e a t t r a n s f e r on t h e j u i c e s i d e and t he v a p o u r s i d e ,

r e s p e c t i v e l y , δ and a re t he t h i c k n e s s e s o f t h e tube w a l l and t h e d e p o s i t

l a y e r , r e s p e c t i v e l y , and λ and a r e t h e the rma l c o n d u c t i v i t i e s o f t h e t u b e

m a t e r i a l and d e p o s i t s , r e s p e c t i v e l y .

The therma l c o n d u c t i v i t y o f d e p o s i t s may v a r y i n t h e range 0 .08-2 .00 W / ( m K ) ,

depend ing on t h e chemica l c o m p o s i t i o n and s t r u c t u r e o f t h e d e p o s i t e d s u b s t a n c e .

T h e r e f o r e , a v e r y t h i n s c a l e may be enough t o a f f e c t t h e h e a t t r a n s f e r

s e r i o u s l y . The l a r g e r t he i n i t i a l o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t

c o r r e s p o n d i n g t o a c l e a n h e a t i n g s u r f a c e , t he more p ronounced i s t h i s e f f e c t , as

shown i n F i g . 3 .13 .

The k i n d o f s c a l e d e p o s i t e d by t he j u i c e d u r i n g e v a p o r a t i o n o b v i o u s l y depends

on many f a c t o r s , and p r i n c i p a l among them i s t h e c o m p o s i t i o n o f m i n e r a l s a l t s i n

t h e raw j u i c e . The j u i c e p u r i f i c a t i o n method a l s o has a marked e f f e c t , as w e l l

as t h e a p p l i c a t i o n o f j u i c e d e c a l c i f i c a t i o n t e c h n i q u e s .

I t i s p o s s i b l e t o p r e v e n t t h e f o r m a t i o n o f s c a l e by u s i n g v a r i o u s a d d i t i o n

p r o d u c t s , a l t h o u g h no p a r t i c u l a r p r o d u c t i s u n i v e r s a l l y e f f i c i e n t i f used w i t h

d i f f e r e n t raw j u i c e p r o p e r t i e s and d i f f e r e n t p u r i f i c a t i o n methods . I n t h e D a n i s h

s u g a r i n d u s t r y , where t he c o n t e n t o f c a l c i u m s a l t s i n b e e t s i s u s u a l l y v e r y l o w ,

s c a l e p r e v e n t i o n i s s i m p l y based on soda a d d i t i o n t o t h e second c a r b o n a t a t i o n .

A number o f m a n u f a c t u r e r s a r e o f f e r i n g p r e p a r a t i o n s based on o r g a n o p h o s p h a t e s

o r p o l y e l e c t r o l y t e s as s c a l e - p r e v e n t i n g a g e n t s , c l a i m i n g a r e d u c t i o n o f s c a l i n g

Page 128: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

117

SI

o

1.0

0 .8 φ

0 . 6

ο υ

Ο.Α

C 0.2

Initial heat transfer coefficient:

1 0 0 0 W/(m*K)

2 0 0 0 W/(m^K) 3 0 0 0 W/(m^K)

0 0.2 0 Λ 0.6 O B 1.0

Scale thickness (mm)

F i g . 3 .13 . O v e r a l l h e a t t r a n s f e r c o e f f i c i e n t as a f u n c t i o n o f s c a l e t h i c k n e s s a t s c a l e c o n d u c t i v i t y 0.97 W/ (mK) .

i n t h e e v a p o r a t o r o f up t o 90%. A d i s c u s s i o n o f t h e p r o p e r t i e s o f t h e s e a g e n t s ,

as w e l l as methods o f a p p l i c a t i o n and e x p e r i e n c e s a r i s i n g i n s u g a r f a c t o r i e s ,

can be f o u n d i n t h e l i t e r a t u r e ( r e f s . 1 4 , 1 5 ) .

A n o t h e r s c a l e - p r e v e n t i o n t e c h n i q u e i s based on t h e a c t i v a t i o n o f m o l e c u l e s o f

m i n e r a l s a l t s d i s s o l v e d i n j u i c e i n an e l e c t r i c f i e l d o r i n a m a g n e t i c f i e l d .

The a c t i v a t e d m o l e c u l e s t e n d t o remain i n s u s p e n s i o n r a t h e r t han d e p o s i t i n g on

t he h e a t - e x c h a n g e s u r f a c e s , and some r e p o r t s i n d i c a t e t h a t t h e s c a l e becomes

more e a s i l y removed , sometimes b e i n g changed i n t o m i c r o c r y s t a l 1 i n e mud. The

a c t i v a t i n g d e v i c e c o n s i s t s o f a t u b e , u s u a l l y p l a c e d i n t h e p i p e p r e c e d i n g t h i n -

j u i c e h e a t e r s , and f i e l d - g e n e r a t i n g c i r c u i t r y . Thousands o f u n i t s o f t h i s k i n d

have been s e t i n o p e r a t i o n i n v a r i o u s i n d u s t r i e s d u r i n g t h e l a s t f o u r d e c a d e s .

As r e g a r d s t h e s u g a r i n d u s t r y , i t seems t h a t t h i s method does n o t g i v e v e r y

d e f i n i t e r e s u l t s , and t h e r e have been v a r y i n g r e p o r t s on i t s e f f i c i e n c y ( r e f s .

3 , 1 6 - 1 9 ) . Howeve r , i t c a n n o t be e x c l u d e d t h a t some o f t he u n f a v o u r a b l e r e p o r t s

have r e s u l t e d f rom m i s u n d e r s t a n d i n g s , as t h e e v a l u a t i o n o f t h e e f f i c i e n c y o f

s c a l e p r e v e n t i o n i s a s u r p r i s i n g l y complex p r o b l e m . The a s s o c i a t e d d i f f i c u l t i e s

have been d i s c u s s e d i n a r e c e n t a r t i c l e d e v o t e d t o s t u d i e s o f s c a l e f o r m a t i o n

d u r i n g raw j u i c e e v a p o r a t i o n ( r e f . 2 0 ) .

I t s h o u l d f i n a l l y be p o i n t e d o u t t h a t s c a l e p r e v e n t i o n must a l s o i n c l u d e

p r o p e r p r o c e d u r e s f o r e v a p o r a t o r o p e r a t i o n unde r abnormal c o n d i t i o n s , l i k e t h e

s t a r t - u p w i t h w a t e r r e p l a c i n g j u i c e i n t h e e v a p o r a t o r b o d i e s , o r t h e a d d i t i o n o f

w a t e r t o t h i n j u i c e i n emergency s i t u a t i o n s a r i s i n g where t h e j u i c e f l o w becomes

t o o s m a l l . I n p r i n c i p l e , t h e w a t e r added s h o u l d be o f c o n d e n s a t e o r f e e d - w a t e r

q u a l i t y . The use o f u n t r e a t e d w a t e r must be a v o i d e d even d u r i n g v e r y s h o r t

p e r i o d s , because o f t he r i s k o f f o r m a t i o n o f v e r y t r o u b l e s o m e d e p o s i t s .

V a r i o u s p r o c e d u r e s have been a d v o c a t e d f o r c l e a n i n g e v a p o r a t o r t u b e s and

o t h e r i n c r u s t e d h e a t i n g s u r f a c e s . The commonest p r a c t i c e i s t o b o i l f o r s e v e r a l

h o u r s w i t h c a u s t i c soda s o l u t i o n , t h e n wash w i t h w a t e r and b o i l w i t h d i l u t e

Page 129: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

118

h y d r o c h l o r i c a c i d . The d e t a i l s o f t h e p r o c e d u r e must be d e f i n e d so as t o a v o i d

t h e r i s k o f c o r r o s i v e damage t o t h e equ ipmen t , and p a r t i c u l a r l y t o t h e h e a t i n g

t u b e s . I n c o n n e c t i o n w i t h t h i s r e q u i r e m e n t , o t h e r c h e m i c a l s ( i n h i b i t o r s ,

a c t i v a t o r s and p a s s i v a t o r s ) have been d e v e l o p e d t o make i t e a s i e r t o c o n t r o l t h e

c l e a n i n g p r o c e s s . The t y p e and amount o f c h e m i c a l s and t h e b o i l i n g t ime may v a r y

f rom f a c t o r y t o f a c t o r y , depend ing on t h e s c a l e p r o p e r t i e s and tube m a t e r i a l

u s e d . A good a c c o u n t o f t h e p rob lems a s s o c i a t e d w i t h t h e i m p l e m e n t a t i o n o f

chemica l c l e a n i n g methods ( i n t he P o l i s h s u g a r i n d u s t r y ) can be f ound i n t h e

l i t e r a t u r e ( r e f s . 2 1 - 2 4 ) . S p e c i a l i z e d chemica l companies a r e p r e s e n t l y o f f e r i n g

e x t e n d e d i n d i v i d u a l c l e a n i n g and c o n s e r v a t i o n methods , on t he b a s i s o f s c a l e

samp les , s c a l e d - t u b e s e c t i o n s , r e s i n s a m p l e s , e t c .

Where chemica l c l e a n i n g has n o t p r o v e d e f f e c t i v e , mechan ica l o r h y d r a u l i c

t ube c l e a n e r s can be u s e d . E l e c t r i c a l d e s c a l e r s a r e w i d e l y known, c o n s i s t i n g o f

an e l e c t r i c motor and a f l e x i b l e s h a f t t e r m i n a t i n g i n a t o o l w i t h s e r r a t e d

r o l l e r s , w h i c h i s d r i v e n a t a h i g h s p e e d . One o r two passages o f t h e t o o l f o r

each t ube a re u s u a l l y s u f f i c i e n t t o remove t h e s c a l e .

3.3 FUNDAMENTALS OF CORRECT U T I L I Z A T I O N OF CONDENSATES AND VAPOURS

3.3.1 Condensa tes

The u t i l i z a t i o n o f t he e n e r g y o f c o n d e n s a t e s t a k e s p l a c e i n t h e the rma l

c i r c u i t r y a t t a c h e d t o t h e condensa te t a n k s . P r o v i d i n g t h e d r a i n a g e subsys tem i s

w o r k i n g c o r r e c t l y , t he t a s k o f most condensa te t a n k s i s t o a c t as f l o w

s t a b i l i z e r s and t o s e c u r e p r o p e r c o n d i t i o n s f o r t h e c o n d e n s a t e - f l a s h p r o c e s s . As

t h e i n f l o w i n g condensa te i s e x p a n d i n g t o t h e p r e s s u r e m a i n t a i n e d i n t h e t a n k ,

f l a s h v a p o u r , assumed t o be d r y s a t u r a t e d s team, i s g e n e r a t e d ( s e e a l s o S e c t i o n

2 . 5 ) . As a s e c o n d a r y e f f e c t , t h e gases d i s s o l v e d i n t h e condensa te a re

1 i b e r a t e d .

The f l a s h p r o c e s s s h o u l d c o n v e n i e n t l y be pe r f o rmed i n t h i n c o n d e n s a t e l a y e r s

o r s t r e a m s . I n a h o r i z o n t a l t a n k , t h i s can be a c c o m p l i s h e d by s u p p l y i n g t h e

condensa te t o t he upper p a r t and p r e f e r a b l y t o a s p e c i a l n o z z l e p l a c e d above t h e

l i q u i d l e v e l , as shown i n F i g . 3 . 1 4 ( a ) . I t s h o u l d be o b s e r v e d t h a t when

i n t r o d u c i n g t he condensa te be low t h e l i q u i d l e v e l , v a p o u r g e n e r a t i o n may

i n i t i a l l y be i n h i b i t e d by t h e h y d r a u l i c p r e s s u r e , and s u b s e q u e n t i n t e n s i v e

b o i l i n g i n a l a r g e l i q u i d vo lume may i n d u c e tank v i b r a t i o n s .

I n F i g . 3 . 1 4 ( b ) , a scheme f o r a v e r t i c a l t a n k d e s i g n e d t o s a t i s f y t h e

r e q u i r e m e n t s o f e f f i c i e n t c o n d e n s a t e f l a s h i s shown. H i g h - t e m p e r a t u r e c o n d e n s a t e

i s s u p p l i e d f rom be low v i a a n o z z l e t o a s i e v e t r a y p l a c e d above t h e l i q u i d

l e v e l . A p o s s i b l e s u p p l y o f l o w - t e m p e r a t u r e condensa te i s d i r e c t e d t o a n o z z l e

p l a c e d be low t h e o u t l e t n o z z l e . The tank i s u s u a l l y e q u i p p e d w i t h an a u t o m a t i c

l e v e l - c o n t r o l c i r c u i t .

Page 130: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

119

(α) ( b )

jT I Χ nozzle nozzle

h i

baffle

sieve tray

Γ

F i g . 3 .14 . D e s i g n p r i n c i p l e s o f c o n d e n s a t e t a n k s : ( a ) h o r i z o n t a l t y p e , ( b ) v e r t i c a l t y p e ( c o u r t e s y Chemadex) . 1 - e x p a n d i n g c o n d e n s a t e , 2 - s u b c o o l e d c o n d e n s a t e , 3 - o u t f l o w i n g c o n d e n s a t e , 4 - f l a s h v a p o u r .

I t s h o u l d be o b s e r v e d t h a t t h e a v a i l a b l e e n e r g y o f t h e c o n d e n s a t e may e i t h e r

be s u p p l i e d t o t h e e v a p o r a t o r i n t h e f l a s h v a p o u r , o r t r a n s f e r r e d t o j u i c e o r

o t h e r media i n c o n d e n s a t e - h e a t e d h e a t e r s . H o w e v e r , i f a p a r t o f t h e h e a t i n g -

v a p o u r demand i s s a t i s f i e d by t h e f l a s h v a p o u r , and t h e c o n d e n s e r l o s s i s

c o n s t a n t , t hen l e s s w a t e r w i l l be e v a p o r a t e d f rom j u i c e i n t h e e v a p o r a t o r . I n

t h e a r rangement shown s c h e m a t i c a l l y i n F i g . 3 . 1 5 ( a ) , a b o u t 1.4 kg f l a s h v a p o u r

i s o b t a i n e d pe r 100 kg b e e t , t h i s r e d u c i n g w a t e r e v a p o r a t i o n i n t h e f i r s t and

second s t a g e s by abou t 2.8 kg/100 kg b. T h i s f i g u r e can be c u t down by a p p l y i n g

d o u b l e - s t a g e condensa te e x p a n s i o n , w h i c h r e q u i r e s u s i n g two c o n d e n s a t e t a n k s as

shown i n F i g . 3 . 1 5 ( b ) . I n t h e f i r s t t a n k , t h e c o n d e n s a t e i s f l a s h e d t o t h e

f i r s t - e f f e c t p r e s s u r e , g e n e r a t i n g abou t 0.7 kg v a p o u r p e r 100 kg b e e t . S e c o n d -

s t a g e f l a s h p r o d u c e s a n o t h e r 0.7 kg v a p o u r p e r 100 kg b e e t . As a r e s u l t , w a t e r

e v a p o r a t i o n w i l l be r e d u c e d by 0.7 + 2 -0 .7 = 2.1 kg/100 kg b , i . e . , 25% l e s s

t han i n t h e p r e v i o u s c a s e .

The f i r s t s t a g e o f t he c o n d e n s a t e f l a s h c h a i n p r e s e n t e d above can be r e p l a c e d

by a h e a t e r t o w h i c h t h i n j u i c e f rom a n o t h e r h e a t e r , hea ted by f i r s t - e f f e c t

v a p o u r , i s s u p p l i e d . T h i s s o l u t i o n , shown s c h e m a t i c a l l y i n F i g . 3 . 1 5 ( c ) , r e d u c e s

w a t e r e v a p o r a t i o n i n t h e e v a p o r a t o r by o n l y 1.4 kg/100 kg b.

A n o t h e r p o s s i b i l i t y o f r e p l a c i n g c o n d e n s a t e f l a s h i n a t a n k by c o n d e n s a t e

c o o l i n g i n a h e a t e r can be f o u n d i n c o n n e c t i o n w i t h t h e l a s t e v a p o r a t o r e f f e c t .

More s p e c i f i c a l l y , t he l a s t - e f f e c t c o n d e n s a t e t ank can be o p e r a t e d a t a p r e s s u r e

equal t o t h a t i n t h e h e a t i n g chamber ( i n s t e a d o f t h a t i n t h e v a p o u r c h a m b e r ) .

Page 131: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

120

(α)

35 Τ 126°C 116°C

" 136'C 125°C

(b )

^ 3 : ^ © _ _ .

( c )

35

126°C 35

_ Γ 136"C

116C

125 C

I ^ . J ^ r ^ L - S -3.3:6 0

126°C

136°C I 116'C

125-C

Ö

34.3 Ί

F i g . 3 .15 . Schemes o f u t i l i z a t i o n o f f i r s t - e f f e c t condensa te i n a q u a d r u p l e -e f f e c t e v a p o r a t o r : ( a ) s i n g l e - s t a g e f l a s h , ( b ) d o u b l e - s t a g e f l a s h , ( c ) t h i n j u i c e h e a t i n g , f o l l o w e d by s i n g l e - s t a g e f l a s h ( f l o w s i n kg/100 kg b ) .

T h i s makes i t p o s s i b l e t o s u p p l y t h e c o n d e n s a t e t o a h e a t e r i n s t a l l e d as t h e

n e x t h e a t i n g s t a g e a f t e r t h e one hea ted by t h e l a s t - e f f e c t v a p o u r . I f a p p l i e d

i n s t e a d o f a f l a s h s t a g e , t h i s s o l u t i o n i n c r e a s e s w a t e r e v a p o r a t i o n i n t h e

e v a p o r a t o r by 1.8-2.5 kg/100 kg b.

I f t he p r i n c i p l e s o f c o r r e c t u t i l i z a t i o n o f c o n d e n s a t e s a r e o b s e r v e d , t h e n

t h e condensa te subsys tem c o n s i s t i n g o f t a n k s , p i p i n g , f i t t i n g s , c o n t r o l s and

measur ing i n s t r u m e n t s l o o k s i m i l a r i n d i f f e r e n t f a c t o r i e s . A l t e r n a t i v e l y , t h e

e s s e n t i a l components can be combined i n t o a s i n g l e p i e c e o f equ ipment known as

t h e compound t a n k . W h i l e t h e compartments o f t h e compound tank c o r r e s p o n d t o t h e

i n d i v i d u a l t a n k s o f t he c o n v e n t i o n a l s o l u t i o n , l e s s p i p i n g and f i t t i n g s can be

u s e d . Depending on l o c a l c o n d i t i o n s , i t may a l s o be e a s i e r t o f i n d a p l a c e f o r

a s i n g l e compound tank r a t h e r t han m u l t i p l e i n d i v i d u a l t a n k s .

Page 132: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

121

3 .3 .2 V a p o u r s

The r o l e o f t h e m u l t i p l e - e f f e c t e v a p o r a t o r s t a t i o n i n t h e hea t economy o f

s u g a r f a c t o r i e s has been d i s c u s s e d p r e l i m i n a r i l y i n S e c t i o n 1 .2 .5 . I t s i n f l u e n c e

on t h e n e t h e a t demand o f t he s u g a r m a n u f a c t u r i n g p r o c e s s i s based on t h e

m o d i f i e d R i l l i e u x p r i n c i p l e , t h a t i s , u s i n g t h e h e a t r e p e t i t i v e l y i n t h e

c o n s e c u t i v e e v a p o r a t o r e f f e c t s , and s i m u l t a n e o u s l y d e l i v e r i n g f r a c t i o n s o f t h e

h e a t t o t h e v a p o u r r e c e i v e r s c o n n e c t e d t o each e f f e c t . As a r e s u l t , t h e

e v a p o r a t i o n c o e f f i c i e n t , i . e . t h e r a t i o o f t h e mass o f w a t e r e v a p o r a t e d t o t h e

mass o f h e a t i n g steam consumed i n t he f i r s t e f f e c t , may r e a c h 2 . 3 - 2 . 8 i n a

q u a d r u p l e - e f f e c t and 3 .2 -3 .5 i n a q u i n t u p l e - e f f e c t , e v a p o r a t o r . The l a r g e r t h e

e v a p o r a t i o n c o e f f i c i e n t , t h e l a r g e r can be t h e e f f e c t i v e n e s s r a t i o

c h a r a c t e r i z i n g t h e the rma l s y s t e m .

Numerous t h e o r e t i c a l a n a l y s e s and p r a c t i c a l l y - o r i e n t e d s t u d i e s have been

d e v o t e d t o t h e op t ima l d i s t r i b u t i o n o f v a p o u r s f rom m u l t i p l e - e f f e c t e v a p o r a t o r s

( r e f s . 2 5 - 3 3 ) . T h e i r r e s u l t s can be summar ized i n two r u l e s , t o be o b s e r v e d when

d e s i g n i n g a new therma l sys tem o r m o d e r n i z i n g an e x i s t i n g o n e :

( i ) Each h e a t i n g o p e r a t i o n s h o u l d be a c c o m p l i s h e d u s i n g v a p o u r a t t h e l o w e s t

p o s s i b l e t e m p e r a t u r e .

( i i ) Vapour f l o w f rom the l a s t e v a p o r a t o r e f f e c t t o t h e c o n d e n s e r s h o u l d

approach z e r o .

The t e m p e r a t u r e s o f v a p o u r s f rom the e v a p o r a t o r e f f e c t s a r e d e t e r m i n e d by

t h e number o f e f f e c t s , t h e d e s i g n o f e v a p o r a t o r b o d i e s and t h e h e a t i n g - s u r f a c e

a r e a s i n t h e i n d i v i d u a l e f f e c t s . S i m u l t a n e o u s l y , t h e pa rame te rs o f t h e s u g a r

m a n u f a c t u r i n g p r o c e s s d e t e r m i n e t h e v a p o u r demand and t h e t e m p e r a t u r e r e q u i r e d

f o r t he h e a t i n g o p e r a t i o n s . C o n s e q u e n t l y , i t i s p o s s i b l e t o a s s i g n , t o each

h e a t i n g o p e r a t i o n , a s p e c i f i c e v a p o r a t o r e f f e c t f rom w h i c h h e a t i n g v a p o u r a t

a s u i t a b l e t e m p e r a t u r e can be w i t h d r a w n .

The p o s s i b i l i t i e s f o r u s i n g v a p o u r s f rom d i f f e r e n t e v a p o r a t o r e f f e c t s i n

a g i v e n h e a t i n g o p e r a t i o n a r e l i m i t e d by t h e r e q u i r e d f i n a l t e m p e r a t u r e o f t h e

medium h e a t e d , and by t he minimum t e m p e r a t u r e d i f f e r e n c e ( t e m p e r a t u r e p i n c h )

c h a r a c t e r i s t i c o f t h e h e a t i n g a p p a r a t u s . The r e l a t i o n s between t h e t e m p e r a t u r e s

a r e i l l u s t r a t e d i n F i g . 3 .16 . I t can t h u s be c o n c l u d e d t h a t t h e e f f e c t i v e n e s s o f

t h e u t i l i z a t i o n o f v a p o u r s d e p e n d s , t o a c e r t a i n e x t e n t , on t h e h e a t i n g

equ ipment a v a i l a b l e . A q u a n t i t a t i v e a n a l y s i s o f t h i s r e l a t i o n s h i p can be based

on t he e q u a t i o n e x p r e s s i n g t h e hea t Q t r a n s f e r r e d i n u n i t t ime between t h e

v a p o u r and t h e medium hea ted as

Q = kFAT ( 3 . 5 )

where k i s t h e o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t , F i s t h e h e a t i n g - s u r f a c e a r e a ,

and Δ Τ i s t he mean t e m p e r a t u r e d i f f e r e n c e between h e a t i n g v a p o u r and t h e medium

h e a t e d .

Page 133: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

122

\_ D

2 Ο.

Τν vapour

Η-<

pinch

required f inal

temperature

0 100 Heating surface area p a s s e d ( % )

F i g . 3 .16 . Tempera tu re c h a r a c t e r i s t i c s o f j u i c e h e a t i n g . ΔΤ - mean t e m p e r a t u r e d i f f e r e n c e , T ^ - a c t u a l v a p o u r t e m p e r a t u r e , T ^ - l o w e s t p o s s i b l e v a p o u r t e m p e r a t u r e .

F o r a g i v e n amount o f hea t t r a n s f e r r e d , i t may be p o s s i b l e t o r e d u c e t h e mean

t e m p e r a t u r e d i f f e r e n c e (and t h e minimum t e m p e r a t u r e d i f f e r e n c e ) o n l y i f t h e

p r o d u c t kF i s i n c r e a s e d . C o n s e q u e n t l y , t h e p r i n c i p l e o f s e l e c t i o n o f v a p o u r a t

t h e l o w e s t p o s s i b l e t e m p e r a t u r e i m p l i e s t h a t t h e equ ipment c h a r a c t e r i z e d by

a smal l minimum t e m p e r a t u r e d i f f e r e n c e , w h i c h i s e q u i v a l e n t t o a l a r g e k F ,

s h o u l d be p r e f e r r e d . Howeve r , l a r g e kF can o n l y be o b t a i n e d u s i n g h i g h - i n t e n s i t y

h e a t t r a n s f e r , o r l a r g e h e a t i n g - s u r f a c e a r e a s , o r bo th - t h i s i n d u c i n g i n c r e a s e d

h e a t e r c o s t . A t g i v e n u n i t p r i c e s o f e n e r g y and h e a t - e x c h a n g i n g e q u i p m e n t , t h e r e

i s a t r a d e - o f f between t h e e f f e c t i v e n e s s o f t h e e n e r g y u t i l i z a t i o n and t he

i n v e s t m e n t c o s t o f t he h e a t e r s , and an optimum e x i s t s f o r t h e minimum

t e m p e r a t u r e d i f f e r e n c e . ( A c t u a l l y , i t may be p o s s i b l e t o t r e a t t h i s phenomenon

as a b a s i s o f e n e r g y - s y s t e m a n a l y s i s and d e s i g n , as shown i n S e c t i o n 9 . 4 . 3 . )

As r e g a r d s v a p o u r - h e a t e d j u i c e h e a t e r s , i t i s b e l i e v e d a t p r e s e n t t h a t t h e

economic v a l u e s o f t h e minimum t e m p e r a t u r e d i f f e r e n c e s h o u l d n o t e x c e e d 5-10 K,

l o w e r v a l u e s c o r r e s p o n d i n g t o h i g h e r f u e l p r i c e s . T y p i c a l h e a t i n g o p e r a t i o n s

s h o u l d t h u s be a c c o m p l i s h e d u s i n g v a p o u r s a t t e m p e r a t u r e s n o t h i g h e r t han 5-10 Κ

above t h e r e q u i r e d f i n a l j u i c e t e m p e r a t u r e . Even s m a l l e r t e m p e r a t u r e d i f f e r e n c e s

may be adop ted when h e a t i n g w i t h l o w - t e m p e r a t u r e v a p o u r s ( s e e S e c t i o n 3 . 3 . 4 ) .

The l a r g e s t component o f t h e h e a t i n g - v a p o u r demand i s a s s o c i a t e d w i t h t h e

s u g a r b o i l i n g p r o c e s s . S u p p l y i n g t h e vacuum pans w i t h v a p o u r a t t h e l o w e s t

p o s s i b l e t e m p e r a t u r e i s d e c i s i v e i n o p t i m i z i n g t h e d i s t r i b u t i o n o f v a p o u r s f rom

t h e e v a p o r a t o r . F o r t h i s r e a s o n , l e t us t ake a c l o s e r l o o k a t t h e h e a t i n g

r e q u i r e m e n t s o f s u g a r b o i l i n g .

I n t he case o f b a t c h vacuum p a n s , t h e n o t i o n o f t h e minimum t e m p e r a t u r e

d i f f e r e n c e must be adap ted t o t h e d i s c o n t i n u o u s n a t u r e and o t h e r s p e c i a l

f e a t u r e s o f t h e b o i l i n g p r o c e s s . I t i s known t h a t t h e magma t e m p e r a t u r e may be

u n e v e n l y d i s t r i b u t e d i n t h e s t r i k e v o l u m e , t h e d i s t r i b u t i o n b e i n g dependen t on

t h e pan d e s i g n a n d , p o s s i b l y , s t i r r e r e f f i c i e n c y ( r e f s . 3 4 - 3 6 ) . F o r t h e sake o f

Page 134: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

123

s i m p l i c i t y , l e t us assume t h a t t h e t e m p e r a t u r e c o n d i t i o n s i n t h e magma can be

a d e q u a t e l y d e s c r i b e d u s i n g t h e mean magma t e m p e r a t u r e . A t c o n s t a n t vacuum,

f o l l o w i n g changes o f t h e b o i l i n g - p o i n t e l e v a t i o n as t h e magma c o n c e n t r a t i o n i s

i n c r e a s e d , t h i s t e m p e r a t u r e v a r i e s d u r i n g t h e b o i l i n g c y c l e as shown

a p p r o x i m a t e l y i n F i g . 3 .17 . F o r t h e same r e a s o n , t h e o v e r a l l h e a t t r a n s f e r

c o e f f i c i e n t a t t he h e a t i n g s u r f a c e v a r i e s as i n d i c a t e d i n t h e same d i a g r a m .

S i m u l t a n e o u s l y , t h e c o n d e n s a t i o n t e m p e r a t u r e i n t h e h e a t i n g chamber may v a r y ( a s

d i s c u s s e d i n S e c t i o n 3 . 1 . 2 ) , becoming t e m p o r a r i l y l o w e r t han t h e t e m p e r a t u r e o f

v a p o u r f rom t h e a s s o c i a t e d e v a p o r a t o r e f f e c t .

oH76

20 UO 60 80 100 Time after seeding (m in )

F i g . 3 .17 . Mean magma t e m p e r a t u r e as a f u n c t i o n o f t ime d u r i n g w h i t e - s u g a r b o i l i n g i n two d i f f e r e n t vacuum pans ( a f t e r r e f . 3 4 ) .

The range o f c h o i c e s o f v a p o u r t e m p e r a t u r e v a l u e s f o r pan h e a t i n g i s l i m i t e d

by t h e b o i l i n g t ime r e q u i r e m e n t w h i c h i s e s s e n t i a l t o bo th t h e s u g a r house

t h r o u g h p u t and p r o d u c t q u a l i t y . A t a g i v e n h e a t i n g - s u r f a c e a r e a , t h e amount o f

h e a t t r a n s f e r r e d s h o u l d be l a r g e enough t o e n s u r e t h a t t he s t r i k e can be

comp le ted w i t h i n t h e r e q u i r e d b o i l i n g t ime τ . I n a d d i t i o n , t h e h e a t t r a n s f e r r e d

p e r u n i t t ime s h o u l d be s u f f i c i e n t l y l a r g e t o make c o r r e c t s t r i k e f i n i s h i n g

p o s s i b l e .

I n o r d e r t o s i m p l i f y t h e f o r m u l a t i o n o f t h e r e q u i r e m e n t s , l e t us assume t h a t

changes o f t h e v a p o u r - c o n d e n s a t i o n t e m p e r a t u r e a r e n e g l i g i b l y s m a l l . T h i s a l l o w s

us t o r e s t r i c t o u r a t t e n t i o n t o t h e f o l l o w i n g pa rame te r s t h a t a p p r o x i m a t e l y

d e s c r i b e t h e t e m p e r a t u r e c y c l e ( F i g . 3 . 1 8 ) :

- t i m e - a v e r a g e d mean magma t e m p e r a t u r e T ^ ;

- h i g h e s t mean magma t e m p e r a t u r e T ^ ;

- vapou r t e m p e r a t u r e T ^ .

Page 135: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

124

Time (min)

F i g . 3 .18 . Tempera tu re c y c l e accompany ing t h e s u g a r b o i l i n g p r o c e s s .

The t e m p e r a t u r e c y c l e i s accompanied by t he h e a t t r a n s f e r c y c l e ( F i g . 3 . 1 9 ) ,

w h i c h can be c h a r a c t e r i z e d by t h e f o l l o w i n g pa rame te rs i l l u s t r a t e d i n F i g . 3 .20 :

- t i m e - a v e r a g e d o v e r a l l hea t t r a n s f e r c o e f f i c i e n t k^; a

- l o w e s t o v e r a l l hea t t r a n s f e r c o e f f i c i e n t k^;

- hea t demand p e r one s t r i k e Q^^.

U s i n g t he pa rame te rs l i s t e d a b o v e , i t i s p o s s i b l e t o d e r i v e a s i m p l e

mathemat ica l model o f t he hea t t r a n s f e r r e l a t i o n s h i p s i n a b o i l i n g c y c l e . The

v a p o u r t e m p e r a t u r e s h o u l d be chosen t o s a t i s f y t h e i n e q u a l i t y

w h i c h can be r e w r i t t e n as

Τ < Τ

( 3 . 6 )

V( V) ' a ν ( 3 . 7 )

D e n o t i n g t he maximum a l l o w a b l e h e a t t r a n s f e r r e d p e r u n i t t ime by Q ^ , a n o t h e r

i n e q u a l i t y can be c o n s t r u c t e d t o r e f l e c t t h e c o n d i t i o n s o f s t r i k e f i n i s h i n g as

< V\ - ( 3 . 8 )

o r

( 3 . 9 )

F i g . 3 .19 . O v e r a l l hea t t r a n s f e r c o e f f i c i e n t as a f u n c t i o n o f t ime d u r i n g w h i t e -s u g a r b o i l i n g i n two d i f f e r e n t vacuum pans ( a f t e r r e f . 3 4 ) .

Page 136: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

125

Time

F i g . 3 .20 . Heat t r a n s f e r c y c l e accompany ing t h e s u g a r b o i l i n g p r o c e s s .

The above f o r m u l a e a re meant t o p r o v i d e o n l y a q u a l i t a t i v e p i c t u r e o f t h e

therma l a s p e c t s o f s e l e c t i o n o f t h e v a p o u r t e m p e r a t u r e . As i n d i c a t e d by ( 3 . 7 )

and ( 3 . 9 ) , f o r a s p e c i f i c p r o d u c t and a g i v e n vacuum-pan d e s i g n , t h e t e m p e r a t u r e

o f t h e h e a t i n g v a p o u r must be h i g h e r t han a c e r t a i n t h r e s h o l d v a l u e . Most

con tempo ra ry pan d e s i g n s make i t p o s s i b l e t o b o i l w h i t e s u g a r a t a v a p o u r

t e m p e r a t u r e 107-120°C, and l o w - g r a d e p r o d u c t s a t 102-110°C.

From t h e r e a s o n i n g p r e s e n t e d a b o v e , t h e c o n c l u s i o n can be drawn t h a t t h e

v a p o u r t e m p e r a t u r e s e l e c t i o n f o r vacuum-pan h e a t i n g i s v e r y much i n f l u e n c e d by

t h e c o n d i t i o n s o f t h e f i n a l p a r t o f t h e s t r i k e - t h i c k e n i n g p h a s e . A c t u a l l y , t h e

u t i l i z a t i o n o f v a p o u r s f rom t h e e v a p o r a t o r can be improved i f v a p o u r a t a l o w e r

t e m p e r a t u r e i s s u p p l i e d d u r i n g most o f t h e b o i l i n g c y c l e , t h i s b e i n g f o l l o w e d by

h e a t i n g a t a h i g h e r t e m p e r a t u r e when t h e f i n a l p a r t o f t h e s t r i k e - t h i c k e n i n g

phase i s a p p r o a c h e d . A l t h o u g h t h i s i d e a i s c e r t a i n l y r e a l i z a b l e and t h e r e have

been examples o f i t s p r a c t i c a l a p p l i c a t i o n i n b a t c h vacuum pans ( r e f . 3 7 ) , one

has t o r eckon w i t h s i d e - e f f e c t s c o n s i s t i n g o f a d d i t i o n a l f l u c t u a t i o n s o f

e v a p o r a t o r pa rame te rs accompany ing t h e moment o f s w i t c h i n g f rom l o w - t o h i g h -

t e m p e r a t u r e v a p o u r ( t h e f l u c t u a t i o n s r e s u l t i n g , u n a v o i d a b l y , i n an e x t r a e n e r g y

l o s s ) . Howeve r , t h e p o t e n t i a l g a i n s can e a s i l y be a t t a i n e d u s i n g c o n t i n u o u s

vacuum p a n s . A d i s c u s s i o n o f t h e deve lopmen t and a p p l i c a t i o n s o f c o n t i n u o u s pans

i s p r e s e n t e d i n C h a p t e r 5.

R e t u r n i n g now t o t he b a t c h vacuum p a n s , i t can be seen i n F i g s . 3.17 and 3.19

t h a t t h e h i g h e s t mean magma t e m p e r a t u r e t e n d s t o be h i g h e r , and t h e o v e r a l l h e a t

t r a n s f e r c o e f f i c i e n t s i s m a r k e d l y l o w e r , i n t h e n a t u r a l - c i r c u l a t i o n vacuum p a n s .

Both f a c t o r s a c t i n t h e same d i r e c t i o n , making i t n e c e s s a r y t o s e t t h e

d i f f e r e n c e between t he t i m e - a v e r a g e d magma t e m p e r a t u r e and t h e v a p o u r

t e m p e r a t u r e l a r g e r t han i n s t i r r e r - e q u i p p e d p a n s . I t can t h u s be c o n c l u d e d t h a t

t he s t i r r e r - e q u i p p e d vacuum pans make i t p o s s i b l e t o a c c e p t a l o w e r h e a t i n g -

vapou r t e m p e r a t u r e , t h u s s t i m u l a t i n g b e t t e r u t i l i z a t i o n o f v a p o u r s f rom t h e

e v a p o r a t o r .

Page 137: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

126

C o n c l u d i n g t h e d i s c u s s i o n o f t h e r u l e o f h e a t i n g w i t h v a p o u r a t t h e l o w e s t

p o s s i b l e t e m p e r a t u r e , l e t us o b s e r v e t h a t i t s a p p l i c a t i o n l e a d s t o s h i f t i n g t h e

e v a p o r a t o r l o a d t owa rds l o w - t e m p e r a t u r e e f f e c t s . As a c o n s e q u e n c e , t h e

e v a p o r a t i o n c o e f f i c i e n t i s i n c r e a s e d and t h e n e t h e a t demand o f t h e f a c t o r y may

be r e d u c e d . I n t he l i t e r a t u r e , examples can be f o u n d o f s u c c e s s f u l a p p l i c a t i o n s

o f t h i s r u l e i n m o d e r n i z a t i o n o f e v a p o r a t o r s t a t i o n s ( r e f s . 3 7 , 3 8 ) .

The second r u l e f o r m u l a t e d a t t h e b e g i n n i n g o f t h i s S e c t i o n , t o m a i n t a i n t h e

v a p o u r f l o w t o t h e condense r c l o s e t o z e r o , means s i m p l y t h a t t h e v a p o u r must

n o t be w a s t e d . On t h e o t h e r h a n d , i t i s n e c e s s a r y t o e v a p o r a t e as much w a t e r i n

t h e e v a p o r a t o r as needed t o a t t a i n a p r e d e t e r m i n e d t h i c k - j u i c e c o n c e n t r a t i o n .

I n a s u g a r f a c t o r y c h a r a c t e r i z e d by a l a r g e hea t demand, so much v a p o u r must be

w i t h d r a w n f rom t h e e v a p o r a t o r f o r h e a t i n g p u r p o s e s t h a t t h i s c o n s t r a i n t i s e a s y

t o s a t i s f y . I f t he hea t demand has been d e c r e a s e d , h o w e v e r , t hen t h e t o t a l

v a p o u r w i t h d r a w a l m igh t be i n s u f f i c i e n t , and i n c r e a s e d v a p o u r f l o w t o t h e

condense r wou ld be t he o n l y p o s s i b i l i t y t o keep t h e t h i c k - j u i c e c o n c e n t r a t i o n

c o n s t a n t . Such a s i t u a t i o n s h o u l d be i n t e r p r e t e d as i n d i c a t i n g t h e n e c e s s i t y t o

m o d i f y t h e a c t u a l e v a p o r a t o r c o n f i g u r a t i o n . G e n e r a l l y , t h r e e s o l u t i o n s can be

c o n s i d e r e d , e i t h e r s e p a r a t e l y o r i n c o m b i n a t i o n :

( 1 ) r e p l a c i n g s e l e c t e d e v a p o r a t o r b o d i e s by o t h e r s w i t h l a r g e r h e a t i n g s u r f a c e s

a n d / o r h i g h e r o v e r a l l hea t t r a n s f e r c o e f f i c i e n t s ;

( 2 ) i n c r e a s i n g t he number o f e v a p o r a t o r e f f e c t s ;

( 3 ) i n t r o d u c i n g a v a p o u r c o m p r e s s i o n c i r c u i t .

The p r i n c i p l e o f t h e f i r s t s o l u t i o n can be seen i n e q n . ( 3 . 5 ) , w h i c h has been

f o r m u l a t e d f o r a h e a t e r b u t a p p l i e s as w e l l t o an e v a p o r a t o r b o d y . F o r a

p r e d e t e r m i n e d amount o f hea t t o be t r a n s f e r r e d f rom h e a t i n g v a p o u r t o j u i c e , an

i n c r e a s e d o v e r a l l hea t t r a n s f e r c o e f f i c i e n t a n d / o r e n l a r g e d h e a t i n g - s u r f a c e a r e a

make i t p o s s i b l e t o r educe t h e mean t e m p e r a t u r e d i f f e r e n c e between v a p o u r and

j u i c e . An a p p l i c a t i o n o f t h i s p r i n c i p l e i s i l l u s t r a t e d i n F i g . 3 .21 , w h i c h shows

v a p o u r t e m p e r a t u r e s i n a q u i n t u p l e - e f f e c t e v a p o r a t o r b e f o r e and a f t e r

m o d e r n i z a t i o n o f t h e 4 t h - e f f e c t b o d y . F o l l o w i n g a r e d u c t i o n o f t h e mean

t e m p e r a t u r e d i f f e r e n c e i n t h e 4 th e f f e c t , t h e t e m p e r a t u r e s o f t h e 4 t h - and 5 t h -

e f f e c t v a p o u r s a r e i n c r e a s e d , making i t e a s i e r t o u t i l i z e t h e s e v a p o u r s f o r

h e a t i n g p u r p o s e s . I t t h u s becomes p o s s i b l e t o s u p p l y 4 t h - and 5 t h - e f f e c t v a p o u r s

t o c e r t a i n r e c e i v e r s t h a t have p r e v i o u s l y been hea ted by 3 r d - and 4 t h - e f f e c t

v a p o u r s , r e s p e c t i v e l y . As a r e s u l t , t h e n e t h e a t demand may be r e d u c e d .

An i n c r e a s e d number o f e v a p o r a t o r e f f e c t s i s an o b v i o u s s o l u t i o n i n s u g a r

f a c t o r i e s where t r i p l e - o r q u a d r u p l e - s t a g e e v a p o r a t o r s a r e u s e d . A t p r e s e n t ,

most e n e r g y e f f i c i e n t f a c t o r i e s r e l y on q u i n t u p l e - e f f e c t e v a p o r a t o r s . T h i s

s h o u l d be seen as an e n t i r e f a m i l y o f e v a p o r a t o r s o l u t i o n s , each c h a r a c t e r i z e d

by a un ique d i s t r i b u t i o n o f h e a t i n g v a p o u r s . Vacuum pans may be hea ted by 2 n d - ,

Page 138: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

127

IAO

α 130

t 120 3

ξ 110 α φ 100

90

1 2 3 A 5 Evaporator effect No.

F i g . 3 .21. T e m p e r a t u r e d i s t r i b u t i o n i n a q u i n t u p l e - e f f e c t e v a p o r a t o r . Dashed l i n e s i n d i c a t e r e s u l t s o f t h e m o d e r n i z a t i o n o f f o u r t h - e f f e c t body ( c o u r t e s y C u k r o p r o j e k t ) .

3 r d - , 4 t h - , o r even 5 t h - e f f e c t v a p o u r , o r two d i f f e r e n t v a p o u r s . The l a s t

e f f e c t may work as a c o n c e n t r a t o r , t h a t i s , w i t h v a p o u r w i t h d r a w a l t o t h e

condense r o n l y , o r v a p o u r may a l s o be w i t h d r a w n f o r h e a t i n g p u r p o s e s . Depend ing

on t h e d e s i g n o f t h e e v a p o r a t o r b o d i e s , i t may be n e c e s s a r y t o i n c r e a s e t h e

e x h a u s t - s t e a m p r e s s u r e above t h e l e v e l w h i c h i s s u f f i c i e n t i n q u a d r u p l e - e f f e c t

e v a p o r a t o r s .

Up t o now, s e x t u p l e - e f e c t e v a p o r a t o r s a r e se ldom used i n t y p i c a l w h i t e - s u g a r

f a c t o r i e s . Examples a r e known o f f a c t o r i e s where s e x t u p l e - s t a g e e v a p o r a t o r

s t a t i o n s have been c o n v e r t e d back t o q u i n t u p l e - e f f e c t o n e s , t o make t h e

o p e r a t i o n e a s i e r . S u c c e s s f u l a p p l i c a t i o n s o f s e x t u p l e - e f f e c t e v a p o r a t o r s have

been r e p o r t e d f rom P l a t t l i n g , FRG, and B u c y - l e - L o n g , F r a n c e ( r e f . 3 9 ) . H o w e v e r ,

t h e s e a r e n o t o r d i n a r y f a c t o r i e s , as t h i c k - j u i c e s t o r a g e i s a p p l i e d i n

P l a t t l i n g , and v a p o u r c o m p r e s s i o n i s employed i n t h e the rma l sys tem a t B u c y - l e -

Long .

The i n t r o d u c t i o n o f a v a p o u r - c o m p r e s s i o n c i r c u i t i s men t ioned above as a

t h i r d p o s s i b i l i t y t o m o d i f y an e v a p o r a t o r c o n f i g u r a t i o n . T h i s t e c h n i q u e i s

d i s c u s s e d i n g r e a t e r d e t a i l i n S e c t i o n 3 . 4 .

3 .3 .3 The r o l e o f vacuum sys tems

The a t t a i n a b l e vacuum l e v e l d e f i n e s t h e l o w e s t t e m p e r a t u r e t o w h i c h h e a t

f l o w s can be d i r e c t e d w i t h i n a the rma l s y s t e m . F o r t h i s r e a s o n , t h e f u n c t i o n i n g

o f t h e l a s t e v a p o r a t o r e f f e c t and t h e s u g a r b o i l i n g under vacuum a r e v e r y

i m p o r t a n t t o t h e e f f e c t i v e n e s s o f e n e r g y c o n v e r s i o n p r o c e s s e s t a k i n g p l a c e i n

t he therma l s y s t e m . The d i s c u s s i o n o f t h i s s u b j e c t was i n i t i a t e d i n t h e

p r e c e d i n g S e c t i o n by a n a l y s i n g t h e r e l a t i o n s h i p s c h a r a c t e r i s t i c o f vacuum-pan

Page 139: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

128

h e a t i n g . The h i g h e r t he vacuum, t h a t i s , t h e l o w e r t h e p r e s s u r e i n t h e

c o n d e n s e r , t h e l o w e r can be t h e t i m e - a v e r a g e d mean magma t e m p e r a t u r e and t h u s

t h e l o w e r can be t he h e a t i n g - v a p o u r t e m p e r a t u r e , t h i s c o n t r i b u t i n g t o improved

h e a t economy.

As r e g a r d s t he l a s t e v a p o r a t o r e f f e c t , t he vacuum l e v e l d e t e r m i n e s t h e

p r e s s u r e and t h u s t h e j u i c e - b o i l i n g t e m p e r a t u r e . T h i s , i n t u r n , d e f i n e s t h e

t e m p e r a t u r e span a v a i l a b l e f o r t h e m u l t i - s t a g e e v a p o r a t i o n p r o c e s s (be tween t h e

e x h a u s t - s t e a m t e m p e r a t u r e i n t h e f i r s t s t a g e and j u i c e t e m p e r a t u r e i n t h e l a s t ) ,

and i n d i r e c t l y d e f i n e s t h e t e m p e r a t u r e s o f h e a t i n g v a p o u r s and c o n d e n s a t e s f rom

t h e i n d i v i d u a l e v a p o r a t o r e f f e c t s .

I n t he vacuum sys tem o f a s u g a r f a c t o r y , vacuum i s p r o d u c e d i n one o r more

c o n d e n s e r s . The p r e s s u r e i n t h e condense r i s equa l t o t he sum o f t he w a t e r -

s a t u r a t i o n p r e s s u r e c o r r e s p o n d i n g t o t h e t e m p e r a t u r e o f t h e c o n d e n s i n g v a p o u r ,

and t h e p r e s s u r e o f t h e noncondensab le g a s e s . Howeve r , a c o n n e c t i o n between t h e

c o n d e n s e r and an equ ipment u n i t o p e r a t e d under vacuum may i n c l u d e n o z z l e s ,

p i p e s , f i t t i n g s , e n t r a i n m e n t s e p a r a t o r s a n d , p e r h a p s , h e a t i n g chambers o f

h e a t e r s . The f l o w o f v a p o u r t h r o u g h t h e c o n n e c t i o n i s i n e v i t a b l y a s s o c i a t e d w i t h

a p r e s s u r e d r o p , so t he a v a i l a b l e p r e s s u r e i s h i g h e r , i . e . , t h e a v a i l a b l e vacuum

i s l o w e r t han t h a t i n t he c o n d e n s e r ( a c t u a l l y , a p a r t o f t h i s p r e s s u r e d r o p may

o c c u r i n t h e condense r i t s e l f ) . I f , i n a d d i t i o n , t he n o n c o n d e n s a b l e s t e n d t o

accumu la te i n t h e c o n d e n s e r , t h e n t h e i r p r e s s u r e may cause t h e t o t a l p r e s s u r e

i n t h e condense r t o i n c r e a s e , t h i s r e d u c i n g t he a v a i l a b l e vacuum even f u r t h e r .

As a r e s u l t , t h e t e m p e r a t u r e i n t h e equ ipment u n i t may be i n c r e a s e d and a h i g h e r

h e a t i n g - v a p o u r t e m p e r a t u r e may become n e c e s s a r y .

O b v i o u s l y , a t e n d e n c y t o w a r d s i n c r e a s e d t e m p e r a t u r e s o f h e a t i n g v a p o u r s w o u l d

have a d e t r i m e n t a l e f f e c t on t h e h e a t economy. I t can be p r e v e n t e d , h o w e v e r , by

p a y i n g p r o p e r a t t e n t i o n t o t h r e e f a c t o r s c h a r a c t e r i z i n g t he vacuum s y s t e m :

( i ) A v a p o u r - c o n d e n s a t i o n t e m p e r a t u r e c l o s e t o t he i n l e t t e m p e r a t u r e o f c o o l i n g

w a t e r e n t e r i n g t h e c o n d e n s e r ;

( i i ) E f f e c t i v e e v a c u a t i o n o f n o n c o n d e n s a b l e s f rom the c o n d e n s e r ;

( i i i ) S u f f i c i e n t l y smal l p r e s s u r e d r o p s between t h e equ ipment o p e r a t e d under

vacuum and t h e c o n d e n s e r .

M i n i m i z a t i o n o f t h e t e m p e r a t u r e d i f f e r e n c e between t he c o n d e n s i n g v a p o u r and

t h e c o o l i n g w a t e r i s an i m p o r t a n t r e q u i r e m e n t t o be a c c o u n t e d f o r i n c o n d e n s e r

d e s i g n . A d i s c u s s i o n o f t h e a d v a n t a g e s and d i s a d v a n t a g e s o f v a r i o u s d e s i g n s can

be f ound i n t h e l i t e r a t u r e ( r e f s . 3 , 4 0 ) . Many f a c t o r i e s r e l y on s i m p l e , and

q u i t e e f f e c t i v e , c o u n t e r - c u r r e n t s h e l f - t y p e b a r o m e t r i c c o n d e n s e r s . An o u t l i n e o f

a d e s i g n p r e s e n t l y used i n D a n i s h s u g a r f a c t o r i e s can be seen i n F i g . 3 .22 .

A n o t h e r condense r d e s i g n , implemented r e c e n t l y i n t he S o v i e t s u g a r i n d u s t r y ,

c o n s i s t s o f two v e s s e l s c o n n e c t e d i n s e r i e s ( F i g . 3 . 2 3 ) . Vapour e n t e r i n g t h e

Page 140: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

129

cooling ρ — ^ water Τ τ - ^ ^

vapour

to vacuum pump

barometric water

F i g . 3 .22 . O u t l i n e o f a c o u n t e r - c u r r e n t s h e l f - t y p e b a r o m e t r i c c o n d e n s e r ( c o u r t e s y D O S ) .

F i g . 3 .23 . Scheme o f a b a r o m e t r i c c o n d e n s e r f e a t u r i n g a c o - c u r r e n t v e s s e l ( a ) and a c o u n t e r - c u r r e n t v e s s e l ( b ) . 1 - v a p o u r i n l e t , 2 - c o o l i n g w a t e r i n l e t , 3 - w a t e r o u t l e t , 4 - vacuum l i n e .

Page 141: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

130

f i r s t v e s s e l i s s u b j e c t t o c o - c u r r e n t c o o l i n g as w a t e r f l o w s down t h e s h e l v e s .

The f i r s t p o r t i o n o f w a t e r can be w i t h d r a w n f rom t h e upper p a r t o f t h e v e s s e l .

P r o v i d i n g t h i s w a t e r does n o t mix w i t h t h e main c o o l i n g - w a t e r s t r e a m , t h e upper

p a r t o f t h e f i r s t v e s s e l can be t r e a t e d as an e n t r a i n m e n t s e p a r a t o r . I t i s a l s o

p o s s i b l e t o u t i l i z e t h i s p a r t o f t he c o n d e n s e r as a d i r e c t - c o n t a c t h e a t e r ; f o r

examp le , f r e s h w a t e r s u p p l i e d t o t h e e x t r a c t o r can be hea ted t h e r e . C o - c u r r e n t

c o o l i n g ( u s i n g w a t e r f rom t h e main c o o l i n g c i r c u i t ) c o n t i n u e s i n t h e l o w e r p a r t

o f t he v e s s e l , t h i s be ing f o l l o w e d by c o u n t e r - c u r r e n t c o o l i n g i n t h e second

v e s s e l . I n compar i son t o vacuum sys tems emp loy ing s i m p l e c o u n t e r - c u r r e n t

c o n d e n s e r s , t h i s d e s i g n i s c l a i m e d t o r e d u c e t h e c o o l i n g - w a t e r demand by 25-30%

( r e f . 4 1 ) .

The e v a c u a t i o n o f n o n c o n d e n s a b l e s f rom t h e c o n d e n s e r i s e f f e c t e d u s i n g vacuum

pumps, u s u a l l y o f t h e w a t e r - r i n g t y p e . I n a d d i t i o n t o t h e g e n e r a l c o n d e n s e r

d e s i g n , t h e l o c a t i o n and d i m e n s i o n o f t h e g a s - w i t h d r a w a l n o z z l e i s i m p o r t a n t , as

i t may o r may n o t e n s u r e t h a t t h e gas e v a c u a t i o n i s s u f f i c i e n t and t h e gas

t e m p e r a t u r e i s as low as p o s s i b l e . ( T h e l o w e r t h i s t e m p e r a t u r e , t h e s m a l l e r i s

t he e n e r g y e x p e n d i t u r e i n t h e vacuum pump d r i v e . )

As r e g a r d s t h e p r e s s u r e d r o p s a l o n g t h e v a p o u r p a t h s between equ ipment u n i t s

and t h e c o n d e n s e r , some s p e c i f i c p rob lems may a r i s e depend ing on t h e scheme o f

t h e vacuum i n s t a l l a t i o n . I n t h e case o f i n d i v i d u a l c o n d e n s e r s , i t i s e s s e n t i a l

t o choose channe l d i m e n s i o n s i n a c c o r d a n c e w i t h maximum v a p o u r - f l o w v a l u e s ( f o r

examp le , v a p o u r c h a n n e l s a t t a c h e d t o a vacuum pan s h o u l d be d i m e n s i o n e d f o r t h e

v a p o u r f l o w e x p e c t e d d u r i n g t h e s y r u p - t h i c k e n i n g phase o f t he b o i l i n g c y c l e ) . I f

a c e n t r a l c o n d e n s e r i s e m p l o y e d , t h e n a d e l i c a t e p rob lem a r i s e s o f f l o w

d i s t r i b u t i o n i n p a r a l l e l s e c t i o n s o f t h e vacuum p i p i n g .

L a r g e d i a m e t e r s o f n o z z l e s , v a l v e s and p i p e s i n d u c e a t e n d e n c y t o w a r d s

s e l e c t i n g t o o smal l d i m e n s i o n s , t h i s r e s u l t i n g i n t o o l a r g e p r e s s u r e d r o p s .

T r a d i t i o n a l l y , c a l c u l a t i o n s o f t h e vacuum p i p i n g have been based on t h e

recommended v a l u e s o f f l o w v e l o c i t i e s i n s e r t e d i n t o i n c o m p r e s s i b l e - f l o w f o r m u l a e

e x p r e s s i n g t h e p r e s s u r e d r o p ( r e f . 3 ) . I t can be p r o v e d , h o w e v e r , t h a t n e g l e c t

o f t h e v a p o u r c o m p r e s s i b i l i t y may cause a s y s t e m a t i c e r r o r o f abou t 10% o f t h e

c a l c u l a t e d p r e s s u r e d rop ( r e f . 4 2 ) . An example o f c a l c u l a t i o n s o f t h e vacuum

p i p i n g u s i n g c o m p r e s s i b l e - f l o w f o r m u l a e can be f o u n d i n t h e l i t e r a t u r e

( r e f . 4 3 ) .

I t s h o u l d be added t h a t t h e above d i s c u s s i o n c a n n o t be c o n s i d e r e d as a

comple te p r e s e n t a t i o n o f t h e r e q u i r e m e n t s r e l a t i n g t o e f f i c i e n t vacuum s y s t e m s .

F o r examp le , s t a b i l i t y o f t h e vacuum l e v e l i s v e r y i m p o r t a n t t o bo th t h e h e a t

economy and t he r e l i a b i l i t y o f vacuum-pan o p e r a t i o n . The s t a b i l i t y r e q u i r e m e n t s

t o be a c c o u n t e d f o r i n t h e c o n d e n s e r d e s i g n a r e r e v i e w e d i n t h e l i t e r a t u r e

( r e f . 4 4 ) .

Page 142: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

131

3 .3 .4 U t i l i z a t i o n o f l o w - p r e s s u r e v a p o u r s

I n S e c t i o n 1.2, u t i l i z a t i o n o f l o w - t e m p e r a t u r e h e a t and c e r t a i n p rob lems

a s s o c i a t e d w i t h t he equ ipment used f o r t h i s p u r p o s e were p r e l i m i n a r i l y

d i s c u s s e d . I n t h i s a r e a , t h e u t i l i z a t i o n o f vacuum-pan v a p o u r s i s o f p a r t i c u l a r

i m p o r t a n c e . T h i s p rob lem has much i n common w i t h t h e u t i l i z a t i o n o f l a s t - e f f e c t

v a p o u r f rom t h e e v a p o r a t o r .

The p o s s i b i l i t i e s o f h e a t i n g w i t h vacuum-pan v a p o u r s a re l i m i t e d by t h e i r low

t e m p e r a t u r e , 55-65°C. A p o p u l a r s o l u t i o n known f rom l e s s e f f i c i e n t the rma l

sys tems i s t o h e a t f r e s h w a t e r s u p p l i e d t o t h e e x t r a c t o r . T h i s can be d o n e , f o r

examp le , i n t he i n l e t p a r t o f t h e d o u b l e - v e s s e l c o n d e n s e r men t i oned i n t h e

p r e c e d i n g S e c t i o n ; i t has been r e p o r t e d t h a t w a t e r t e m p e r a t u r e s as h i g h as 1-2 Κ

be low the v a p o u r t e m p e r a t u r e can be a t t a i n e d ( r e f . 4 5 ) . I n h i g h l y e f f i c i e n t

thermal s y s t e m s , h o w e v e r , t h e e x t r a c t o r s h o u l d r a t h e r be s u p p l i e d w i t h e x c e s s

c o n d e n s a t e , and o t h e r methods o f u t i l i z a t i o n o f vacuum-pan v a p o u r s s h o u l d be

p r e f e r r e d .

A t y p i c a l e n e r g y - e f f i c i e n t s o l u t i o n i s t o h e a t raw j u i c e i n a h e a t e r o f

a s u i t a b l e d e s i g n . I t seems t h a t h o r i z o n t a l l y - o r v e r t i c a l l y - a r r a n g e d t u b u l a r

h e a t e r s a re most f r e q u e n t l y u s e d , w h i l e a p p l i c a t i o n s o f s p i r a l h e a t e r s a r e a l s o

known. Raw j u i c e can be hea ted t o t h e 50-55°C r e q u i r e d f o r h o t p r e - l i m i n g , t h i s

making i t p o s s i b l e t o u t i l i z e 4-5 kg vacuum-pan v a p o u r p e r 100 kg b e e t . The 2

h e a t i n g s u r f a c e a r e a r e q u i r e d i s t y p i c a l l y o f t h e o r d e r 70-110 m p e r 100 t / d

p r o c e s s i n g c a p a b i l i t y . I f t h e t e m p e r a t u r e i n t h e p r e - l i m e r i s l o w e r , t h e n p r e -

l imed j u i c e can be hea ted i n s t e a d .

The l e a d i n g p r i n c i p l e o f h e a t i n g w i t h vacuum-pan v a p o u r s i s t o aim a t as h i g h

a v a p o u r - c o n d e n s a t i o n t e m p e r a t u r e i n t h e h e a t e r as p o s s i b l e . C o n s e q u e n t l y ,

v a p o u r s f rom pans A a re p r e f e r r e d t o t h o s e f rom Β and C p a n s . P r o p e r p r e c a u t i o n s

s h o u l d a l s o be taken a g a i n s t t h e i n f l u e n c e o f noncondensab le gases c o n s i s t i n g

m a i n l y o f a i r l i b e r a t e d f rom j u i c e and s y r u p s d u r i n g t h e t h i c k e n i n g p h a s e , a i r

e n t e r i n g t h e vacuum pans d u r i n g t h e i n t e r v a l s between t h e b o i l i n g c y c l e s , and

a i r l e a k i n g i n t o t h e vacuum s y s t e m . The volume o f n o n c o n d e n s a b l e s i s u s u a l l y

abou t 1% o f t he v a p o u r vo l ume .

The i n f l u e n c e o f n o n c o n d e n s a b l e s i s e l i m i n a t e d i f t h e h e a t e r i s p r o p e r l y

c o n n e c t e d t o t h e vacuum s y s t e m . I n F i g . 3 .24 , two d i f f e r e n t s o l u t i o n s a r e shown

s c h e m a t i c a l l y . I n case ( a ) , t h e e n t i r e v a p o u r f l o w f rom t h e vacuum pans i s

d i r e c t e d t o t h e h e a t e r and t o t h e c o n d e n s e r , t h i s e f f e c t i v e l y p r e v e n t i n g t h e

a c c u m u l a t i o n o f n o n c o n d e n s a b l e s . The h e a t e r d e s i g n must be adap ted t o a v e r y

l a r g e volume f l o w o f v a p o u r , w h i c h r e q u i r e s a r e l a t i v e l y l a r g e h e a t e r d i a m e t e r

and s p a r s e l y p l a c e d t u b e s , so as n o t t o e x c e e d a v a p o u r p r e s s u r e d rop o f

0 .01-0 .02 b a r . Two s u i t a b l e d e s i g n s i n w h i c h a v a p o u r - f l o w v e l o c i t y o f up t o

40-50 m/s has been assumed a r e shown s c h e m a t i c a l l y i n F i g s . 3.25 (one v a p o u r -

Page 143: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

132

(α) (b )

3

- 0

3

Ν /

F i g . 3 .24 . H e a t e r a r rangemen ts s u i t e d t o h e a t i n g w i t h vacuum-pan v a p o u r s : ( a ) h e a t e r s u p p l i e d w i t h t h e e n t i r e v a p o u r f l o w , ( b ) h e a t e r s u p p l i e d w i t h a p a r t o f t he v a p o u r f l o w . 1 - h e a t e r , 2 - foam c a t c h e r , 3 - c o n d e n s e r .

s i d e pass and f o u r j u i c e - s i d e p a s s e s ) and 3.26 ( two and t w e l v e p a s s e s ,

r e s p e c t i v e l y ) . O t h e r d e s i g n s have a l s o been p r e s e n t e d i n t h e l i t e r a t u r e ( r e f .

4 7 ) . G e n e r a l l y , t he h e a t e r d i m e n s i o n s a r e v e r y l a r g e and i t may be d i f f i c u l t t o

f i n d a p l a c e i n an e x i s t i n g f a c t o r y where such a u n i t can be i n s t a l l e d .

I n case ( b ) , t he h e a t e r i s c o n n e c t e d t o a v a p o u r l i n e p a r a l l e l t o t h e main

v a p o u r m a n i f o l d . The v a p o u r f l o w t h r o u g h t h e h e a t e r i s t y p i c a l l y 25-30% o f t h e

t o t a l f l o w , t h i s making i t p o s s i b l e t o r e d u c e t h e d i m e n s i o n s o f t h e u n i t . As t h e

d i a m e t e r s o f t he v a p o u r p i p e s can a l s o be r e d u c e d , i t becomes e a s i e r t o i n s t a l l

t he h e a t e r i n a manner f a c i l i t a t i n g c o n v e n i e n t a c c e s s f o r r e p a i r and

m a i n t e n a n c e . Vapour f rom t h e h e a t e r o u t l e t i s d i r e c t e d t o t h e main v e s s e l o f

a d o u b l e - v e s s e l main c o n d e n s e r (when a c o n d e n s i n g sys tem s i m i l a r t o t h a t

p r e s e n t e d i n S e c t i o n 3 .3 .3 i s a p p l i e d ) , o r t o an i n d i v i d u a l c o n d e n s e r . I n t h i s

c a s e , t h e volume c o n c e n t r a t i o n o f n o n c o n d e n s a b l e s a t t h e v a p o u r o u t l e t may

a t t a i n 4-5%, d e c r e a s i n g t h e c o n d e n s a t i o n t e m p e r a t u r e by abou t 1-1.5 K. I t i s

t h e r e f o r e recommended t o adap t t h e h e a t e r d e s i g n t o t h e f o l l o w i n g r e q u i r e m e n t s

o f e f f i c i e n t v e n t i n g :

uice

8 nn

— C7>

vapour

F i g . 3 .25 . Scheme o f a t u b u l a r h e a t e r hea ted w i t h vacuum-pan v a p o u r , h e a t i n g s u r f a c e a r e a 125 m2. 1 - t u b e s , 2 - i n t e r m e d i a t e t ube s h e e t s , 3 - c o n d e n s a t e -s e p a r a t i n g b a f f l e , 4 - p r o t e c t i v e s c r e e n s ( a f t e r r e f . 4 6 ) .

Page 144: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

(α)

133

(b)

baffle

external wall

holes

F i g . 3 .26 . Scheme o f a t u b u l a r h e a t e r h e a t e d w i t h vacuum-pan v a p o u r , h e a t i n g s u r f a c e a r e a 250 m^ ( c o u r t e s y Chemadex) . ( a ) g e n e r a l l a y o u t , ( b ) d e t a i l o f t h e b a f f l e , t o p v i e w .

- v a p o u r - f l o w v e l o c i t y i n t h e f r e e - f l o w ( i . e . d i s r e g a r d i n g t h e p r e s e n c e o f

h e a t i n g t u b e s ) h e a t e r c r o s s - s e c t i o n a r e a c l o s e t o t h e v a p o u r i n l e t s h o u l d be

10-15 m/s , t o p r e v e n t t he d i f f u s i o n o f n o n c o n d e n s a b l e s ;

- c o l d j u i c e s h o u l d e n t e r t h e h e a t i n g t u b e s i n t h e v i c i n i t y o f t h e v a p o u r

o u t l e t , t o s t i m u l a t e i d e n t i c a l f l o w d i r e c t i o n s o f bo th v a p o u r and

n o n c o n d e n s a b l e s .

The above comments and recommendat ions a p p l y a l s o t o t h e h e a t e r s s u p p l i e d

w i t h v a p o u r s f rom t h e l a s t e v a p o r a t o r e f f e c t . A d i s c u s s i o n o f a h e a t e r

a r rangement f o r r a w - j u i c e h e a t i n g u s i n g f i f t h - e f f e c t v a p o u r can be f o u n d i n t h e

l i t e r a t u r e ( r e f . 4 8 ) .

A number o f a l t e r n a t i v e methods o f u t i l i z a t i o n o f l o w - t e m p e r a t u r e v a p o u r s

have a l s o been p r o p o s e d . I n t h e S o v i e t s u g a r i n d u s t r y , d i r e c t - c o n t a c t h e a t e r s

f o r r a w - j u i c e h e a t i n g a r e i n use ( F i g . 3 . 2 7 ) . W h i l e t h i s equ ipment i s s i m p l e and

easy t o imp lement , t h e a d v a n t a g e s o f i t s a p p l i c a t i o n a r e f a r f rom o b v i o u s ,

because t h e j u i c e becomes d i l u t e d w i t h c o n d e n s a t e , t h u s r e q u i r i n g i n c r e a s e d

e v a p o r a t i o n i n t h e e v a p o r a t o r . I n o r d e r t o r e d u c e t h e n e t h e a t demand, i t i s

n e c e s s a r y t o a d j u s t t he d i s t r i b u t i o n o f t h e h e a t i n g v a p o u r s p r i o r t o t h e

imp lemen ta t i on o f a d i r e c t - c o n t a c t h e a t e r ( r e f . 5 0 ) .

A n o t h e r method o f u t i l i z a t i o n o f vacuum-pan v a p o u r s employs an i n t e r m e d i a t e

Page 145: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

134

View A

F i g . 3 .27 . Scheme o f a d i r e c t - c o n t a c t j u i c e h e a t e r hea ted w i t h vacuum-pan v a p o u r . 1 - j u i c e i n l e t , 2 - j u i c e o u t l e t , 3 - v a p o u r , 4 - n o n c o n d e n s a b l e s .

w a t e r c i r c u i t f o r hea t t r a n s p o r t t o a i r p r e h e a t e r s i n t h e b o i l e r s o r i n t h e

d r y i n g s t a t i o n s ( s u g a r d r y e r , l o w - t e m p e r a t u r e p u l p d r y e r , e t c . ) . A c o n d e n s e r -

h e a t e r ( " h o t c o n d e n s e r " ) w h i c h has been d e s i g n e d f o r such a p p l i c a t i o n s i s shown

s c h e m a t i c a l l y i n F i g . 3 .28 . A t l e a s t one m a n u f a c t u r e r i s now o f f e r i n g a comp le te

c i r c u i t w h i c h c o n s i s t s o f a c o n d e n s e r - h e a t e r , w a t e r t a n k , pump, and a s p i r a l

hea t e x c h a n g e r f o r r a w - j u i c e h e a t i n g . I t i s c l a i m e d t h a t t h i s s o l u t i o n i s more

economic t han a c o n v e n t i o n a l r a w - j u i c e h e a t e r s u p p l i e d w i t h vacuum-pan v a p o u r .

I n a number o f F r e n c h and West German s u g a r f a c t o r i e s , vacuum-pan v a p o u r s

a re u t i l i z e d i n s p e c i a l e v a p o r a t o r s f o r t h i c k e n i n g j u i c e o r Β s y r u p . As

imp lemen ta t i on o f t h i s method i s v e r y much dependen t on t h e a v a i l a b i l i t y o f

s u i t a b l e equ ipmen t , i t i s d i s c u s s e d i n C h a p t e r 5. I t i s w o r t h n o t i n g t h a t i n t h e

f a c t o r i e s where t h i s method i s a p p l i e d , t h e t o t a l a r e a o f t h e h e a t i n g s u r f a c e s

o f t h e equ ipment hea ted by vacuum-pan v a p o u r s may a t t a i n 380-400 m p e r 1000 t / d

p r o c e s s i n g c a p a b i l i t y .

3.4 VAPOUR COMPRESSION

3.4.1 Compress ion o f v a p o u r s f rom t h e e v a p o r a t o r

An i n t r o d u c t i o n t o t he a p p l i c a t i o n o f v a p o u r c o m p r e s s i o n t e c h n i q u e s was

p r e s e n t e d i n S e c t i o n 1 .2 .7 . T h e r e i s a v a s t l i t e r a t u r e d e v o t e d t o t h e p rob lems

o f comb in ing v a p o u r compress i on c i r c u i t s w i t h v a r i o u s e n e r g y sys tems i n t h e

Page 146: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

135

to vacuum pump

1

condensate

water 39 C

cooling water 30"c

cooling ^ water 35 C

φ ) vapour

water 56 C

F i g . 3 .28 . Condenser t o w e r f o r t h e c o n d e n s a t i o n o f vacuum-pan v a p o u r ( c o u r t e s y W i e g a n d ) .

s u g a r i n d u s t r y ( r e f s . 2 , 3 , 5 1 - 5 9 ) . Wor th recommending a l s o i s a b r o c h u r e w h i c h

summar izes t h e p r e s e n t s t a t e - o f - t h e - a r t i n t h e f i e l d o f a p p l i c a t i o n s o f

mechan ica l v a p o u r compresso rs i n v a r i o u s p r o c e s s i n d u s t r i e s ( r e f . 6 0 ) . I n t h i s

S e c t i o n , we s h a l l c o n c e n t r a t e on t h e two s o l u t i o n s most f r e q u e n t l y used i n s u g a r

f a c t o r i e s , namely t h o s e emp loy ing t h e c o m p r e s s i o n o f v a p o u r s f rom t h e f i r s t and

t h e second e v a p o r a t o r e f f e c t s .

I t was i n d i c a t e d i n S e c t i o n 1.2.7 t h a t b e f o r e t h e i n t r o d u c t i o n o f a v a p o u r

compress ion c i r c u i t i n t o a the rma l s y s t e m , i t may be n e c e s s a r y t o r e a r r a n g e t h e

d e t a i l s o f t he d i s t r i b u t i o n o f v a p o u r s f rom t h e e v a p o r a t o r . L e t us c o n s i d e r t h e

example o f a r a t h e r i n e f f i c i e n t the rma l sys tem c h a r a c t e r i z e d by a r e l a t i v e l y

l a r g e steam demand, namely 47.9 kg/100 kg b, c o n s i s t i n g o f :

- h e a t i n g steam a t t h e pa rame te rs c o r r e s p o n d i n g t o t h e t u r b i n e e x h a u s t , s u p p l i e d

t o t h e e v a p o r a t o r and t he s u g a r d r y e r , 46.4 kg/100 kg b;

- l i v e steam t h r o t t l e d t o 7 b a r , s u p p l i e d t o t h e c e n t r i f u g a l s , 1.5 kg/100 kg b.

The f a c t o r y c o n s i d e r e d employs a t r o u g h - t y p e e x t r a c t o r , s u p p l i e d w i t h f r e s h

w a t e r f rom o u t s i d e t h e f a c t o r y , a c l a s s i c a l j u i c e - p u r i f i c a t i o n s t a t i o n , a

q u a d r u p l e - e f f e c t e v a p o r a t o r i n w h i c h t h e j u i c e i s t h i c k e n e d f rom 15.5% DS t o

Page 147: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

136

65% DS, and a t h r e e - b o i l i n g c r y s t a l l i z a t i o n scheme. The e s s e n t i a l f e a t u r e s o f

t h e v a p o u r d i s t r i b u t i o n scheme and t h e v a p o u r f l o w s a r e g i v e n i n T a b l e 3 . 3 . L e t

us n o t e t h a t t he f l o w o f l a s t - e f f e c t v a p o u r t o t h e c o n d e n s e r can be r e g a r d e d as

s u f f i c i e n t l y s m a l l , and u n l e s s t h e v a p o u r d i s t r i b u t i o n i s c h a n g e d , no v a p o u r

s t ream i s d i r e c t l y a v a i l a b l e f o r a p o s s i b l e v a p o u r - c o m p r e s s i o n c i r c u i t .

TABLE 3.3

Steam and v a p o u r s t reams (kg /100 kg b) between s o u r c e s and r e c e i v e r s i n a the rma l sys tem consuming 47.9 kg steam p e r 100 kg b e e t .

S o u r c e s

R e c e i v e r s E v a p o r a t o r e f f e c t s O t h e r s

1

P r e s s - w a t e r h e a t e r 1 .95 E x t r a c t o r 2.17 0 .21 R a w - j u i c e h e a t e r condensa te H e a t e r s b e f o r e main l i m i n g 6 .80 H e a t e r a f t e r 1s t c a r b o n a t a t i o n 3.22 H e a t e r b e f o r e 2nd c a r b o n a t a t i o n 2.86 T h i n - j u i c e h e a t e r s 2.52 3.38 T h i c k - j u i c e h e a t e r 0.15 M e l t e r 0.20 I n d i r e c t l y - h e a t e d s y r u p t a n k s 0.45 D i r e c t l y - h e a t e d s y r u p t anks 0.58 Remelt h e a t e r 0.20 Vacuum pans A 12.80

Β 3.40 C 1.31

Vacuum-pan s teaming 1.50 C e n t r i f u g a l s 7 ba r steam 1.50 Sugar d r y e r e x h a u s t steam 0.50 Condense r 0.71

E v a p o r a t o r t o t a l 2.52 32.22 8. .96 0.71

I t can be c o n c l u d e d f rom t h e d a t a p r e s e n t e d i n T a b l e 3.3 t h a t t h e h e a t

economy can be improved by i n t r o d u c i n g t h e u t i l i z a t i o n o f f o u r t h - e f f e c t v a p o u r

and vacuum-pan v a p o u r s . An a d d i t i o n a l improvement can be o b t a i n e d by s u p p l y i n g

t h e e x t r a c t o r w i t h e x c e s s c o n d e n s a t e , i n s t e a d o f f r e s h w a t e r s u p p l i e d a t a l o w e r

i n i t i a l t e m p e r a t u r e . L e t us assume t h a t t h e s e changes a r e i n t r o d u c e d w i t h o u t any

m o d i f i c a t i o n s o f t h e s u g a r m a n u f a c t u r i n g p r o c e s s ; most n o t a b l y , t h e t h i c k - j u i c e

c o n c e n t r a t i o n remains a t 65% DS.

F o l l o w i n g t h e u t i l i z a t i o n o f t h e vacuum-pan v a p o u r s i n r a w - j u i c e h e a t i n g and

o t h e r hea t -economy improvemen ts , t h e demand f o r h e a t i n g v a p o u r s f rom t h e

e v a p o r a t o r i s r e d u c e d . I n o r d e r t o keep t h e t h i c k - j u i c e c o n c e n t r a t i o n c o n s t a n t ,

t h i s can be compensated f o r by a r t i f i c i a l l y w i t h d r a w i n g a s u f f i c i e n t l y l a r g e

v a p o u r s t ream f rom t h e e v a p o r a t o r . L e t us assume t h a t t h i s s t ream can be t a k e n

f rom t h e f i r s t e v a p o r a t o r e f f e c t .

Page 148: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

137

The e s s e n t i a l f e a t u r e s o f t h e improved v a p o u r d i s t r i b u t i o n scheme, i n c l u d i n g

t h e f l o w s o f h e a t i n g v a p o u r s f rom t h e e v a p o r a t o r and vacuum p a n s , a r e shown i n

T a b l e 3 . 4 . As can be s e e n , a v a p o u r s t ream o f 10 kg/100 kg b i s w i t h d r a w n f rom

t h e f i r s t e f f e c t . T h i s v a p o u r can be compressed t o t h e e x h a u s t - s t e a m p r e s s u r e

and u t i l i z e d i n t he h e a t i n g chamber o f t h e f i r s t e f f e c t , c u t t i n g down t h e demand

f o r e x h a u s t steam s u p p l i e d t o t h e e v a p o r a t o r .

TABLE 3.4

Steam and v a p o u r s t reams (kg /100 kg b) between s o u r c e s and r e c e i v e r s i n t h e m o d i f i e d the rma l s y s t e m .

S o u r c e s

R e c e i v e r s E v a p o r a t o r e f f e c t s O t h e r s

1

P r e s s - w a t e r h e a t e r 1. ,97 E x t r a c t o r 0. .90 0.92 R a w - j u i c e h e a t e r vacuum-pan v a p o u r H e a t e r s b e f o r e main l i m i n g 2.85 3. ,36 c o n d e n s a t e H e a t e r a f t e r 1 s t c a r b o n a t a t i o n 2.62 H e a t e r b e f o r e 2nd c a r b o n a t a t i o n 2, .50 T h i n - j u i c e h e a t e r s 2. .24 2, .43 1.65 T h i c k - j u i c e h e a t e r 0.15 M e l t e r 0, .20 I n d i r e c t l y - h e a t e d s y r u p t a n k s 0, .45 D i r e c t l y - h e a t e d s y r u p t anks 0, .58 Remel t h e a t e r 0.18 Vacuum pans A 12, .80

Β 3 .40 C 1 .31

Vacuum-pan s teaming 1 .50 C e n t r i f u g a l s 7 ba r steam 1.50 Sugar d r y e r e x h a u s t steam 0.50 Condenser 0, .09 To be w i t h d r a w n 10, .00 (5 .00) *

E v a p o r a t o r t o t a l 12, .24 26 .07 8.37 5, .42

V a p p l i e s t o c o m p r e s s i o n o v e r two s t a g e s

B e f o r e d i s c u s s i n g p o s s i b l e s o l u t i o n s f o r t h e v a p o u r c o m p r e s s i o n c i r c u i t , l e t

us assume t h e f o l l o w i n g v a l u e s o f t h e e n e r g y c o n v e r s i o n and d i s t r i b u t i o n

p r o c e s s e s i n t h e f a c t o r y :

- l i v e steam p r e s s u r e 38 ba r and t e m p e r a t u r e 450°C;

- e x h a u s t steam t e m p e r a t u r e 135°C, f i r s t - e f f e c t v a p o u r t e m p e r a t u r e 126°C ( d r y

s a t u r a t e d steam i n bo th c a s e s , t h a t i s , p r e s s u r e s o f 3.13 ba r and 2.39 b a r ,

r e s p e c t i v e l y ) ;

- power consumpt ion i n t h e f a c t o r y 3 kWh p e r 100 kg b e e t ;

- steam r a t e o f t h e t u r b o - g e n e r a t o r 8 kg /kWh;

- on a v e r a g e , 37.4 % o f t h e h e a t i n g s team, i . e . 17.36 kg/100 kg b , d e l i v e r e d

Page 149: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

138

f rom t h e t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n .

L e t us a l s o o b s e r v e t h a t 62.6% o f t he h e a t i n g - s t e a m f l o w d e l i v e r e d v i a t h e

t u r b i n e makes i t p o s s i b l e t o g e n e r a t e 3.63 kWh p e r 100 kg b e e t , so t h e f a c t o r y

i s a b l e t o s e l l an e l e c t r i c i t y s u r p l u s o f t h e o r d e r o f 20% o f i t s own power

c o n s u m p t i o n .

3 .4 .2 Mechan i ca l v s . j e t - t y p e compresso rs

To b e g i n w i t h , l e t us c o n s i d e r a compress i on c i r c u i t emp loy ing an

e l e c t r i c a l l y - d r i v e n , s i n g l e - s t a g e mechan ica l c o m p r e s s o r . The v a p o u r c o m p r e s s i o n

p r o c e s s i s shown i n t he M o l l i e r d iag ram i n F i g . 3 .29 . S p e c i f i c power consumpt ion

( p e r 1 kg v a p o u r ) can be c a l c u l a t e d as

P 3 = ( h , 3 - h ^ l ) / { n , n ^ ) ( 3 . 1 0 )

where h^-j i s t h e e n t h a l p y o f f i r s t - e f f e c t v a p o u r , h^^ i s t h e f i n a l v a p o u r

e n t h a l p y i n t he i s e n t r o p i c compress i on p r o c e s s , i s t h e c o m p r e s s i o n e f f i c i e n c y

and i s t he mechan ica l e f f i c i e n c y .

Assuming = 0 .68 , = 0.95 and u s i n g t he pa ramete r v a l u e s l i s t e d i n t h e

p r e c e d i n g S e c t i o n ( e n t h a l p y v a l u e s a c c o r d i n g t o U . G r i g u l l ( E d . ) , P r o p e r t i e s o f

Water and Steam i n S l - U n i t s , 2nd e d n . , S p r i n g e r - V e r l a g , B e r l i n - H e i d e l b e r g - N e w

Y o r k , 1979) , we o b t a i n

Pg = (2764.1 - 2 7 1 4 . 4 ) / ( 0 . 6 8 - 0 . 9 5 ) = 76.9 k J / k g = 0.0214 kWh/kg

2800

1^2750 o JZ ·•-· c ÜJ

2700

6.95 7.00 7.05 7.10 715

Entropy ( k ^ i R g K ) )

F i g . 3 .29 . Compress ion o f f i r s t - e f f e c t v a p o u r i n a mechan ica l c o m p r e s s o r .

Page 150: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

139

The e n t h a l p y o f t he compressed v a p o u r i s

h^^ = h^^ + ( h ^ ^ - h ^ ^ ) / n ^ = 2714.4 + (2764.1 - 2 7 1 4 . 4 ) / 0 . 6 8 = 2787.5 k J / k g

T h i s c o r r e s p o n d s t o a t e m p e r a t u r e o f 163.2°C, t h a t i s , 28.2 Κ above t h e

s a t u r a t i o n t e m p e r a t u r e . The compressed v a p o u r s h o u l d be d e s u p e r h e a t e d by

condensa te i n j e c t i o n and t h e n d i r e c t e d t o t h e h e a t i n g chamber o f t h e f i r s t

e v a p o r a t o r e f f e c t . Assuming t h e c o n d e n s a t e e n t h a l p y c o r r e s p o n d i n g t o t h e l i q u i d

s a t u r a t e d s t a t e a t t h e e x h a u s t - s t e a m p r e s s u r e , t h a t i s , h^ = 567.7 k J / k g , t h e

mass o f condensa te needed t o d e s u p e r h e a t 1 kg compressed v a p o u r can be

c a l c u l a t e d as

= ( h ^ c " • ^ ) ( 2 · ^ ^ '

where h^ i s t h e e n t h a l p y o f e x h a u s t steam (assumed t o be d r y s a t u r a t e d steam a t

3.13 ba r p r e s s u r e ) .

A f t e r i n s e r t i n g t h e e n t h a l p y v a l u e s , we o b t a i n

m^ = (2787.5 - 2 7 2 6 . 6 ) / ( 2 7 2 6 . 6 - 567.7) = 0.028 kg /kg

U s i n g t h e r e s u l t s o f t h e above c a l c u l a t i o n s , we can summarize t h e

consequences o f i n t r o d u c i n g a v a p o u r - c o m p r e s s i o n c i r c u i t based on a mechan ica l

compresso r as f o l l o w s .

( i ) H e a t i n g steam demand i s r e d u c e d by 10 · (1 + 0.028) = 10.28 kg/100 kg b , i . e .

by abou t 21.5% o f t h e i n i t i a l steam demand. T h i s makes i t p o s s i b l e t o c u t down

t h e l i v e steam f l o w t h r o u g h t h e t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n t o l e s s t han

41% o f i t s i n i t i a l v a l u e .

( i i ) Power demand i s i n c r e a s e d by 10-0.0214 = 0.214 kWh/100 kg b , i . e . by abou t

7% o f t h e i n i t i a l v a l u e .

L e t us o b s e r v e t h a t t he power o u t p u t remains u n a f f e c t e d , t h i s i m p l y i n g t h a t

t h e r e i s a change i n t h e power b a l a n c e , namely a r e d u c t i o n o f t h e e l e c t r i c i t y

s u r p l u s w h i c h can be s o l d t o t h e e x t e r n a l g r i d .

A d i f f e r e n t r e s u l t i s o b t a i n e d when t h e e l e c t r i c motor d r i v i n g t h e compresso r

i s r e p l a c e d by a steam t u r b i n e . Assuming a steam r a t e o f abou t 12 kg/kWh w h i c h

i s t y p i c a l o f sma l l s i n g l e - s t a g e t u r b i n e s , 2.56 kg l i v e steam p e r 100 kg b e e t i s

needed t o d r i v e t h e c o m p r e s s o r , and t h e expanded steam f rom t h e t u r b i n e e x h a u s t

can be mixed w i t h t h e compressed v a p o u r . I n t h i s c a s e , a r e d u c t i o n o f t h e

h e a t i n g - s t e a m demand and a s i m u l t a n e o u s i n c r e a s e o f t h e l i v e - s t e a m demand

r e s u l t i n a n e t s a v i n g o f abou t 21.5% o f t h e i n i t i a l steam demand, w h i l e t h e

power o u t p u t and t h e power demand remain unchanged . I t i s t h e r e f o r e w e l l w o r t h

c o n s i d e r i n g a t u r b i n e - d r i v e n compresso r as an i n t e r e s t i n g a l t e r n a t i v e t o an

e l e c t r i c a l l y - d r i v e n o n e .

Recen t examples o f t h e a p p l i c a t i o n o f e l e c t r i c a l l y - d r i v e n c o m p r e s s o r s have

been d i s c u s s e d i n t h e l i t e r a t u r e ( r e f s . 6 1 - 6 4 ) . T u r b i n e - d r i v e n c o m p r e s s o r s a r e

known t o be a p p l i e d i n D a n i s h s u g a r f a c t o r i e s (whe re s e c o n d - e f f e c t v a p o u r i s

Page 151: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

140

compressed , see S e c t i o n 3 . 4 . 3 ) .

The v a p o u r - c o m p r e s s i o n p r o c e s s can a l s o be pe r fo rmed u s i n g j e t - t y p e

c o m p r e s s o r s . T y p i c a l l y , m u l t i p l e compresso rs a r e i n s t a l l e d i n a s i n g l e

compress i on c i r c u i t f o r r e a s o n s o f f l o w c o n t r o l ( s e e S e c t i o n 3 . 4 . 4 ) . An

i d e a l i z e d compress ion p r o c e s s i n a j e t - t y p e compresso r s u p p l i e d w i t h l i v e steam

i s shown i n t h e M o l l i e r d iag ram i n F i g . 3 .30 . I n o r d e r t o c a l c u l a t e t h e steam

demand, f i n a l v a p o u r e n t h a l p y , e t c . , t h e f o l l o w i n g i n d i c e s c h a r a c t e r i z i n g t h e

i d e a l i z e d p r o c e s s must be known:

- compress i on r a t i o u ( s e e T a b l e 1 . 2 ) ,

3A00

3300

CT3200

>;3100 o £ C

ÜJ 3000

2900

2800

2700

2600 6.95 7.00 7.05 710 7.15

Entropy ( k j / (kg K))

F i g . 3 .30 . Compress ion o f f i r s t - e f f e c t v a p o u r i n a j e t - t y p e c o m p r e s s o r .

Page 152: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

141

- e f f i c i e n c y o f t h e l i v e - s t e a m n o z z l e ,

- e f f i c i e n c y o f t h e m ixed -s team ( i . e . , compressed v a p o u r ) n o z z l e η ^ .

The l i v e - s t e a m demand can be d e t e r m i n e d as

= D / u ( 3 . 1 2 )

where i s t h e v a p o u r f l o w .

Assuming u = 2 .40 , we o b t a i n f o r t h e c o m p r e s s i o n c i r c u i t under c o n s i d e r a t i o n

D^ = 10/2.40 = 4.17 kg/100 kg b.

The e n t h a l p y o f t he l i v e s team, a f t e r e x p a n s i o n i n t h e n o z z l e t o t h e p r e s s u r e

o f f i r s t - e f f e c t v a p o u r , can be c a l c u l a t e d as

^ c = ^ " " Ns^ l ( ^ - ^ ^ ^

where h-j i s t he i n i t i a l l i v e - s t e a m e n t h a l p y , and h-j^ i s t h e f i n a l steam e n t h a l p y

i n t h e i s e n t r o p i c e x p a n s i o n p r o c e s s .

I n s e r t i n g e n t h a l p y v a l u e s and assuming n-j = 0 .90 , we o b t a i n

h^^ = 3333.9 - (3333.9 - 2 6 7 3 . 8 ) · 0 . 9 0 = 2739.0 k J / k g .

The e n t h a l p y b a l a n c e o f m i x i n g expanded steam w i t h f i r s t - e f f e c t v a p o u r can be

w r i t t e n as

D l ^ l e ' ^ ^ ^ = C l ^ \K ( 3 . 1 4 )

where h^ i s t h e m ixed -s team e n t h a l p y .

The m ixed -s team e n t h a l p y can t h u s be c a l c u l a t e d as

h^ = (4 .17 -2739 .8 + 1 0 - 2 7 1 4 . 4 ) / ( 4 . 1 7 + 10) = 2721.9 k J / k g .

From a s e p a r a t e e n t r o p y b a l a n c e , we can d e t e r m i n e t h e e n t r o p y o f m ixed steam as

s = 7.0852 k J / ( k g K ) , w h i c h c o r r e s p o n d s t o a s l i g h t l y s u p e r h e a t e d s t a t e . The

e n t h a l p y o f mixed steam a f t e r c o m p r e s s i o n i n t h e n o z z l e t o t h e e x h a u s t - s t e a m

p r e s s u r e can be c a l c u l a t e d as

V = ^ ^ ( ^ s - ( 3 . 1 5 )

where h^^ i s t h e f i n a l steam e n t h a l p y i n t h e i s e n t r o p i c c o m p r e s s i o n p r o c e s s .

I n s e r t i n g e n t h a l p y v a l u e s and assuming = 0 . 8 7 , we o b t a i n

h^^ = 2721.9 + (2772.0 - 2 7 2 1 . 9 ) / 0 . 8 7 = 2779.4 k J / k g .

T h i s c o r r e s p o n d s t o a t e m p e r a t u r e o f 159.4°C, t h a t i s , 24.4 Κ above t h e

s a t u r a t i o n t e m p e r a t u r e . Assuming t h a t m ixed steam i s d e s u p e r h e a t e d u s i n g

condensa te i n j e c t i o n , we can c a l c u l a t e t h e mass o f c o n d e n s a t e p e r 1 kg steam

f rom e q n . ( 3 . 1 1 )

m^ = (2779.4 - 2 7 2 6 . 6 ) / ( 2 7 2 6 . 6 - 567.7) = 0.024 kg /kg

The t o t a l f l o w o f s a t u r a t e d steam s u p p l i e d by t h e v a p o u r - c o m p r e s s i o n c i r c u i t

i s t h u s

s ^ ^ 1 ^ v ' ^ ^ "^c ' ^ ^ ^ ^ ^ ^ ^ ^ - ^ 2 4 ) = 14.52 kg/100 kg b.

We can now summarize t he r e s u l t s o f t h e i n t r o d u c t i o n o f j e t - t y p e c o m p r e s s o r s

Page 153: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

142

t o t h e v a p o u r - c o m p r e s s i o n c i r c u i t as f o l l o w s .

( i ) The h e a t i n g - s t e a m demand i s r e d u c e d by 14.52 kg/100 kg b b u t t h e l i v e - s t e a m

demand i s i n c r e a s e d by 4.17 kg/100 kg b. The r e s u l t i n g n e t steam s a v i n g i s

10.35 kg/100 kg b , i . e . , abou t 21.6% o f t h e i n i t i a l steam demand.

( i i ) The l i v e - s t e a m f l o w t h r o u g h t h e t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n can be

c u t down t o abou t 16% o f i t s i n i t i a l v a l u e ; h o w e v e r , an even l a r g e r l i v e - s t e a m

f l o w must be s u p p l i e d t o t h e c o m p r e s s o r s .

( i i i ) The power o u t p u t and t he power demand remain u n a f f e c t e d by v a p o u r

c o m p r e s s i o n .

Recen t examples o f t he a p p l i c a t i o n o f j e t - t y p e compresso rs can be found i n

t he l i t e r a t u r e ( r e f s . 6 5 , 6 6 ) . Howeve r , p r a c t i c a l r e s u l t s may d i f f e r

s u b s t a n t i a l l y f rom t h o s e i n d i c a t e d i n t h e above c a l c u l a t i o n , as e x p l a i n e d i n t h e

n e x t S e c t i o n .

3 .4 .3 S e l e c t i n g t he most s u i t a b l e compress i on t e c h n i q u e

A compar i son o f t he v a l u e s o f e s s e n t i a l q u a n t i t i e s c h a r a c t e r i z i n g t he e n e r g y

b a l a n c e s r e s u l t i n g f rom t h e a p p l i c a t i o n s o f t h e t h r e e s o l u t i o n s d e s c r i b e d i n t h e

p r e c e d i n g S e c t i o n i s shown i n T a b l e 3 .5 . As can be s e e n , t h e steam s a v i n g s a r e

a lmos t i d e n t i c a l . The j e t - t y p e c o m p r e s s o r s and t h e t u r b i n e - d r i v e n mechan i ca l

compresso r o f f e r t h e advan tage o f an unchanged power b a l a n c e , w h i l e t h e

e l e c t r i c a l l y - d r i v e n mechan ica l compresso r i n c r e a s e s t h e power demand. I t s h o u l d

be p o i n t e d o u t , h o w e v e r , t h a t t h i s c o n c l u s i o n h o l d s o n l y i f t h e steam s a v i n g

r e l a t i v e t o t h e o r i g i n a l t he rma l sys tem w i t h o u t v a p o u r c o m p r e s s i o n does n o t

exceed t h e l i v e - s t e a m f l o w o r i g i n a l l y d i r e c t e d t o t h e t h r o t t l i n g - d e s u p e r h e a t i n g

s t a t i o n . I n o r d e r t o demons t ra te how d i f f e r e n t r e s u l t s can be o b t a i n e d under

d i f f e r e n t c o n d i t i o n s , a n o t h e r example i s p r e s e n t e d b e l o w .

TABLE 3.5

Compar ison o f e n e r g y b a l a n c e s r e s u l t i n g f rom t h e a p p l i c a t i o n o f v a r i o u s v a p o u r -compress i on t e c h n i q u e s i n a s u g a r f a c t o r y c h a r a c t e r i z e d by an i n i t i a l steam demand o f 47.9 kg/100 kg b.

Q u a n t i t y W i t h o u t

Compressor

D imens ion v a p o u r e l e c t r i c a l l y - • t u r b i n e - j e t -c o m p r e s s i o n d r i v e n d r i v e n t y p e

(kg /100 kg b ) 47.90 37.62 37.62 37.55 (%) 100 78.5 78.5 78.4

(kWh/100 kg b ) 3.000 3.214 3.000 3.000 (%) 100 107 100 100

(kWh/100 kg b ) 3.630 3.630 3.630 3.630 (%) 100 100 100 100

(kWh/100 kg b ) 0.630 0.416 0.630 0.630 (%) 100 66 100 100

Page 154: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

143

L e t us assume t h a t t h e i n i t i a l h e a t i n g - s t e a m demand o f t h e f a c t o r y under

c o n s i d e r a t i o n i s 36.4 kg/100 kg b and a l l t h e r e m a i n i n g pa rame te r s o f t h e e n e r g y

c o n v e r s i o n and d i s t r i b u t i o n p r o c e s s e s a r e t h e same as i n t h e f a c t o r y p r e v i o u s l y

c o n s i d e r e d . The a v e r a g e steam f l o w t h r o u g h t h e t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n

i s 7.36 kg/100 kg b , i . e . 19.4% o f t h e t o t a l h e a t i n g - s t e a m f l o w . I f we now

c o n s i d e r t h e a p p l i c a t i o n s o f t h r e e v a p o u r - c o m p r e s s i o n c i r c u i t s a n a l o g o u s t o

t h o s e p r e v i o u s l y s p e c i f i e d , t hen t h e r e s u l t i n g r e l a t i v e m o d i f i c a t i o n s o f t h e

e n e r g y b a l a n c e t u r n o u t t o be e n t i r e l y d i f f e r e n t f rom t h o s e f ound i n t h e

p r e v i o u s c a s e . As t he r e d u c t i o n s o f t he h e a t i n g - s t e a m f l o w e x c e e d t h e l i v e - s t e a m

f l o w o r i g i n a l l y s u p p l i e d t o t he t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n , t h e steam

f l o w t h r o u g h t h e t u r b i n e and t h e power o u t p u t d e c r e a s e as shown i n T a b l e 3 . 6 .

These e f f e c t s a r e most p ronounced i n t h e case o f j e t - t y p e c o m p r e s s o r s , c a u s i n g

t he s u g a r f a c t o r y t o become h e a v i l y dependen t on e l e c t r i c i t y s u p p l i e s f rom t h e

e x t e r n a l g r i d . When a p p l y i n g a mechan ica l c o m p r e s s o r , a smal l power s u r p l u s can

be e x p e c t e d i n t h e case o f an e l e c t r i c d r i v e , and a smal l power d e f i c i t i n t h e

case o f a t u r b i n e d r i v e .

TABLE 3.6

Compar ison o f e n e r g y b a l a n c e s r e s u l t i n g f rom t h e a p p l i c a t i o n o f v a r i o u s v a p o u r -c o m p r e s s i o n t e c h n i q u e s i n a s u g a r f a c t o r y c h a r a c t e r i z e d by an i n i t i a l steam demand o f 37.9 kg/100 kg b.

Q u a n t i t y W i t h o u t

Compressor

D imens ion v a p o u r e l e c t r i c a l l y - • t u r b i n e - j e t -c o m p r e s s i o n d r i v e n d r i v e n t y p e

(kg /100 kg b) 37.90 27.62 27.62 27.55 (%) 100 72.9 72.9 72.9

(kWh/100 kg b ) 3.000 3.214 3.000 3.000 (%) 100 100 100 100

(kWh/100 kg b ) 3.630 3.270 2.950 2.182 (%) 100 90 81 60

(kWh/100 kg b ) 0.630 0.056 -0 .050 -0 .818 (%) 100 9 -8 -130

I t s h o u l d be emphas ized t h a t T a b l e s 3.5 and 3.6 j u s t summarize t h e r e s u l t s o f

t h e a n a l y s e s c o n c e r n e d w i t h two p a r t i c u l a r s u g a r f a c t o r i e s e q u i p p e d w i t h

p a r t i c u l a r c o m p r e s s i o n c i r c u i t s . These d a t a c a n n o t be c o n s i d e r e d as s u f f i c i e n t

b a s i s f o r g e n e r a l c o n c l u s i o n s . I n r e a l - l i f e e n g i n e e r i n g p rob lems i t i s e s s e n t i a l

t o a c c o u n t f o r t h e i n f l u e n c e o f t h e t y p e o f c o m p r e s s i o n equ ipment on t h e

i n v e s t m e n t c o s t s , as w e l l as o t h e r f a c t o r s o f p r a c t i c a l i n t e r e s t . Depend ing on

t h e i n i t i a l steam-demand l e v e l , t h e r e q u i r e m e n t s imposed on t h e c o m p r e s s i o n

c i r c u i t can be d i f f e r e n t l y f o r m u l a t e d i n d i f f e r e n t f a c t o r i e s . The d e s i g n o f

a v a p o u r c o m p r e s s i o n c i r c u i t can t h u s be c o n s i d e r e d as a m u l t i - v a r i a b l e d e c i s i o n

Page 155: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

144

p r o b l e m , i n w h i c h equ ipment t y p e and v a p o u r f l o w s can be o p t i m i z e d f o r t h e b e s t

o v e r a l l economic r e s u l t s .

I n t h i s c o n t e x t , l e t us men t ion t h e p o s s i b i l i t y o f t h e a p p l i c a t i o n o f v a p o u r

c o m p r e s s i o n o v e r two e v a p o r a t i o n s t a g e s . T h e r e a r e i m p o r t a n t p r a c t i c a l

c o n s i d e r a t i o n s w h i c h can j u s t i f y such a s o l u t i o n . I t i s n o t unusua l t h a t t h e

c o n c e n t r a t i o n o f o r g a n i c gaseous s u b s t a n c e s i n t h e f i r s t - e f f e c t v a p o u r i s so

h i g h t h a t when t h e v a p o u r i s compressed and r e c i r c u l a t e d t o f i r s t - e f f e c t

h e a t i n g , t h e q u a l i t y o f f i r s t - e f f e c t condensa te becomes a d v e r s e l y a f f e c t e d . I f

t h e pa rame te rs o f t h e condensa te do n o t s a t i s f y t he r q u i r e m e n t s o f f e e d - w a t e r

q u a l i t y , t h e n a p rob lem i s c r e a t e d w i t h p o s s i b l e a d v e r s e c o n s e q u e n c e s , as

d i s c u s s e d i n S e c t i o n 3 . 1 . 2 . I t i s t h e r e f o r e w o r t h n o t i n g t h a t t he c o n c e n t r a t i o n

o f o r g a n i c gaseous s u b s t a n c e s i n s e c o n d - e f f e c t v a p o u r i s u s u a l l y 3-4 t imes

s m a l l e r t han t h a t i n f i r s t - e f f e c t v a p o u r ( r e f . 6 5 ) .

L e t us r e t u r n f o r a moment t o T a b l e 3 . 4 , i n w h i c h t h e mass f l o w s o f v a p o u r s

f rom t h e e v a p o r a t o r and vacuum pans i n t h e m o d i f i e d the rma l sys tem a r e

p r e s e n t e d . I f we assume t h a t i n s t e a d o f f i r s t - e f f e c t v a p o u r , v a p o u r i s w i t h d r a w n

f rom t h e second e f f e c t t o t h e c o m p r e s s i o n c i r c u i t , t h e n t he r e q u i r e d mass f l o w

o f t h a t v a p o u r can be c a l c u l a t e d f rom t h e c o n s t r a i n t o f c o n s t a n t t h i c k - j u i c e

c o n c e n t r a t i o n . The r e s u l t i n g f l o w v a l u e i s shown i n T a b l e 3.4 i n b r a c k e t s ; i t i s

o n l y h a l f o f t h e e q u i v a l e n t f l o w o f f i r s t - e f f e c t v a p o u r . As a c o n s e q u e n c e , t h e

i n c r e a s e s i n t h e t o t a l v a p o u r f l o w f rom bo th t h e f i r s t and second e v a p o r a t o r

e f f e c t s a r e s m a l l e r t han t h e i n c r e a s e r e s u l t i n g f rom v a p o u r c o m p r e s s i o n o v e r one

e v a p o r a t i o n s t a g e . The o u t l e t c o n c e n t r a t i o n o f j u i c e i n t he f i r s t e f f e c t i s

l o w e r t han i n t he o t h e r s o l u t i o n , t h i s making i t p o s s i b l e t o m a i n t a i n a l a r g e r

v a l u e o f t h e o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t i n t he f i r s t e f f e c t . I t may

t h e r e f o r e be e a s i e r , w i t h r e s p e c t t o t h e r e q u i r e d h e a t i n g - s u r f a c e a r e a i n t h e

f i r s t e v a p o r a t o r e f f e c t , t o implement v a p o u r c o m p r e s s i o n o v e r two s t a g e s . I t can

be added t h a t t h i s s o l u t i o n i s g e n e r a l l y a p p l i e d i n D a n i s h s u g a r f a c t o r i e s and

has a l s o been i n t r o d u c e d t o t h e Greek s u g a r i n d u s t r y .

3 .4 .4 C o n t r o l c o n s i d e r a t i o n s r e l a t i n g t o v a p o u r c o m p r e s s i o n

When s u p p l y i n g t he compressed v a p o u r f rom t h e f i r s t o r second e v a p o r a t o r

e f f e c t t o f i r s t - e f f e c t h e a t i n g , one has t o r eckon w i t h t he r i s k o f j u i c e

c a r r y o v e r c a u s i n g a t e m p o r a r y s u g a r p r e s e n c e i n t h e f i r s t - e f f e c t c o n d e n s a t e . I n

o r d e r t o manage emergency s i t u a t i o n s e f f e c t i v e l y , i t may be a d v i s a b l e t o i n s t a l l

two e v a p o r a t o r b o d i e s and two c o r r e s p o n d i n g c o n d e n s a t e t a n k s i n t h e f i r s t

e f f e c t . I f t h e c o m p r e s s e d - v a p o u r s t ream i s d i r e c t e d t o t h e h e a t i n g chamber o f

one b o d y , and t he o t h e r body i s hea ted w i t h pu re e x h a u s t s team, t h e n t h e r i s k o f

condensa te p o l l u t i o n i s l i m i t e d t o o n l y a p a r t o f t h e condensa te s t r e a m . An

example o f steam and v a p o u r c o n n e c t i o n s i n a v a p o u r c o m p r e s s i o n c i r c u i t

Page 156: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

145

u t i l i z i n g t h i s i d e a i s shown i n F i g . 3 . 3 1 ( a ) .

A n o t h e r p o s s i b i l i t y f o r p r e v e n t i n g j u i c e d r o p l e t s f rom b e i n g c a r r i e d o v e r t o

f i r s t - e f f e c t condensa te i s t o w i t h d r a w t h e v a p o u r s t ream t o be c o m p r e s s e d , n o t

d i r e c t l y f rom t h e e f f e c t i n w h i c h v a p o u r i s p r o d u c e d b u t f rom t h e h e a t i n g

chamber o f t h e n e x t e f f e c t . T h i s makes i t p o s s i b l e t o wash t h e v a p o u r t o be

w i t h d r a w n w i t h w a t e r c o n d e n s i n g i n t he h e a t i n g chamber. A c c o r d i n g t o t h i s

p r i n c i p l e , t h e Dan i sh s u g a r f a c t o r i e s employ t h e w i t h d r a w a l o f s e c o n d - e f f e c t

v a p o u r v i a t he h e a t i n g chamber o f t he t h i r d e f f e c t , as shown s c h e m a t i c a l l y i n

F i g . 3 . 3 1 ( b ) .

( b )

F i g . 3 .31. Schemes o f steam and v a p o u r c o n n e c t i o n s p r e v e n t i n g t h e p o l l u t i o n o f f i r s t - e f f e c t c o n d e n s a t e by j u i c e c a r r y o v e r i n t h e compressed v a p o u r : ( a ) c o m p r e s s i o n o v e r one e v a p o r a t i o n s t a g e , ( b ) c o m p r e s s i o n o v e r two e v a p o r a t i o n s t a g e s . 1-3 - e v a p o r a t o r e f f e c t s , 4 - c o m p r e s s o r , 5 - t u r b i n e , 6 - e x h a u s t s team, 7 - l i v e s team, 8 - h e a t i n g v a p o u r t o t h e n e x t e f f e c t , 9 -n o n c o n d e n s a b l e s .

When i n t r o d u c i n g v a p o u r c o m p r e s s i o n t o a the rma l s y s t e m , i t i s d e s i r a b l e t o

e l i m i n a t e , o r a t l e a s t t o r e d u c e , t h e use o f t h e t h r o t t l i n g - d e s u p e r h e a t i n g

s t a t i o n i n c o n t r o l l i n g t h e sys tem t h r o u g h p u t . As r e g a r d s c o m p r e s s i o n c i r c u i t s

emp loy ing mechan ica l c o m p r e s s o r s , t h i s i s s i m p l y a q u e s t i o n o f s e l e c t i n g one o f

t he f l o w - c o n t r o l t e c h n i q u e s a p p l i c a b l e t o gas-pumping equ ipment ( s e e C h a p t e r 7 ) .

The c o n t r o l t e c h n i q u e s e l e c t e d may a f f e c t t h e e n e r g y l o s s e s o c c u r r i n g i n t h e

therma l sys tem under chang ing l o a d s . T h e r e a r e examples o f a p p l i c a t i o n o f t he

most e f f i c i e n t v a r i a b l e - s p e e d c o n t r o l ( r e f . 5 9 ) , and t h e l e s s e f f i c i e n t b y - p a s s

c o n t r o l ( w h i c h happens t o be employed i n t h e scheme shown i n F i g . 3 . 3 1 ( a ) ) .

The case o f j e t - t y p e compresso rs i s d i f f e r e n t , as t h e s e d e v i c e s a r e

e s s e n t i a l l y d e s i g n e d t o work a t d e f i n i t e v a p o u r f l o w s and t h e c o n t r o l ma rg i ns

a re v e r y n a r r o w . I f t he f l o w d e v i a t e s f rom i t s nominal v a l u e , t h e n t h e

e f f i c i e n c y o f a compresso r f a l l s o f f r a p i d l y . I n o r d e r t o make i t p o s s i b l e t o

v a r y t h e c o m p r e s s i o n - c i r c u i t l o a d w i t h o u t s e r i o u s l y r e d u c i n g c o m p r e s s i o n

Page 157: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

146

e f f i c i e n c y , i t i s n e c e s s a r y t o a r r a n g e j e t - t y p e compresso rs o f d i f f e r e n t

t h r o u g h p u t s i n b a t t e r i e s , l i k e t h e one shown i n F i g . 3 .32 . A p o p u l a r s o l u t i o n

c o n s i s t s o f u s i n g f o u r c o m p r e s s o r s , t h e i r t h r o u g h p u t s c r e a t i n g a g e o m e t r i c

s e r i e s 1 :2 :4 :8 ( r e f . 6 5 ) . A c o n t r o l sys tem t a k e s c a r e o f t u r n i n g on compresso r

c o m b i n a t i o n s w i t h t o t a l t h r o u g h p u t s g r e a t e r t h a n , b u t c l o s e t o , t h e r e q u i r e d

v a p o u r - f l o w v a l u e s . U s i n g t h i s p r i n c i p l e , t h e a v e r a g e e f f i c i e n c y o f t h e b a t t e r y

a t v a r i a b l e l o a d s may be r e d u c e d o n l y i n s i g n i f i c a n t l y . I t may be added t h a t

t h e shap ing o f t h e compresso r b a t t e r y becomes l e s s i m p o r t a n t when a s t a b l e

e v a p o r a t o r l o a d i s e n s u r e d . I n two Dan i sh s u g a r f a c t o r i e s , v a p o u r c o m p r e s s i o n

c i r c u i t s a r e a p p l i e d w i t h t h e b a t t e r i e s c o m p r i s i n g f o u r and f i v e j e t - t y p e

c o m p r e s s o r s , t he t h r o u g h p u t s o f w h i c h c r e a t e t h e s e r i e s 1 : 1 . 9 4 : 1 . 9 4 : 4 . 5 and

1 : 1 . 0 7 : 2 . 1 4 : 2 . 6 : 4 . 8 4 , r e s p e c t i v e l y .

F i g . 3 .32 . Scheme o f a b a t t e r y o f j e t - t y p e c o m p r e s s o r s . 1 - l i v e s team, 2 - v a p o u r , 3 - compressed v a p o u r .

3 .4 .5 Compress ion o f vacuum-pan v a p o u r s

I t f o l l o w s f rom t h e p r e c e d i n g s e c t i o n s t h a t t h e a p p l i c a t i o n o f a v a p o u r

compress i on c i r c u i t i n an e x i s t i n g the rma l sys tem may n e c e s s i t a t e i n t r o d u c i n g

s u b s t a n t i a l changes i n t he d i s t r i b u t i o n o f v a p o u r s and c o n d e n s a t e s , as w e l l as

i n s t a l l i n g p o s s i b l e r e p l a c e m e n t s f o r some o f t h e e x i s t i n g e v a p o r a t o r b o d i e s .

Because o f l a c k o f space i n t h e e x i s t i n g b u i l d i n g s , o r f o r economic r e a s o n s ,

t h i s may sometimes be d i f f i c u l t t o a c c e p t . I n o r d e r t o w iden t h e c h o i c e o f

p o s s i b l e s o l u t i o n s , t h e c i r c u i t s compress ing vacuum-pan v a p o u r s have been

d e v e l o p e d and implemented i n a few European s u g a r f a c t o r i e s .

A c t u a l l y , t h i s i d e a had a l r e a d y been a p p l i e d f o u r decades ago i n t h e S w i s s

Page 158: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

147

f a c t o r y a t A a r b e r g , u s i n g e l e c t r i c a l l y - d r i v e n mechan ica l c o m p r e s s o r s c o n n e c t e d

t o bo th t h e e v a p o r a t i o n and vacuum-pan s t a t i o n s ( r e f . 6 7 ) . The e n t i r e s t ream o f

vacuum-pan v a p o u r s i s compressed f rom 0.25 ba r t o 1.2 ba r p r e s s u r e and

r e c i r c u l a t e d t o pan h e a t i n g . M u l t i - s t a g e c o m p r e s s o r s a r e used f o r t h i s p u r p o s e ;

i n o r d e r t o m i n i m i z e t h e power c o n s u m p t i o n , i n t e r - s t a g e v a p o u r c o o l i n g by

condensa te i n j e c t i o n i s emp loyed . As a r e s u l t , 1 .14-1.16 kg h e a t i n g v a p o u r i s

o b t a i n e d f rom 1 kg vacuum-pan v a p o u r a t a power consumpt ion o f 0 .12 -0 .13 kWh p e r

1 kg vacuum-pan v a p o u r . The power consumpt ion o f t h e s i n g l e - s t a g e compresso rs

i n s t a l l e d i n t h e e v a p o r a t o r a r e a i s 0 .013-0.018 kWh p e r 1 kg v a p o u r c o m p r e s s e d .

As men t ioned i n S e c t i o n 1.5, h o w e v e r , t h e A a r b e r g s o l u t i o n was m o t i v a t e d by

a v e r y s p e c i a l e n e r g y p o l i c y i n w h i c h t h e a v a i l a b i l i t y o f cheap h y d r o e l e c t r i c

power p l a y e d a fundamenta l r o l e . T h e r e f o r e , i t can h a r d l y be r e g a r d e d as a model

e n e r g y sys tem t o be i m i t a t e d on a w i d e r b a s i s . A m o d i f i e d v e r s i o n o f t h e A a r b e r g

sys tem i n c o n n e c t i o n w i t h a f a c t o r y i n w h i c h t he power i s g e n e r a t e d bo th i n

a s t e a m - c y c l e - b a s e d power house and i n a g a s - t u r b i n e g e n e r a t i n g s e t has been

a n a l y s e d by Ba loh ( r e f . 6 8 ) .

I n t h e s o l u t i o n s w h i c h a r e now c o m e r c i a l l y o p e r a t e d i n two F r e n c h f a c t o r i e s

( a w h i t e - s u g a r f a c t o r y and a r e f i n e r y ) , a p a r t o f t h e vacuum-pan v a p o u r s i s

compressed and r e c i r c u l a t e d t o vacuum-pan h e a t i n g ( r e f s . 3 9 , 6 9 ) . L e t us n o t e

t h a t w h i l e t h e A a r b e r g f a c t o r y employs b a t c h vacuum p a n s , t h e F r e n c h

i n s t a l l a t i o n s a r e b u i l t a round c o n t i n u o u s vacuum p a n s . The u n d e r l y i n g i d e a i s t o

reduce t he demand f o r h e a t i n g v a p o u r s f rom t h e e v a p o r a t o r , t h u s making i t

p o s s i b l e t o c u t down t h e h e a t i n g - s t e a m demand. I t s h o u l d be p o i n t e d o u t t h a t

a r e d u c t i o n o f t h e w i t h d r a w a l o f v a p o u r s f rom t h e e v a p o r a t o r has t o be

compensated f o r , so as t o keep t he t h i c k - j u i c e c o n c e n t r a t i o n c o n s t a n t . F o r t h i s

r e a s o n , a r e a r r a n g e m e n t o f t h e v a p o u r - d i s t r i b u t i o n scheme, o r t h e a p p l i c a t i o n o f

a n o t h e r v a p o u r compress i on c i r c u i t i n t h e e v a p o r a t o r a r e a , o r a c o m b i n a t i o n o f

bo th measu res , may be n e e d e d . I f i t i s s u f f i c i e n t t o r e a r r a n g e t h e v a p o u r

d i s t r i b u t i o n o n l y , t h e n t h e n e c e s s a r y i n v e s t m e n t s i n t h e e v a p o r a t o r a r e a may be

l e s s e x t e n s i v e and e a s i e r t o p e r f o r m t han t h o s e n e c e s s i t a t e d by o t h e r v a p o u r

compress ion t e c h n i q u e s .

A d i s a d v a n t a g e o f s o l u t i o n s emp loy ing t h e c o m p r e s s i o n o f vacuum-pan v a p o u r s

i s t h e i r l a r g e power c o n s u m p t i o n . I f an e l e c t r i c a l l y - d r i v e n compresso r i s

a p p l i e d , t hen t h e hea t s a v i n g can be a t t a i n e d a t t h e c o s t o f a p o w e r - c o n s u m p t i o n

i n c r e a s e P^. I n a d d i t i o n , depend ing on t h e i n i t i a l l e v e l o f t h e steam

c o n s u m p t i o n , t h e hea t s a v i n g may be accompanied by a d e c r e a s e P ^ o f t h e power

o u t p u t . As t h e l i v e - s t e a m demand i s r e d u c e d , l e s s a i r w i l l be consumed i n t h e

b o i l e r s and l e s s was te h e a t w i l l be t r a n s p o r t e d i n b a r o m e t r i c w a t e r t o t h e

c o o l i n g t o w e r s , t h i s r e s u l t i n g i n a power-demand d e c r e a s e P ^ . The r e l a t i o n

between t he f u e l s a v i n g and t h e power b a l a n c e change Δ Ρ = P ^ + P ^ - P ^ i s

Page 159: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

148

d e t e r m i n e d by t h e pa rame te rs o f t h e compress i on p r o c e s s , as w e l l as by t h e

t u r b i n e steam r a t e and b o i l e r e f f i c i e n c y .

When t h e steam f l o w t h r o u g h t h e t u r b i n e i s r e d u c e d by G ^ , t he r e s u l t i n g

d e c r e a s e o f t h e power o u t p u t i s

P, = G / S ( 3 . 1 6 )

where S i s t h e steam r a t e o f t h e t u r b i n e .

The r e d u c t i o n o f t he hea t demand by causes t he f u e l demand t o d e c r e a s e by

ß r = V(%Vb) ( 3 . 1 7 )

where i s t he h e a t i n g v a l u e o f t h e f u e l , i s t h e s t e a m - p i p i n g e f f i c i e n c y ,

and i s t h e b o i l e r e f f i c i e n c y .

TABLE 3.7

E n e r g y - b a l a n c e m o d i f i c a t i o n s r e s u l t i n g f rom the i m p l e m e n t a t i o n o f vacuum-pan v a p o u r compress ion ( u s i n g mechan ica l c o m p r e s s o r s ) i n two s u g a r f a c t o r i e s c h a r a c t e r i z e d by d i f f e r e n t t u r b i n e steam r a t e s and b o i l e r e f f i c i e n c i e s . E n t r i e s 4-12 a r e g i v e n pe r 1 kg vacuum-pan v a p o u r compressed .

No. Name D imens ion F a c t o r y

1 Steam r a t e , S 2 B o i l e r e f f i c i e n c y , 3 S t e a m - p i p i n g e f f i c i e n c y , η 4 R e d u c t i o n o f t h e steam ^

f l o w t h r o u g h t h e t u r b i n e , G^ 5 R e d u c t i o n o f t h e power o u t p u t , P^ 6 R e d u c t i o n o f t he power demand, P^ 7 Compressor power demand, P^ 8 Change o f t h e power b a l a n c e ,

Pc ^ Pr - Pd 9 Hea t s a v i n g i n t h e e v a p o r a t o r

10 Heat s a v i n g i n t h e t u r b i n e 11 O v e r a l l h e a t s a v i n g , 12 N o r m a l - f u e l s a v i n g , B^

I I I

kg/kWh 8.0 10.5 0.90 0.75 0.98 0.95

kg 1.2 1.2 kWh 0.150 0.114 kWh 0.020 0.020 kWh 0.179 0.179

kWh 0.309 0.273 kJ 2805 2805 kJ 570 502 k J 3375 3307 kg 0.131 0.158

I n T a b l e 3 . 7 , t he c a l c u l a t e d e n e r g y - b a l a n c e changes r e s u l t i n g f rom t h e

i m p l e m e n t a t i o n o f t h e c o m p r e s s i o n o f vacuum-pan v a p o u r s i n two s u g a r f a c t o r i e s

e q u i p p e d w i t h d i f f e r e n t b o i l e r s and t u r b i n e s a r e compared. O b v i o u s l y , an

economic g a i n can be a t t a i n e d o n l y i f t he v a l u e o f t he f u e l saved e x c e e d s t h e

v a l u e o f t h e e l e c t r i c e n e r g y p u r c h a s e d f rom t h e e x t e r n a l g r i d :

B^c^ > APCg ( 3 . 1 8 )

where c^ and c^ a r e t h e p r i c e s o f f u e l and powe r , r e s p e c t i v e l y .

I t s h o u l d be p o i n t e d o u t t h a t t h i s i s o n l y a n e c e s s a r y , b u t n o t a s u f f i c i e n t ,

c o n d i t i o n f o r t h e economic j u s t i f i c a t i o n o f vacuum-pan v a p o u r c o m p r e s s i o n , as

a s e r i o u s economic e v a l u a t i o n r e q u i r e s t h e i n v e s t m e n t s c o s t s t o be t aken i n t o

a c c o u n t .

Page 160: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

149

The above i n e q u a l i t y can be t r a n s f o r m e d t o t he f o l l o w i n g fo rm

c^/Cg > Δ Ρ / Β ^ ( 3 . 1 9 )

I t can now be o b s e r v e d t h a t f a c t o r i e s e q u i p p e d w i t h l o w - e f f i c i e n c y b o i l e r s and

t u r b i n e s a r e c h a r a c t e r i z e d by s m a l l e r v a l u e s o f t h e r a t i o Δ Ρ / Β ^ , t h i s i m p l y i n g

t h a t t h e i n e q u a l i t y i s e a s i e r t o s a t i s f y . T h i s does n o t mean, h o w e v e r , t h a t an

o u t d a t e d power house c r e a t e s a b a s i s f o r t h e economic g a i n s f rom vacuum-pan

v a p o u r c o m p r e s s i o n . A c t u a l l y , i t may happen t h a t t h e i n v e s t m e n t s aimed a t

i n c r e a s i n g t h e power house e f f i c i e n c y w i l l , e c o n o m i c a l l y , be more e f f e c t i v e t han

t h o s e r e q u i r e d f o r imp lement ing a v a p o u r - c o m p r e s s i o n c i r c u i t .

I n s t e a d o f an e l e c t r i c a l l y - d r i v e n c o m p r e s s o r , j e t - t y p e compresso rs can be

a p p l i e d . U s i n g l i v e steam a t 38 ba r and 450°C, 2 . 5 - 3 . 0 kg steam a r e needed t o

compress 1 kg vacuum-pan v a p o u r f rom 0.25 t o 1.2 b a r . A f t e r i n j e c t i n g t h e

condensa te t o d e s u p e r h e a t t h e mixed s team, 4 . 1 - 4 . 7 kg s a t u r a t e d steam i s

o b t a i n e d p e r 1 kg vacuum-pan v a p o u r .

A v a p o u r c o m p r e s s i o n c i r c u i t o f t h i s k i n d , o p e r a t e d i n p a r a l l e l w i t h a

c i r c u i t i n w h i c h v a p o u r f rom t h e second e v a p o r a t o r e f f e c t i s c o m p r e s s e d , has

been p r o p o s e d i n t h e l i t e r a t u r e ( r e f . 5 8 ) . C o n s i d e r i n g j o i n t l y t h e f l o w s o f l i v e

steam s u p p l i e d t o bo th c o m p r e s s i o n c i r c u i t s , 5 . 5 - 7 . 0 kg l i v e steam p e r 1 kg

vacuum-pan v a p o u r s h o u l d be s u p p l i e d t o j e t - t y p e c o m p r e s s o r s . The r e d u c t i o n o f

t he n e t hea t demand i s e q u i v a l e n t t o abou t 1.65 kg steam p e r 1 kg vacuum-pan

v a p o u r compressed .

Due t o a r e l a t i v e l y l a r g e l i v e - s t e a m demand, t h e f i e l d o f p o t e n t i a l

a p p l i c a t i o n s o f t h i s t e c h n i q u e seems t o be l i m i t e d t o t h e m o d e r n i z a t i o n o f

f a c t o r i e s i n w h i c h a s u b s t a n t i a l p a r t o f t h e h e a t i n g - s t e a m f l o w must be s u p p l i e d

f rom t h e t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n . Under such c o n d i t i o n , - l i v e steam can

be d i r e c t e d t o t h e compresso rs w i t h o u t a f f e c t i n g t h e power o u t p u t o f t h e power

h o u s e . On t h e o t h e r h a n d , i f t h e e n t i r e steam f l o w has o r i g i n a l l y been s u p p l i e d

v i a t he t u r b i n e , t h e n u s i n g l i v e steam i n a v a p o u r - c o m p r e s s i o n c i r c u i t r e s u l t s

i n a r e d u c t i o n o f t h e power o u t p u t o f abou t 0 . 4 - 0 . 5 kWh p e r 1 kg vacuum-pan

v a p o u r compressed . T h i s seems t o be a c c e p t a b l e o n l y i f s u f f i c i e n t l y cheap power

i s a v a i l a b l e f rom an e x t e r n a l e l e c t r i c g r i d .

A n o t h e r d i s a d v a n t a g e o f j e t - t y p e c o m p r e s s o r s i s t h e i r l i m i t e d f l e x i b i l i t y

under v a r i a b l e - l o a d c o n d i t i o n s . When used i n c o n n e c t i o n w i t h b a t c h vacuum p a n s ,

t h e compress i on c i r c u i t i s e x p e c t e d t o compensate f o r q u i c k changes o f h e a t i n g -

v a p o u r demand. T h i s r e q u i r e m e n t i s much e a s i e r t o s a t i s f y when a p p l y i n g a

mechan ica l c o m p r e s s o r . T h e r e a r e b e t t e r chances f o r a c o m p e t i t i v e p o s i t i o n o f

j e t - t y p e compresso rs i n f a c t o r i e s emp loy ing c o n t i n u o u s vacuum p a n s , e s p e c i a l l y

i f t he i n d i c e s g i v e n above c o u l d be improved by i n c r e a s i n g t h e c o m p r e s s i o n

r a t i o . T h i s m igh t be p o s s i b l e when r e p l a c i n g c o n v e n t i o n a l s i n g l e - n o z z l e d e v i c e s

by t he m u l t i p l e - n o z z l e , v a r i a b l e t h r o a t - a r e a d e s i g n ( " s t a t o - c o m p r e s s o r s " )

Page 161: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

150

a c c o r d i n g t o a F r e n c h p a t e n t . A d i s c u s s i o n o f t h e a p p l i c a t i o n o f m u l t i p l e - n o z z l e

compresso rs i n a v a p o u r c o m p r e s s i o n c i r c u i t r e c i r c u l a t i n g v a p o u r f rom a

c o n t i n u o u s vacuum pan can be f ound i n t h e l i t e r a t u r e ( r e f . 7 0 ) . F o r a d e v i c e

u t i l i z i n g l i v e steam a t 24 ba r and 320°C and r a i s i n g t h e v a p o u r p r e s s u r e f rom

0.3 ba r t o 1.2 b a r , a c o m p r e s s i o n r a t i o o f 0.70 has been r e p o r t e d ( r e f . 7 1 ) .

T h i s v a l u e i s t w i c e t h a t a t t a i n a b l e i n a s i n g l e - n o z z l e c o m p r e s s o r .

REFERENCES

1 B. Goublomme, Comment a b o r d e r l e p rob leme de l a r e d u c t i o n des c o u t s e n e r g e t i q u e s dans l e s s u c r e r i e s , S u c r . B e i g e , 103 (1985) 27-30.

2 J . S . Hogg ( e t a l . ) . The r o l e o f t h e r m o g r a p h i c s u r v e y i n g i n e n e r g y c o n s e r v a t i o n . I n t . Sugar J . , 85(1011) (1983) 67-71.

3 E. H u g o t , Handbook o f Cane Sugar E n g i n e e r i n g , 3 rd e d n . , E l s e v i e r , Amsterdam, 1986.

4 T . B a l o h , W ä r m e w i r t s c h a f t , i n : F . S c h n e i d e r ( E d . ) , T e c h n o l o g i e des Z u c k e r s , Schaper V e r l a g , H a n n o v e r , 1968, p p . 705-776.

5 I . F r i e d m a n n , E i n n e u e r , l e i s t u n g s f ä h i g e r Kondensa tab i e i t e r i n d e r Z u c k e r i n d u s t r i e d e r DDR, Z u c k e r i n d . , 110(12) (1985) 1094-1095.

6 W. L e k a w s k i , M o d e r n i z a c j a G o s p o d a r k i C i e p l n e j C u k r o w n i , S T C , Warszawa, 1986. 7 H. C l a a s s e n , D i e Z u c k e r f a b r i k a t i o n m i t b e s o n d e r e r B e r ü c k s i c h t i g u n g des

B e t r i e b e s , 7 th e d n . , Magdeburg , 1943. 8 J . D o b r z y c k i , Chemiczne Pods tawy T e c h n o l o g i i C u k r u , WNT, Warszawa, 1984. 9 V . N . Gorokh and K . O . S h t a n g e e v , K o l i c h e s t v o g a z o v p o s t u p a y u s h c h i k h ν

k o n d e n s a t o r n u y u u s t a n o v k u sakharnogo z a v o d a , Sakh . P r o m . , ( 4 ) (1976) 64-65. 10 R . V . K o r e n , 0 r a t s i o n a l n o i r a z r a b o t k e a p p a r a t o v i skhem k o n d e n s a t s i i

t e k h n o l o g i c h e s k i k h p a r o v sakha rnogo z a v o d a , Sakh . P r o m . , ( 6 ) (1981) 45 -49 . 11 R. Wasmund, Uber den E i n f l u s s d e r im He izdampf b e f i n d l i c h e n L u f t a u f das

T e m p e r a t u r g e f ä l l e be i W ä r m e ü b e r t r a g u n g s p r o z e s s e n , Z . Z u c k e r i n d . , 26 (1 ) (1976) 13-18.

12 H. S c h r ä d e r , Der E i n f l u s s von I n e r t g a s e n a u f den Wärmeübergang be i d e r K o n d e n s a t i o n von Dämpfen, C h e m . - I n g . - T e c h n . , 38 (1966) 1091-1094.

13 S . Z a g r o d z k i and J . D o b r z y c k i , Removal o f i n c o n d e n s a b l e gases f rom c a l a n d r i a s . I n t . Sugar J . , 71 (1969) 235-237.

14 P. D e v i l l e r s ( e t a l . ) , L ' e n t a r t r a g e en e v a p o r a t i o n , p r e v e n t i o n e t l u t t e , S u c r . F r . , 9 4 ( 5 ) (1977) 217-226.

15 H. G r u s z e c k a , Badan ia i ocena s r o d k a A n t i p r e x z a p o b i e g a j a c e g o z a r a s t a n i u p o w i e r z c h n i g r z e j n e j w y p a r k i , G a z . C u k r o w . , 93 (2 ) (1985) 43-44 .

16 T . W . B a k e r , E v a p o r a t i o n and H e a t i n g , i n : G . T . Meade and J . C . Chen ( E d s . ) , Cane Sugar Handbook, W i l e y , New Y o r k , 1977, p p . 185-235.

17 W. S t a n k i e w i c z , Wplyw z a r a s t a n i a p o w i e r z c h n i g r z e j n e j w y p a r k i na z a g e s z c z a n i e sokow, G a z . C u k r o w . , 78(10) (1970) 233-236.

18 D. S p a n o v i c , A p p l i c a t i o n de I ' a p p a r e i l CEPI en vue de l a p r o t e c t i o n des e v a p o r a t e u r s en s u c r e r i e , S u c r . B e i g e , 89 (8 ) (1970) 403-406.

19 S . I . N e d z v e s k i i ( e t a l . ) , E l e k t r o m a g n i t n a y a o b r a b o t k a s a k h a r n y k h r a s t v o r o v , Sakh . P r o m . , ( 7 ) (1977) 50-53.

20 G . Rösner and G . P o l l a c h , B e l a g s b i l d u n g s s t u d i e n m i t H i l f e von L a b o r v e r damp fe rn , Z u c k e r i n d . , 111(2) (1986) 125-127.

21 B. K u t e r m a n k i e w i c z , Wygotowywanie w y p a r k i bez z a t r z y m y w a n i a p r z e r o b u burakow, G a z . C u k r o w . , 78 (8 ) (1970) 188-190.

22 S . L a w n i c k i , O c z y s z c z a n i e r u r e k w y p a r k i ζ osadow w Cukrown i P r u s z c z p r z e z w y k w a s z a n i e , G a z . C u k r o w . , 78(11) (1970) 271-273.

23 S . L a w n i c k i and E . Z a b i e r e k , Kwasowe o c z y s z c z a n i e p o w i e r z c h n i g r z e j n y c h apa ra tow w y p a r n y c h , G a z . C u k r o w . , 81 (9 ) (1973) 229-230.

24 H. D a b r o w s k i , Z a r a s t a n i e i metody wygo towywan ia p o w i e r z c h n i g r z e j n y c h w y p a r k i , G a z . C u k r o w . , 87(11) (1979) 245-249.

Page 162: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

151

25 Κ. S c h i e b l , W ä r m e w i r t s c h a f t i n d e r Z u c k e r i n d u s t r i e , T . S t e i n k o p f f V e r l a g , D r e s d e n / L e i p z i g , 1939.

26 S . Z a g r o d z k i , Wplyw uk l adu s t a c j i w y p a r n e j na gospoda rke c i e p l n a , G a z . C u k r o w . , 72 (1 ) (1964) 1-7.

27 S . Z a g r o d z k i , Porownan ie z u z y c i a p a r y w n i e k t o r y c h uk l adach w y p a r k i w i e l o -d z i a l o w e j , G a z . C u k r o w . , 78 (7 ) (1970) 157-163.

28 S . Z a g r o d z k i , Wplyw uk l adu s t a c j i w y p a r n e j na w i e l k o s c p o w i e r z c h n i o g r z e w a l n e j o r a z z u z y c i e p a r y i w e g l a , G a z . C u k r o w . , 78 (8 ) (1970) 181-185.

29 G . K imenov , E n e r g e t i s c h e U n t e r s u c h u n g e n an e i n e r m e h r s t u f i g e n Ve rdamp f -Sta t ion a l s Dampfumformer, Z u c k e r , 25 (7 ) (1972) 225-230.

30 S . N i e s p o d z i n s k i , A . G a t y s and D. S z w e d o w i c z , Wplyw s t a c j i w y p a r n e j na o s z c z e d n o s c p a l i w a w c u k r o w n i , G a z . C u k r o w . , 90 (10) (1982) 161-163.

31 C . H . I v e r s o n , W i t h e r g o e s t t h o u , oh B T U ? , S u g a r . J . , 45 (11) (1983) 17-22. 32 B. K a r r e n , The p o t e n t i a l f o r e n e r g y s a v i n g i n t h e b e e t s u g a r i n d u s t r y .

L e c t u r e p r e p a r e d f o r t he Bee t Sugar I n s t i t u t e C o u r s e , 1980. 33 B. K a r r e n , E x p e r i e n c e o f e n e r g y s a v i n g i n t h e Canad ian s u g a r i n d u s t r y , i n :

P . O . L i c h t s Gu ide t o t h e Sugar F a c t o r y Mach ine I n d u s t r y , F . O . L i c h t GmbH, R a t z e b u r g , 1984, p p . A75-A88.

34 H. S c h i w e c k , M ö g l i c h k e i t e n z u r Senkung des E n e r g i e b e d a r f e s im Z u c k e r h a u s , Z u c k e r , 30(10) (1977) 525-535.

35 I . S . G u l y i , A . G . S h c h e r b a t y u k and B . V . Kuzmenko, Κ t ep lovomu r a s c h e t u v a k u u m - a p p a r a t o v , Sakh . P r o m . , ( 6 ) (1984) 52-53.

36 K . E . A u s t m e y e r , A n a l y s i s o f s u g a r b o i l i n g and i t s t e c h n i c a l c o n s e q u e n c e s . I n t . Sugar J . , 88 ( 1 9 8 6 ) , P a r t I (1045) 3 - 7 , P a r t I I (1046) 23-29 , P a r t I I I (1047) 50-55.

37 E. Krupka and J . S z a d k o w s k i , Gospodarka c i e p l n a w Cukrowni G o s l a w i c e , G a z . C u k r o w . , 89 (1 ) (1981) 2 -5 .

38 L . L . N e v i l l e , E n e r g y r e c o v e r y f rom t h e e v a p o r a t o r s t a t i o n s . Sugar J . , 46 (4 ) (1983) 5-8 .

39 D. B r o t , Recompress ion mechanique de v a p e u r s de c u i t e e t e v a p o r a t i o n 6 e f f e t s a l a s u c r e r i e B u c y - l e - L o n g , I n d . A l i m . A g r i e , 102(7 -8 ) (1985) 681-684.

40 S . A . Z o z u l y a and A . I . Khomenko, 0 r a t s i o n a l n o i skheme vakuum-k o n d e n s a t s i o n n o i u s t a n o v k i , Sakh . P r o m . , ( 7 ) (1984) 37-42 .

41 S . A . Z o z u l y a ( e t a l . ) , P r i m e n e n i e k o n d e n s a t o r o v t i p a A2-PKB ν s o s t a v e vakuum-kondensa t s i onnykh u s t a n o v o k s a k h a r n y k h z a v o d o v , Sakh . P r o m . , ( 7 ) (1986) 27-30.

42 V . N . G o r o k h , B . F . Us and K . O . S h t a n g e e v , R a s c h e t d a v l e n i y a ν vakuumnoi s i s t e m e sakha rnogo z a v o d a , Sakh . P r o m . , (11 ) (1983) 47-48 .

43 V . N . G o r o k h , B . F . Us and K . O . S h t a n g e e v , R a s c h e t vakuumnoi s i s t e m y s a k h a r nogo z a v o d a s uchetom szh imaemos t i p a r a , Sakh . P r o m . , ( 6 ) (1985) 40-44 .

44 J . G . Z i e g l e r , B a r o m e t r i c c o n d e n s e r s - good and b a d . Sugar J . , 38 ( A p r i l 1976) 39-41.

45 S . A . Z o z u l y a and G . D . B o b r o v n i k , O p y t n a l a d k i i e k s p l u a t a t s i i k o n d e n s a t o r o v t i p a A2-PKB, Sakh . P r o m . , ( 7 ) (1983) 37-39 .

46 Y u . S . R a z l a d i n ( e t a l . ) , I s p o l z o v a n i e u t f e l n o g o p a r a d l y a n a g r e v a d i f f u z i o n -nogo s o k a , Sakh . P r o m . , ( 3 ) (1984) 41-44.

47 V . N . Gorokh ( e t a l . ) , P o d o g r e v a t e l d i f f u z i o n n o g o s o k a , obog revaemy i u t f e l n y m parom, Sakh . P r o m . , ( 8 ) (1981) 36-39.

48 Y u . S . R a z l a d i n ( e t a l . ) , P r i m e n e n i e s e k t s i o n n o g o p o d o g r e v a t e l y a d l y a n a g r e v a n i y a sakharnogo soka v t o r i c h n y m parom 5 ko rpusa v y p a r n o i u s t a n o v k i , Sakh . P r o m . , ( 6 ) (1986) 33-36.

49 V . l . Dovgopo l ( e t a l . ) , Nag rev d i f f u z i o n n o g o soka ν p a r o k o n t a k t n y k h p o d o g r e -v a t e l y a k h , Sakh . P r o m . , ( 7 ) (1976) 45-48 .

50 V . N . Gorokh ( e t a l . ) , E f f e k t i v n o s t i s p o l z o v a n i y a u t f e l n o g o p a r a d l y a n a g r e v a d i f f u z i o n n o g o s o k a , Sakh . P r o m . , ( 6 ) (1983) 26-30.

51 G . V e r n o i s , D ie mechan ische B r ü d e n v e r d i c h t u n g i n Z u c k e r f a b r i k e n , Z u c k e r e r z e u g u n g , (11) (1962) 286-289.

52 S. Z a g r o d z k i , Po rownan ie uk l adu w y p a r k i w i e l o d z i a l o w e j ζ ukladem w y p a r k i ζ t e r m o s p r e z a n i e m , G a z . C u k r o w . , 78 (6 ) (1970) 136-138.

Page 163: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

152

53 S . M . Z a g r o d z k i J r . , E n e r g y s a v i n g s w i t h a f o u r - e f f e c t e v a p o r a t o r and t u r b o c o m p r e s s o r . Sugar J . , 4 2 ( 9 ) (1980) 9 -13 .

54 A . F e n y e s , H ö s z i v a t t y u s b e p a r l a s a c u k o r g y a r b a n , C u k o r i p a r , 28 (6 ) (1975) 222-227.

55 H. L ü h r s , E i n s a t z d e r t e r m i s c h e n ode r mechan ischen B r ü d e n v e r d i c h t u n g i n d e r Z u c k e r i n d u s t r i e , V D I - B e r . , (383) (1980) 35-37 .

56 C . H . I v e r s o n , Mechan i ca l v a p o r - r e c o m p r e s s i o n - f a l l i n g f i l m e v a p o r a t i o n . Sugar J . , 44 (1 ) (1981) 15-20.

57 Κ. U r b a n i e c , S p r e z a n i e oparow w g o s p o d a r c e c i e p l n e j c u k r o w n i , G a z . C u k r o w . , 90 (9 ) (1982) 134-136.

58 K . E . A u s t m e y e r , B rüdenkompress ion i n d e r Z u c k e r i n d u s t r i e , Z u c k e r i n d . , 108(8) (1983) 715-728.

59 J . B o z e c , E v o l u t i o n de l a consommation t he rm ique dans Γ i n d u s t r i e s u c r i e r e , I n d . A l i m . A g r i e , 100(7 -8 ) (1983) 477-480.

60 Mechan ische B r ü d e n k o m p r e s s i o n , V D I - G e s e l 1 s c h a f t E n e r g i e t e c h n i k , D ü s s e l d o r f , 1987.

61 T . L u b i e n s k i , E r s t e S c h r i t t e i n d e r B r ü d e n k o m p r e s s i o n , Z u c k e r i n d . , 105(11) (1980) 1087-1088.

62 H. W e i d n e r , D i e B rüdenkompress ion i n e i n e r R o h z u c k e r f a b r i k , Z u c k e r i n d . , 108(8) (1983) 736-742.

63 U . J a c o b s e n , Der e i n s t u f i g e R a d i a l k o m p r e s s o r , Z u c k e r i n d . , 108(8) (1983) 742-746.

64 M. B u r t i n and J . - C . G i o r g i , Recompress ion de l a v a p e u r : l a s o l u t i o n o r i g i n a l e de l a s u c r e r i e de G u i g n i c o u r t , S u c r . F r . , 125(82) (1984) 117-121.

65 P. C h r i s t o d o u l o u , B e t r i e b s e r f a h r u n g e n m i t dem E i n s a t z e i n e r Wärmepumpe i n d e r V e r d a m p f S t a t i o n e i n e r Z u c k e r f a b r i k , Z u c k e r i n d . , 109(7) (1984) 628-634.

66 P .Ho f fman , O p t i m a l i z a c e e n e r g e t i c k e h o h o s p o d a r s t v i c u k r o v a r u L o v o s i c e , L i s t y C u k r . , 102(7) (1986) 155-161.

67 H . R . B r u n n e r , D i e Thermokompress ion i n der Z u c k e r f a b r i k + R a f f i n e r i e A a r b e r g A G , G e s c h i c h t e - E n t w i c k l u n g - A u s b l i c k , Z u c k e r i n d . , 108(8) (1983) 729-736.

68 T . B a l o h , S t u d i e e i n e r Z u c k e r f a b r i k m i t B r ü d e n k o m p r e s s i o n , Z u c k e r i n d . , 109(4) (1984) 285-294.

69 J . - C . G i o r g i , La r e c o m p r e s s i o n de v a p e u r de c u i t e , i n : P r o c . 17th C I T S , Copenhagen , 1983, p p . 279-290.

70 J . C u e l , Economies d ' e n e r g i e en r a f f i n e r i e p a r u t i l i z a t i o n e t / o u r e c o m p r e s s i o n de v a p e u r s i s s u e s d'une c u i t e c o n t i n u e a s s o c i e e a de m a l a x e u r s - c r i s t a l 1 i s e u r s Continus sous v i d e p r o f o n d , I n d . A l i m . A g r i e , 103(7-8 ) (1986) 669-675.

71 C . Longue E p e e , L e c t u r e p r e s e n t e d a t the I n t e r n a t i o n a l E x h i b i t i o n SVEKLOVODSTVO, K i e v , May 1986.

Page 164: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

153

C h a p t e r 4

ENERGY SAVINGS BY PROCESS MODIFICATIONS

4.1 INTRODUCTION

I n s y s t e m a t i c a l l y e s t a b l i s h i n g ways t o r e d u c e t h e n e t h e a t demand, we

s e p a r a t e d measures aimed a t r e d u c i n g t h e h e a t demand o f t he i n d i v i d u a l p r o c e s s e s

f rom t h o s e f a c i l i t a t i n g an i n c r e a s e o f t h e e f f e c t i v e n e s s r a t i o o f t h e the rma l

s y s t e m . When b e g i n n i n g a d i s c u s s i o n o f e n e r g y - s a v i n g p r o c e s s m o d i f i c a t i o n s , one

m igh t pe rhaps e x p e c t t h a t o n l y measures b e l o n g i n g t o t h e f o r m e r g roup w o u l d be

c o n s i d e r e d . A c t u a l l y , t h e p rob lem i s more i n v o l v e d as t h e r e a r e examples o f

p r o c e s s e s t h a t have been i n t r o d u c e d f o r t h e s o l e p u r p o s e o f making the rma l

sys tem improvements p o s s i b l e . M o r e o v e r , a p r o c e s s may a f f e c t t h e e n e r g y demand

d i r e c t l y ( ow ing t o a d i r e c t r e l a t i o n s h i p between e n e r g y demand and p r o c e s s

p a r a m e t e r s ) o r i n d i r e c t l y ( ow ing t o t h e i n f l u e n c e on t h e pa rame te rs o f o t h e r

p r o c e s s e s ) . F i n a l l y , t he power demand o f a p r o c e s s may a l s o become an i m p o r t a n t

i s s u e .

I t i s sometimes d i f f i c u l t t o t e l l w h e t h e r a c e r t a i n e n e r g y s a v i n g can be

a t t r i b u t e d t o a p r o c e s s improvement o r t o deve lopmen ts i n equ ipment o r c o n t r o l

s y s t e m s . T h i s C h a p t e r p r e s e n t s a r e v i e w o f p rob lems i n w h i c h r e - t h i n k i n g o f

p r o c e s s r e q u i r e m e n t s p l a y s a p a r t i c u l a r l y i m p o r t a n t r o l e . O f c o u r s e , t h i s i s

j u s t a c o n v e n t i o n ; t h e n e x t two c h a p t e r s a r e d e v o t e d t o complementary p rob lems

where equ ipment and c o n t r o l sys tems come i n t o t h e f o r e g r o u n d .

The p r e s e n t a u t h o r i s aware o f t h e f a c t t h a t i t i s n o t e a s y t o c o v e r a b r o a d

p rob lem f i e l d i n w h i c h new deve lopmen ts a r e s t e a d i l y t a k i n g p l a c e . I t i s h o p e d ,

h o w e v e r , t h a t i d e n t i f i c a t i o n o f t h e main d i r e c t i o n s o f e f f o r t can have a l a s t i n g

v a l u e . I n t h i s c o n t e x t , c e r t a i n p u b l i c a t i o n s o r p u b l i c a t i o n s e r i e s d e s e r v e t o be

n o t e d , as t h e y p r o v i d e d i n v a l u a b l e h e l p i n t h e s t u d i e s o f w o r l d w i d e t r e n d s

( r e f s . 1 -3 ) . I n t h e f o l l o w i n g , t h e s u b j e c t i s s p l i t i n t o f o u r p a r t s :

- j u i c e p u r i f i c a t i o n ;

- s u g a r c r y s t a l l i z a t i o n ;

- u n c o n v e n t i o n a l p r o c e s s e s ;

- p u l p d e h y d r a t i o n .

I t m igh t be a rgued t h a t t h e c o n c e p t o f p r e s e n t i n g p r o c e s s e s as means t o

reduce e n e r g y demand i s t a k i n g t h i n g s t o o f a r ; a f t e r a l l , t h e s u g a r i n d u s t r y i s

n o t a f i e l d o f e n e r g y - s a v i n g c o n t e s t s . I t s h o u l d t h e r e f o r e be p o i n t e d o u t t h a t

t he p r i o r i t i e s o f d i f f e r e n t a s p e c t s o f f a c t o r y o p e r a t i o n have been d i s c u s s e d i n

C h a p t e r 1. Even i f t h e p r e s e n t C h a p t e r may be f o u n d p r o v o c a t i v e , i t i s hoped

t h a t i t can s t i m u l a t e u s e f u l i d e a s w h i c h w i l l e v e n t u a l l y f i n d t h e i r way i n t o

p r a c t i c e .

Page 165: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

154

4 .2 J U I C E P U R I F I C A T I O N

4.2.1 I n f l u e n c e on t h e e n e r g y demand

Bee t s u g a r f a c t o r i e s a l l o v e r t h e w o r l d employ t h e method o f p u r i f i c a t i o n o f

raw j u i c e based on l ime and ca rbon d i o x i d e a d d i t i o n s . The aim o f j u i c e

p u r i f i c a t i o n i s t o remove nonsuga rs as f a r as p o s s i b l e , i n o r d e r t o p r o d u c e

c l e a r t h i n j u i c e w i t h h i g h p u r i t y and s t a b i l i t y p r e v e n t i n g q u a l i t y changes

d u r i n g e v a p o r a t i o n . Due t o v a r y i n g b e e t c o m p o s i t i o n and d i f f e r e n t methods o f

h a r v e s t i n g , t r a n s p o r t , s t o r a g e and e x t r a c t i o n , many v e r s i o n s o f t h e j u i c e

p u r i f i c a t i o n method a r e i n u s e . The v e r s i o n s may d i f f e r w i t h r e s p e c t t o t h e

d i s t r i b u t i o n o f l ime between i n d i v i d u a l p r o c e s s s t a g e s , t h e amount o f r e c y c l e d

j u i c e o r s l u d g e , t h e t e m p e r a t u r e s and r e s i d e n c e t imes c h a r a c t e r i z i n g v a r i o u s

p r o c e s s s t a g e s .

I n a r e f e r e n c e v e r s i o n o f t he c l a s s i c a l j u i c e p u r i f i c a t i o n method , t he t o t a l

r e q u i r e m e n t o f CaO amounts t o 80-95% o f t he c o n t e n t o f nonsuga rs i n raw j u i c e .

10-12% goes t o the p r e - 1 i m e r , 5-7% to t he j u i c e p r i o r t o second c a r b o n a t a t i o n

and t he rema inder i s added t o t he main l i m e r . The t e m p e r a t u r e s a r e 55-65°C i n

t h e p r e - l i m i n g , 85°C i n t h e main l i m i n g and f i r s t c a r b o n a t a t i o n , and 94°C i n

t h e second c a r b o n a t a t i o n ( r e f . 4 ) .

The pa rame te rs named above d e f i n e t h e therma l c h a r a c t e r i s t i c s o f t h e j u i c e

p u r i f i c a t i o n p r o c e s s . I t s i n f l u e n c e on t he t o t a l e n e r g y demand i n s u g a r

manu fac tu re i s more c o m p l i c a t e d t han j u s t d i r e c t l y c o n t r i b u t i n g t o t h e h e a t

demand. I n t h e f i r s t p l a c e , t h i n j u i c e q u a l i t y d e t e r m i n e s the r e q u i r e m e n t s on

t h e s u g a r c r y s t a l l i z a t i o n p r o c e s s , t h u s a f f e c t i n g t h e e n e r g y demand i n t h e s u g a r

house ( s e e S e c t i o n 4 . 3 ) . T h e n , t he t e m p e r a t u r e i n p r e - l i m i n g i s d e c i s i v e i n

w h e t h e r o r o r n o t i t i s p o s s i b l e t o u t i l i z e l o w - t e m p e r a t u r e hea t (vacuum-pan

v a p o u r s , l a s t - e f f e c t v a p o u r , c o n d e n s a t e ) i n raw j u i c e h e a t i n g . A c t u a l l y , t h i s

p o s s i b i l i t y depends a l s o on t h e t e m p e r a t u r e o f raw j u i c e and o t h e r f a c t o r s , so

one s h o u l d pe rhaps i n v e s t i g a t e i t by a n a l y s i n g a subsys tem c o m p r i s i n g e x t r a c t i o n

and j u i c e p u r i f i c a t i o n ( r e f . 5 ) . F o r examp le , i f l a r g e f l o w s o f h o t j u i c e o r

s u b s i d e r s l u d g e a r e r e c y c l e d t o t h e p r e - 1 i m e r f rom f i r s t o r second

c a r b o n a t a t i o n , t h e n l e s s h e a t i n g o f raw j u i c e i s n e e d e d . T h i s must be

compensated f o r by more hea t d e l i v e r e d t o o t h e r s t a g e s o f j u i c e h e a t i n g , where

t h e t e m p e r a t u r e s a r e t o o h i g h t o a l l o w t h e u t i l i z a t i o n o f l o w - t e m p e r a t u r e h e a t .

I t s h o u l d a l s o be o b s e r v e d t h a t l a r g e r e c y c l e s may r e q u i r e c o n s i d e r a b l e power

consumpt ion i n j u i c e pumping.

C o n c e r n i n g d i r e c t e n e r g y l o s s e s a s s o c i a t e d w i t h j u i c e p u r i f i c a t i o n ,

a q u a l i t a t i v e d i s c u s s i o n o f t h e i r r e d u c t i o n by p r o c e s s t e m p e r a t u r e changes has

been g i v e n i n S e c t i o n 1 .3 .3 . The main p a r t o f t h e s e l o s s e s , amount ing under

c e r t a i n c i r c u m s t a n c e s t o as much as 1/10 o f t h e n e t hea t demand o f t h e

f a c t o r y , o c c u r s i n t h e c a r b o n a t a t i o n s . I n t he f o l l o w i n g , t h e e n e r g y - s a v i n g

Page 166: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

155

p o t e n t i a l a s s o c i a t e d w i t h t he c a r b o n a t a t i o n p r o c e s s i s d i s c u s s e d .

4 . 2 . 2 Heat b a l a n c e o f c a r b o n a t a t i o n

A t y p i c a l a r rangemen t o f t h e equ ipment a s s o c i a t e d w i t h t h e c a r b o n a t a t i o n

p r o c e s s i s shown i n F i g . 4 . 1 . Gas f rom t h e l ime k i l n , c o n t a i n i n g C O ^ , i s d e -

d u s t e d , washed and d e l i v e r e d t o a w a t e r - r i n g c o m p r e s s o r . I t s p r e s s u r e r a i s e d t o

1 .6-1 .8 b a r and a t a t e m p e r a t u r e abou t 35°C, t h e gas f l o w s t o two s e p a r a t e ,

a t m o s p h e r i c - p r e s s u r e c a r b o n a t a t i o n t a n k s , where i t i s b r o u g h t i n t o c o n t a c t w i t h :

- i n f i r s t c a r b o n a t a t i o n - j u i c e a f t e r main l i m i n g , d e l i v e r e d a t a b o u t 85°C,

- i n second c a r b o n a t a t i o n - j u i c e a f t e r f i r s t f i l t r a t i o n , d e l i v e r e d a t a b o u t

94°C.

I n bo th c a r b o n a t a t i o n t a n k s , mass and h e a t exchange t a k e s p l a c e between t h e

j u i c e and t h e c a r b o n a t a t i o n g a s . As t h e gas f l o w s f rom t h e b u b b l e r t o t h e j u i c e

s u r f a c e , i t s p r e s s u r e f a l l s t o a t m o s p h e r i c p r e s s u r e and t h e t e m p e r a t u r e

i n c r e a s e s , f i n a l l y a p p r o a c h i n g t h e j u i c e t e m p e r a t u r e . The gas a l s o becomes

s a t u r a t e d w i t h v a p o u r e v a p o r a t e d f rom j u i c e . I t s e n t h a l p y r a i s e d c o n s i d e r a b l y

above t h e i n l e t v a l u e , t h e s p e n t gas i s d i s c h a r g e d t o t h e a t m o s p h e r e , t h i s

c a u s i n g an e n e r g y l o s s .

LIME KILN J D E - D U S T E R

I water I

WASHER

5^

limed juice_ CARBONATATION I CARBONATATION I I

COMPRESSOR

clear juice_

F i g . 4 . 1 . Scheme o f t h e equ ipment a r rangemen t a s s o c i a t e d w i t h t h e c a r b o n a t a t i o n p r o c e s s .

The l o s s can be s t u d i e d u s i n g e q n . ( 2 . 6 ) . F o r t h e thermodynamic sys tem

c o m p r i s i n g a s i n g l e t ank shown i n F i g . 4 . 2 , t h e e n e r g y b a l a n c e i s

• ^ j i ^ j i ^ ^ ^ ^ ^ = Vj2^ V V ' E ( ' · ^ '

where G j ^ and G^-j a r e t h e mass f l o w s o f j u i c e and c a r b o n a t a t i o n gas ( u n d e r s t o o d

as d r y g a s ) , r e s p e c t i v e l y , a t i n l e t ; G^^ and G ^ ^ a r e t h e mass f l o w s o f t h e same

media a t o u t l e t ; h^^ and h^^ a r e t h e e n t h a l p i e s o f j u i c e a t i n l e t and o u t l e t ;

hg^ and h^^ a r e t h e e n t h a l p i e s o f c a r b o n a t a t i o n gas ( p e r 1 kg d r y g a s ) a t i n l e t

and o u t l e t ; Qp i s t he h e a t o f c a r b o n a t a t i o n r e a c t i o n , and i s t h e h e a t

d i s s i p a t e d t o t h e e n v i r o n m e n t by r a d i a t i v e and c o n v e c t i v e h e a t exchange ( b o t h

Qp and a r e e x p r e s s e d p e r u n i t t i m e ) .

The b a l a n c e e q u a t i o n can be r e w r i t t e n t o r e f l e c t t h e f a c t t h a t t h e e n e r g y l o s t

Page 167: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

156

Gas Gg2 Gas Gg i

Juice out

Gj2 '^\2

J u i c e in

Gji.hj i

F i g . 4.2. C a r b o n a t a t i o n tank as a thermodynamic s y s t e m . F o r e x p l a n a t i o n o f t h e s y m b o l s , see t e x t .

by d i s c h a r g i n g s p e n t gas and by h e a t exchange w i t h t h e e n v i r o n m e n t has a c t u a l l y

been removed f rom t h e j u i c e

( 4 . 2 )

( 4 . 3 )

( 4 . 4 )

V g 2 - ^ g l ^ l ^ = ^ • i ^ ' j i - «j2^2 ^ \ The h e a t l o s s can t h u s be e x p r e s s e d e i t h e r as

\ - %2\2 - Λ^ " o r as

Q L = G j ^ h - T - G j 2 h j 2 ^ Q R

Now, l e t us o b s e r v e t h a t t h e h e a t o f r e a c t i o n c a n n o t be n e g l e c t e d i n e n e r g y

b a l a n c e s . I f we assume t h a t i t i s g e n e r a t e d a t 70 kJ /kmo l ( r e f . 6) and t h a t t h e

amount o f CaO i n v o l v e d i n b o t h c a r b o n a t a t i o n s i s 2 kg/100 kg b , t h e n we a r r i v e

a t t h e v a l u e = 2500 kJ /100 kg b , t h i s b e i n g e q u i v a l e n t t o a steam amount

abou t 1.1 kg/100 kg b.

The above e x p r e s s i o n s e n a b l e us t o e v a l u a t e t h e magn i tude o f t h e combined

h e a t l o s s f rom t h e c a r b o n a t a t i o n s . I n t h e r e f e r e n c e v e r s i o n o f t h e p r o c e s s

men t ioned i n t h e p r e c e d i n g S e c t i o n , a t 40% CO^ c o n t e n t , one needs a p p r o x i m a t e l y

3.4 k g / l O O kg b o f k i l n gas i n f i r s t c a r b o n a t a t i o n and 0.7 k g / l O O kg b i n second

c a r b o n a t a t i o n . Even a t t h e most advan tageous p r o c e s s p a r a m e t e r s , t h e combined

l o s s c a n n o t be e x p e c t e d t o be l o w e r t han 5000 kJ /100 kg b , o r a steam e q u i v a l e n t

Page 168: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

157

o f abou t 2.2 kg/100 kg b. G e n e r a l l y , assuming t h a t as much gas i s d e l i v e r e d t o

t h e p r o c e s s as needed t o n e u t r a l i z e t h e a c t i v e CaO i n t h e j u i c e , t h e e n e r g y l o s s

depends on t h e f o l l o w i n g f a c t o r s :

- CaO r a t e ;

- j u i c e t e m p e r a t u r e ;

- CO^ c o n t e n t i n incoming k i l n g a s ;

- CO2 u t i l i z a t i o n .

A t low i n i t i a l CO2 c o n t e n t , s a y 30% and a t l i m i t e d CO2 u t i l i z a t i o n , t h e combined

c a r b o n a t a t i o n h e a t l o s s can r e a c h 10 000-12 000 kJ /100 kg b , o r a steam

e q u i v a l e n t o f 4 . 4 - 5 . 3 kg/100 kg b. I n modern b e e t s u g a r f a c t o r i e s c h a r a c t e r i z e d

by steam demand o f t h e o r d e r o f 30 kg steam p e r 100 kg b e e t , t h e c a r b o n a t a t i o n

h e a t l o s s t h u s becomes one o f t h e l a r g e s t i d e n t i f i a b l e components o f t h e n e t

hea t demand.

A number o f s o l u t i o n s have been p r o p o s e d t o r e d u c e t h e c a r b o n a t a t i o n h e a t

l o s s by c u t t i n g down gas f l o w and o u t l e t e n t h a l p y . W i t t e and Sch iweck ( r e f . 6)

d e s c r i b e a sys tem based on r e c y c l i n g s p e n t gas f rom second t o f i r s t

c a r b o n a t a t i o n . The f l o w o f k i l n gas t o f i r s t c a r b o n a t a t i o n can be r e d u c e d by

10%; t he r e s u l t i n g steam s a v i n g has been e s t i m a t e d a t 0.5 kg/100 kg b , t h a t i s ,

up t o 1/5 o f t h e c a r b o n a t a t i o n l o s s . The same r e f e r e n c e r e p o r t s r e s u l t s o f

e x p e r i m e n t s w i t h a r a w - j u i c e h e a t e r h e a t e d by s p e n t c a r b o n a t a t i o n g a s . No

e s t i m a t e o f t h e a t t a i n a b l e e n e r g y s a v i n g i s g i v e n ; t h e s a v i n g w o u l d p r o b a b l y be

d e t e r m i n e d by an economic t r a d e - o f f between t h e v a l u e o f e n e r g y s a v e d and t h e

h e a t e r c o s t .

A n o t h e r s o l u t i o n based on a s i m i l a r app roach has been r e p o r t e d by a B e l g i a n

team ( r e f . 7 ) . Spen t gas f rom second c a r b o n a t a t i o n i s b r o u g h t i n t o d i r e c t

c o n t a c t w i t h w a t e r ; t he r e c u p e r a t e d h e a t a b s o r b e d by t h e w a t e r i s t h e n used t o

p r e h e a t a i r d e l i v e r e d t o t h e b o i l e r s o r t o t h e s u g a r d r y e r . The i m p l e m e n t a t i o n

i n a s u g a r f a c t o r y r e s u l t e d i n an e s t i m a t e d e n e r g y s a v i n g o f t h e o r d e r o f 1 kg

steam pe r 100 kg b e e t . S i m i l a r r e s u l t s have been r e p o r t e d f rom F r e n c h s u g a r

f a c t o r i e s where w a t e r i s hea ted by s p e n t gases f rom bo th c a r b o n a t a t i o n s i n a

s p e c i a l c o n d e n s e r , t o w h i c h an e x h a u s t f a n f o r gas pumping i s c o n n e c t e d ( r e f . 8 ) .

I n F i g . 4 . 3 , t h e e s s e n c e o f t h e s o l u t i o n s r e v i e w e d above i s p r e s e n t e d i n

a s i m p l i f i e d Sankey d i a g r a m . T h e y can be c l a s s i f i e d as h e a t r e c u p e r a t i o n

t e c h n i q u e s n o t a f f e c t i n g t h e p r i n c i p l e o f t h e c a r b o n a t a t i o n p r o c e s s .

4 . 2 . 3 M o d i f i c a t i o n s o f c a r b o n a t a t i o n

C a r b o n a t a t i o n h e a t l o s s can a l s o be r e d u c e d by c h a n g i n g p r o c e s s p a r a m e t e r s

i n a way f a c i l i t a t i n g a r e d u c t i o n o f t h e d i f f e r e n c e Mg2hg2 " ' ^g l ' ^g l

( 4 . 3 ) . More s p e c i f i c a l l y , i t i s p o s s i b l e t o r e d u c e t h e gas e n t h a l p y i n c r e a s e , as

w e l l as t o improve CO^ u t i l i z a t i o n , t h u s c u t t i n g down t h e gas f l o w . Two

Page 169: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

158

2

heat transferred from ju ice

to gas ) o h <

IA ? c ) a> a, 1 s%

/— / energy of kiln gas

1 energy recycled to the process

\ carbonatat ion loss

F i g . 4 . 3 . E n e r g y - f l o w p r i n c i p l e o f sys tems r e d u c i n g t h e c a r b o n a t a t i o n hea t l o s s by r e c u p e r a t i o n .

t e c h n i q u e s can be used f o r t h i s pu rpose ( r e f . 9 ) :

- h e a t i n g and h u m i d i f i c a t i o n o f t h e k i l n gas p r i o r t o c a r b o n a t a t i o n ;

- c a r b o n a t a t i o n a t i n c r e a s e d p r e s s u r e .

The p r i n c i p l e on w h i c h bo th methods a r e based can be e x p l a i n e d i n a g r a p h

showing c a r b o n a t a t i o n gas e n t h a l p y ( p e r 1 kg o f d r y g a s ) as a f u n c t i o n o f

t e m p e r a t u r e and p r e s s u r e ( F i g . 4 . 4 ) . The g r a p h has been c o n s t r u c t e d u s i n g t h e

r e l a t i o n s h i p between e n t h a l p y p e r 1 kg d r y gas and m o i s t u r e c o n t e n t an

t e m p e r a t u r e , and t h e r e l a t i o n s h i p between m o i s t u r e c o n t e n t , t o t a l p r e s s u r e and

1 2 Pressure ( b a r )

F i g . 4 . 4 . E n t h a l p y o f c a r b o n a t a t i o n gas v s . p r e s s u r e and t e m p e r a t u r e .

Page 170: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

159

( 4 . 5 )

p a r t i a l p r e s s u r e o f steam

X = ( m g / m g ) P g / ( p - Pg)

where X i s t h e m o i s t u r e c o n t e n t i n kg /kg d r y g a s , m^ i s t h e mo la r w e i g h t o f

s team, m^ i s t h e a v e r a g e mo la r w e i g h t o f g a s , p^ i s t h e p a r t i a l p r e s s u r e o f

s team, and ρ i s t h e t o t a l p r e s s u r e .

I n t h e g r a p h , examples a r e shown o f t h e e n t h a l p y i n c r e a s e o f c a r b o n a t a t i o n

gas i n t h e c o n v e n t i o n a l p r o c e s s ( c a s e A) and o f gas w h i c h has been p r e l i m i n a r i l y

hea ted t o 70°C w i t h accompany ing h u m i d i f i c a t i o n , a t 1.3 ba r o u t l e t p r e s s u r e

( c a s e B ) . The e n t h a l p y i n c r e a s e i n case A i s 1830 k J / k g d r y g a s , and i n case Β

960 k J / k g d r y g a s . T a k i n g i n t o a c c o u n t t h a t case Β w o u l d a l s o i n v o l v e a

r e d u c t i o n o f t h e gas f l o w due t o b e t t e r CO^ u t i l i z a t i o n , t h e combined h e a t l o s s

can i n t h i s e x e m p l a r y case be abou t 50% o f t h a t i n t h e c o n v e n t i o n a l p r o c e s s .

The f i r s t i d e a i s gas h e a t i n g and h u m i d i f i c a t i o n a t t h e expense o f was te h e a t

f rom o t h e r s e c t i o n s o f t h e s u g a r m a n u f a c t u r e . Waste h e a t can be a v a i l a b l e i n h o t

condensa te e x t r a c t e d d i r e c t l y f rom t h e e v a p o r a t i o n s t a t i o n ( a t 95-100°C) o r i n

t he condensa te w h i c h has a l r e a d y passed j u i c e h e a t e r s ( a b o u t 75°C) . Mass and

hea t exchange t a k i n g p l a c e i n t h e c a r b o n a t a t i o n t ank between t h e h e a t e d ,

h u m i d i f i e d k i l n gas and t h e j u i c e t h e n r e s u l t s i n l e s s e v a p o r a t i o n f rom t h e

j u i c e and s m a l l e r j u i c e t e m p e r a t u r e d r o p . C o n s e q u e n t l y , even t hough t h e

t e m p e r a t u r e and h u m i d i t y o f t h e s p e n t gas a r e i d e n t i c a l t o t h o s e i n t h e

c o n v e n t i o n a l p r o c e s s , t h e hea t l o s s i s r e d u c e d by abou t 1 /3, i . e . a t l e a s t

0.8 kg steam p e r 100 kg b e e t . An improvement o f CO^ u t i l i z a t i o n o f t h e o r d e r

10-15% can a l s o be e x p e c t e d . T h i s method can be c l a s s i f i e d as a p r o c e s s

m o d i f i c a t i o n , and i t s w o r k i n g p r i n c i p l e i s shown i n a Sankey d iag ram i n

F i g . 4 . 5 ( a ) .

As r e g a r d s t he c o n f i g u r a t i o n o f t h e e q u i p m e n t , t h i s method r e q u i r e s add ing t o

(B)

CD ^ cr <

5

o I/)

COMPRESSOR

Ι Λ additional

i pumping power Ι

F i g . 4 . 5 . E n e r g y - f l o w p r i n c i p l e s o f t he m o d i f i e d c a r b o n a t a t i o n s : ( a ) w i t h gas h e a t i n g and h u m i d i f i c a t i o n , ( b ) a t i n c r e a s e d p r e s s u r e . 1 - e n e r g y o f k i l n g a s , 2 - hea t t r a n s f e r r e d f rom j u i c e t o g a s , 3 - e n e r g y o f s p e n t g a s .

Page 171: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

160

t h e c a r b o n a t a t i o n tank a s c r u b b e r f i l l e d w i t h R a s c h i g r i n g s o r some o t h e r t y p e

o f p a c k i n g . T h e r e , gas f l o w i n g i n an upward d i r e c t i o n i s hea ted and h u m i d i f i e d

by c o n d e n s a t e d i s p e r s e d on t h e p a c k i n g s u r f a c e .

The second method i m p l i e s t h a t t h e p r o c e s s c a n n o t be pe r f o rmed i n a

c o n v e n t i o n a l a t m o s p h e r i c - p r e s s u r e c a r b o n a t a t i o n t a n k ; i n s t e a d , a p r e s s u r e v e s s e l

s h o u l d be a p p l i e d and t he gas pump s h o u l d be o p e r a t e d a t i n c r e a s e d p r e s s u r e . The

thermodynamic consequence o f i n c r e a s e d p r e s s u r e i s t h a t t h e p a r t i a l p r e s s u r e o f

s a t u r a t e d steam i n t h e s p e n t gas remains c o n s t a n t ( i t depends on j u i c e

t e m p e r a t u r e o n l y ) , so t h e f i n a l m o i s t u r e c o n t e n t p e r 1 kg d r y gas i s r e d u c e d .

T h i s r e s u l t s i n r e d u c e d f i n a l e n t h a l p y p e r 1 kg d r y g a s . C o n s e q u e n t l y , j u i c e

e v a p o r a t i o n and j u i c e t e m p e r a t u r e d r o p caused by mass and h e a t exchange between

t h e j u i c e and t h e gas a r e s m a l l e r t han i n t h e a t m o s p h e r i c - p r e s s u r e p r o c e s s .

The w o r k i n g p r i n c i p l e o f c a r b o n a t a t i o n a t i n c r e a s e d p r e s s u r e i s i l l u s t r a t e d

i n F i g . 4 . 5 ( b ) . A t a gas p r e s s u r e above t he j u i c e s u r f a c e i n t h e tank abou t

1.7 b a r , t h e o v e r a l l h e a t l o s s can be r e d u c e d by n e a r l y 1 /2 , i . e . a t l e a s t

1.2 kg steam p e r 100 kg b e e t . T h i s e f f e c t can be m a g n i f i e d i f t h e gas i s

p r e h e a t e d and h u m i d i f i e d b e f o r e i t e n t e r s t he c a r b o n a t a t i o n t a n k s .

Advan tageous the rma l e f f e c t s o f i n c r e a s e d c a r b o n a t a t i o n p r e s s u r e have been

v e r i f i e d i n l a b o r a t o r y - s c a l e e x p e r i m e n t s ( r e f . 1 0 ) . C o n c e r n i n g t h e combined

e f f e c t o f i n c r e a s e d p r e s s u r e and gas h e a t i n g and h u m i d i f i c a t i o n , some i n i t i a l

r e s u l t s i n d i c a t e t h a t i t may be r e a l i s t i c t o e x p e c t an improvement i n CO^

u t i l i z a t i o n by a f a c t o r o f 1 .2 , i . e . i n f i r s t c a r b o n a t a t i o n , f rom a b o u t 70% t o

84%. T h i s w o u l d c o n t r i b u t e t o a r e d u c t i o n o f t h e c a r b o n a t a t i o n h e a t l o s s by 2 / 3 ,

i . e . a t l e a s t 1.6 kg steam p e r 100 kg b e e t .

A l t h o u g h t h e the rma l e f f e c t s can be r e g a r d e d as e x p e r i m e n t a l l y v e r i f i e d , t h e

a p p l i c a t i o n p o t e n t i a l o f c a r b o n a t a t i o n a t i n c r e a s e d p r e s s u r e i s n o t o b v i o u s , as

i t depends on economic f a c t o r s . I n p a r a l l e l t o t h e g a i n r e s u l t i n g f rom f u e l

s a v i n g s , one has t o c o n s i d e r on t h e c o s t s i d e :

- i n c r e a s e d i n v e s t m e n t c o s t s o f gas c o m p r e s s o r s and c a r b o n a t a t i o n t a n k s ;

- i n c r e a s e d power consumpt ion i n gas c o m p r e s s o r s .

C o n s e q u e n t l y , t h e o v e r a l l economic r e s u l t i s v e r y much dependen t on season

l e n g t h , f u e l p r i c e , power c o s t and c a p i t a l c o s t ( r e f . 1 1 ) .

4 .3 SUGAR CRYSTALL IZAT ION

4.3.1 Scope o f t h e p rob lems

The e n e r g y demand o f t h e s u g a r house u s u a l l y c o r r e s p o n d s t o 50-70% o f t h e n e t

h e a t demand and 14-20% o f t h e t o t a l power demand o f a w h i t e - s u g a r f a c t o r y . I n

a f a c t o r y c h a r a c t e r i z e d by d e f i n i t e l e v e l s o f equ ipment q u a l i t y and p r o c e s s

a u t o m a t i o n , t h e e x a c t f i g u r e s depend on t h e l a y o u t and pa rame te r s o f t h e s u g a r

c r y s t a l l i z a t i o n p r o c e s s . ( L e t us r e c a l l t h a t i n t h e p r e s e n t book , we a r e m a i n l y

Page 172: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

161

i n t e r e s t e d i n t h r e e - b o i l i n g c r y s t a l l i z a t i o n . )

T a k i n g i n t o a c c o u n t t h a t a l a r g e p a r t o f t h e f a c t o r y ' s h e a t demand i s

c o n c e r n e d , a p rob lem m igh t be posed o f a r r a n g i n g t h e c r y s t a l l i z a t i o n p r o c e s s so

as t o m i n i m i z e t h e hea t demand o f t h e s u g a r h o u s e . O n l y s i m p l i f i e d p rob lem

f o r m u l a t i o n s can be a t temp ted and o n l y a p p r o x i m a t e s o l u t i o n s s o u g h t , h o w e v e r ,

because t h e r e i s a m u l t i t u d e o f p r o c e s s c o n s t r a i n t s a s s o c i a t e d w i t h s u g a r o u t p u t

and s u g a r q u a l i t y . A c t u a l l y , one m igh t even n o t e t h a t t h e c r y s t a l l i z a t i o n

p r o c e s s i s v e r y much dependen t on t h e q u a l i t y o f j u i c e s e n t e r i n g t h e s u g a r

h o u s e . T h i s w o u l d i m p l y t h a t i n o r d e r t o a r r a n g e t h e c r y s t a l l i z a t i o n p r o c e s s

o p t i m a l l y , t he e n t i r e f a c t o r y s h o u l d be c o n s i d e r e d . N e e d l e s s t o s a y , such an

approach wou ld n o t be v e r y p r a c t i c a l i f one had t o c o n c e n t r a t e on t h e e n e r g y

economy.

L e t us o b s e r v e t h a t t h e p rob lem becomes even more complex i f we a l l o w f o r

p o s s i b l e m o d i f i c a t i o n s o f t h e equ ipmen t , m a i n l y vacuum p a n s , as w e l l as

m o d i f i c a t i o n s o f t h e a u t o m a t i c c o n t r o l s y s t e m s . F o r t h e sake o f s i m p l i c i t y o f

p r e s e n t a t i o n , t h e s e q u e s t i o n s a r e c o n s i d e r e d s e p a r a t e l y i n C h a p t e r s 5 and 6. I t

s h o u l d n e v e r t h e l e s s be a d m i t t e d t h a t s a v i n g e n e r g y by r a t i o n a l i z i n g t h e s u g a r

c r y s t a l l i z a t i o n p r o c e s s i m p l i e s t h e n e c e s s i t y o f t o u c h i n g t h e most i n t r i c a t e

p rob lems o f s u g a r t e c h n o l o g y .

T h r e e i m p o r t a n t e n e r g y - s a v i n g c o n c e p t s a r e d i s c u s s e d i n t h e p r e s e n t S e c t i o n :

- t h e Dan i sh c r y s t a l l i z a t i o n scheme;

- c o o l i n g c r y s t a l l i z a t i o n ;

- c r y s t a l f o o t i n g t e c h n i q u e s .

4 . 3 . 2 Dan i sh c r y s t a l l i z a t i o n scheme

The e s s e n t i a l i d e a o f t h e Dan i sh c r y s t a l l i z a t i o n scheme i s t o e n s u r e t h a t

t he q u a l i t y o f Β p r o d u c t i s h i g h enough t o mix i t w i t h A p r o d u c t , and t o t r e a t

t h e m i x t u r e as w h i t e s u g a r . T h i s r e d u c e s t h e combined m a s s e c u i t e c i r c u l a t i o n

c o n s i d e r a b l y , b r i n g i n g abou t a r e d u c t i o n o f t h e t o t a l h e a t e x p e n d i t u r e i n s u g a r

b o i l i n g . As a f i r s t a p p r o x i m a t i o n , t h e h e a t s a v i n g can be e s t i m a t e d as t h e h e a t

r e q u i r e d t o e v a p o r a t e t h e amount o f w a t e r t h e o r e t i c a l l y needed t o d i s s o l v e

Β s u g a r , p l u s t he amount o f wash w a t e r needed when c e n t r i f u g i n g t h i s s u g a r as

A s u g a r . When compared t o a c o n v e n t i o n a l t h r e e - b o i l i n g scheme i n w h i c h t h i c k

j u i c e a t 72% DS i s used t o d i s s o l v e Β s u g a r , t h e steam s a v i n g i s o f t h e o r d e r o f

9-13% o f t h e w h i t e s u g a r o u t p u t , o r - u s i n g v a l u e s c h a r a c t e r i s t i c o f D a n i s h

f a c t o r i e s - abou t 1 .2-1 .7 kg/100 kg b. I f t h e c o n v e n t i o n a l scheme employs

d i s s o l v i n g Β s u g a r i n w a t e r , t h e n t h e s a v i n g amounts t o 12-14% o f t h e w h i t e

s u g a r o u t p u t , o r abou t 1 .6-1 .9 kg steam p e r 100 kg b e e t .

The s u g a r house scheme a p p l i e d i n DOS s u g a r f a c t o r i e s and t h e scheme o f s u g a r

f l o w t h r o u g h c r y s t a l l i z a t i o n s t a g e s a r e shown i n F i g . 4 . 6 . The main q u a l i t y

Page 173: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

162

Fig

. 4

.6.

Suga

r ho

use

(a)

and

flow

of

suga

r (b

) ac

cord

ing

to t

he

Dan

ish

crys

tall

izat

ion

sche

me.

VP

B,

VPC

- va

cuum

pan

s Β

and

C;

CB,

CC

-

cen

trif

ug

als

Β a

nd C

(c

ourt

esy

DD

S).

Page 174: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

163

r e q u i r e m e n t c o n c e r n e d w i t h Β s u g a r i s i t s low c o l o u r . I t i s known t h a t i n a

number o f c o u n t r i e s , t h e a t t e m p t s t o implement t h e D a n i s h scheme f a i l e d because

t h i s r e q u i r e m e n t c o u l d n o t be s a t i s f i e d r e l i a b l y . T h i s i s u n d e r s t a n d a b l e , as t h e

c o n d i t i o n s f o r a r e l i a b l e o p e r a t i o n o f t h e D a n i s h scheme - i n t e n d e d m a i n l y t o

p r e v e n t c o l o u r b u i l d - u p - have been s p e c i f i e d as f o l l o w s ( r e f . 1 2 ) .

( i ) I n t h e j u i c e p u r i f i c a t i o n , c o l o u r i n g m a t t e r e x h i b i t i n g s p e c i a l a f f i n i t y t o

s u g a r s h o u l d be e l i m i n a t e d . T h i s r e q u i r e s t h e p o l y m e r i z a t i o n o f p h e n o l i c

compounds so t h a t t h e y can be removed w i t h t h e s l u d g e , as w e l l as d e s t r o y i n g

i n v e r t s u g a r . I n p r a c t i c a l t e r m s , an a d e q u a t e l y l o n g j u i c e r e t e n t i o n t ime s h o u l d

be e n s u r e d a t an a l k a l i n i t y l e v e l e x c e e d i n g 0 . 4 - 0 . 5 g C a O / l O O ml ( w h i c h

c o r r e s p o n d s t o main l i m i n g ) .

( i i ) F i r s t f i l t r a t i o n must be e f f e c t i v e enough t o keep t h e s l u d g e c o n t e n t i n

t he f i l t r a t e be low 20 ppm.

( i i i ) S u l p h i t a t i o n o f t h i n j u i c e s h o u l d e n s u r e a pH v a l u e o f abou t 8.7 a t 20°C.

( i v ) I n t h e s u g a r h o u s e , pH v a l u e s s h o u l d be k e p t l o w e r t han 8 . 5 - 9 . 0 .

( v ) No u n n e c e s s a r y r e c y c l e s o f n o n s u g a r s and c o l o u r i n g m a t t e r s h o u l d be

t o l e r a t e d i n t h e s u g a r h o u s e .

( v i ) H igh c r y s t a l q u a l i t y s h o u l d be e n s u r e d i n b o i l i n g o f C s u g a r .

( v i i ) H i g h - p r e c i s i o n c e n t r i f u g i n g o f m a s s e c u i t e s i s r e q u i r e d .

P r a c t i c a l e x p e r i e n c e p r o v e s t h a t c o n d i t i o n s ( i v ) - ( v i i ) can be r e l i a b l y met

o n l y i f t h e s u g a r house o p e r a t i o n i s v e r y w e l l s t a b i l i z e d w i t h r e s p e c t t o t h e

q u a l i t y o f b o i l i n g and t he t e m p e r a t u r e s o f m a s s e c u i t e s b e f o r e c e n t r i f u g i n g . I n

s i m p l e t e r m s , i t can be c o n c l u d e d t h a t t h e D a n i s h c r y s t a l l i z a t i o n scheme i s

p r a c t i c a b l e o n l y i n w e l l e q u i p p e d , h i g h l y au toma ted , c a r e f u l l y m a i n t a i n e d and

s k i l f u l l y o p e r a t e d s u g a r f a c t o r i e s , and a s u f f i c i e n t l y h i g h b e e t q u a l i t y seems

t o be a p r e r e q u i s i t e . The q u a l i t y r e q u i r e m e n t s s h o u l d be u n d e r s t o o d t o a p p l y t o

b e e t s a t t h e e n t r a n c e t o t h e s l i c i n g s t a t i o n , t h a t i s , w i t h t h e consequences o f

b e e t d e t e r i o r a t i o n d u r i n g t r a n s p o r t and s t o r a g e t a k e n i n t o a c c o u n t . Among t h e

q u a l i t y pa rame te rs c o n c e r n e d , t h e amino-N c o n t e n t seems t o be o f c o n s i d e r a b l e

i m p o r t a n c e . I n Denmark, i t i s kep t be low 100 mg Ν p e r 100 g s u g a r as p r a c t i c a l

e x p e r i e n c e has shown t h a t h i g h e r amino-N c o n t e n t s make i t d i f f i c u l t t o o b t a i n

a s u f f i c i e n t l y h i g h p u r i t y o f t h i c k j u i c e ( r e f . 1 3 ) .

4 . 3 . 3 C o o l i n g c r y s t a l l i z a t i o n

The c o o l i n g c r y s t a l l i z a t i o n i s n o t a new i d e a , as i t i s g e n e r a l l y a p p l i e d i n

C m a s s e c u i t e c r y s t a l l i z a t i o n and i t has a l s o been p r a c t i s e d i n t he

c r y s t a l l i z a t i o n o f h i g h - p u r i t y m a s s e c u i t e s i n t h e cane s u g a r i n d u s t r y . W h i l e t h e

e v a p o r a t i n g c r y s t a l l i z a t i o n employs t h e e v a p o r a t i o n o f w a t e r f o r t h e

s u p e r s a t u r a t i o n c o n t r o l , t h e c o o l i n g c r y s t a l l i z a t i o n r e l i e s on a r e d u c t i o n o f

t he s o l u b i l i t y o f s u c r o s e i n w a t e r w i t h d e c r e a s i n g t e m p e r a t u r e . T h i s phenomenon

Page 175: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

164

i s i l l u s t r a t e d i n a d iag ram i n F i g . 4 .7 ( a f t e r r e f . 1 4 ) . I t has been e s t i m a t e d

t h a t f o r h i g h - p u r i t y m a s s e c u i t e s , a t e m p e r a t u r e d e c r e a s e o f 2 Κ makes i t

p o s s i b l e t o i n c r e a s e t h e c r y s t a l y i e l d by 1% ( r e f . 1 5 ) .

4.0 Γ

3.5μ

-ο L.

D φ O o

CO

3 .ομ

2.5k

2 . 0 L - ^ AO 50 60 70 80

Temperature (**C)

F i g . 4 . 7 . S o l u b i l i t y o f s u c r o s e i n w a t e r as a f u n c t i o n o f t e m p e r a t u r e ( a f t e r r e f . 1 4 ) .

The m a s s e c u i t e can be c o o l e d i n an a t m o s p h e r i c - p r e s s u r e w a t e r - c o o l e d

c r y s t a l 1 i z e r . An equ ipment c o n f i g u r a t i o n making i t p o s s i b l e t o combine

e v a p o r a t i n g c r y s t a l l i z a t i o n and " p u r e - c o o l i n g " c r y s t a l l i z a t i o n i n t o one

c r y s t a l l i z a t i o n s t a g e i s s c h e m a t i c a l l y shown i n F i g . 4 .8 ( a f t e r r e f . 1 6 ) . The

m a s s e c u i t e i s d i s c h a r g e d f rom vacuum pans t o c o n v e n t i o n a l m i x e r s , f rom w h i c h i t

i s d i r e c t e d t o c o o l i n g c r y s t a l 1 i z e r s where an adequate r e t e n t i o n t ime - up t o

4-5 h f o r A , and 6-7 h f o r Β m a s s e c u i t e - must be e n s u r e d . As t h e m a s s e c u i t e i s

cooling water

VACUUM PANS

— Í — massecuite

i MIXERS

COOLING CRYSTALLIZERS

CENTRIFUGALS

sugar

vapour to the condenser

syrup

CONCENTRATOR

syrup to the next^ crystallization stage

HEATER

syrup

F i g . 4 . 8 . Scheme o f a c r y s t a l l i z a t i o n s t a g e emp loy ing e v a p o r a t i n g c r y s t a l l i z a t i o n and " p u r e - c o o l i n g " c r y s t a l l i z a t i o n .

Page 176: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

165

c o o l e d down f rom t h e i n i t i a l t e m p e r a t u r e o f 70°C t o a b o u t 40-50°C, t h e c r y s t a l

c o n t e n t can be s u b s t a n i t a l l y i n c r e a s e d , i t s a t t a i n a b l e f i n a l v a l u e depend ing on

t h e DS c o n t e n t o f t h e r e c i r c u l a t e d s y r u p . F o r a c r y s t a l 1 i z e r d e s i g n known as

a c o o l i n g - c r y s t a l l i z a t i o n t o w e r t e s t e d i n t h e s u g a r i n d u s t r y i n FRG, t h e

a t t a i n a b l e r e l a t i v e i n c r e a s e o f t h e c r y s t a l c o n t e n t i s shown as a f u n c t i o n o f

f i n a l m a s s e c u i t e t e m p e r a t u r e and s y r u p DS c o n t e n t i n F i g . 4 . 9 . H o w e v e r , t h e

p o t e n t i a l f o r improvement o f c r y s t a l y i e l d i n d i c a t e d i n t h i s d iag ram t u r n s o u t

t o be d i f f i c u l t t o a c h i e v e owing t o t h e p rob lems o f m a i n t a i n i n g a s u f f i c i e n t l y

i n t e n s i v e hea t t r a n s f e r between t h e m a s s e c u i t e and t h e c o o l i n g s u r f a c e s .

0.50 Γ

ω ω S 0.A0 ϋ c

t 0-30

-L 0.20 o

<^ 0.10

0 - L 70 60 50 40 30 F ind massecuite temperature {°C)

F i g . 4 . 9 . R e l a t i v e i n c r e a s e o f t h e c r y s t a l c o n t e n t i n t h e c o o l i n g -c r y s t a l l i z a t i o n t o w e r v s . f i n a l m a s s e c u i t e t e m p e r a t u r e and DS c o n t e n t o f r e c i r c u l a t e d s y r u p ( a f t e r r e f . 1 7 ) .

A n o t h e r method o f c o o l i n g c r y s t a l l i z a t i o n , i n v e n t e d i n F r a n c e , employs a

vacuum c r y s t a l 1 i z e r i n w h i c h m a s s e c u i t e i s b o i l i n g as i t expands t o a p r e s s u r e

as low as abou t 0.09 b a r . The c r y s t a l 1 i z e r i s fo rmed as a h o r i z o n t a l c y l i n d r i c a l

v e s s e l e q u i p p e d w i t h a r i b b o n s t i r r e r , and t h e r e q u i r e d r e t e n t i o n t ime i s a b o u t

1 h . A p o s s i b l e equ ipment c o n f i g u r a t i o n i s shown s c h e m a t i c a l l y i n F i g . 4 . 1 0 . The

f l o w o f r e c i r c u l a t e d s y r u p (80-82% DS) i s a b o u t h a l f o f t h e t o t a l s y r u p f l o w .

P r a c t i c a l v a l u e s o f t h e r e l a t i v e c r y s t a l - y i e l d i n c r e a s e a r e abou t 0 .25 -0 .30

( i . e . , t he c r y s t a l c o n t e n t o f t h e m a s s e c u i t e i s i n c r e a s e d by a f a c t o r o f 1.25-

1 .30 ) .

As t h e c o o l i n g c r y s t a l l i z a t i o n makes i t p o s s i b l e t o i n c r e a s e t h e c r y s t a l

y i e l d i n a c r y s t a l l i z a t i o n s t a g e w i t h o u t a d d i t i o n a l h e a t e x p e n d i t u r e , i t can be

used t o r e d u c e t h e hea t demand o f t h e s u g a r h o u s e . The a t t a i n a b l e s a v i n g s depend

on t h e c o o l i n g method a p p l i e d and t h e l a y o u t o f t h e c r y s t a l l i z a t i o n scheme.

T a k i n g a c o n v e n t i o n a l t h r e e - b o i l i n g scheme w i t h t h i c k - j u i c e c o n c e n t r a t i o n o f

75% DS as a b a s i s f o r c o m p a r i s o n s , i t can be c o n c l u d e d t h a t t h e same w h i t e - s u g a r

Page 177: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

166

80°C CONTINUOUS VACUUM PAN

massecuite

O.IAbar 68-70°C

0.09 bar 55-60°C

VACUUM CRYSTALLIZER1

VACUUM CRYSTALLIZER 2

CENTRIFUGALS

to the next crystal l izat ion

stage

BO-eS^'C

HEATER

syrup

sugar

F i g . 4 . 1 0 . Scheme o f a c r y s t a l l i z a t i o n s t a g e emp loy ing e v a p o r a t i n g c r y s t a l l i z a t i o n and c o o l i n g c r y s t a l l i z a t i o n under vacuum ( a f t e r r e f . 1 8 ) .

o u t p u t can be o b t a i n e d u s i n g t w o - b o i l i n g schemes f e a t u r i n g combined e v a p o r a t i o n -

and c o o l i n g - c r y s t a l l i z a t i o n o f t h e w h i t e s u g a r . I n t h e case o f " p u r e - c o o l i n g "

c r y s t a l l i z a t i o n , assuming a c r y s t a l - y i e l d i n c r e a s e abou t 0 .32 , t h e t h e o r e t i c a l

hea t demand ( c a l c u l a t e d f rom t h e r e q u i r e d e v a p o r a t i o n ) o f t h e s u g a r house i s

r e d u c e d by 48%. I f vacuum c r y s t a l l i z a t i o n i s employed and t h e c r y s t a l y i e l d i n

w h i t e - s u g a r c r y s t a l l i z a t i o n i n c r e a s e s by 0 .33 , t h e r e s u l t i n g r e d u c t i o n o f t h e

t h e o r e t i c a l hea t demand i s n e a r l y 53% ( r e f . 1 6 ) .

The e n e r g y - s a v i n g p o t e n t i a l o f c o o l i n g c r y s t a l l i z a t i o n has y e t t o be

i n v e s t i g a t e d . Up t o now, t h e deve lopmen t i n t h i s a r e a has been s t i m u l a t e d m a i n l y

by t h e i n d u s t r y ' s i n t e r e s t i n i m p r o v i n g s u g a r q u a l i t y . The u n d e r l y i n g i d e a i s t o

t ake advan tage o f bo th t h e n e g l i g i b l e c o l o u r i n c r e a s e c h a r a c t e r i s t i c o f t h e

c o o l i n g c r y s t a l l i z a t i o n , and t h e r e d u c t i o n o f t h e amount o f s y r u p s accompany ing

t he c r y s t a l - y i e l d i n c r e a s e . The l a t t e r f a c t o r makes i t p o s s i b l e t o r e d u c e s y r u p

r e c i r c u l a t i o n i n t he c r y s t a l l i z a t i o n scheme, t h i s r e s u l t i n g i n r e d u c e d c o l o u r

b u i l d - u p . I n a d d i t i o n , new p o s s i b i l i t i e s t o c o n t r o l t h e c r y s t a l g r o w t h a r e

c r e a t e d , t h i s making i t p o s s i b l e t o c o n t r o l f i n a l c r y s t a l s i z e and g r a n u l o m e t r i c

d i s t r i b u t i o n . Howeve r , when a t t e m p t i n g t o d e s i g n a c r y s t a l l i z a t i o n p r o c e s s

a iming t o r educe t he hea t demand o f t h e s u g a r h o u s e , one w o u l d have t o c o n s i d e r

c r y s t a l - q u a l i t y c o n s t r a i n t s w h i c h have n o t been f u l l y i n v e s t i g a t e d so f a r

( r e f . 1 9 ) .

4 . 3 . 4 C r y s t a l f o o t i n g t e c h n i q u e s

The c o n c e p t o f c r y s t a l f o o t i n g o p e r a t i o n was i n t r o d u c e d w i t h t h e e s s e n t i a l

aim o f i m p r o v i n g c r y s t a l q u a l i t y and e s p e c i a l l y t o make t h e g r a n u l o m e t r i c

d i s t r i b u t i o n more u n i f o r m . The u n d e r l y i n g i d e a i s t o r a t i o n a l i z e t h e i n i t i a l

Page 178: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

167

phase o f t h e s u g a r b o i l i n g p r o c e s s as d i s c u s s e d i n S e c t i o n 1 .3 .5 . I n s t e a d o f

p e r f o r m i n g i t i n e v e r y s t r i k e i n e v e r y vacuum p a n , t h e i n i t i a l s y r u p t h i c k e n i n g

and c r y s t a l f o r m a t i o n i s c o n c e n t r a t e d i n a s p e c i a l i z e d u n i t . The seed magma

o b t a i n e d t h e r e i s s u b s e q u e n t l y d e l i v e r e d t o vacuum pans where t h e b o i l i n g can be

s t a r t e d d i r e c t l y f rom the c r y s t a l g r o w t h p h a s e .

A c r y s t a l f o o t i n g t e c h n i q u e can be i n t r o d u c e d i n t o c r y s t a l l i z a t i o n schemes i n

a v a r i e t y o f w a y s , depend ing on t h e k i n d o f f o o t i n g u n i t and t h e scheme i n

q u e s t i o n . A s i m p l e method c o n s i s t s o f p r e p a r i n g t h e seed magma e v e r y second

s t r i k e i n a s e l e c t e d b a t c h vacuum pan t o a b o u t 2 /3 o f i t s v o l u m e , pumping a h a l f

o f t h e magma t o a n o t h e r pan and s u b s e q u e n t l y b o i l i n g s u g a r i n bo th pans i n

p a r a l l e l . P r a c t i c a l e x p e r i e n c e p r o v e s t h a t i t may r e d u c e t h e a v e r a g e b o i l i n g

t ime by abou t 20%. Fewer s y r u p - t h i c k e n i n g phases pe r f o rmed i n t h e e n t i r e vacuum-

pan s t a t i o n r e d u c e t h e s t a t i o n ' s h e a t demand by a few p e r c e n t .

A n o t h e r method c o n s i s t s o f p r e p a r i n g t h e seed magma as a m i x t u r e o f s y r u p s

and c r y s t a l l i n e Β and C s u g a r s i n a s p e c i a l m i x e r . When d e l i v e r i n g t h e magma t o

vacuum pans A , t he b o i l i n g o f A s u g a r can be s t a r t e d f rom the c r y s t a l g r o w t h

p h a s e . E x p e r i m e n t s have d e m o n s t r a t e d t h e p o s s i b i l i t y o f r e d u c i n g t h e a v e r a g e

b o i l i n g t ime by abou t 25% and c u t t i n g down t h e h e a t demand by 5% ( r e f . 2 0 ) .

A method w h i c h r e c e i v e d much a t t e n t i o n i n t h e l a t e 1970s i s t o mix g r e e n

s y r u p A and n o n - a f f i n e d C s u g a r t o seed magma s u b s e q u e n t l y used i n vacuum pans

B. I t has been p r o v e d n o t t o b r i n g any s i g n i f i c a n t e n e r g y s a v i n g s . The h e a t

demand can be e f f e c t i v e l y r e d u c e d , h o w e v e r , i f t h i s p r o c e d u r e i s a p p l i e d t o

a p a r t o f t h e C - s u g a r s t ream o n l y a n d , i n a d d i t i o n , p a r t o f t h e Β s u g a r i s m ixed

w i t h wash s y r u p A t o seed magma used i n vacuum pans A ( F i g . 4 . 1 1 ) . Such a

" d o u b l e - f o o t i n g " t e c h n i q u e shows an e n e r g y - s a v i n g p o t e n t i a l o f t h e o r d e r o f up

t o 3 kg steam p e r 100 kg b e e t ( r e f s . 2 1 , 2 2 ) .

The b e s t c o n t r o l o f c r y s t a l q u a l i t y can be a t t a i n e d when a p p l y i n g a s p e c i a l

f o o t i n g u n i t i n w h i c h bo th c o o l i n g - and e v a p o r a t i n g - c r y s t a l 1 i z a t i o n , used a t

d i f f e r e n t s t a g e s o f t h e w o r k i n g c y c l e , a r e employed t o p r o d u c e t h e seed magma.

The equ ipment c o n f i g u r a t i o n can be e i t h e r a c o m b i n a t i o n o f a s e p a r a t e

c r y s t a l l i z e r and a vacuum p a n , o r a s i n g l e p i e c e s c h e m a t i c a l l y shown i n F i g .

4.12 ( r e f s . 2 3 , 2 4 ) . I f comp le ted w i t h t h i c k - j u i c e c o n d i t i o n i n g making i t

p o s s i b l e t o c o n t r o l t h i c k - j u i c e p a r a m e t e r s a c c u r a t e l y a t t h e e n t r a n c e t o t h e

s u g a r h o u s e , t h e c r y s t a l f o o t i n g t e c h n i q u e p r o v i d e s a v e r y e f f e c t i v e t o o l f o r

m a s t e r i n g s u g a r c r y s t a l l i z a t i o n a t h i g h t h i c k - j u i c e c o n c e n t r a t i o n s .

A p r e r e q u i s i t e f o r i t s s u c c e s s f u l a p p l i c a t i o n i s t h a t t h e s u g a r house i s

e q u i p p e d w i t h s t i r r e d vacuum pans o f s u i t a b l e d e s i g n and w i t h e f f e c t i v e

a u t o m a t i c b o i l i n g c o n t r o l s ; t h e s e q u e s t i o n s a r e d i s c u s s e d m a i n l y i n C h a p t e r s 5

and 6. I n c o n c l u s i o n , t h e impo r tance o f t h e c r y s t a l f o o t i n g t e c h n i q u e s t o t h e

e n e r g y economy does n o t l i e i n some d i r e c t e n e r g y - s a v i n g e f f e c t s b u t r a t h e r i n

Page 179: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

168

thin juice thick juice

4 Β remelt Β seed magma

U L L I STAGE A

MELTER Β FOOTING UNIT Β

" — Β s u g a r -

i STAGE Β

C seed magma C remelt

FOOTING UNIT C MELTER C

STAGE C

white sugar

W<hrixi- • C suga r •

molasses

F i g . 4 ,11 . S i m p l i f i e d scheme o f t h r e e - b o i l i n g w h i t e - s u g a r c r y s t a l l i z a t i o n u s i n g " d o u b l e f o o t i n g " .

i t s p o t e n t i a l t o u t i l i z e e f f e c t i v e l y t h e i n f l u e n c e o f i n c r e a s e d t h i c k - j u i c e

c o n c e n t r a t i o n on t h e hea t demand i n t h e s u g a r house ( s e e S e c t i o n 1 . 3 . 5 ) .

( a ) slurry

cooling water

® condenser

Γ-CXl·

ISOLUTION * * TANK

I MIXER

HXl -thick juice

remelt

syrup

steam

to vacuum pans ^

y supersaturation about 1.05

* y 7/.-75V0DS

r—t><l—' "5<

CONDITIONED IREMELT* TANK

MIXER

to vacuum

5Γ m

pans

F i g . 4 . 1 2 . F o o t i n g u n i t s emp loy ing bo th e v a p o r a t i n g - and c o o l i n g - c r y s t a l l i z a t i o n t o p roduce seed magma: ( a ) w i t h a vacuum pan and a w a t e r - c o o l e d s t i r r e d v e s s e l ( a f t e r r e f . 2 3 ) , ( b ) w i t h a s p e c i a l l y d e s i g n e d vacuum p a n / c r y s t a l 1 i z e r and v a c u u m - c o n t r o l l e d c o o l i n g ( a f t e r r e f . 2 4 ) .

Page 180: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

169

4.4 UNCONVENTIONAL ENERGY-SAVING PROCESSES IN SUGAR MANUFACTURE

4.4.1 U n d e r l y i n g c o n c e p t s

The s u g a r m a n u f a c t u r i n g p r o c e s s emp loy i ng e x t r a c t i o n , j u i c e p u r i f i c a t i o n w i t h

l ime and c a r b o n d i o x i d e , j u i c e t h i c k e n i n g by e v a p o r a t i o n and f i n a l l y ,

c r y s t a l l i z a t i o n , i s a p p a r e n t l y a s s o c i a t e d w i t h a c e r t a i n minimum e n e r g y

e x p e n d i t u r e w h i c h c a n n o t be f u r t h e r r e d u c e d . Assuming an o p t i m a l c o n f i g u r a t i o n

o f t h e the rma l s y s t e m , an e s t i m a t e o f t h e minimum i n p u t o f p r i m a r y e n e r g y abou t

2.3 kg normal f u e l p e r 100 kg b e e t has been g i v e n i n D a n i s h s o u r c e s ( r e f . 2 5 ) .

Even though t h i s v a l u e can s t i l l be d i s c u s s e d , p r a c t i c a l e x p e r i e n c e p r o v e s t h a t

e x t r e m e l y low hea t demand i n c o n v e n t i o n a l s u g a r m a n u f a c t u r e can o n l y be a t t a i n e d

a t t h e expense o f i n c o n v e n i e n t p r o c e s s m o d i f i c a t i o n s , t h e s e i n t u r n r e q u i r i n g

m o d i f i e d equ ipment and c o n t r o l s y s t e m s , as w e l l as i n c r e a s e d c o m p l e x i t y o f t h e

the rma l s y s t e m . I t seems t h a t t h e r e i s no o t h e r way i n w h i c h t h e c o n s t r a i n t s

i n h e r e n t i n t h e c o n v e n t i o n a l s u g a r m a n u f a c t u r i n g p r o c e s s can be s a t i s f i e d .

A number o f a l t e r n a t i v e p r o c e s s e s m i g h t p o s s i b l y be employed i n s u g a r

manu fac tu re t o remove o r change t h e c o n s t r a i n t s imposed on e n e r g y c o n v e r s i o n and

u t i l i z a t i o n t e c h n i q u e s . T h i s m igh t open e n t i r e l y new p o s s i b i l i t i e s f o r e n e r g y

demand r e d u c t i o n s .

To b e g i n w i t h , t h e i n i t i a l phase o f s u g a r m a n u f a c t u r i n g c o n s i s t s i n f a c t o f

j u i c e s e p a r a t i o n ; t h i s can be done by methods o t h e r t han e x t r a c t i o n . N e x t , j u i c e

p u r i f i c a t i o n can be p e r f o r m e d , a t l e a s t p a r t l y , w i t h o u t l ime and C O ^ .

E v a p o r a t i o n i s n o t t h e o n l y method s u i t e d t o j u i c e t h i c k e n i n g ; s i m i l a r l y ,

e v a p o r a t i n g - c r y s t a l 1 i z a t i o n can be a i d e d o r even r e p l a c e d by o t h e r methods o f

s e p a r a t i o n o f c r y s t a l l i n e s u g a r . C o n s e q u e n t l y , one can imag ine a s u g a r f a c t o r y

w i t h o u t e x t r a c t o r s , l i m e r s , c a r b o n a t a t i o n t a n k s , e v a p o r a t o r s and vacuum p a n s .

F o r t h e t ime b e i n g , such a v i s i o n b o r d e r s on s c i e n c e f i c t i o n , so no a t t e m p t w i l l

be made t o a n a l y s e i t as a w h o l e . I f one l o o k s a t t h e componen ts , h o w e v e r , t h e n

t he a p p l i c a t i o n p r o s p e c t s t u r n o u t t o be more r e a l i s t i c . I n t h e f o l l o w i n g , s h o r t

r e v i e w s o f t h e most p r o m i s i n g c o n c e p t s a r e g i v e n .

4 . 4 . 2 J u i c e s e p a r a t i o n

As an a l t e r n a t i v e t o e x t r a c t i o n , j u i c e s e p a r a t i o n f rom r a s p e d o r s l i c e d b e e t

b r e i can be c o n s i d e r e d . T h i s method was w i d e l y used i n t h e 19th c e n t u r y and

u l t i m a t e l y abandoned because t h e r e c o v e r y o f s u c r o s e was n o t s u f f i c i e n t l y

c o m p l e t e . I t i s now be ing s t u d i e d , h o w e v e r , w i t h some s u b s t a n t i a l m o d i f i c a t i o n s .

One p o s s i b l e v e r s i o n i s t o a p p l y l o w - t e m p e r a t u r e , c o u n t e r - c u r r e n t wash ing o f

b e e t b r e i ( r e f . 2 6 ) . The p r i n c i p l e o f t h e p r o c e s s and i t s e s s e n t i a l p a r a m e t e r s

a re g i v e n i n F i g . 4 . 1 3 ( a ) and t h e r e t e n t i o n t ime o f t h e b r e i can be e s t i m a t e d a t

10 m i n u t e s . The key p rob lem i s t o d e s t r o y c e l l membranes e f f e c t i v e l y so t h a t

s u g a r can be washed o u t a t low t e m p e r a t u r e . T h i s may r e q u i r e d o u b l e - s t a g e

Page 181: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

170

(α) disintegrated beet

tissue 23VoDS acid f i l t rat ion

aid p reserva t ive water

raw juice 16.4% D S *

( b ) powdered lime 0.6

disintegrated ^

beet t issue 100

press juice

^ ^ A S H - "

-STAGE U

- - W A S H - '

. ^ S T A G E 2 .

" - W A S H - - '

.^STAGE 3 . PRESS

^ ^ A S H - "

-STAGE U

" - W A S H - - '

.^STAGE 3 .

b re i3 Ί

PRESS

pressed brei 35% DS

TANK 80°C

water 12.5 powdered lime

1 Γ PRESS 1 PRESS 2 35 bar 70 bar

raw juice

• pressed brei AOVoDS

F i g . 4 . 1 3 . Schemes o f j u i c e s e p a r a t i o n f rom b e e t b r e i : ( a ) t r i p l e - s t a g e c o u n t e r -c u r r e n t wash ing and p r e s s i n g o f b r e i , ( b ) d o u b l e - s t a g e p r e s s i n g . Mass f l o w s g i v e n i n kg/100 kg b. * / i n c l u d i n g 2% f i b r e s u b s t a n c e .

d i s i n t e g r a t i o n o f t h e b e e t t i s s u e : f i r s t i n a d i s k m i l l , t h e n i n a homogen ize r

o r a b e a t e r m i l l . S u c r o s e r e c o v e r y can be e s t i m a t e d as 0.97 m u l t i p l i e d by t h e

e f f i c i e n c y o f d i s i n t e g r a t i o n o f c e l l membranes. An e f f i c i e n c y o f 0.95 can e a s i l y

be o b t a i n e d , r e s u l t i n g t h u s i n s u c r o s e r e c o v e r y abou t 0 .92 . A t 16% s u g a r i n

b e e t s , 13.8% s u g a r i n raw j u i c e can be o b t a i n e d .

The a d v a n t a g e s o f t h e p r o c e s s a r e :

- h i g h p u r i t y o f s e p a r a t e d j u i c e ;

- no hea t e x p e n d i t u r e ;

- h i g h v a l u e o f c o n c e n t r a t e d b r e i as animal f e e d .

The most s e r i o u s d i s a d v a n t a g e i s t h e r e l a t i v e l y h i g h power demand o f t h e

d i s i n t e g r a t i o n equ ipmen t : 0.44 kWh/100 kg b has been r e p o r t e d f rom a p r o t o t y p e

i n s t a l l a t i o n . N e v e r t h e l e s s , economic c o m p e t i t i v e n e s s a g a i n s t c o n v e n t i o n a l

e x t r a c t i o n has a l r e a d y been c l a i m e d a t sma l l p r o c e s s i n g c a p a b i l i t i e s up t o

1200 t / d .

A n o t h e r s o l u t i o n employs d o u b l e - s t a g e p r e s s i n g o f b e e t b r e i a t e l e v a t e d

t e m p e r a t u r e ( r e f . 2 7 ) . The p r o c e s s i s s c h e m a t i c a l l y shown i n F i g . 4 . 1 3 ( b ) ; t h e

r e t e n t i o n t ime o f t h e b r e i can be e s t i m a t e d a t 20 m i n u t e s . D o u b l e - s t a g e p r e s s i n g

o f f e r s t h e a d v a n t a g e s o f v e r y h i g h s u c r o s e r e c o v e r y and v e r y h i g h c o n t e n t o f

d r y s u b s t a n c e i n t h e p r e s s e d b r e i . A t 16% s u g a r i n b e e t s , 15.5% s u g a r i n raw

j u i c e seems t o be a r e a l i s t i c f i g u r e . As t h i s p r o c e s s has been t e s t e d on

Page 182: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

171

a l a b o r a t o r y s c a l e o n l y , f u r t h e r r e s e a r c h i s needed b e f o r e any e v a l u a t i o n can be

g i v e n o f i t s t e c h n i c a l and economic f e a s i b i l i t y .

4 . 4 . 3 J u i c e p u r i f i c a t i o n and t h i c k e n i n g

J u i c e p u r i f i c a t i o n i s a p r o c e s s e s s e n t i a l l y aimed a t remov ing n o n s u g a r s , and

j u i c e t h i c k e n i n g one aimed a t remov ing e x c e s s w a t e r f rom s u g a r s o l u t i o n s . These

f u n c t i o n s can be pe r f o rmed emp loy ing membrane f i l t r a t i o n p r o c e s s e s ( r e f s . 28-30)

known as u l t r a f i l t r a t i o n and h y p e r f i 1 t r a t i o n ; t h e l a t t e r t e c h n i q u e i s a l s o

c a l l e d r e v e r s e o s m o s i s . The c h a r a c t e r i s t i c s o f b o t h p r o c e s s e s a r e g i v e n i n

T a b l e 4 . 1 . U l t r a f i l t r a t i o n c o n c e n t r a t e s h i g h - m o l e c u l a r s u b s t a n c e c o l l o i d s and

suspended p a r t i c l e s , w h i l e h y p e r f i 1 t r a t i o n c o n c e n t r a t e s l o w - m o l e c u l a r s u b s t a n c e s

and s e p a r a t e s t h e s o l v e n t . The a p p r o x i m a t e l i m i t between t h e two p r o c e s s e s i s

a m o l e c u l a r w e i g h t o f 500-1000.

TABLE 4.1

Main f e a t u r e s o f u l t r a f i l t r a t i o n and h y p e r f i 1 t r a t i o n p r o c e s s e s .

U l t r a f i l t r a t i o n H y p e r f i 1 t r a t i o n

Minimum s i z e o f p a r t i c l e s s e p a r a t e d ( m i c r o n s ) 10-200 1-10 Examples o f s u b s t a n c e s n o t s e p a r a t e d w a t e r , e t h a n o l , w a t e r , e t h a n o l , Examples o f s u b s t a n c e s n o t s e p a r a t e d

l a c t i c a c i d . l a c t i c a c i d s u g a r s , s a l t s . l o w e r o r g a n i c compounds

P r e s s u r e range ( b a r ) 1-10 20-100 A p p l i c a t i o n s o u t s i d e s u g a r i n d u s t r y s e p a r a t i o n o f w a t e r

p r o t e i n s d e s a l i n a t i o n

The membranes, u s u a l l y 100-400 m i c r o n s t h i c k , a r e m a n u f a c t u r e d f rom p o l y m e r i c

m a t e r i a l s c a s t on a p o l y e s t e r o r p o l y p r o p y l e n e s u p p o r t . The d i f f e r e n c e between

u l t r a f i l t r a t i o n and h y p e r f i 1 t r a t i o n membranes l i e s i n t h e i r s t r u c t u r e s . The s i z e

o f t he membrane i s l i m i t e d by i t s s t r e n g t h . The membranes a r e mounted i n modu les

p r o v i d i n g a l s o n e c e s s a r y f l o w c h a n n e l s ; t u b u l a r , s p i r a l - w o u n d , p l a t e - a n d - f r a m e

and h o l l o w - f i b r e d e s i g n s a r e u s e d . The modules can be c o n n e c t e d t o g e t h e r and

e q u i p p e d w i t h pumps, v a l v e s , t a n k s , a u t o m a t i c c o n t r o l s , e t c . , t o c r e a t e a

membrane f i l t r a t i o n sys tem as shown s c h e m a t i c a l l y i n F i g . 4.14 ( r e f . 3 0 ) .

An u l t r a f i l t r a t i o n u n i t can be i n c o r p o r a t e d i n s u g a r m a n u f a c t u r e as j u i c e

p u r i f i c a t i o n equ ipmen t , a c c o r d i n g t o a scheme shown i n F i g . 4.15 ( r e f . 3 0 ) .

W h i l e t he p u r i t y o f u l t r a f i l t e r e d j u i c e can be as h i g h as t h a t o f t h i n j u i c e

l e a v i n g c o n v e n t i o n a l p u r i f i c a t i o n s t a t i o n s , i n v e r t s u g a r i s however n o t

e l i m i n a t e d , t h i s g i v i n g r i s e t o e x c e s s i v e c o l o u r f o r m a t i o n . T h e r e f o r e , f u r t h e r

t r e a t m e n t w i t h 0.05 kg l ime p e r 100 kg b e e t , o r by i o n e x c h a n g e , may be

n e c e s s a r y .

The a d v a n t a g e s o f u l t r a f i l t r a t i o n a r e l ime s a v i n g and e l i m i n a t i o n o f

Page 183: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

172

sugar solution

water

permeate

concentrate

F i g . 4 .14 . Scheme o f a membrane f i l t r a t i o n sys tem ( a f t e r r e f . 3 0 ) .

water

raw juice ] SCREENING — ^ P R E - T R E A T M E N T —

ULTRAFILTRATION 80°C

thin juice SULPHITATION

CLARIFICATION OR FILTRATION

sludge

permeate

LIMING

concentrate

F i g . 4 .15 . J u i c e p u r i f i c a t i o n scheme i n c l u d i n g an u l t r a f i l t r a t i o n u n i t ( a f t e r r e f . 3 0 ) .

c a r b o n a t a t i o n hea t l o s s e s . I f a c h i e v e d d u r i n g a f a c t o r y e x t e n s i o n , t h i s can make

i n v e s t m e n t i n t h e l ime k i l n u n n e c e s s a r y . C o s t e s t i m a t e s based on p i l o t - s c a l e

t r i a l s can be f ound i n the l i t e r a t u r e ( r e f . 3 1 ) .

A h y p e r f i l t r a t i o n u n i t can be used t o remove w a t e r f rom j u i c e , t h u s r e d u c i n g

t h e e v a p o r a t o r l o a d . Two p o s s i b l e l o c a t i o n s i n a s u g a r m a n u f a c t u r i n g l i n e a r e

shown s c h e m a t i c a l l y i n F i g . 4.16 ( r e f . 3 2 ) . A t t h e p r e s e n t s t a t e o f deve lopmen t

o f h y p e r f i 1 t r a t i o n membranes, 30-35% DS seems t o be t h e upper l i m i t o f

p r a c t i c a b l e j u i c e c o n c e n t r a t i o n s . T h i s c o r r e s p o n d s t o an a t t a i n a b l e steam s a v i n g

o f t h e o r d e r o f 2.7 kg/100 kg b. Power consumpt ion i n j u i c e pumping, h o w e v e r ,

may be as h i g h as 0.8 kWh/100 kg b. C o s t e s t i m a t e s o b t a i n e d by e x t r a p o l a t i n g t h e

f i g u r e s f rom p i l o t - s c a l e t e s t s a r e g i v e n i n t h e l i t e r a t u r e ( r e f . 3 1 ) .

The p rob lem w i t h t h e membrane f i l t r a t i o n sys tems p r e s e n t l y a v a i l a b l e i s t h a t

module s i z e s a r e r e l a t i v e l y s m a l l , t h i s i n c r e a s i n g t h e i n v e s t m e n t c o s t s o f

l a r g e - c a p a c i t y u n i t s . The c o s t o f membranes i s a l s o h i g h . N e v e r t h e l e s s , i f t h e

f u e l c o s t i s h i g h , i t may be j u s t i f i e d t o c o n s i d e r e n e r g y - s a v i n g membrane

f i l t r a t i o n sys tems as s e r i o u s a l t e r n a t i v e s t o e x t e n s i o n s o f t h e c o n v e n t i o n a l

equ ipmen t . F u r t h e r deve lopmen ts i n membrane t e c h n o l o g y can be e x p e c t e d t o

Page 184: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

173

improve t h e c o m p e t i t i v e n e s s o f such s o l u t i o n s ; i n t h e f i r s t p l a c e , t h i s seems t o

a p p l y t o h y p e r f i 1 t r a t i o n ( r e v e r s e o s m o s i s ) u n i t s .

cossettes EXTRACTION

pulp

row juice HYPERFILTRATION VERSION 1

concentrate

permeate

LIMING

CARBONATATION

thick juice EVAPORATION

Ε 1

permeate

t FILTRATION

"1 concentrate HYPERFILTRATION SULPHITATION

VERSION 2 SULPHITATION

s ludge

F i g . 4 . 16 . P o s s i b l e l o c a t i o n s o f h y p e r f i 1 t r a t i o n u n i t s i n a scheme o f a s u g a r m a n u f a c t u r i n g p r o c e s s ( a f t e r r e f . 3 2 ) .

4 . 4 . 4 Sugar c r y s t a l l i z a t i o n

The p o s s i b i l i t i e s f o r a r a d i c a l change i n s u g a r c r y s t a l l i z a t i o n methods

depend v e r y much on t he r e s u l t s t h a t can be o b t a i n e d i n t h e p r e c e d i n g s e c t i o n s

o f t h e s u g a r m a n u f a c t u r i n g l i n e . I f h i g h enough t h i c k - j u i c e p u r i t y c o u l d be

assumed, t h e n t h e c o m p l i c a t e d m u l t i - s t a g e c r y s t a l l i z a t i o n c o u l d be r e p l a c e d , f o r

examp le , by s p r a y d r y i n g . I m p l i c a t i o n s on t h e e n e r g y s i d e , as w e l l as t h e

consequences f o r i n v e s t m e n t c o s t s , wou ld be enormous.

S t a y i n g w i t h i n t h e f rames d e f i n e d by t h e p r e s e n t s t a t e o f deve lopmen t o f

j u i c e s e p a r a t i o n and p u r i f i c a t i o n , m u l t i - s t a g e c r y s t a l l i z a t i o n seems t o be t h e

o n l y f e a s i b l e s o l u t i o n . C o n s i d e r a b l e e n e r g y s a v i n g s can be o b t a i n e d , h o w e v e r , i f

t h e e v a p o r a t i n g c r y s t a l l i z a t i o n i s r e p l a c e d by some l e s s e n e r g y - i n t e n s i v e

method. A d o p t i n g t he i d e a u s e d , f o r examp le , i n c e r t a i n European p a t e n t s

c o n c e r n e d w i t h mo lasses d e s u g a r i z a t i o n , t h e a p p l i c a t i o n o f f r e e z e

c r y s t a l l i z a t i o n has been p r o p o s e d ( r e f s . 3 3 , 3 4 ) . I t s p r i n c i p l e r e q u i r e s a

r e f r i g e r a n t s u b s t a n c e t o be added t o t h e s u c r o s e s o l u t i o n . As t h e r e f r i g e r a n t

a b s o r b s h e a t f rom the s o l u t i o n , t h e w a t e r c r y s t a l l i z e s . E v e n t u a l l y , t h i s b r i n g s

abou t t he s u p e r s a t u r a t i o n o f t h e s o l u t i o n and t h e f o r m a t i o n o f s u g a r c r y s t a l s .

I n t h e n e x t s t e p , s u g a r i s s e p a r a t e d f rom i c e c r y s t a l s t h a t a r e s u b s e q u e n t l y

washed w i t h w a t e r . Sugar c r y s t a l s a r e washed w i t h s y r u p , d r a i n e d , f i l t e r e d and

c e n t r i f u g e d .

T h i s method i s so new t o t h e s u g a r i n d u s t r y t h a t a l o t o f work i s needed t o

c l a r i f y i t s a p p l i c a t i o n p o t e n t i a l . On t h e e n e r g y s i d e , t h e c h o i c e o f t h e

r e f r i g e r a n t and t h e c o n c e p t o f t h e r e f r i g e r a t i o n c i r c u i t seem t o be d e c i s i v e i n

d e t e r m i n i n g t h e a t t a i n a b l e s a v i n g s .

Page 185: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

174

4.5 PULP DEHYDRATION

4.5.1 L i n e s o f deve lopment

I t i s c h a r a c t e r i s t i c o f h i s t o r i c a l deve lopmen ts i n t he s u g a r i n d u s t r y t h a t

e n e r g y usage i n t he s u g a r m a n u f a c t u r i n g p r o c e s s has been t r e a t e d more s e r i o u s l y

than t h a t i n d r y i n g t h e p u l p . F o l l o w i n g t h e e n e r g y c r i s e s o f t h e 1970s, i t was

r e a l i z e d t h a t w h i l e t h e e n e r g y sys tems o f s u g a r manu fac tu re a r e r a t h e r e l a b o r a t e

and s t e a d i l y i m p r o v i n g , r e l a t i v e l y p r i m i t i v e p u l p - d r y i n g sys tems can be

r e s p o n s i b l e f o r as much as 1/3 o f t h e p r i m a r y - e n e r g y i n p u t in a s u g a r f a c t o r y .

T h i s s t i m u l a t e d much r e s e a r c h and numerous p r a c t i c a l a c t i o n s w h i c h g r a d u a l l y

began t o g i v e p r a c t i c a l r e s u l t s . I n c e r t a i n c o u n t r i e s , t h e e n e r g y s a v i n g s i n

p u l p d r y i n g have been q u i t e s p e c t a c u l a r , as can be seen i n F i g . 4 . 1 7 . The

p r o g r e s s was a c h i e v e d owing t o combined deve lopmen ts i n p r o c e s s e s , equ ipment

and c o n t r o l s y s t e m s . I n t he p r e s e n t a u t h o r ' s o p i n i o n , h o w e v e r , r e - t h i n k i n g o f

p r o c e s s r e q u i r e m e n t s p l a y e d a p a r t i c u l a r l y i m p o r t a n t r o l e .

1978 1980 1982 1984

F i g . 4 . 1 7 . S t a t i s t i c a l d a t a on e n e r g y consumpt ion i n p u l p d r y i n g i n FRG and Sweden, 1977-1985. The v a l u e s g i v e n f o r bo th c o u n t r i e s a r e n o t d i r e c t l y comparab le because o f t he d i f f e r e n c e s i n mo lasses d o s a g e .

I t s h o u l d n o t be f o r g o t t e n t h a t t h e e s s e n t i a l p rob lem w i t h t h e we t p u l p i s

how t o u t i l i z e i t . The most w i d e l y a c c e p t e d s o l u t i o n c o n s i s t s o f p r e s s i n g ,

d r y i n g and p e l l e t i n g the p u l p so t h a t i t can be e a s i l y s t o r e d , t r a n s p o r t e d and

s o l d as animal f e e d a d d i t i v e . T h e r e a r e numerous o t h e r p r o p o s a l s , h o w e v e r , t h a t

a l s o d e s e r v e s e r i o u s c o n s i d e r a t i o n . Depend ing on economic and v a r i o u s l o c a l

( e . g . , e n v i r o n m e n t a l ) c o n d i t i o n s i n a p a r t i c u l a r f a c t o r y , t h e b e s t c h o i c e may

v a r y .

An i n t e r e s t i n g p o s s i b i l i t y i s t o a v o i d t r e a t i n g t h e p u l p as a b y - p r o d u c t and

t o u t i l i z e i t w i t h t h e aim o f i m p r o v i n g t h e f a c t o r y ' s e n e r g y b a l a n c e . T h i s can

be done by c o n v e r t i n g t h e p r e s s e d p u l p t o b i o g a s i n an a n a e r o b i c f e r m e n t a t i o n

p r o c e s s . I t has been demons t ra ted i n l a b o r a t o r y - s c a l e e x p e r i m e n t s , and p a r t l y

c o n f i r m e d i n a p i l o t p l a n t , t h a t 90% o f t h e o r g a n i c m a t t e r p r e s e n t i n p u l p can

Page 186: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

175

be c o n v e r t e d t o methane, t h e r e s t b e i n g a was te w h i c h needs t o be d i s p o s e d o f

( r e f . 2 , 3 5 ) . B i o g a s g e n e r a t e d f rom t h e e n t i r e amount o f p u l p can be s u p p l i e d t o

t he b o i l e r s . A l t e r n a t i v e l y , a p a r t o f t h e p u l p may be c o n v e r t e d t o methane,

wh i ch i s s u b s e q u e n t l y bu rned i n a d r y e r f u r n a c e , making i t p o s s i b l e t o d r y t h e

rema in ing p a r t . The economic p o t e n t i a l o f b i o g a s p r o d u c t i o n f rom t h e p u l p has

y e t t o be demons t ra ted i n a f u l l - s c a l e i n d u s t r i a l a p p l i c a t i o n .

A s o l u t i o n w i d e l y p r a c t i s e d i s t o s e l l t h e p r e s s e d p u l p d i r e c t l y , as f o d d e r .

I f t r a n s p o r t and s t o r a g e a r e p r o v i d e d by t h e c u s t o m e r s , t h e a d v a n t a g e s a r e

g r e a t . I t can be seen f rom t h e e x p e r i e n c e s o f numerous c o u n t r i e s , h o w e v e r , t h a t

t he o v e r a l l c o s t s o f t h e e n t i r e d i s t r i b u t i o n and s t o r a g e sys tem - s e r v i n g a

p r o d u c t w h i c h c o n t a i n s abou t 80% w a t e r - may be h i g h e r t han t h e v a l u e o f s a v i n g s

o b t a i n e d i n t h e f a c t o r y . T h e r e f o r e , t h i s s o l u t i o n may be d i f f i c u l t t o

s u b s t a n t i a t e i n w e l l - b a l a n c e d economies . N e e d l e s s t o s a y , i t a l s o r e q u i r e s l o n g -

te rm m a r k e t i n g .

A n o t h e r p o s s i b i l i t y c o n s i s t s o f s t o r i n g t h e p r e s s e d p u l p i n t h e f a c t o r y a r e a .

T h i s r e q u i r e s t h e a p p l i c a t i o n o f a s u i t a b l e p r e s e r v a t i o n p r o c e d u r e e n s u r i n g p u l p

f e r m e n t a t i o n aimed a t l a c t i c a c i d f o r m a t i o n ( r e f s . 3 7 , 3 7 ) . The s i m p l e s t method

i s t o e n s i l e t h e p u l p i m m e d i a t e l y a f t e r p r e s s i n g , t h a t i s , a t 45-50°C. A c o r r e c t

f e r m e n t a t i o n i s a t t a i n e d i f t h e e n s i l e d p u l p i s c o o l e d a t a d a i l y r a t e o f

0 . 5 - 1 . 0 K. No chemica l a d d i t i v e s a r e r e q u i r e d , b u t t h e a d d i t i o n o f m o l a s s e s has

been shown t o i n c r e a s e l a c t i c a c i d f o r m a t i o n . A l t e r n a t i v e l y , c o o l e d p u l p can be

e n s i l e d , p o s s i b l y w i t h chemica l p r e s e r v a t i v e s o r i n a 85:15 m i x t u r e w i t h b e e t

f r a g m e n t s . S u c c e s s f u l i n d u s t r i a l a p p l i c a t i o n s o f p u l p e n s i l a g e a r e known.

R e t u r n i n g now t o t h e p u l p d e h y d r a t i o n me thod , r e f e r e n c e can be made t o

S e c t i o n s 1.2.8 and 1.2.9 where t h e i m p o r t a n c e o f e n e r g y - s a v i n g p r o c e s s

m o d i f i c a t i o n s was s t r e s s e d . I n F i g . 4 . 1 8 ( a ) , t h e i n f l u e n c e o f t h e f i n a l DS

c o n t e n t on t h e s p e c i f i c e n e r g y demand i n mechan i ca l and the rma l d e h y d r a t i o n i s

shown. The e n e r g y demand p e r u n i t mass o f w a t e r removed by mechan ica l p r e s s i n g

i s v e r y low a t low DS c o n t e n t , b u t i t i n c r e a s e s r a p i d l y a t DS c o n t e n t s above

a c e r t a i n l i m i t . C o n c e r n i n g the rma l d r y i n g , i t s s p e c i f i c e n e r g y demand i s

r e l a t i v e l y c o n s t a n t o v e r a w ide range o f DS c o n t e n t s . The i n t e r s e c t i o n p o i n t

between t h e a p p l i c a t i o n r a n g e s o f bo th me thods , h o w e v e r , i s d e t e r m i n e d by

o v e r a l l economic r e s u l t s r a t h e r t han by e n e r g y i s s u e s o n l y . I t t u r n s o u t t h a t

w i t h i n c r e a s i n g DS c o n t e n t , t h e i n v e s t m e n t c o s t s o f p r e s s e s i n c r e a s e more

r a p i d l y t han t h e s p e c i f i c e n e r g y demand, s h i f t i n g t h e i n t e r s e c t i o n p o i n t t o w a r d s

l o w e r DS v a l u e s .

Numerous s t u d i e s o f a p p l i c a t i o n r a n g e s o f bo th d e h y d r a t i o n methods have been

p u b l i s h e d ( r e f . 3 8 - 4 3 ) . A g raph d e p i c t i n g t h e r e l a t i o n s h i p between p r e s s i n g and

thermal d r y i n g i s shown i n F i g . 4 . 1 8 ( b ) . As can be s e e n , a t 8% DS i n e x h a u s t e d

c o s s e t t e s , i n c r e a s i n g t h e DS c o n t e n t o f p r e s s e d p u l p f rom 22% t o 30% r e s u l t s i n

Page 187: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

176

(α)

Ο Φ ϊ I

^1

III·"" g I

I l l l l l l l l l l l l á l l l " " " ' t h e r m a l

mechanical

J 0 20 40 60 80 100

Final DS content in pu lp(%)

20 40 60 80

DS content in pulp ( % )

F i g . 4 .18 . C h a r a c t e r i s t i c s o f mechan ica l and therma l p u l p d e h y d r a t i o n : ( a ) s p e c i f i c e n e r g y demand v s . f i n a l DS c o n t e n t , ( b ) w a t e r amount i n p u l p v s . DS c o n t e n t ( a f t e r r e f . 5 1 ) .

an i n c r e a s e o f w a t e r amount removed by therma l d e h y d r a t i o n o f abou t 1/7.

S i m u l t a n e o u s l y , t h e w a t e r amount removed by the rma l d e h y d r a t i o n i s r e d u c e d by

abou t 1/3.

I n t h e f o l l o w i n g , t h r e e e n e r g y - s a v i n g t e c h n i q u e s r e l a t e d t o p u l p d e h y d r a t i o n

t e c h n o l o g y a r e d i s c u s s e d :

- p r e s s i n g a t i n c r e a s e d f i n a l DS c o n t e n t o f t h e p u l p ;

- l o w - t e m p e r a t u r e d r y i n g ;

- steam d r y i n g .

4 . 5 . 2 P r e s s i n g t o h i g h DS c o n t e n t

A mechan ica l p r e s s o f c o n t e m p o r a r y d e s i g n u t i l i z e s t h e combined e f f e c t o f

p r e s s u r e and r e t e n t i o n t ime on t h e f i n a l DS c o n t e n t o f t h e p u l p . T h i s phenomenon

has been e x t e n s i v e l y s t u d i e d f o r d i f f e r e n t p r e s s d e s i g n s ; sample r e s u l t s a r e

shown i n F i g . 4.19 ( r e f . 4 4 ) . The nominal r e t e n t i o n t i m e , c o r r e s p o n d i n g t o t h e

nominal c a p a c i t y o f t h e p r e s s , d e t e r m i n e s i t s d i m e n s i o n s and t h u s t h e i n v e s t m e n t

c o s t . When t h e r o t a t i o n a l v e l o c i t y o f t he r o t o r i s r e d u c e d , l o n g e r r e t e n t i o n

t ime i s e n s u r e d and a h i g h e r DS c o n t e n t can be a t t a i n e d ; t h i s i m p l i e s , h o w e v e r ,

t h a t t h e c a p a c i t y u t i l i z a t i o n d e c r e a s e s . T h e r e f o r e , r e a l p r o g r e s s i s a c h i e v e d

o n l y i f t h e p r e s s d e s i g n i s improved t o g i v e a h i g h DS c o n t e n t i n t h e most

economica l o p e r a t i n g c o n d i t i o n s .

Up t o now, t he e s t a b l i s h e d p r e s s m a n u f a c t u r e r s i n t r o d u c e d o n l y l i m i t e d

changes t o t h e i r p r o d u c t s ( r e f s . 4 4 , 4 5 ) . Among t h e new d e s i g n s , a F r e n c h

s o l u t i o n a t t a i n i n g 50% DS was s u c c e s s f u l l y t e s t e d , bo th on p i l o t and i n d u s t r i a l

s c a l e s ( r e f . 4 2 ) . The c o n c e p t o f p u l p c e n t r i f u g i n g a l s o d e s e r v e s t o be n o t e d .

Page 188: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

177

10 20 30 40 Retention time (min)

50 60

F i g . 4 . 19 . A t t a i n a b l e DS c o n t e n t o f p r e s s e d p u l p v s . r e t e n t i o n t ime and p r e s s u r e .

I t i s a w e l l known phenomenon t h a t t h e r e s u l t s o f p r e s s i n g a r e t o some e x t e n t

dependen t on t he p r o p e r t i e s o f t h e we t p u l p , most n o t a b l y on t h e c o n d i t i o n o f

p e c t i n s . I f t he p e c t i n s a r e decomposed d u r i n g e x t r a c t i o n , p r e s s i n g becomes

d i f f i c u l t . F o r t h i s r e a s o n , t o o h i g h t e m p e r a t u r e s and t o o l ong p u l p r e t e n t i o n

t imes i n t he e x t r a c t o r s h o u l d be a v o i d e d , as w e l l as p u l p r e c y c l e s . M o r e o v e r ,

advan tageous e f f e c t s can be a c h i e v e d by c o n t r o l l e d i n f e c t i o n by l a c t i c a c i d

b a c t e r i a , g i v i n g low pH o f t h e p u l p and good p r e s s i n g . As t h i s a l s o causes t he

s u g a r l o s s e s i n t h e e x t r a c t i o n t o i n c r e a s e , t h e f e a s i b i l i t y o f t h e method i s n o t

o b v i o u s . A r e f e r e n c e can be made t o f u l l - s c a l e e x p e r i m e n t s i n two A u s t r i a n

f a c t o r i e s , where m i c r o b i a l i n f e c t i o n i n t o w e r e x t r a c t o r s was c o n t r o l l e d t h r o u g h

c o n t i n u o u s f o r m a l i n d o s i n g v i a h i g h - p r e c i s i o n m e t e r i n g sys tems ( r e f . 4 6 ) . I n one

c a s e , t h e r e s u l t s were c l e a r l y p o s i t i v e ; i n t h e o t h e r f a c t o r y , t h e v a l u e o f

s u g a r l o s t a n n i h i l a t e d t h e e f f e c t o f e n e r g y s a v i n g . I t can a l s o be men t ioned

t h a t t h e r e have been examples o f i m p r o v i n g we t p u l p p r o p e r t i e s by d o s i n g

s u l p h u r i c a c i d t o p r e s s w a t e r (pH v a l u e abou t 4 ) .

I n r e c e n t y e a r s , m a i n l y on an e m p i r i c a l b a s i s , t h e a d d i t i o n o f p r e s s i n g a i d s

has become w i d e s p r e a d ( r e f s . 4 4 , 4 7 ) . C a l c i u m s a l t s - C a ( H S 0 2 ) 2 , C a C l 2 , CaSO^ -

a re t he most p o p u l a r because o f t h e i r low c o s t . The a i d s a r e added i n s o l u t i o n

o r s l u r r y t o t h e e x t r a c t i o n f e e d w a t e r o r t o t h e p u l p a t t h e e x t r a c t o r o u t l e t .

T e s t s o f l i m i n g o f f r e s h c o s s e t t e s have a l s o been p e r f o r m e d ( r e f . 4 8 ) . D i f f e r e n t

r a t i o s o f a i d / b e e t s a r e u s e d , bu t 500 g p e r 1 t b e e t i s a b o u t t h e upper l i m i t .

More s y s t e m a t i c s t u d i e s o f t h e e f f e c t o f p r e s s i n g a i d s , p u b l i s h e d r e c e n t l y ,

de te rm ine an upper l i m i t o f t h e l o a d i n g o f c a l c i u m s a l t s a t 4 m i l l i g r a m

e q u i v a l e n t s p e r 100 g b e e t ( r e f . 4 9 ) . The i n c r e a s e i n the d r y s u b s t a n c e c o n t e n t

o f t he p r e s s e d p u l p i s 3-4%. I t has a l s o been e s t a b l i s h e d t h a t t h e a i d s

c o n t a i n i n g t r i v a l e n t i o n s , e . g . k^^{SO^)^, may r a i s e t h e p u l p DS c o n t e n t even

f u r t h e r .

Page 189: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

178

The amounts o f s a l t s used as p r e s s i n g a i d s a r e so sma l l t h a t t h e y seem t o

d i s a p p e a r i n t h e j u i c e p u r i f i c a t i o n p r o c e s s , a l t h o u g h s l i g h t l y i n c r e a s e d s u g a r

l o s s i n mo lasses can be e x p e c t e d e s p e c i a l l y when u s i n g C a C l ^ ( r e f . 5 0 ) . The

c o n d i t i o n s change when mo lasses i s added t o t h e p u l p . I t i s known t h a t i t s

o s m o t i c e f f e c t on p u l p p a r t i c l e s r a i s e s t h e amount o f w a t e r t h a t can be removed

f rom t h e p u l p . A f t e r add ing as much m o l a s s e s as 3-4 kg/100 kg b , h o w e v e r , t h e

s u g a r c o n t e n t i n t h e p r e s s f i l t r a t e may become so h i g h t h a t i t c a n n o t be

r e c y c l e d t o t he e x t r a c t o r ( p a r t i c u l a r l y i f t h e mo lasses i s added i n t h e second

p r e s s i n g , see b e l o w ) . One p o s s i b l e s o l u t i o n i s t o t h i c k e n t h e f i l t r a t e i n

a s p e c i a l e v a p o r a t o r and t o r e c y c l e i t t o t h e p r e s s e s ( r e f . 3 8 ) .

The improvements i n p r e s s d e s i g n , p u l p c o n d i t i o n i n g i n t h e e x t r a c t o r and

a p p l i c a t i o n o f p r e s s i n g a i d s can be combined w i t h d o u b l e - s t a g e p r e s s i n g . I t was

i n i t i a l l y t e s t e d w i t h o u t p r e s s i n g a i d s , g i v i n g a DS i n c r e a s e o f up t o 10% above

t h a t a t t a i n e d i n t h e f i r s t s t a g e . U s i n g p r e s s i n g a i d s , 35-40% DS i n t h e p u l p can

be a t t a i n e d , b u t an e c o n o m i c a l l y j u s t i f i e d l e v e l seems t o be somewhat l o w e r .

4 . 5 . 3 L o w - t e m p e r a t u r e d r y i n g

I t was men t ioned i n S e c t i o n 1.2.8 t h a t owing t o t h e p r o c e s s l a y o u t and

p a r a m e t e r s , t h e e n e r g y u t i l i z a t i o n i n c o n v e n t i o n a l the rma l d r y i n g i s p o o r .

Assuming t h a t h i g h - t e m p e r a t u r e gases s h o u l d be f e d t o t h e d r y e r , b u r n i n g o f f u e l

c a n n o t be a v o i d e d and o n l y a p a r t o f t h e e n e r g y demand can be s a t i s f i e d

u t i l i z i n g b o i l e r f l u e g a s e s . T h e r e f o r e , a p r o p o s a l has been made t o i n t r o d u c e

a d r y i n g p r o c e s s w i t h t h e i n i t i a l gas t e m p e r a t u r e low enough t o u t i l i z e was te

hea t f rom t h e s u g a r m a n u f a c t u r i n g p r o c e s s . C a l l e d l o w - t e m p e r a t u r e d r y i n g , t h i s

p r o c e s s has p r o v e d t e c h n o l o g i c a l l y f e a s i b l e i n a few a p p l i c a t i o n s . As t h e c o s t

o f t h e n e c e s s a r y equ ipment i s v e r y h i g h , h o w e v e r , i t c a n n o t be seen as t h e

u l t i m a t e e n e r g y - s a v i n g s o l u t i o n b u t r a t h e r as a n o t h e r new sys tem component t o be

u t i l i z e d i n e n e r g y - e f f i c i e n t f a c t o r i e s .

The s t reams o f was te h e a t t h a t can be c o n s i d e r e d f o r u t i l i z a t i o n a r e

a v a i l a b l e i n t h e f o l l o w i n g med ia :

- b a r o m e t r i c w a t e r ;

- vacuum pan v a p o u r ;

- condensa te (ammonia w a t e r ) ;

- s p e n t c a r b o n a t a t i o n g a s ;

- v a p o u r s f rom l ime s l a k i n g ;

- f l u e gas f rom b o i l e r s ;

- p o s s i b l y , s p e n t gas f rom h i g h - t e m p e r a t u r e p u l p d r y i n g .

H e a t i n g o f a i r has been e x t e n s i v e l y s t u d i e d i n a number o f p u b l i c a t i o n s ( r e f s .

5 1 - 5 4 ) . The a t t a i n a b l e t e m p e r a t u r e i s o f t h e o r d e r o f 50-70°C. The e x a c t v a l u e

s e l e c t e d , as w e l l as o t h e r p r o c e s s pa rame te rs - i n c l u d i n g a i r h u m i d i t y a t t h e

Page 190: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

179

d r y e r o u t l e t - d e t e r m i n e t h e e n e r g y demand p e r 1 kg w a t e r removed f rom t h e p u l p ,

as a p p r o x i m a t e l y shown i n t h e d iag ram o f F i g . 4 . 2 0 . When compared t o h i g h -

t e m p e r a t u r e d r y i n g , s a y a t 500°C a i r t e m p e r a t u r e a t t h e d r y e r i n l e t , 40-80% more

e n e r g y p e r 1 kg w a t e r i s needed i n l o w - t e m p e r a t u r e d r y i n g ( a t a i r h u m i d i t y

chang ing f rom 50% t o 90%). I n o r d e r t o m i n i m i z e t h e s p e c i f i c e n e r g y demand, t h e

o u t l e t t e m p e r a t u r e s h o u l d be low and o u t l e t h u m i d i t y h i g h , t h i s i m p l y i n g t h a t i t

i s v e r y d i f f i c u l t t o d r y t h e p u l p t o a h i g h DS c o n t e n t . C o n s e q u e n t l y , l o w -

t e m p e r a t u r e d r y i n g i s most s u i t a b l e as a f i r s t s t a g e p r e c e d i n g h i g h - t e m p e r a t u r e

d r y i n g , where t h e f i n a l DS c o n t e n t can be a t t a i n e d . I t has been p r o v e d t h a t such

a s o l u t i o n can save more e n e r g y t han a p a r a l l e l c o m b i n a t i o n o f bo th t y p e s o f

d r y i n g ( r e f . 5 1 ) .

— — air temperature at d rye r inlet — a i r humidity at d rye r outlet

5500 Γ

20 AO 60 80

Air temperature at d ryer outlet {°C)

100 120

F i g . 4 . 2 0 . S p e c i f i c e n e r g y demand i n l o w - and med ium- tempera tu re d r y i n g as a f u n c t i o n o f p r o c e s s pa rame te rs ( a f t e r K . K r ö l l , T r o c k n u n g s t e c h n i k , 2nd e d n . , S p r i n g e r - V e r l a g , B e r l i n , 1978) .

A p o s s i b l e d e s i g n f o r a l o w - t e m p e r a t u r e d r y e r o f t h e t r a v e l l i n g - s c r e e n t y p e

i s shown s c h e m a t i c a l l y i n F i g . 4.21 ( t h e d r y e r c o n s i s t s o f m u l t i p l e c e l l s l i k e

t h e one shown i n c r o s s - s e c t i o n ) . I t i s c h a r a c t e r i z e d by a s p e c i f i c power demand

abou t 50 kWh p e r 1 t w a t e r removed , t h e a i r f a n s b e i n g r e s p o n s i b l e f o r most o f

i t and t h e c o n v e y o r and s c r e e n d r i v e s f o r t h e r e s t . The pa rame te rs o f a l o w -

t e m p e r a t u r e d r y e r o p e r a t e d i n a s u g a r f a c t o r y i n FRG a r e l i s t e d i n T a b l e 4 . 2 .

O t h e r d e s i g n s have been d e s c r i b e d i n t h e l i t e r a t u r e ( r e f s . 5 5 - 5 7 ) .

As t he i n t r o d u c t i o n o f l o w - t e m p e r a t u r e d r y i n g has a d i s a d v a n t a g e o u s e f f e c t on

Page 191: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

180

A pulp in

4- A-A air out

i L

7 - - - r - - z - z - . - ^

\ / _ o u i pulp out

A i F i g . 4 .21 . Scheme o f a l o w - t e m p e r a t u r e d r y e r ( a f t e r r e f . 5 3 ) . 1 - a i r h e a t e r , 2 - a i r f a n , 3 - a i r d i s t r i b u t o r and s c r e e n .

TABLE 4.2

Paramete rs o f a l o w - t e m p e r a t u r e d r y e r ( a f t e r r e f . 5 1 ) .

VäTüe pe r 1 t w a t e r removed a t

e v a p o r a t i n g c a p a c i t y ( t / h ) Q u a n t i t y T o t a l v a l u e

25 30

Thermal c a p a c i t y (kW) ρ 34600 1384 1153 H e a t i n g s u r f a c e a r e a i n a i r h e a t e r s (m ) 43370 1735 1446 A i r f l o w ( t / h ) 2830 113 94 Power demand, i n c l u d i n g w a s t e - h e a t r e c o v e r y equ ipment (kW) ^ 1500 60 50 A v e r a g e a i r t e m p e r a t u r e a t h e a t e r o u t l e t ( C) 50 A v e r a g e p u l p r e t e n t i o n t ime (m in ) 25 D imens ions (m) ^ 36X16X19 T o t a l s c r e e n a r e a (m ) 600 T o t a l w e i g h t ( t ) 1600

t h e power b a l a n c e o f t h e f a c t o r y , a p r o p o s a l was made t o c r e a t e an a d d i t i o n a l

therma l c o n n e c t i o n between p u l p d r y i n g and s u g a r m a n u f a c t u r e , w i t h t h e aim o f

i n c r e a s i n g the steam demand o f t h e e v a p o r a t i o n s t a t i o n , w i t h o u t i n c r e a s i n g t h e

p r i m a r y - e n e r g y i n p u t t o t h e f a c t o r y . I n t h i s way , t h e steam f l o w t h r o u g h t h e

t u r b i n e can be i n c r e a s e d and a d d i t i o n a l power g e n e r a t e d . Assuming t h a t t h e

a d d i t i o n a l c o n n e c t i o n c o n s i s t s o f s u p p l y i n g t h i r d - e f f e c t v a p o u r t o an a i r

h e a t e r , an a i r t e m p e r a t u r e abou t 90°C can be a t t a i n e d ; t h i s s o l u t i o n i s known as

med ium- tempera tu re d r y i n g . As can be seen i n F i g . 4 . 2 0 , i t s s p e c i f i c e n e r g y

demand does n o t d i f f e r s i g n i f i c a n t l y f rom t h a t o f l o w - t e m p e r a t u r e d r y i n g . The

a i r f l o w and s c r e e n s u r f a c e i n t h e d r y e r can be c o s i d e r a b l y r e d u c e d , h o w e v e r ,

t h i s r e s u l t i n g i n reduced power demand and i n v e s t m e n t c o s t s . U s i n g medium-

Page 192: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

181

t e m p e r a t u r e d r y i n g f o l l o w e d by c o n v e n t i o n a l d r y i n g w i t h b o i l e r f l u e g a s , t h e

t o t a l p u l p amount can be d r i e d u s i n g o n l y was te and l o w - t e m p e r a t u r e h e a t f rom

o t h e r f a c t o r y s e c t i o n s . A s u i t a b l e l a y o u t o f t h e e n e r g y sys tem i s shown

s c h e m a t i c a l l y i n F i g . 4.22 ( a f t e r r e f . 5 8 ) .

steam

fuel

9 0 Ϊ

3 r d - e f f e c t ^ I vapour

pressed pulp

flue gas 205°C dried pulp

F i g . 4 . 2 2 . E n e r g y sys tem l a y o u t f o r d o u b l e - s t a g e p u l p d r y i n g u s i n g was te and l o w - t e m p e r a t u r e h e a t f rom b o i l e r s and s u g a r m a n u f a c t u r e ( a f t e r r e f . 5 8 ) . 1 - b o i l e r , 2 - t u r b i n e , 3 - s u g a r m a n u f a c t u r i n g p r o c e s s , 4 - med ium- tempera tu re d r y e r , 5 - c o n v e n t i o n a l d r y e r .

4 . 5 . 4 Steam d r y i n g

I n t h e s e a r c h f o r a l t e r n a t i v e s t o c o n v e n t i o n a l t he rma l d e h y d r a t i o n , steam

d r y i n g has r e c e i v e d much a t t e n t i o n i n r e c e n t y e a r s . I n a d d i t i o n t o t h e o b v i o u s

p r o p e r t y o f making i t easy t o i n t e g r a t e t h e h e a t economy i n s u g a r m a n u f a c t u r e

and p u l p d r y i n g , t h i s method can a l s o improve t h e q u a l i t y o f t h e p u l p , as i t i s

d r i e d i n t h e absence o f a i r and t h u s w i t h o u t t h e r i s k o f o x i d a t i o n . Among f o u r

i n d u s t r i a l - s c a l e steam d r y e r s p r e s e n t l y i n o p e r a t i o n ( r e f s . 1 3 , 5 9 - 6 1 ) , t h e

Swed ish u n i t p r o d u c e s h i g h - q u a l i t y d r i e d p u l p w h i c h i s s u b s e q u e n t l y t r a n s f o r m e d

t o a f o o d a d d i t i v e ( r e f . 62) and t h e r e m a i n i n g ones seem t o be used m a i n l y f o r

t he pu rpose o f i m p r o v i n g e n e r g y economy.

The thermodynamic mechanism o f steam d r y i n g i s somewhat d i f f e r e n t f rom t h a t

o f c o n v e n t i o n a l d r y i n g . The d r i v i n g f o r c e o f t h e mass exchange between a p u l p

p a r t i c l e and t h e h e a t i n g a g e n t i s t h e d i f f e r e n c e between t h e steam t e m p e r a t u r e

and t he s a t u r a t i o n t e m p e r a t u r e a t t h e p r e s s u r e m a i n t a i n e d i n t h e d r y e r . As t h e

t e m p e r a t u r e o f t he p a r t i c l e e n t e r i n g t h e d r y e r i s l o w e r t han t h e steam

t e m p e r a t u r e , t he p a r t i c l e may i n i t i a l l y a b s o r b w a t e r by c o n d e n s a t i o n .

E v a p o r a t i o n b e g i n s a f t e r t h e s a t u r a t i o n t e m p e r a t u r e has been a t t a i n e d a t t h e

p a r t i c l e s u r f a c e , and t he s a t u r a t i o n zone i s g r a d u a l l y e x t e n d e d t o t h e c e n t r e o f

t he p a r t i c l e . O n l y i n t he l a y e r s f rom w h i c h w a t e r has been removed can t he

p a r t i c l e t e m p e r a t u r e d i f f e r s i g n i f i c a n t l y f rom t h e s a t u r a t i o n v a l u e , w h i c h i s

u n l i k e l y t o happen i n a w e l l d e s i g n e d d r y e r . I n t h i s way o v e r h e a t i n g o f t h e p u l p

Page 193: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

182

0.5 1.0 1.5 2.0 Water content ( k g / k g DS)

2.5

F i g . 4 . 2 3 . Changes o f a v e r a g e p u l p t e m p e r a t u r e and w a t e r c o n t e n t d u r i n g steam

d r y i n g ( a f t e r r e f . 3 8 ) .

The steam t e m p e r a t u r e s r e p o r t e d a r e i n t h e range 132-189^0. The w o r k i n g

p r i n c i p l e s o f two d r y e r d e s i g n s a r e shown s c h e m a t i c a l l y i n F i g . 4 . 2 4 . I t seems

t h a t t h e s o l u t i o n s have y e t t o be o p t i m i z e d w i t h r e s p e c t t o t h e i r economic

f e a s i b i l i t y .

The d r y e r a p p l i e d i n a s u g a r f a c t o r y i n FRG i s o f t h e t r a v e l l i n g - s c r e e n t y p e

( F i g . 4 . 2 4 ( a ) , a f t e r r e f . 6 1 ) . The d i m e n s i o n s g i v e n a p p l y t o a u n i t r a t e d 20 t / h

e v a p o r a t e d w a t e r . The d r y e r c o n s i s t s o f n i n e c e l l s l i k e t h e one shown i n c r o s s -

s e c t i o n . The s a t u r a t i o n t e m p e r a t u r e o f t h e r e c i r c u l a t e d v a p o u r i s 132°C. Due t o

t h e p r e s e n c e o f c i r c u l a t i o n f a n s , i t s s p e c i f i c power demand i s s i m i l a r t o t h a t

o f a l o w - t e m p e r a t u r e d r y e r , t h a t i s , abou t 50 kWh/1 t w a t e r . As t h e d r y e r i s

(a) vapour

pulp in

40 m

pulp out

condensate vapour

F i g . 4 . 24 . w o r k i n g p r i n c i p l e s o f steam d r y e r s : ^7!^|5",^^;Π;α. ( b ) f l u i d i z e d b e d . 1 - h e a t e r , 2 - s c r e e n s , 3 - f a n , 4 t l u i a i z e o

can be a v o i d e d , w i t h a p o s i t i v e e f f e c t on t h e q u a l i t y o f t h e f i n a l p r o d u c t .

A d iag ram o f p u l p t e m p e r a t u r e changes d u r i n g steam d r y i n g i s shown i n F i g . 4 . 2 3 .

Page 194: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

183

hea ted by e x h a u s t s team, i t s p r e s e n c e i n an e n e r g y sys tem f a c i l i t a t e s i n c r e a s e d

power g e n e r a t i o n . I f combined w i t h a l o w - t e m p e r a t u r e d r y e r used i n t h e i n i t i a l

p r o c e s s s t a g e , t h i s d e s i g n makes i t p o s s i b l e t o d r y t h e e n t i r e p u l p amount

w i t h o u t d i r e c t e x p e n d i t u r e o f p r i m a r y e n e r g y . A s u i t a b l e e n e r g y - s y s t e m l a y o u t i s

shown s c h e m a t i c a l l y i n F i g . 4 . 2 5 ( a ) .

( a ) Qir I

pressed pulp

flue gas

steam

fuel

(b)

waste heat

vapour

steam

fuel - Θ

vapour

steam ^ I ^ 1

pressed pulp dried pulp

U partly dried pulp

dried pulp

F i g . 4 .25 . E n e r g y sys tem l a y o u t s f o r s t e a m - d r y i n g o f t h e p u l p : ( a ) d o u b l e - s t a g e d r y i n g , steam d r y e r hea ted w i t h e x h a u s t steam ( a f t e r r e f . 3 8 ) , ( b ) steam d r y e r hea ted w i t h h i g h - p r e s s u r e steam ( a f t e r r e f s . 1 3 , 6 3 ) . 1 - b o i l e r , 2 - t u r b i n e , 3 - s u g a r m a n u f a c t u r i n g p r o c e s s , 4 - l o w - t e m p e r a t u r e d r y e r , 5 - steam d r y e r , 6 - w a s t e - h e a t r e c o v e r y s u b s y s t e m , 7 - v a p o u r w a s h e r .

A D a n i s h d e s i g n emp loy ing t h e c e l l u l a r f l u i d i z e d - b e d t e c h n i q u e i s shown i n

F i g . 4 . 2 4 ( b ) ( a f t e r r e f s . 1 3 , 6 3 ) . The f l u i d i z e d bed c o n s i s t s o f m u l t i p l e c e l l s

a r r a n g e d i n a c i r c l e s u r r o u n d i n g t h e t u b u l a r h e a t e r s i t u a t e d i n t h e c e n t r e o f

a v e r t i c a l v e s s e l . I n a p r o t o t y p e a p p l i c a t i o n , t h e d r y e r i s r a t e d 6 t / h

e v a p o r a t e d w a t e r . I t i s hea ted by steam a t 12 ba r and 220°C f rom a b o i l e r w h i c h

happens t o be a v a i l a b l e i n t h e f a c t o r y i n q u e s t i o n ; t h i s steam does n o t

Page 195: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

184

c o n t r i b u t e t o power g e n e r a t i o n . The v a p o u r p r e s s u r e i s m a i n t a i n e d a t 3.5 ba r and

t he t e m p e r a t u r e i s 162°C above t he f l u i d i z e d bed and 189°C a t t h e h e a t e r o u t l e t .

The r e c i r c u l a t e d v a p o u r f l o w i s 35-40 t imes l a r g e r t han t h e w a t e r e v a p o r a t i o n .

As v a p o u r e n e r g y i s d i r e c t e d t o t h e e v a p o r a t o r s t a t i o n , t he hea t consumpt i on i n

s u g a r manu fac tu re can be r e d u c e d . A p o s s i b l e e n e r g y - s y s t e m l a y o u t i s shown

s c h e m a t i c a l l y i n F i g . 4 . 2 5 ( b ) .

C o n s i d e r a b l e hea t s a v i n g s can be imag ined i n s u g a r f a c t o r i e s emp loy ing s team-

d r y i n g o f t h e p u l p and v a p o u r c o m p r e s s i o n . F o r examp le , i t i s p r o p o s e d t o

s u p e r h e a t v a p o u r w i t h d r a w n f rom the second e v a p o r a t o r e f f e c t and s u b s e q u e n t l y

compressed , and t o d e l i v e r i t t o a steam d r y e r ( r e f . 6 4 ) . T h i s w o u l d make i t

p o s s i b l e t o i n t e g r a t e e n e r g y economy i n s u g a r manu fac tu re and p u l p d r y i n g i n

v a r i o u s t y p e s o f e n e r g y s y s t e m s , i n c l u d i n g t h o s e emp loy ing gas t u r b i n e s .

REFERENCES

1 L. R o s e n b e r g , T e c h n o l o g i c a l changes i n some o f E u r o p e ' s s u g a r p r o d u c i n g c o u n t r i e s . S u g a r . J . , 4 6 ( 5 ) (1983) 7-11.

2 E. R e i n e f e l d , Uber d i e Kampagne 1985, Z u c k e r i n d . , 111(4) (1986) 303-313. 3 E.W. K r a u s e , New equ ipment and p r o c e s s e s i n t h e s u g a r i n d u s t r y , i n : F . O .

L i c h t Yearbook and D i r e c t o r y , R a t z e b u r g , 1985, p p . E5 -E36 . 4 H. S c h i w e c k , T h . C r o n e w i t z and G . W i t t e , Some t h o u g h t s on t he c l a s s i c a l

method o f j u i c e p u r i f i c a t i o n . Sugar J . , 47(11) (1985) 18-22. 5 A . I . Khomenko, 0 t e p l o v o i e k o n o m i c h n o s t i s i s t e m d i f f u z i y a - d e f e k a t s i y a ,

Sakh . P r o m . , (11 ) (1983) 42-47 . 6 G . W i t t e and H. S c h i w e c k , D i e Ausnu t zung des Wärme inha l t es von C a r b o n a t a -

t i o n s b r ü d e n , Z u c k e r i n d . , 109(8) (1984) 706-710. 7 Anonymous, R e c u p e r a t i o n t h e r m i q u e s u r buees de seconde c a r b o n a t a t i o n a l a

R a f f i n e r i e Notre-Dame a O r e y e , S u c r . B e i g e , 103 (1985) 5-11. 8 T e c h n i c a l i n f o r m a t i o n f rom F i v e s - C a i l Babcock , L i l l e , 1986. 9 W. Lekawski and K. U r b a n i e c , E n e r g y s a v i n g t h r o u g h m o d i f i c a t i o n o f t h e

c a r b o n a t a t i o n p r o c e s s , Z u c k e r i n d . , 110(9) (1985) 810-813. 10 Τ . B o g u m i l , E x p e r i m e n t a l i n v e s t i g a t i o n s o f t h e c a r b o n a t a t i o n p r o c e s s a t

i n c r e a s e d p r e s s u r e , Z u c k e r i n d . , 111(6) (1986) 565-568. 11 Κ. U r b a n i e c , Heat economy improvements a s s o c i a t e d w i t h t h e c a r b o n a t a t i o n

p r o c e s s i n b e e t s u g a r p l a n t s . Paper p r e s e n t e d a t t h e I n t e r n a t i o n a l C o n f e r e n c e " Improvement o f t h e Bee t Sugar P r o d u c t i o n " , Warszawa, May 1987.

12 R . F . Madsen, V e r s c h i e d e n e Z u c k e r h a u s k o n z e p t e und i h r E i n f l u s s a u f den E n e r g i e v e r b r a u c h , Z u c k e r i n d . , 111(12) (1986) 1121-1126.

13 R . F . Madsen, P r o g r e s s i n Dan i sh s u g a r p r o d u c t i o n w i t h i n t h e p a s t d e c a d e , Paper p r e s e n t e d a t t h e I n t e r n a t i o n a l C o n f e r e n c e " Improvement o f t h e B e e t Sugar P r o d u c t i o n " , Warszawa, May 1987.

14 K. Wagne rowsk i , D. Dabrowska and C . D a b r o w s k i , Prob leme d e r M e l a s s e r s c h ö p f u n g , Ζ . Z u c k e r i n d . , 12(9) (1962) 664-671.

15 Η. S c h i w e c k , M ö g l i c h k e i t e n z u r Senkung des E n e r g i e b e d a r f s im Z u c k e r h a u s , Z u c k e r , 30(10) (1977) 525-534.

16 K . E . Aus tmeyer and R. Marwede, E n t w u r f und B i l a n z i e r u n g w e i t e r f ü h r e n d e r Z u c k e r h a u s k o n z e p t e , Z u c k e r i n d . , 112(3) (1987) 193-201.

17 S. M a t u s c h , P r a k t i s c h e E r f a h r u n g e n m i t den K ü h l u n g s k r i s t a l 1 i s a t o r KKT, Z u c k e r i n d . , 112(4) (1987) 274-276.

18 H. E i c h h o r n , A r b e i t s w e i s e m i t k o n t i n u i e r l i c h e n Vakuum-Ma ischen , System B e g h i n - S a y , i n d e r R a f f i n e r i e E l s d o r f , Z u c k e r i n d . , 112(2) 114-117.

19 D. S c h l i e p h a k e , K . E . Aus tmeyer and R. Hempelmann, K ü h l u n g s k r i s t a l l i s a t i o n von Magmen h ö h e r e r R e i n h e i t , Z u c k e r i n d . , 110(4) (1987) 269-273.

20 A . R . S a p r o n o v , V . l . T u z h i l k i n and A . P . S h c h e r e n k o , Sovremennye n a p r a v l e n i y a ν u l u c h s h e n i i k r i s t a l l i z a t s i i s a k h a r a , Sakh . P r o m . , ( 5 ) (1985) 42-44 .

Page 196: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

185

21 Ε. R e i n e f e l d , Über d i e Kampagne 1979, Z u c k e r i n d . , 105(4) (1980) 329-340. 22 E. R e i n e f e l d , Über d i e Kampagne 1981, Z u c k e r i n d . , 107(5) (1982) 369-380. 23 K . E . A u s t m e y e r , A n a l y s i s o f s u g a r b o i l i n g and i t s t e c h n i c a l c o n s e q u e n c e s .

I n t . Sugar J . , 88 ( 1 9 8 6 ) , P a r t I (1045) 3 - 7 , P a r t I I (1046) 23-29 , P a r t I I I (1047) 50-55.

24 H. Sch iweck and M. M u n i r , Das H e r s t e l l e n e i n e s gemeinsames K r i s t a l l f u s s magmas f ü r W e i s s z u c k e r - 1 und -2 nach dem V e r f a h r e n d e r Süddeu tschen Z u c k e r - A G , Paper p r e s e n t e d a t t h e I n t e r n a t i o n a l C o n f e r e n c e " Improvement o f t he Bee t Sugar P r o d u c t i o n " , Warszawa, May 1987.

25 R . F . Madsen and W. Ko fod N i e l s e n , D ie Kampagne 1977 i n d e r " A / S De Danske S u k k e r f a b r i k k e r " , Z u c k e r i n d . , 103(10) (1978) 831-839.

26 Anonymous, E rzeugung von R ü b e n r o h s a f t d u r c h m e h r s t u f i g e G e g e n s t r o m -Auswaschung von z e r k l e i n e r t e m Rübenmate r i a l be i n i e d r i g e n T e m p e r a t u r e n , Z u c k e r i n d . , 110(8) (1985) 709-710.

27 J . M . R a n d a l l , R . H . Edwards and E. Z a r a g o s a , E x p r e s s i o n o f j u i c e f rom s u g a r bee t t i s s u e . Paper p r e s e n t e d a t 23rd ASSBT M e e t i n g , San D i e g o , F e b r u a r y 1985.

28 T . B a l o h , Reversosmose i n d e r T e c h n o l o g i e des Z u c k e r s , Ζ . Z u c k e r i n d . , 25 (8 ) (1975) 452-456.

29 S . E . B i c h s e i and A . M . S a n d r e , A p p l i c a t i o n o f membrane t e c h n o l o g y t o j u i c e c o n c e n t r a t i o n . I n t . Sugar J . , 84(1005) (1982) 266-268.

30 W. Ko fod N i e l s e n , S . K r i s t e n s e n and R . F . Madsen, P r o s p e c t s and p o s s i b i l i t i e s i n a p p l i c a t i o n o f membrane f i l t r a t i o n sys tems w i t h i n t h e b e e t and cane s u g a r i n d u s t r y . Sugar T e c h . R e v . , 9 ( 1 ) (1982) 59-117.

31 T . R . Hanssens ( e t a l . ) . U l t r a f i l t r a t i o n as an a l t e r n a t i v e f o r raw j u i c e p u r i f i c a t i o n i n t h e b e e t s u g a r i n d u s t r y , Z u c k e r i n d . , 109(2) (1084) 152-156.

32 W. Cape l i n . Bee t j u i c e c o n c e n t r a t i o n by r e v e r s e o s m o s i s . I n t . Sugar J . , 84(1007) (1982) 323-324.

33 P . J . Wrobel and J . A . H e i s t , Sugar c r y s t a l l i z a t i o n f rom b e e t j u i c e s and mo lasses u s i n g t h e h y d r a t e f r e e z i n g p r o c e s s . I n t . Sugar J . , 89(1062) (1987) 111-117.

34 S . E . B i c h s e l , M. C l e a r y and T . S . B a r r o n , Steam consumpt ion r e d u c t i o n by e u t e c t i c f r e e z e c r y s t a l l i z a t i o n o f s u c r o s e . Paper p r e s e n t e d a t 23rd ASSBT M e e t i n g , San D i e g o , F e b r u a r y 1985.

35 K. B u c h h o l z ( e t a l . ) , U n t e r s u c h u n g e n z u r B i l d u n g von B i o g a s aus R ü b e n p r e s s -s c h n i t z e l n , Z u c k e r i n d . , 11(9) (1986) 837-845.

36 E. T h i e r , K o n s e r v i e r u n g s t e c h n i s c h e und w i r t s c h a f t l i c h e A s p e k t e des P r e s s s c h n i t z e l a b s a t z e s , Z u c k e r i n d . , 106(1) (1981) 60-65.

37 J . B e c k h o f f and C . H e l l e r , P r e s s s c h n i t z e l - e i n e A l t e r n a t i v e z u r S c h n i t z e l t r o c k n u n g , Z u c k e r i n d . , 108(3) (1983) 213-217.

38 M. Kunz and P. V a l e n t i n , S c h n i t z e l t r o c k n u n g ohne P r i m ä r e n e r g i e e i n s a t z u n t e r a u s s c h l i e s s l i c h e r Nu tzung de r Abwärme- und E i n d a m p f P o t e n t i a l e d e r Z u c k e r f a b r i k , Z u c k e r i n d . , 111(8) (1986) 741-750.

39 T h . C r o n e w i t z ( e t a l . ) . Über den E i n f l u s s v e r s c h i e d e n e r G r ö s s e n a u f den E n e r g i e b e d a r f und S t a u b e m i s s i o n von S c h n i t z e l t r o c k n u n g s a n l a g e n u n t e r B e r ü c k s i c h t i g u n g des V e r w e i l Z e i t v e r h a l t e n s d e r S c h n i t z e l während d e r T r o c k n u n g , Z u c k e r , 28 (8 ) (1975) 401-410.

40 H. H u b e r , Bestimmung des o p t i m a l e n E n e r g i e v e r b r a u c h s f ü r d i e E n t w ä s s e r u n g d e r e x t r a h i e r t e n S c h n i t z e l , Z u c k e r , 30 (9 ) (1977) 485-489.

41 T h . C r o n e w i t z , Wege z u r r a t i o n e l l e n E n e r g i e v e r w e n d u n g be i d e r S c h n i t z e l -t r o c k n u n g i n d e r Z u c k e r i n d u s t r i e , Z u c k e r i n d . , 105(2) (1980) 129-139.

42 M. Demaux, P r e s s a g e e t sechage des p u l p e s de b e t t e r a v e s . F a c t e u r s de r e d u c t i o n des c o u t s . I n d . A l i m . A g r i e , 102 (7 -8 ) (1985) 723-730.

43 Μ. Demaux, C o u t de l ' e n e r g i e e t p r e s s a g e des p u l p e s de b e t t e r a v e s , I n d . A l i m . A g r i e , 103(7 -8 ) (1986) 661-667.

44 O p t i m i e r u n g d e r mechan ischen S c h n i t z e l a b p r e s s u n g , Z u c k e r i n d . , 106(11) (1981) 965-981.

45 Symposium: " S c h n i t z e l a b p r e s s u n g - S tand 1987" , Z u c k e r i n d . , 112(7) (1987) 571-579.

46 F. Hol l a u s and G . P o l l a c h , V e r b e s s e r u n g d e r S c h n i t z e l a b p r e s s u n g d u r c h g e s t e u e r t e I n f e k t i o n , Z u c k e r i n d . , 111(11) (1986) 1025-1030.

Page 197: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

186

47 P. C a u l k i n s , G . Holman and L . Norman, Gypsum - c o s t - e f f e c t i v e p r e s s i n g a i d . Sugar J . , 47 (12) (1985) 21-23.

48 J . M . R a n d a l l , W. Camirand and E . M . Z a r a g o s a , E n e r g y r e d u c t i o n by c o s s e t t e l i m i n g , Z u c k e r i n d . , 107(1) (1982) 38-46.

49 Κ. B u c h h o l z , R. T a r r a c h and K . - M . B l i e s e n e r , Chemische A s p e k t e d e r mechan ischen S c h n i t z e l e n t w ä s s e r u n g , Z u c k e r i n d . , 111(1) (1986) 23-27 .

50 E . R e i n e f e l d , Über d i e Kampagne 1980, Z u c k e r i n d . , 106(5) (1981) 397-406. 51 D. S c h r ö d e r , E i n i g e Gedanken zum E i n s a t z e i n e r N i e d e r t e m p e r a t u r t r o c k n u n g

i n n e r h a l b d e r S c h n i t z e l t r o c k n u n g , Z u c k e r i n d . , 108(2) (1983) 126-135. 52 P. V a l e n t i n , E r h ö h t e Abwärmenutzung d e r Z u c k e r f a b r i k i n d e r N i e d e r

t e m p e r a t u r t r o c k n u n g , Z u c k e r i n d . , 108(11) (1983) 1025-1033. 53 K . E . Aus tmeyer and W. P o e r s c h , N i e d e r t e m p e r a t u r t r o c k n u n g - G r u n d l a g e n und

B e t r a c h t u n g e n z u r W i r t s c h a f t l i c h k e i t , Z u c k e r i n d . , 108(9) (1983) 861-868, 108(11) (1983) 1033-1041, 109(5) (1984) 411-419, 110(1) (1985) 28-34.

54 H. K l e b e r , Anwärmung von L u f t f ü r d i e N i e d e r t e m p e r a t u r - T r o c k n u n g , Z u c k e r i n d . , 110(8) (1985) 686-688.

55 W. K u n z , D ie N i e d e r t e m p e r a t u r t r o c k n u n g i n V e r b i n d u n g m i t d e r t r a d i t i o n e l l e n S c h n i t z e l t r o c k n u n g , Z u c k e r i n d . , 108(9) (1983) 868-870.

56 Anonymous, N i e d e r t e m p e r a t u r - S c h n i t z e l t r o c k n u n g i n d e r Z u c k e r f a b r i k A r t e n a y , Z u c k e r i n d . , 108(2) (1983) 135.

57 E . S c h r ö t e r , D i e N i e d e r t e m p e r a t u r t r o c k n u n g i n L e h r t e - F u n k t i o n s w e i s e und B e t r i e b s e r f a h r u n g e n , Z u c k e r i n d . , 111(6) (1986) 545-549.

58 K . E . Aus tmeyer and U . B u n e r t , Abwärmenutzung im Zusammenhang m i t d e r S c h n i t z e l t r o c k n u n g , 110(8) (1985) 659-670.

59 Anonymous, P i l o t a n l a g e f ü r S c h n i t z e l t r o c k n u n g m i t t e l s Dampf, Z u c k e r i n d . , 110(1) (1985) 54.

60 Anonymous, Dampf t rockne r f ü r S c h n i t z e l , Z u c k e r i n d . , 110(8) (1985) 707-708. 61 Anonymous, S team-hea ted p u l p d r y e r , i n : F . O . L i c h t Yearbook and D i r e c t o r y ,

R a t z e b u r g , 1986, p p . G5-G9 . 62 C . Gudmundson, p e r s o n a l commun ica t i on . 63 A . S l o t h J e n s e n ( e t a l . ) . Bee t p u l p d r y i n g i n s u p e r h e a t e d steam under

p r e s s u r e , Z u c k e r i n d . , 112(10) (1987) 886-891. 64 Ε . O t o r o w s k i , P u l p d r y i n g . Paper p r e s e n t e d a t t h e I n t e r n a t i o n a l C o n f e r e n c e

" Improvement o f t he Bee t Sugar P r o d u c t i o n " , Warszawa, May 1987.

Page 198: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

187

C h a p t e r 5

EQUIPMENT DESIGN FOR E F F I C I E N T ENERGY U T I L I Z A T I O N

5.1 SCOPE OF THE PROBLEMS

The deve lopments o f e n e r g y - s a v i n g p r o c e s s e s and equ ipment a r e m u t u a l l y

d e p e n d e n t . W h i l e t h e p r o c e s s r e q u i r e m e n t s i n f l u e n c e equ ipment d e s i g n , i t i s t h e

a t t a i n a b l e equ ipment c h a r a c t e r i s t i c s w h i c h a r e o f t e n d e c i s i v e i n c o n s t r a i n i n g

t h e pa rame te rs o f a p r o c e s s . T h i s a p p l i e s t o l a r g e s e c t i o n s o f t h e s u g a r

m a n u f a c t u r i n g p r o c e s s i n w h i c h i n t e r a c t i o n s between numerous i n t e r c o n n e c t e d

equ ipment u n i t s a r e t a k i n g p l a c e ( j u i c e p u r i f i c a t i o n , s u g a r c r y s t a l l i z a t i o n ,

e t c . ) , as w e l l as t o u n i t o p e r a t i o n s p e r f o r m e d i n s p e c i a l i z e d equ ipment

( e x t r a c t i o n , h e a t i n g , e t c . ) .

By i n t r o d u c i n g s e l e c t i v e d e s i g n changes o r a p p l y i n g e n t i r e l y new equ ipment

d e s i g n s , i t becomes p o s s i b l e t o c u t down t h e power demand and t h e t o t a l h e a t

demand o f a s u g a r f a c t o r y . I n a d d i t i o n , improved c h a r a c t e r i s t i c s o f t h e

equ ipment u n i t s o f w h i c h a the rma l sys tem i s composed may c o n t r i b u t e t o an

improved e f f e c t i v e n e s s r a t i o and t h u s r e d u c e d n e t h e a t demand. C o n s i d e r a b l e

p r o g r e s s has been a c h i e v e d i n t h e s e a r e a s i n r e c e n t y e a r s . I n t h e p r e s e n t

C h a p t e r , d e s i g n t r e n d s a r e r e v i e w e d r e l a t i n g t o t h e f o l l o w i n g e q u i p m e n t :

- e x t r a c t o r s ,

- e v a p o r a t o r s ,

- h e a t e x c h a n g e r s ,

- vacuum p a n s ,

- c e n t r i f u g a l s .

5.2 EXTRACTORS

The e s s e n t i a l f u n c t i o n o f an e x t r a c t o r can be d e s c r i b e d as c o u n t e r - c u r r e n t

l e a c h i n g o f c o s s e t t e s . I n i t i a l the rma l breakdown o r d e n a t u r a t i o n o f c e l l

membranes i s r e q u i r e d t o make s u c r o s e e x t r a c t i o n p o s s i b l e . D e n a t u r a t i o n b e g i n s

a t 50-60°C and becomes a lmos t i n s t a n t a n e o u s a t t e m p e r a t u r e s above 90°C. F o r t h i s

r e a s o n , i t i s n e c e s s a r y t o s u p p l y hea t t o t h e e x t r a c t o r , w h i c h i s t h u s a l s o

a component o f t h e the rma l s y s t e m .

As t h e d r i v i n g f o r c e o f s u c r o s e e x t r a c t i o n i s t h e d i f f e r e n c e o f c o n c e n t r a t i o n

between t h e c o s s e t t e s and t h e e x t r a c t i n g j u i c e , t h e c o n c e n t r a t i o n o f t h e j u i c e

can n e v e r exceed t h a t i n t h e e x t r a c t e d m a t e r i a l . T a k i n g i n t o a c c o u n t t h a t t h e

c o s s e t t e s c o n t a i n abou t 95% c e l l j u i c e , t h e j u i c e d r a f t can n e v e r be l o w e r t han

95%; t o a t t a i n t h i s t h e o r e t i c a l l i m i t , an i d e a l e x t r a c t o r o f i n f i n i t e l e n g t h

wou ld be r e q u i r e d . I n r e a l i t y , i n o r d e r t o i n c r e a s e t h e d r i v i n g f o r c e and

reduce equ ipment s i z e , e x c e s s w a t e r i s f e d t o t h e e x t r a c t o r , t h i s c a u s i n g

Page 199: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

188

i n c r e a s e d j u i c e d r a f t . The p r a c t i c a l r ange o f j u i c e d r a f t s i s 105-140%.

From t h e t r e n d t owa rd e n e r g y s a v i n g , two b a s i c r e q u i r e m e n t s t o w h i c h

e x t r a c t o r d e s i g n e r s must r e s p o n d f o l l o w :

- p r o d u c t i o n o f c o l d raw j u i c e , w h i c h a l l o w s t h e r e c o v e r y o f l o w - t e m p e r a t u r e

hea t w h i c h wou ld o t h e r w i s e be w a s t e d ;

- t h e p o s s i b i l i t y o f o p e r a t i n g t h e e x t r a c t o r a t low j u i c e d r a f t , w h i c h r e s u l t s

i n a r e d u c t i o n o f t he amount o f w a t e r t o be e v a p o r a t e d .

U s i n g a c l a s s i f i c a t i o n w i t h r e s p e c t t o t h e way t h e c o s s e t t e s a re t r a n s p o r t e d

w i t h i n t h e e x t r a c t o r , f o u r d e s i g n s a r e t h e most w i d e l y used t o d a y : t o w e r t y p e ,

s c r o l l ( o r t r o u g h ) t y p e , moving bed ( o r b e l t ) t y p e and drum t y p e . T h e i r w o r k i n g

p r i n c i p l e s a r e shown s c h e m a t i c a l l y i n F i g . 5 .1 . As can be s e e n , t he p r o d u c t i o n

o f c o l d raw j u i c e has been c h a r a c t e r i s t i c o f t he t r o u g h - t y p e (DOS) e x t r a c t o r

o n l y . I n t h i s d e s i g n , hea t i s t r a n s f e r r e d t o t h e e x t r a c t i o n m i x t u r e f rom v a p o u r

c o n d e n s i n g i n h e a t i n g j a c k e t s a t t a c h e d t o t he t r o u g h . I t seems t h a t a t l a r g e

c a p a c i t i e s , h o w e v e r , t he h e a t i n g j a c k e t s a r e n o t e f f e c t i v e enough t o e n s u r e

a c o r r e c t t e m p e r a t u r e d i s t r i b u t i o n i n t h e e x t r a c t i o n m i x t u r e , so 3000 t / d i s t h e

p r a c t i c a l l i m i t o f t he c a p a c i t y o f t r o u g h - t y p e e x t r a c t o r s t o d a y .

T h e r e i s no c o n s t r a i n t o f t h i s k i n d r e l a t i n g t o t h e o t h e r e x t r a c t o r t y p e s .

(a)

Μ

h 5 (b) Μ

( Μ e

\-

7 ^ Γ 6

F i g . 5 .1 . Work ing p r i n c i p l e s o f e x t r a c t o r s : ( a ) t o w e r , ( b ) moving b e d , ( c ) t r o u g h , ( d ) drum. Μ - h e a t e x c h a n g e r c o s s e t t e s - j u i c e ( m i x e r ) , Η - j u i c e h e a t e r . 1 - c o s s e t t e s , 2 - f r e s h w a t e r , 3 - p r e s s w a t e r , 4 - raw j u i c e , 5 -e x h a u s t e d c o s s e t t e s , 6 - s team, 7 - r e c i r c u l a t e d j u i c e , 8 - e x t r a c t i o n m i x t u r e .

Page 200: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

189

because h e a t i s s u p p l i e d v i a s e p a r a t e hea t e x c h a n g e r s t o t h e j u i c e r e c i r c u l a t e d

a t t he r a t e o f up t o 300%. O r i g i n a l l y i n v e n t e d t o d e l i v e r h o t raw j u i c e , t h e s e

d e s i g n s must be m o d i f i e d by add ing a h e a t e x c h a n g e r ( m i x e r ) i n w h i c h j u i c e i s

c o o l e d , i n c o u n t e r - f l o w , by incoming c o s s e t t e s . The m i x e r can be i n s t a l l e d as a

s e p a r a t e u n i t , b u t i n new d r u m - t y p e d e s i g n s , i t can a l s o be s t r u c t u r a l l y

i n t e g r a t e d w i t h t h e e x t r a c t o r p r o p e r . The a d d i t i o n o f a m i x e r r e s u l t s i n

i n c r e a s e d i n v e s t m e n t c o s t s , w h i c h can a p p a r e n t l y be o f f - s e t by c o s t r e d u c t i o n s

a s s o c i a t e d w i t h e n e r g y s a v i n g s .

The a p p l i c a t i o n o f m i x e r s i n new e x t r a c t i o n s t a t i o n s can be c o n s i d e r e d as

s t a n d a r d p r a c t i c e nowadays , and m i x e r s a r e a l s o added t o t h e e x i s t i n g e x t r a c t o r s

( r e f . 1 ) . One case has been r e p o r t e d o f a t r o u g h - t y p e a p p a r a t u s ( f o r m e r l y used

as an e x t r a c t o r ) a p p l i e d as a m i x e r l i n k e d t o a d r u m - t y p e e x t r a c t o r ( r e f . 2 ) .

The a t t a i n a b l e j u i c e t e m p e r a t u r e i s u s u a l l y 11-15 Κ above t h e c o s s e t t e s

t e m p e r a t u r e . Depend ing on t h e e x t r a c t o r t y p e and l o c a l c o n d i t i o n s , steam s a v i n g s

o f t he o r d e r o f 0.5 kg/100 kg b have been r e p o r t e d ( r e f . 3 ) ; t h i s f i g u r e s h o u l d

be t r e a t e d c a u t i o u s l y , as i t depends on t h e accompany ing c o r r e c t i o n s o f t h e

therma l sys tem as w e l l . As p o i n t e d o u t by G e n i e ( r e f . 4 ) , h o w e v e r , i t makes

l i t t l e sense t o i n v e s t t o o much i n a m i x e r subsys tem because t h e the rma l r e t u r n s

d i m i n i s h i f a c e r t a i n m i x e r s i z e i s exceeded a n d , i n a d d i t i o n , s u c r o s e l o s s e s

i n c r e a s e as a r e s u l t o f i n c r e a s e d b a c t e r i a l a c t i v i t y on a c c o u n t o f low

t e m p e r a t u r e s and l ong r e t e n t i o n t i m e s .

Lower i ng o f t h e j u i c e d r a f t has a l r e a d y been d i s c u s s e d i n S e c t i o n 1 .3 .4 .

Be ing a l w a y s a p remise f o r r e d u c e d e n e r g y c o n s u m p t i o n , i t becomes a lmos t a

n e c e s s i t y i n modern s u g a r f a c t o r i e s i n w h i c h hea t consumpt ion has been d e c r e a s e d

t o a c e r t a i n l e v e l . The a s s o c i a t e d d e c r e a s e i n t h e demand f o r h e a t i n g v a p o u r s

may l e a d t o t he i m p o s s i b i l i t y o f f u l l u t i l i z a t i o n o f v a p o u r s f rom t h e

e v a p o r a t i o n p r o c e s s , u n l e s s v a p o u r c o m p r e s s i o n i s a p p l i e d . L o w e r i n g o f t h e j u i c e

d r a f t wou ld be much more c o n v e n i e n t , b u t i t r a i s e s e x t r a c t o r d e s i g n p rob lems

wh i ch s t i l l remain t o be s o l v e d . A b e t t e r u n d e r s t a n d i n g o f t h e d e s i g n

r e q u i r e m e n t s has been a c h i e v e d i n r e c e n t y e a r s , owing t o advances i n t h e t h e o r y

o f t h e e x t r a c t i o n p r o c e s s ( r e f s . 5 - 8 ) .

Each e x t r a c t o r can be c h a r a c t e r i z e d by a number o f mass t r a n s f e r u n i t s , w h i c h

can be d e f i n e d as t h e number o f s t e p s i n a p e r f e c t b a t c h e x t r a c t o r t h a t w o u l d be

r e q u i r e d t o p r o d u c e t he same j u i c e f rom t h e same c o s s e t t e s w i t h t h e same l o s s o f

s u g a r i n e x h a u s t e d c o s s e t t e s ( f o r ma themat i ca l f o r m u l a e , see r e f . 6 ) . P r a c t i c a l

v a l u e s range f rom 8 t o 16; t h e h i g h e r t h e f i g u r e t h e b e t t e r i s t h e e x t r a c t o r ,

and t h e l o w e r t h e j u i c e d r a f t t h a t can be m a i n t a i n e d a t a g i v e n s u g a r l o s s . F o r

t he d r u m - t y p e d e s i g n , t he r e q u i r e m e n t s have been summar ized by G e n i e ( r e f . 4 ) i n

a g raph ( F i g . 5 . 2 ) . As can be s e e n , a r e d u c t i o n i n j u i c e d r a f t r e q u i r e s a

s t r u c t u r a l change i n e x t r a c t o r d e s i g n ; i . e . , an i n c r e a s e d number o f t r a n s f e r

Page 201: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

190

101 evaporated water less per 100 kg beets

I L 10 15

No. of t ransfer units

20

F i g . 5 . 2 . R e d u c t i o n o f j u i c e d r a f t v s . number o f t r a n s f e r u n i t s o f e x t r a c t o r f o r 0.2% s u c r o s e l o s s on b e e t s and 18% DS i n p r e s s e d p u l p ( a f t e r r e f . 4 ) .

u n i t s . S i m i l a r r e l a t i o n s h i p s e x i s t f o r o t h e r e x t r a c t o r t y p e s , t h i s s t i m u l a t i n g

a l s o numerous m o d e r n i z a t i o n s o f e x i s t i n g u n i t s . When i n c r e a s i n g t h e h e i g h t o f

a t o w e r o r t h e l e n g t h o f a t r o u g h , o t h e r improvements a r e i n t r o d u c e d as w e l l ,

p a r t i c u l a r l y e a s i l y c o n t r o l l e d d r i v e s , improved m i x i n g / t r a n s p o r t i n g e l e m e n t s ,

more e f f e c t i v e h e a t - s u p p l y s u b s y s t e m s , e t c . ( r e f s . 1 , 9 - 1 1 ) .

5.3 EVAPORATORS

5.3.1 C o n v e n t i o n a l a p p l i c a t i o n s

I t was p o i n t e d o u t i n S e c t i o n 3 .3 .2 t h a t a h i g h h e a t t r a n s f e r i n t e n s i t y

s h o u l d be r e g a r d e d as an i m p o r t a n t f e a t u r e o f t h e e v a p o r a t o r s . A t low e n e r g y

c o s t , i n t e n s i v e hea t t r a n s f e r has been t r e a t e d as a means t o r e d u c e h e a t i n g

s u r f a c e a r e a s and t h u s i n v e s t m e n t c o s t s . The t r e n d t o w a r d s e n e r g y s a v i n g s

i n i t i a t e d changes i n t h e a t t i t u d e o f d e s i g n e r s . I n a m u l t i p l e - e f f e c t e v a p o r a t o r

s t a t i o n , a h i g h p r i o r i t y i s g i v e n nowadays t o m a i n t a i n i n g v a p o u r t e m p e r a t u r e s

f a c i l i t a t i n g u t i l i z a t i o n o f l o w - g r a d e h e a t f rom t h e f i n a l e f f e c t s . As a

c o n s e q u e n c e , t e m p e r a t u r e d i f f e r e n c e s between v a p o u r s i n c o n s e c u t i v e e f f e c t s may

be s m a l l e r t han t h o s e recommended i n t h e p a s t , even a t t h e expense o f l a r g e r

h e a t i n g s u r f a c e a r e a s .

The t r a d e - o f f between h e a t i n g s u r f a c e a r e a and t e m p e r a t u r e d i f f e r e n c e has

been s t u d i e d by numerous a u t h o r s ( r e f s . 1 2 - 1 5 ) . A l t h o u g h no u n i v e r s a l d e s i g n

p r e s c r i p t i o n s have been f o r m u l a t e d , t h i s work n e v e r t h e l e s s c o n t r i b u t e s t o b e t t e r

u n d e r s t a n d i n g o f t h e r e l a t i o n s h i p s i n v o l v e d . L e t us c o n s i d e r an a p p r o x i m a t e

f o r m u l a g i v e n by Ba loh ( r e f . 15) f o r t h e op t ima l t e m p e r a t u r e d i f f e r e n c e Δ Τ ^ ^ ^ i n

an e v a p o r a t o r e f f e c t i n w h i c h t h e j u i c e t e m p e r a t u r e ( a b s o l u t e v a l u e ) i s Τ

( 5 . 1 )

where c , i s t h e annual c o s t o f 1 m h e a t i n g s u r f a c e a r e a , c i s t h e e n e r g y c o s t , a β

T ^ i s t he e n v i r o n m e n t t e m p e r a t u r e , k i s t h e o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t ,

and τ i s t h e d u r a t i o n o f t he o p e r a t i n g s e a s o n .

Page 202: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

191

As can be s e e n , t h e t e m p e r a t u r e d i f f e r e n c e i n an e v a p o r a t o r body s h o u l d be

r e d u c e d a t h i g h e n e r g y c o s t , h i g h l y i n t e n s i v e h e a t t r a n s f e r and p r o l o n g e d

s e a s o n s . I t s h o u l d be i n c r e a s e d , h o w e v e r , when t h e e v a p o r a t o r c o s t i n c r e a s e s

r e l a t i v e t o t h e e n e r g y c o s t , o r when t h e c a p i t a l c o s t i s i n c r e a s e d .

A n o t h e r i m p o r t a n t f e a t u r e o f t h e e v a p o r a t o r s i s t h e j u i c e r e t e n t i o n t ime and

i t s d i s t r i b u t i o n . A t j u i c e t e m p e r a t u r e s above 105°C, t h e r e t e n t i o n t ime

d e t e r m i n e s t h e amount o f h y d r o l i z e d s u c r o s e and decomposed i n v e r t s u g a r , t h i s

a f f e c t i n g c o l o u r f o r m a t i o n i n t h e j u i c e . As p o i n t e d o u t i n S e c t i o n 4 . 3 , a h i g h

j u i c e c o l o u r , n e c e s s i t a t i n g a l a r g e m a s s e c u i t e c i r c u l a t i o n , may i n d i r e c t l y

i n c r e a s e t h e e n e r g y demand o f t he s u g a r h o u s e . The p rob lem o f c o l o u r f o r m a t i o n

i n t h e e v a p o r a t o r s t a t i o n has been s t u d i e d i n r e c e n t y e a r s ( r e f . 16) and t h e

a s s o c i a t e d r e q u i r e m e n t on e v a p o r a t o r d e s i g n i s f a i r l y c l e a r : t h e mean j u i c e

r e t e n t i o n t ime s h o u l d be as s h o r t as p o s s i b l e , and t h e r e t e n t i o n t ime spec t rum

s h o u l d be c o n c e n t r a t e d c l o s e t o t h e mean v a l u e .

From the v a r i e t y o f r e q u i r e m e n t s men t i oned a b o v e , i t i s n e c e s s a r y t o e v a l u a t e

t he e x i s t i n g e v a p o r a t o r d e s i g n s c r i t i c a l l y . A t l e a s t t h r e e d i s a d v a n t a g e o u s

p r o p e r t i e s o f t h e p o p u l a r R o b e r t - t y p e e v a p o r a t o r can be i d e n t i f i e d :

- a p a r t o f t h e a v a i l a b l e t e m p e r a t u r e d i f f e r e n c e becomes l o s t because o f t h e

h y d r o s t a t i c h e a d ;

- t h e o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t d e c r e a s e s r a p i d l y w i t h i n c r e a s i n g j u i c e

c o n c e n t r a t i o n ; i n t h e l a s t e v a p o r a t o r e f f e c t , i t s v a l u e may be 5-6 t imes s m a l l e r

t han t h a t i n t h e f i r s t e f f e c t ;

- mean j u i c e r e t e n t i o n t ime i s o f t h e o r d e r o f s e v e r a l m i n u t e s ; i n a d d i t i o n ,

owing t o n a t u r a l c i r c u l a t i o n i n a r e l a t i v e l y l a r g e l i q u i d v o l u m e , t h e s p e c t r u m

o f r e t e n t i o n t i m e s i s r a t h e r w i d e .

F o r t h i s r e a s o n o t h e r e v a p o r a t o r t y p e s , p a r t i c u l a r l y t h i n - f i l m t y p e s , have

r e c e i v e d a t t e n t i o n i n r e c e n t y e a r s . Among numerous d e s i g n s t h a t a r e r e v i e w e d

e l s e w h e r e ( r e f . 1 7 ) , t h e f a l l i n g - f i l m e v a p o r a t o r s seem t o be b e s t s u i t e d t o t h e

r e q u i r e m e n t s . T h r e e v e r s i o n s o f t h e t u b u l a r f a l l i n g - f i l m d e s i g n a r e shown

s c h e m a t i c a l l y i n F i g . 5.3 (where a s k e t c h o f a R o b e r t - t y p e u n i t i s a l s o g i v e n

f o r c o m p a r i s o n ) . T h i n j u i c e i s s p r e a d on t h e v e r t i c a l t u b e b u n d l e by means o f

a d i s t r i b u t o r d e v i c e , and f l o w s as a f i l m on t h e i n n e r t u b e w a l l f rom t o p t o

bo t t om. The t u b e s used i n t h e s u g a r i n d u s t r y a r e 6-12 m l o n g . I n o r d e r t o

p r e v e n t v i b r a t i o n s , t h e t u b e s a r e l e d t h r o u g h b a f f l e s p l a c e d abou t 2 m a p a r t . As

a r e s u l t o f h e a t i n g t h e c h e s t w i t h e x h a u s t steam o r v a p o u r , v a p o u r i s g e n e r a t e d

f rom the j u i c e . H a v i n g l e f t t h e t ube b u n d l e , t h e c o n c e n t r a t e d j u i c e f a l l s i n t o

t h e e v a p o r a t o r base and t h e v a p o u r f l o w s t h r o u g h a s e p a r a t o r t o t h e o u t l e t

n o z z l e .

The f u n c t i o n i n g o f t h e j u i c e d i s t r i b u t i o n d e v i c e i s o f c r i t i c a l impo r tance t o

t h e e f f i c i e n c y and r e l i a b i l i t y o f t he f a l l i n g - f i l m e v a p o r a t o r . I f w e t t i n g o f

Page 203: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

192

O)

^ ^ 1 } .ττ-ττ^\

0 0

-mi-ir IL 11

Fig.

5.

3.

Fal

lin

g-f

ilm

eva

pora

tors

(c

ourt

esy

Wie

gand

) an

d a

Rob

ert-

type

ev

apor

ator

, (a

) fa

llin

g-f

ilm

un

it w

ith

adja

cent

ce

ntr

ifu

gal

se

para

tor,

(b

) w

ith

inte

gra

ted

sepa

rato

r at

the

ba

se,

(c)

wit

h ex

tern

al

vapo

ur

duct

s an

d in

teg

rate

d se

para

tor

at t

he

top.

1

- ju

ice

inle

t,

2 -

reci

rcul

ated

ju

ice

to

the

dis

trib

uto

r,

3 -

juic

e o

utl

et,

4

- he

atin

g-st

eam

in

let,

5

- co

nden

sate

o

utl

et,

6

- va

pour

ou

tlet

.

Page 204: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

193

a t ube w a l l becomes i n s u f f i c i e n t , t h e r e i s a r i s k t h a t t h e l i q u i d f i l m w i l l t e a r

a p a r t , t h i s r e s u l t i n g i n s c a l e f o r m a t i o n on t h e t ube w a l l . I t i s t h e r e f o r e

e s s e n t i a l t h a t t h i s d e v i c e works w i t h o u t c l o g g i n g , e n s u r i n g a l s o u n i f o r m j u i c e

d i s t r i b u t i o n on t he t u b e - s h e e t s u r f a c e . The w o r k i n g p r i n c i p l e s o f f o u r p a t e n t e d

d i s t r i b u t o r d e s i g n s a r e shown i n F i g . 5 .4 .

(a)

v v v v v v v v v v v v v v v v

( b )

1

A A / V A A A A A A A A A

F i g . 5 .4 . J u i c e d i s t r i b u t i o n d e v i c e s employed i n f a l l i n g - f i l m e v a p o r a t o r s : ( a ) and ( b ) c i r c u l a r a r r a n g e m e n t s , ( c ) b a r s and tube i n s e r t s under m u l t i p l e n o z z l e s , ( d ) b a f f l e s under a s p r i n k l e r .

I n o r d e r t o a v o i d i n s u f f i c i e n t t ube w e t t i n g a t r e d u c e d l o a d , a r e c i r c u l a t i o n

pump can be a t t a c h e d t o t h e e v a p o r a t o r . U s i n g r e c i r c u l a t i o n , s a f e o p e r a t i o n can

be a c h i e v e d a t l o a d s as low as abou t 40% o f t he nominal v a l u e .

An e s t i m a t e o f t he a t t a i n a b l e o v e r a l l hea t t r a n s f e r c o e f f i c i e n t o f t he

f a l l i n g - f i l m e v a p o r a t o r as a f u n c t i o n o f j u i c e c o n c e n t r a t i o n i s shown i n

F i g . 5.5 ( a f t e r r e f . 1 8 ) , w i t h an a n a l o g o u s r e l a t i o n s h i p c h a r a c t e r i s t i c o f t he

R o b e r t - t y p e d e s i g n . As can be s e e n , w h i l e t h e r e i s no n o t i c e a b l e d i f f e r e n c e i n

i n t he f i r s t e v a p o r a t o r e f f e c t , t he v a l u e o f k a t j u i c e c o n c e n t r a t i o n s 35-70% DS

i n a f a l l i n g - f i l m u n i t can be up t o 100% above t h a t i n a R o b e r t - t y p e e v a p o r a t o r .

F o r t h i s r e a s o n , r e p l a c e m e n t s o f R o b e r t - t y p e u n i t s by f a l l i n g - f i l m ones i n f i n a l

Page 205: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

194

- 3500

S 3000

o 2500h

fj^ 2000

ge

5 o

1000

- \ \

\

/ fa l l inc film

-Rot

-

20 30 AO 50 60 Mean juice concentration ( % DS)

70

F i g . 5 .5 . O v e r a l l hea t t r a n s f e r c o e f f i c i e n t s o f R o b e r t and f a l l i n g - f i l m e v a p o r a t o r s ( a f t e r r e f . 1 8 ) .

e v a p o r a t o r e f f e c t s have been u n d e r t a k e n i n numerous f a c t o r i e s .

The mean j u i c e r e t e n t i o n t ime i n a f a l l i n g - f i l m u n i t i s t y p i c a l l y abou t

1.5 m i n . T a k i n g s p e c i a l measu res , i t can be c u t down t o l e s s than 30 s ( r e f . 1 9 ) ,

t h i s r e q u i r i n g p r o p e r p r e c a u t i o n s i n t h e f i e l d o f a u t o m a t i c c o n t r o l and s a f e t y

d e v i c e s . A s , i n a d d i t i o n , t he spec t rum o f r e t e n t i o n t imes i s q u i t e n a r r o w ,

f a l l i n g - f i l m u n i t s match v e r y w e l l t h e r e q u i r e m e n t s o f a p p l i c a t i o n i n t h e

i n i t i a l e v a p o r a t o r e f f e c t s . I t has a l s o been r e p o r t e d t h a t a t low j u i c e

c o n c e n t r a t i o n s , o n l y n e g l i g i b l e s c a l i n g may o c c u r i n a f a l l i n g - f i l m e v a p o r a t o r

even though s c a l e f o r m a t i o n was a s e r i o u s p rob lem i n a R o b e r t - t y p e u n i t

p r e v i o u s l y u s e d .

I n t h e f i r s t e v a p o r a t o r e f f e c t , t h e p rob lem o f e n t r a i n m e n t s e p a r a t i o n becomes

c r i t i c a l because o f t he r i s k t h a t j u i c e c a r r y o v e r w i l l l e a d t o t h e p r e s e n c e o f

s u g a r i n t h e s e c o n d - e f f e c t c o n d e n s a t e . I t seems t h a t t h e deve lopmen t o f

d i f f e r e n t e n t r a i n m e n t s e p a r a t o r s has advanced so f a r t h a t t h e y can be s a f e l y

a p p l i e d w i t h i n t h e i r r e s p e c t i v e r a n g e s o f o p e r a t i o n ( r e f s . 2 0 - 2 3 ) . C e n t r i f u g a l

s e p a r a t o r s a r e c h a r a c t e r i z e d by a r e l a t i v e l y l a r g e v a p o u r v e l o c i t y , 10-40 m /s ,

and a p r e s s u r e d rop o f 10-100 mm H^O. The p o p u l a r " z i g z a g " and c u r v i l i n e a r

b a f f l e s a re most e f f e c t i v e a t v a p o u r v e l o c i t i e s 3-12 m/s , w i t h r e s u l t i n g

p r e s s u r e d r o p s 12-25 mm H^O. F i n a l l y , mesh pads can be used a t 1.5-10 m/s and

12-50 mm H2O. W h i l e t h e c e n t r i f u g a l s e p a r a t o r s c a n n o t s t o p v e r y f i n e j u i c e

d r o p l e t s s m a l l e r t han 10 m i c r o n s , t he mesh pads a r e e f f e c t i v e down t o a d r o p l e t

d i a m e t e r o f 5 m i c r o n s . The l a t t e r d e s i g n i s however p rone t o p a r t i a l c l o g g i n g

by d r y s u b s t a n c e s o f t h e j u i c e , t h i s r e s u l t i n g i n t h e pe r fo rmance d e t e r i o r a t i n g

w i t h t i m e . I n o r d e r t o p r e v e n t d e p o s i t b u i l d - u p , p e r i o d i c a l wash ing w i t h w a t e r

may be r e q u i r e d . A d e t a i l o f a f a l l i n g - f i l m e v a p o r a t o r w i t h e n t r a i n m e n t

s e p a r a t i o n augmented by a mesh pad i s shown s c h e m a t i c a l l y i n F i g . 5 .6 .

Page 206: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

195

^condensate

MESH PAD

F i g . 5 .6 . I n t e g r a t e d e n t r a i n m e n t s e p a r a t o r e q u i p p e d w i t h a mesh pad a t t h e base o f a f a l l i n g - f i l m e v a p o r a t o r .

5 .3 ,2 U n c o n v e n t i o n a l a p p l i c a t i o n s

I t was men t ioned i n S e c t i o n 1.2.5 t h a t s u b s t a n t i a l r e d u c t i o n s o f t h e t o t a l

h e a t demand i n s u g a r manu fac tu re may cause t h e o v e r a l l v a p o u r demand i n t h e

e v a p o r a t o r t o become s m a l l e r t han t h e amount o f w a t e r t o be e v a p o r a t e d f rom

j u i c e . A p o s s i b l e s o l u t i o n t o t h i s p rob lem i s t o combine c o n v e n t i o n a l m u l t i

s t a g e e v a p o r a t i o n w i t h one o r two e v a p o r a t i o n s t a g e s hea ted by was te h e a t ; l o w -

t e m p e r a t u r e v a p o u r s o b t a i n e d i n t h e a d d i t i o n a l e v a p o r a t o r s can be d i r e c t e d t o

t h e c o n d e n s e r . I t s h o u l d be o b s e r v e d t h a t t h i s i s an a l t e r n a t i v e t o a v a p o u r

c o m p r e s s i o n c i r c u i t i n w h i c h an e q u i v a l e n t amount o f f i r s t - o r s e c o n d - e f f e c t

v a p o u r i s r e c i r c u l a t e d . Compared w i t h v a p o u r c o m p r e s s i o n , i t has t h e a d v a n t a g e

o f n o t a f f e c t i n g t h e power b a l a n c e o f t h e f a c t o r y .

Two d i f f e r e n t c o n c e p t s o f u n c o n v e n t i o n a l e v a p o r a t i o n have been implemented i n

p r a c t i c e r e c e n t l y .

( i ) T h i c k e n i n g o f j u i c e between c o n v e n t i o n a l e v a p o r a t i o n s t a g e s o r a f t e r t h e

l a s t e v a p o r a t o r e f f e c t , u s i n g vacuum-pan v a p o u r s ( r e f s . 2 4 - 2 6 ) .

( i i ) P r e - e v a p o r a t i o n o f t h i n j u i c e p r i o r t o t h e c o n v e n t i o n a l m u l t i - s t a g e

e v a p o r a t i o n p r o c e s s , u s i n g o u t l e t gases f rom p u l p d r y i n g ( r e f . 2 7 ) .

A n o t h e r p r o p o s a l , s t i l l i n t h e d e s i g n s t a g e , c o n s i s t s o f p r e - e v a p o r a t i n g a p a r t

o f t h e t h i n j u i c e f l o w i n a d o u b l e - e f f e c t e v a p o r a t o r hea ted by vacuum-pan

v a p o u r s ( r e f . 2 8 ) .

I t i s c h a r a c t e r i s t i c o f a l l t h e s e c o n c e p t s t h a t i n o r d e r t o u t i l i z e t h e l o w -

g rade h e a t , t h e j u i c e t e m p e r a t u r e i n t h e e v a p o r a t o r s h o u l d be s u f f i c i e n t l y l o w .

The j u i c e i s t h e r e f o r e c o o l e d down p r i o r t o e n t e r i n g t h e s p e c i a l e v a p o r a t o r and

warmed up a f t e r l e a v i n g i t .

Page 207: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

196

I n case ( i ) , a t 0.12 bar e v a p o r a t i o n p r e s s u r e and 54 C nominal j u i c e

t e m p e r a t u r e , t h e r e i s a p rob lem t h a t t h e j u i c e may become s u p e r s a t u r a t e d a t

u n d e s i r a b l e paramete r f l u c t u a t i o n s . F o r t h i s r e a s o n , i f t h e assumed t h i c k - j u i c e

c o n c e n t r a t i o n exceeds 72-73% DS, t hen t h e s p e c i a l e v a p o r a t o r i s more s a f e l y

u t i l i z e d p r i o r t o t he l a s t e v a p o r a t o r e f f e c t , as shown i n F i g . 5 . 7 ( a ) . A t l o w e r

c o n c e n t r a t i o n s , i t can be a t t a c h e d t o t h e e v a p o r a t o r o u t l e t . F i g . 5 . 7 ( b ) . The

p rob lem w i t h t he s p e c i a l e v a p o r a t o r i s t h a t t he p r e s s u r e s o f t h e h e a t i n g v a p o u r

and t he v a p o u r g e n e r a t e d f rom j u i c e a r e v e r y l o w . As a c o n s e q u e n c e , l a r g e c r o s s -

s e c t i o n s o f t he f l o w c h a n n e l s a re r e q u i r e d and h i g h v a p o u r v e l o c i t i e s a re

d i f f i c u l t t o a v o i d i n c e r t a i n e v a p o r a t o r p a r t s .

F i g . 5 . 7 . J u i c e e v a p o r a t i o n u s i n g vacuum-pan v a p o u r s i n c o n n e c t i o n w i t h c o n v e n t i o n a l f o u r - s t a g e e v a p o r a t i o n : ( a ) between s t a g e s 3 and 4 , ( b ) a f t e r s t a g e 4 . 1 - s p e c i a l e v a p o r a t o r , 2 - hea t e x c h a n g e r , 3 - s team, 4 - vacuum-pan v a p o u r , 5 - t h i n j u i c e , 6 - t h i c k j u i c e .

To t he knowledge o f t h e p r e s e n t a u t h o r , a l l t he e v a p o r a t o r s hea ted by vacuum-

pan v a p o u r s a re o f t he f a l l i n g - f i l m t y p e . A t l e a s t one m a n u f a c t u r e r i s known t o

o f f e r a d e s i g n n o t v e r y d i f f e r e n t f rom t h o s e shown i n F i g . 5 . 3 ; i t s h o u l d be

c o n n e c t e d t o a s e p a r a t e condense r ( r e f . 2 6 ) . A compet ing s o l u t i o n c o n s i s t s o f

an e v a p o r a t o r , condense r and j u i c e tank i n t e g r a t e d i n a t o w e r - l i k e u n i t shown

s c h e m a t i c a l l y i n F i g . 5.8 ( a f t e r r e f . 2 4 ) . The mass and hea t b a l a n c e d a t a g i v e n

i n t he f i g u r e c o r r e s p o n d t o a s u g a r f a c t o r y w i t h a p r o c e s s i n g c a p a b i l i t y o f

7200 t / d . As can be s e e n , t he s p e c i a l e v a p o r a t o r makes i t p o s s i b l e t o e v a p o r a t e

8.3 kg w a t e r pe r 100 kg b e e t u s i n g o n l y s e c o n d a r y hea t w i t h o u t c o n t r i b u t i n g t o

p r o c e s s h e a t i n g .

Page 208: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

197

EVAPORATOR

vacuum pan vapour 60°C. 7.7 kg/100 kg b_

ju ice 53%DS

^ ^cool ing water 28°C

1 β barometric water 38^C^

THICK JUICE TANK

F i g . 5 .8 . F a l l i n g - f i l m e v a p o r a t o r hea ted by vacuum-pan v a p o u r and f e a t u r i n g an i n t e g r a t e d condense r and t h i c k - j u i c e tank ( a f t e r r e f . 2 4 ) .

The s o l u t i o n under ( i i ) i s known f rom a p r o t o t y p e a p p l i c a t i o n i n a 6000 t / d

s u g a r f a c t o r y ( r e f . 2 7 ) . A c t u a l l y , i t was s t i m u l a t e d by t h e n e c e s s i t y o f

c l e a n i n g t h e o u t l e t gases f rom the p u l p d r y e r . Due t o v e r y s t r i n g e n t

e n v i r o n m e n t a l r e q u i r e m e n t s , d o u b l e - s t a g e c l e a n i n g ( c y c l o n e s f o l l o w e d by a

w a s h e r ) was a d o p t e d . The a v a i l a b i l i t y o f c l e a n gas a t 68°C made i t p o s s i b l e t o

i n c l u d e a g a s - h e a t e d e v a p o r a t o r i n t h e new i n s t a l l a t i o n . As t h e v a p o u r p r e s e n t

i n t he gas condenses i n t he h e a t i n g chamber , t h e u n i t can be e x p e c t e d t o

f u n c t i o n as an a d d i t i o n a l g a s - c l e a n i n g s t a g e i n w h i c h t h e f i n e s t d u s t p a r t i c l e s

a r e s e p a r a t e d w h i l e SO^ and NO^ d i s s o l v e i n w a t e r .

The f l o w o f t h i n j u i c e d e l i v e r e d t o p r e - e v a p o r a t i o n i s 110 t / h , i . e . , a b o u t

1/3 o f t h e t o t a l t h i n j u i c e f l o w . The i n f l o w i n g j u i c e a t 15.6% DS i s c o o l e d down

t o 60°C and expanded t o 44°C i n t he e v a p o r a t o r s ; t h e o u t f l o w i n g j u i c e a t

21.5% DS i s warmed up t o 90°C. Two f a l l i n g - f i l m e v a p o r a t o r s w i t h o u t j u i c e

c i r c u l a t i o n were i n s t a l l e d f o r t h i s a p p l i c a t i o n . Each u n i t has a h e a t i n g s u r f a c e 2

o f 1750 m c o n s i s t i n g o f t u b e s 51 mm o u t e r d i a m e t e r and 8 m l o n g . The t u b e s a r e

p e r i o d i c a l l y washed on t h e gas s i d e , u s i n g h o t w a t e r i n t r o d u c e d a t t h e upper

t ube s h e e t and f l o w i n g i n a f i l m on t he o u t e r t u b e w a l l s .

Page 209: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

198

To comple te t h i s r e v i e w , a n o t h e r unusua l e v a p o r a t o r a p p l i c a t i o n can be

m e n t i o n e d . The medium t h i c k e n e d i s g r e e n s y r u p Β l e a v i n g a Q u e n t i n u n i t . I n

o r d e r t o make t h e i o n exchange p r o c e s s p o s s i b l e , t h e s y r u p i s d i l u t e d t o 64% DS

b e f o r e e n t e r i n g t h i s u n i t , w h i c h r e q u i r e s add ing up t o 2.9 kg w a t e r p e r 100 kg

b e e t . As t h e d i l u t e d s y r u p i s r e t u r n e d t o t he c r y s t a l l i z a t i o n s u b s y s t e m , t h i s

w a t e r must be e v a p o r a t e d . I f i t i s done i n C vacuum p a n s , t h e n a c o r r e s p o n d i n g

i n c r e a s e o f t h e hea t demand o f t h e s u g a r house can be e x p e c t e d . A l t e r n a t i v e l y ,

e x c e s s w a t e r can be e v a p o r a t e d u s i n g was te h e a t .

W i th i t s t e m p e r a t u r e r e d u c e d t o 50°C, s i m i l a r l y t o t h e case d i s c u s s e d a b o v e ,

t h e s y r u p i s d e l i v e r e d t o an e v a p o r a t o r hea ted by vacuum-pan v a p o u r s . A f a l l i n g -

f i l m u n i t ( w i t h o u t s y r u p r e c i r c u l a t i o n ) e q u i p p e d w i t h i t s own c o n d e n s e r has been

s e l e c t e d f o r t h i s a p p l i c a t i o n . The main p o i n t s o f t h e d e s i g n a n a l y s i s and a

summary o f o p e r a t i o n a l r e s u l t s can be f ound i n t h e l i t e r a t u r e ( r e f . 2 8 ) . T h i s

s o l u t i o n has much i n common w i t h t h e e v a p o r a t o r shown i n F i g . 5 .8 .

5.4 HEAT EXCHANGERS

T h e r e a re no r e v o l u t i o n a r y new d e s i g n s i n t h e j u i c e h e a t e r f i e l d , b u t t h e

r e q u i r e m e n t s d i s c u s s e d i n S e c t i o n 3 .3 .2 n e c e s s i t a t e a more c a r e f u l app roach t o

t he e x i s t i n g v a r i e t y o f c h o i c e s . From t h e p o i n t o f v i e w o f e n e r g y u t i l i z a t i o n ,

t h r e e f a c t o r s s h o u l d be taken i n t o a c c o u n t :

- t h e the rma l r e s i s t a n c e o f t h e h e a t i n g s u r f a c e , p a r t i c u l a r l y under r e a l

o p e r a t i n g c o n d i t i o n s , a s s o c i a t e d w i t h t h e r i s k o f s c a l e b u i l d - u p ;

- t he p o s s i b i l i t y o f m a i n t a i n i n g an e c o n o m i c a l l y j u s t i f i e d r e l a t i o n s h i p between

t h e hea t t r a n s f e r i n t e n s i t y and t h e p r e s s u r e d r o p i n t h e l i q u i d h e a t e d ;

- t he p o s s i b i l i t y o f o b t a i n i n g pu re c o u n t e r - f l o w , w h i c h i s e s p e c i a l l y i m p o r t a n t

i n t he case o f r e c u p e r a t i o n o f l o w - t e m p e r a t u r e h e a t .

T h r e e w i d e l y used j u i c e h e a t e r d e s i g n s a r e shown s c h e m a t i c a l l y i n F i g . 5 . 9 .

The f a c t o r s men t ioned above a r e d e c i s i v e i n q u a l i f y i n g t h e p l a t e h e a t e x c h a n g e r

as t he d e s i g n w h i c h can be adap ted most e a s i l y t o d i f f e r e n t o p e r a t i n g

c o n d i t i o n s . I n a d d i t i o n t o v e r y h i g h o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t s , p l a t e

hea t e x c h a n g e r s g i v e t he u s e r a r e a l chance o f easy m a i n t e n a n c e , as t h e y a r e

o f f e r e d t o d a y w i t h :

- v a r i o u s channe l g e o m e t r i e s p r o v i d i n g f o r s e l f - c l e a n i n g e f f e c t s , and t h u s

s u i t e d t o p a r t i c l e - c o n t a i n i n g l i q u i d s ;

- p l a t e m a t e r i a l s s u i t e d t o v a r i o u s c o r r o s i o n r e q u i r e m e n t s ;

- p a c k i n g m a t e r i a l s w h i c h make i t p o s s i b l e t o o p e r a t e p l a t e h e a t e x c h a n g e r s

s a f e l y a t t e m p e r a t u r e s up t o 260°C.

I n e a r l y a p p l i c a t i o n s i n t h e s u g a r i n d u s t r y , t h e c l a s s i c a l v e r s i o n o f t h e

p l a t e hea t e x c h a n g e r was dominan t . As i t i s c h a r a c t e r i z e d by v e r y smal l p l a t e

s p a c i n g (somet imes l e s s than 1 mm), s c a l e b u i l d - u p n o t o n l y causes a r e d u c t i o n

Page 210: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

199

(α) (b)

Ε (c )

1 ^

F i g . 5 .9 . Schemes o f j u i c e h e a t e r s : ( a ) t u b u l a r , ( b ) p l a t e , ( c ) s p i r a l . 1 - i n f l o w i n g j u i c e , 2 - o u t f l o w i n g j u i c e , 3 - h e a t i n g v a p o u r , 4 - c o n d e n s a t e , 5 - s p e n t v a p o u r .

o f t h e hea t t r a n s f e r i n t e n s i t y , b u t a l s o a r a p i d i n c r e a s e o f t h e p r e s s u r e d r o p

on t h e j u i c e s i d e . T h i s e x c l u d e s t h e use o f c l a s s i c a l p l a t e h e a t e r s i f t h e r e i s

a r i s k o f heavy s c a l i n g , as on raw j u i c e and p a r t i c u l a r l y i n t h e t e m p e r a t u r e

range o f p r o t e i n d e p o s i t ( b e l o w 70°C) .

I n r e c e n t y e a r s , a new g e n e r a t i o n o f p l a t e h e a t e r s has been i n t r o d u c e d t o t h e

marke t . The m o d i f i e d d e s i g n i s l e s s s e n s i t i v e t o s c a l e b u i l d - u p . A s i d e - e f f e c t

o f t h e changed f l o w - c h a n n e l g e o m e t r y , h o w e v e r , i s t h a t t h e o v e r a l l h e a t t r a n s f e r

c o e f f i c i e n t i s s m a l l e r t han i n t he c l a s s i c a l v e r s i o n . A summary o f o p e r a t i o n a l

r e s u l t s o b t a i n e d w i t h t he new p l a t e h e a t e r s used on raw j u i c e can be f o u n d i n

t h e l i t e r a t u r e ( r e f . 3 0 ) .

T h e r e a r e s t i l l c e r t a i n a p p l i c a t i o n s i n a s u g a r f a c t o r y where o t h e r h e a t

e x c h a n g e r d e s i g n s can p r o f i t a b l y be u s e d . Examples can be c i t e d o f s u g a r

f a c t o r i e s e q u i p p e d w i t h v a r i o u s t y p e s o f j u i c e h e a t e r s o p t i m a l l y s e l e c t e d f o r

t h e r e q u i r e m e n t s c h a r a c t e r i s t i c o f e v e r y h e a t i n g s t a g e . T a b l e 5.1 g i v e s a

summary o f t h e da ta on t u b u l a r , s p i r a l and p l a t e h e a t e r s i n s t a l l e d i n a 6600 t / d

West European f a c t o r y . I t i s i n t e r e s t i n g t o n o t e , h o w e v e r , t h a t i n t h e D a n i s h

s u g a r i n d u s t r y , o n l y t u b u l a r h e a t e r s a r e used and t h e p l a t e u n i t s have been

Page 211: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

200

TABLE 5.1

J u i c e h e a t e r s o f d i f f e r e n t d e s i g n s i n a 6600 t / d s u g a r f a c t o r y .

L o c a t i o n H e a t i n g medium H e a t e r t y p e H e a t i n g s u r f a c e

a r e a (m^)

Raw j u i c e 5th v a p o u r t u b u l a r 250X2 II II condensa te s p i r a l 38X2

P r e - l i m e d j u i c e vacuum-pan v a p o u r II 150X2 II II condensa te II 69X2 II II 4 th v a p o u r t u b u l a r 150X2

C l e a r j u i c e 3 rd v a p o u r p l a t e 83* T h i n j u i c e II II II 345*

II II 2nd v a p o u r II 210* II II 1s t v a p o u r II 83+116 II II e x h a u s t steam II 64+89

s i n g l e u n i t ( o t h e r h e a t e r s a r e i n s t a l l e d two i n p a r a l l e l )

f ound t o o d i f f i c u l t t o v e n t ( r e f . 3 1 ) .

A n o t h e r j u i c e h e a t e r d e s i g n w h i c h d e s e r v e s t o be men t ioned i s t h e segmented

t u b u l a r h e a t e r i n t r o d u c e d i n t h e S o v i e t s u g a r i n d u s t r y ( r e f s . 3 2 - 3 4 ) . I t i s

c h a r a c t e r i z e d by j u i c e v e l o c i t y abou t 3 m/s o r even h i g h e r , t h i s r e d u c i n g s c a l e

b u i l d - u p . As can be seen i n F i g . 5 .10 , t h e j u i c e f l o w pa th i s s t r e a m l i n e d t o

e n s u r e a low p r e s s u r e l o s s . A p p a r e n t l y , t h e c o n d i t i o n s f o r t he f l o w o f t he

h e a t i n g v a p o u r a r e f a r f rom opt imum, and t h e use o f v a p o u r e j e c t o r s f o r

improvement o f t he hea t t r a n s f e r has been r e p o r t e d ( r e f . 3 3 ) .

3 condensate

heating vapour

Top view J u i c e out

F i g . 5 .10 . Scheme o f a segmented t u b u l a r h e a t e r .

Page 212: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

201

I n hea t e x c h a n g e r a p p l i c a t i o n s o t h e r t han j u i c e h e a t i n g between e x t r a c t i o n

and e v a p o r a t i o n , t he t r e n d s a r e s i m i l a r . A l t h o u g h t h e t u b u l a r d e s i g n i s s t i l

v e r y much i n u s e , t h e demand f o r e x c h a n g e r s e n s u r i n g a h i g h h e a t t r a n s f e r

i n t e n s i t y i s i n c r e a s i n g . F o r examp le , i n t h e u n c o n v e n t i o n a l e v a p o r a t i o n c i r c u i t s

d i s c u s s e d i n t he p r e c e d i n g S e c t i o n , i t i s e s s e n t i a l t h a t t h e t e m p e r a t u r e o f

j u i c e r e t u r n e d t o t h e p r o c e s s i n g l i n e i s as c l o s e as p o s s i b l e t o t h e i n i t i a l

t e m p e r a t u r e . As a r u l e , p l a t e hea t e x c h a n g e r s a r e s e l e c t e d f o r t h i s a p p l i c a t i o n .

S t i l l a n o t h e r u s e f u l f e a t u r e o f t he p l a t e h e a t e x c h a n g e r s i s t h e i r compac tness ,

w h i c h makes them easy t o i n s t a l l i n a l i m i t e d s p a c e , t h i s b e i n g a c h a r a c t e r i s t i c

r e q u i r e m e n t o f f a c t o r y m o d e r n i z a t i o n s o r e x t e n s i o n s .

5.5 VACUUM PANS

5.5.1 B a t c h - t y p e u n i t s

The therma l a s p e c t s o f vacuum-pan d e s i g n were p r e l i m i n a r i l y d i s c u s s e d i n

S e c t i o n 3 . 3 . 2 . I t can be no ted t h a t a l a r g e o v e r a l l hea t t r a n s f e r c o e f f i c i e n t

and a l a r g e h e a t i n g s u r f a c e a r e a a re c e r t a i n l y d e s i r a b l e f e a t u r e s o f t h e b a t c h -

t y p e u n i t s . T a k i n g i n t o a c c o u n t t he e s s e n t i a l r o l e o f t h e b o i l i n g p r o c e s s i n

s u g a r m a n u f a c t u r e , h o w e v e r , o t h e r r e q u i r e m e n t s s h o u l d pe rhaps be g i v e n even

h i g h e r p r i o r i t y . Most o f a l l , t he vacuum pan s h o u l d e n s u r e a r e a s o n a b l y s h o r t

b o i l i n g t i m e , h i g h c r y s t a l y i e l d and h i g h c r y s t a l q u a l i t y . A c t u a l l y , t h e s e

f a c t o r s can a l s o be l i n k e d t o t h e e n e r g y demand:

- i n c r e a s e d c r y s t a l y i e l d r e s u l t s i n r e d u c e d m a s s e c u i t e c i r c u l a t i o n ;

- improved c r y s t a l q u a l i t y c o n t r i b u t e s t o b e t t e r c o n d i t i o n s f o r c e n t r i f u g i n g ;

i . e . , l o w e r w a t e r consumpt ion i n c e n t r i f u g a l s and t h u s a r e d u c e d amount o f

s y r u p s .

On t he b a s i s o f advances o f t h e t h e o r y o f c r y s t a l l i z a t i o n and accumu la ted

e x p e r i e n c e , t h e i n a d e q u a c i e s o f b a t c h vacuum pans a r e now r e l a t i v e l y w e l l

u n d e r s t o o d . The h e a t i n g s u r f a c e a r e a i s t y p i c a l l y t o o l a r g e d u r i n g t h e f i r s t

s t a g e o f t h e b o i l i n g c y c l e ( c f . S e c t i o n 1 . 3 . 5 ) . A h i g h w a t e r e v a p o r a t i o n r a t e

r e s u l t i n g f rom bubb le b o i l i n g causes t h e o c c u r r e n c e o f z o n e s o f t o o h i g h

s u p e r s a t u r a t i o n , where c r y s t a l c o n g l o m e r a t e s a r e c r e a t e d o r s e c o n d a r y n u c l e a t i o n

t a k e s p l a c e . I n t he r e g i o n s c l o s e t o t h e h e a t i n g s u r f a c e , where t h e t e m p e r a t u r e

i s h i g h e r , t he s o l u t i o n may be u n d e r s a t u r a t e d , c a u s i n g t h e c r y s t a l s t o d i s s o l v e .

As t he l o c a l p r o c e s s e s a r e i m p o s s i b l e t o c o n t r o l , t h e g r a n u l o m e t r i c d i s t r i b u t i o n

o f c r y s t a l s i s a d v e r s e l y a f f e c t e d .

D u r i n g t h e l a s t s t a g e o f t h e b o i l i n g c y c l e , t h e h e a t i n g s u r f a c e a r e a i s

u s u a l l y t o o s m a l l . The e v a p o r a t i o n r a t e i s i n s u f f i c i e n t t o m a i n t a i n t h e d e s i r e d

c o n c e n t r a t i o n g r a d i e n t i n t h e s o l u t i o n a t t h e s u r f a c e s o f c r y s t a l s .

The s i t u a t i o n can be improved i f an e f f i c i e n t s t i r r e r i s i n s t a l l e d i n t h e

vacuum p a n . D u r i n g s o l u t i o n t h i c k e n i n g and c r y s t a l f o r m a t i o n , i n t e n s i v e m i x i n g

Page 213: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

202

r e d u c e s t h e d a n g e r s o f l o c a l o v e r - and u n d e r - s a t u r a t i o n . I n t h e h i g h l y v i s c o u s

m a s s e c u i t e o b t a i n e d d u r i n g the l a s t s t a g e o f t h e b o i l i n g , t h e s t i r r e r h e l p s t o

i n c r e a s e t he c i r c u l a t i o n , t h i s i n c r e a s i n g t h e o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t

and i n t e n s i f y i n g t h e e v a p o r a t i o n . P o s i t i v e e f f e c t s can a l s o be o b t a i n e d by

chang ing t h e way t h e vacuum pan i s u t i l i z e d i n t h e s u g a r b o i l i n g p r o c e s s , t h a t

i s , by emp loy ing t h e c r y s t a l f o o t i n g t e c h n i q u e , i n t r o d u c i n g c o n t r o l l e d vacuum

c h a n g e s , e t c . ( r e f s . 3 5 , 3 6 ) ; t h e s e methods have been r e v i e w e d i n S e c t i o n 4 . 3 .

(a) (b) ( c )

F i g . 5 .11. Examples o f s t i r r e r a r rangemen ts i n b a t c h vacuum p a n s : ( a ) s t i r r e r w i t h i n c a l a n d r i a , i n w a r d c i r c u l a t i o n , ( b ) s t i r r e r above c a l a n d r i a , ou twa rd c i r c u l a t i o n , ( c ) s t i r r e r be low c a l a n d r i a , ou twa rd c i r c u l a t i o n ( a f t e r r e f . 3 6 ) .

I t s h o u l d be added t h a t a t p r e s e n t , t h e r e q u i r e m e n t s o f t h e c r y s t a l g r o w t h

s t a g e o f t h e b o i l i n g c y c l e a r e n o t f u l l y known. W h i l e r e s e a r c h i n t h i s a r e a

c o n t i n u e s , t he p r e s e n t s t a t e o f knowledge on t h e d e s i g n o f modern vacuum pans

can be summarized as f o l l o w s .

( i ) Among v a r i o u s t y p e s o f pans shown i n F i g . 5 .11 , t h e c a l a n d r i a d e s i g n s w i t h

ample downtakes and f l a t o r s t r e a m l i n e d bot toms a r e p r e f e r r e d t o o t h e r s o l u t i o n s

( r e f s . 3 6 , 3 7 ) .

( i i ) The hyd rodynam ics o f m a s s e c u i t e c i r c u l a t i o n seem t o be w e l l u n d e r s t o o d .

The o p t i m i z a t i o n o f l e n g t h and d i a m e t e r o f h e a t i n g t u b e s and t h e d i a m e t e r o f

t h e downtake has been s t u d i e d ( r e f s . 3 8 , 3 9 ) .

( i i i ) I t has t aken a l ong t ime t o a r r i v e a t a s a t i s f a c t o r y d e s i g n o f s t i r r e r

p r o p e l l e r s and a p r o p e r a r rangement o f n o z z l e s r e l a t i v e t o t h e s t i r r e r and t h e

h e a t i n g s u r f a c e ( F i g . 5 . 1 2 ) . The speed o f p r o p e l l e r r o t a t i o n i s c a r e f u l l y

s e l e c t e d , t o e n s u r e i n c r e a s e d hea t t r a n s f e r d u r i n g t h e l a s t s t a g e o f t h e b o i l i n g

c y c l e , w h i l e a l s o keep ing t h e power demand a t as low a l e v e l as p o s s i b l e ( r e f s .

3 6 , 4 0 ) .

The a d v a n t a g e s o f f o r c e d c i r c u l a t i o n a r e so e v i d e n t t h a t i t has become

p o p u l a r t o i n s t a l l s p e c i a l l y d e s i g n e d s t i r r e r s i n o l d , n a t u r a l - c i r c u l a t i o n

vacuum p a n s . I t has been p r o v e d by measurements made i n a vacuum pan i n s t a l l e d

i n Β s t r i k e t h a t such a s t i r r e r can i n c r e a s e t h e h e a t t r a n s f e r c o e f f i c i e n t

d u r i n g t h e f i n a l s t a g e o f b o i l i n g ( a t magma c o n c e n t r a t i o n 90-93% DS) by

100-400%, and s h o r t e n t h e b o i l i n g t ime by 1/3 ( r e f . 1 ) .

Page 214: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

203

F i g . 5 .12 . Deve lopment o f f o r c e d - c i r c u l a t i o n vacuum p a n s : ( a ) d e s i g n p r o p o s a l f rom 1896, ( b ) d e s i g n f rom 1949, ( c ) scheme o f a vacuum pan f o r a f t e r p r o d u c t b o i l i n g ( a f t e r r e f . 4 0 ) . 1 - j u i c e i n l e t , 2 - v a p o u r o u t l e t , 3 - m a s s e c u i t e o u t l e t , 4 - h e a t i n g chamber , ( 5 ) s t i r r e r .

As p r a c t i c a l e x p e r i e n c e p r o v e s , i f a s o p h i s t i c a t e d mechan ica l d e s i g n o f a

b a t c h vacuum pan i s combined w i t h e f f e c t i v e a u t o m a t i c b o i l i n g c o n t r o l s , t h e n

t h e r e s u l t s can be r e a l l y s a t i s f a c t o r y . N e v e r t h e l e s s , t h e s u g a r t e c h n o l o g i s t s

a re now aware o f t h e f a c t t h a t i n b a t c h p a n s , n o t h i n g more t han a t r a d e - o f f

between c o n f l i c t i n g r e q u i r e m e n t s o f d i f f e r e n t s t a g e s o f b o i l i n g can be a t t a i n e d .

S u b s t a n t i a l l y improved r e s p o n s e t o t he p r o c e s s r e q u i r e m e n t s can o n l y be e n s u r e d

i n c o n t i n u o u s vacuum p a n s .

5 .5 .2 C o n t i n u o u s u n i t s

I t has l ong been known t h a t t h e r e i s an e n e r g y - s a v i n g p o t e n t i a l i n c o n t i n u o u s

vacuum p a n s . One o f t h e r e a s o n s i s t h e i r i n h e r e n t a b i l i t y t o e l i m i n a t e t h e

f l u c t u a t i o n s o f t h e h e a t i n g v a p o u r demand. The r e s u l t i n g s t a b l e l o a d on t h e

e v a p o r a t o r s t a t i o n makes i t p o s s i b l e t o s t a b i l i z e t h i c k - j u i c e c o n c e n t r a t i o n and

t o a v o i d c o n d e n s e r l o s s e s e f f e c t i v e l y , w i t h r e d u c e d n e t h e a t demand as a r e s u l t .

A d i r e c t e n e r g y s a v i n g i s a l s o o b t a i n e d because s teaming a f t e r e v e r y

d i s c o n t i n u o u s b o i l i n g c y c l e i s no l o n g e r n e c e s s a r y . The advances i n b a t c h

vacuum-pan d e s i g n and h i g h l y e f f i c i e n t c o n t r o l s y s t e m s , h o w e v e r , made i t more

d i f f i c u l t f o r c o n t i n u o u s vacuum pans t o compete . D u r i n g t h e 1970s, v a r i o u s t y p e s

o f c o n t i n u o u s pans were t r i e d : g r o u p s o f i n t e r c o n n e c t e d b a t c h p a n s , h o r i z o n t a l

s i n g l e - o r m u l t i p l e - c o m p a r t m e n t u n i t s , c r y s t a l l i z a t i o n t o w e r , e t c . ( r e f s . 38,

4 1 - 4 4 ) . T h e r e were r e p o r t s t h a t s a t i s f a c t o r y o p e r a t i o n o f c e r t a i n d e s i g n s had

been o b t a i n e d , b u t m a i n l y on l o w - g r a d e s t r i k e s . Even t hough t h e number o f

c o n t i n u o u s pans was s l o w l y i n c r e a s i n g , t h e r e were a l s o r e p o r t s t h a t some o f them

Page 215: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

204

were taken o u t o f o p e r a t i o n because o f u n s a t i s f a c t o r y r e s u l t s ( r e f . 4 5 ) . Two

p rob lems p r o v e d t o be most d i f f i c u l t t o s o l v e :

- t h e p e r i o d f o r w h i c h c o n t i n u o u s o p e r a t i o n c o u l d be m a i n t a i n e d was r a t h e r

s h o r t , because o f i n c r u s t a t i o n s w i t h i n t h e u n i t , e s p e c i a l l y on h i g h - p u r i t y

m a s s e c u i t e s ;

- t he g r a n u l o m e t r i c d i s t r i b u t i o n o f c r y s t a l s was w i d e r than t h a t a t t a i n a b l e i n

w e l l o p e r a t e d , modern ba t ch p a n s .

As p o i n t e d o u t by Aus tmeyer and F r a n k e n f e l d ( r e f . 4 6 ) , i n p r a c t i c e no

c o n t i n u o u s vacuum pan c o u l d be s u c c e s s f u l l y implemented w i t h o u t c r y s t a l f o o t i n g .

I t seems now, h o w e v e r , t h a t accumu la ted e x p e r i e n c e i s b e g i n n i n g t o b r i n g

p o s i t i v e r e s u l t s . S e v e r a l u n i t s o f a w e l l known h o r i z o n t a l m u l t i p l e - c o m p a r t m e n t

d e s i g n (80 pans d e l i v e r e d o r o r d e r e d up t o 1986) a r e now o p e r a t e d w i t h c r y s t a l

f o o t i n g ( r e f . 2 5 ) . A u n i t r a t e d 31 t / h Β m a s s e c u i t e , w i t h h e a t i n g s u r f a c e a r e a o f

540 m^, i s s u p p l i e d w i t h 12.5 t / h seed magma. S i m i l a r a p p a r a t u s r a t e d a t

17.5 t / h C m a s s e c u i t e , w i t h a h e a t i n g s u r f a c e a r e a o f 754 m , i s s u p p l i e d w i t h

6.1 t / h seed magma. Bo th u n i t s a r e hea ted w i t h v a p o u r a t 100°C, o f w h i c h a p a r t

i s i n j e c t e d d i r e c t l y i n t o t h e magma w i t h t h e aim o f i m p r o v i n g c i r c u l a t i o n .

A summary o f o p e r a t i o n a l r e s u l t s can be f ound i n t h e l i t e r a t u r e ( r e f . 4 7 ) . As

t h e f l o w o f seed magma l a r g e r t han 30% o f t he vacuum pan o u t p u t i s a c l e a r

d i s a d v a n t a g e , r e s e a r c h i s under way t o r educe t h i s f i g u r e . T h e r e a r e r e p o r t s

t h a t by m o d i f y i n g pan d e s i g n and c o n t r o l p r i n c i p l e s , o p e r a t i o n w i t h l e s s than

5% seed magma w i l l be p o s s i b l e ( r e f . 4 8 ) .

From t h e d e s i g n p r i n c i p l e men t i oned a b o v e , a new v e r s i o n o f a h o r i z o n t a l

c o n t i n u o u s pan e v o l v e d i n Sou th A f r i c a ( r e f . 4 9 ) . On t he b a s i s o f p o s i t i v e

Φ 6.75m

F i g . 5 .13 , Scheme o f a c o n t i n u o u s vacuum p a n , o f L a n g r e n e y t y p e ( a f t e r r e f . 5 2 ) . 1 - s t a n d a r d l i q u o r , 2 - seed magma, 3 - m a s s e c u i t e , 4 - h e a t i n g s u r f a c e s , 5 - s t i r r e r .

Page 216: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

205

r e s u l t s o b t a i n e d i n the cane s u g a r i n d u s t r y , i t has r e c e n t l y been i n t r o d u c e d t o

a European b e e t s u g a r f a c t o r y ( r e f . 5 0 ) .

A n o t h e r h o r i z o n t a l s i n g l e - c o m p a r t m e n t d e s i g n was m o d i f i e d by a d o p t i n g a

c i r c u l a r shape o f v e s s e l w i t h a s t i r r e d o u t l e t s e c t i o n , as shown i n F i g . 5.13

( r e f s . 5 1 , 5 2 ) . The d i m e n s i o n s g i v e n i n t h e f i g u r e a p p l y t o a u n i t r a t e d a t

17 t / h C m a s s e c u i t e , w i t h h e a t i n g s u r f a c e a r e a o f 620 m^. I t i s n o r m a l l y

F i g . 5 .14. Scheme o f a c o n t i n u o u s vacuum p a n , o f BMA t y p e ( a f t e r r e f . 54) 1 - f e e d l i q u o r , 2 - seed magma, 3 - m a s s e c u i t e , 4 - v a p o u r , 5 - h e a t i n g s u r f a c e s , 6 - s t i r r e r s , 7 - s team.

Page 217: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

206

o p e r a t e d w i t h c r y s t a l f o o t i n g . Numerous a p p l i c a t i o n s o f t h i s u n i t a r e known i n

t he cane s u g a r i n d u s t r y ; i t i s a l s o used i n C s t r i k e i n a F r e n c h b e e t s u g a r

f a c t o r y ( r e f . 5 1 ) .

The t o w e r d e s i g n has r e c e n t l y been adop ted by a n o t h e r m a n u f a c t u r e r , and t h e

r e s u l t s seem t o be b e t t e r t h i s t i m e . The u n i t c o n s i s t s o f a cascade o f s e v e r a l

c r y s t a l l i z a t i o n chambers , where t h e m a s s e c u i t e f l o w s f rom t h e t o p t o w a r d s t h e

bot tom under g r a v i t y , as shown i n F i g . 5.14 ( r e f s . 3 6 , 5 3 , 5 4 ) . The d i m e n s i o n s

g i v e n i n t h e f i g u r e a p p l y t o a u n i t r a t e d a t 45 t / h A m a s s e c u i t e , w i t h a h e a t i n g

s u r f a c e a r e a o f 1590 m^. The seed and t h e f e e d s o l u t i o n a r e f e d c o n t i n u o u s l y

i n t o t h e f i r s t chamber ; p a r t o f t he f e e d s o l u t i o n i s a l s o f e d t o chambers 2

t o 4 . Each c r y s t a l l i z a t i o n chamber i s adap ted t o t h e o p e r a t i o n a l r e q u i r e m e n t s

o f t h e r e l e v a n t p a r t o f t he b o i l i n g c y c l e i n te rms o f v o l u m e , h e a t i n g s u r f a c e ,

s t i r r e r c h a r a c t e r i s t i c s , e t c . F o r examp le , t he s t i r r e r s used i n t h e upper

chambers a r e h i g h - s p e e d a g i t a t o r s , w h i l e t h o s e i n t h e l o w e r chambers a r e l o w -

speed t u r b i n e s t i r r e r s augment ing m a s s e c u i t e c i r c u l a t i o n . I n c r u s t a t i o n s f o r m i n g

i n c e r t a i n chambers can be removed i n d i v i d u a l l y w i t h o u t f u l l y i n t e r r u p t i n g

o p e r a t i o n o f t h e u n i t . The t o w e r i s hea ted w i t h v a p o u r a t 90°C and a h i g h h e a t

t r a n s f e r i n t e n s i t y i s m a i n t a i n e d by c o n t r o l l i n g t h e m a s s e c u i t e l e v e l s i n t h e

i n d i v i d u a l chambers .

The c r y s t a l l i z a t i o n t o w e r s a r e o p e r a t e d s u c c e s s f u l l y i n A s t r i k e i n a few

f a c t o r i e s i n FRG. A r e d u c t i o n o f steam demand by abou t 5% has been r e p o r t e d f rom

one f a c t o r y . A l t h o u g h c o r r e c t i o n s and improvements a r e s t i l l b e i n g i n t r o d u c e d

i n t o t h i s d e s i g n , t h e o p e r a t i o n a l r e s u l t s a r e s a t i s f a c t o r y ( r e f s . 5 5 , 5 6 ) . The

f l o w o f seed magma i s k e p t be low 20% o f t h e pan o u t p u t .

5.6 CENTRIFUGALS

5.6.1 I n t r o d u c t i o n

The d i r e c t i n f l u e n c e o f c e n t r i f u g a l s on t h e e n e r g y consumpt ion i n a f a c t o r y

i s a s s o c i a t e d w i t h e l e c t r i c i t y - c o n s u m i n g d r i v i n g m o t o r s . Even more i m p o r t a n t ,

h o w e v e r , i s t h e i n d i r e c t i n f l u e n c e a s s o c i a t e d w i t h t h e q u a l i t y o f c e n t r i f u g e d

s u g a r and w i t h t h e e f f i c i e n c y o f s y r u p s e p a r a t i o n , because t h e s e f a c t o r s a f f e c t

t he mass f l o w s and t h u s t h e o v e r a l l e n e r g y consumpt ion i n t h e s u g a r h o u s e . I n

t h e c o n t e m p o r a r y s u g a r i n d u s t r y , b o t h b a t c h and c o n t i n u o u s c e n t r i f u g a l s a r e i n

u s e . Modern d e s i g n s o f bo th mach ines a r e shown s c h e m a t i c a l l y i n F i g . 5 .15 . Each

o f them has i t s a d v a n t a g e s and d i s a d v a n t a g e s ; t h i s a p p l i e s t o e n e r g y p rob lems

as w e l l as t o o t h e r a s p e c t s o f s u g a r c e n t r i f u g i n g ( r e f . 5 7 ) .

5 .6 .2 B a t c h mach ines

The deve lopmen t o f b a t c h c e n t r i f u g a l s has f o r many y e a r s been c h a r a c t e r i z e d

by a t r e n d t o w a r d s b i g g e r b a s k e t s , i . e . i n c r e a s e d c a p a c i t y . T h i s i s t h e cause

o f t h e p rob lem w i t h l a r g e - c a p a c i t y i r r e g u l a r l y r u n n i n g e l e c t r i c a l d r i v e s

Page 218: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

207

F i g . 5 .15. Schemes o f c e n t r i f u g a l s : ( a ) b a t c h m a c h i n e , ( b ) c o n t i n u o u s mach ine . 1 - d r i v i n g m o t o r , 2 - b a s k e t , 3 - m a s s e c u i t e i n l e t , 4 - s u g a r o u t l e t , 5 -s y r u p - c o l l e c t i n g c a s i n g , 6 - s u g a r - c o l l e c t i n g c a s i n g , 7 - wash n o z z l e s .

ment ioned i n S e c t i o n 1 .4 .3 . D u r i n g t h e 1970s and 1980s, much e f f o r t was s p e n t on

t he deve lopment o f d r i v e s t h a t can work e f f i c i e n t l y a t t h e speed changes

c h a r a c t e r i s t i c o f t h e c e n t r i f u g i n g c y c l e .

Many fo rms o f e l e c t r i c a l d r i v e have been a p p l i e d t o t h e b a t c h m a c h i n e s . I n

t he 1970s, p o l e - c h a n g e a s y n c h r o n o u s a l t e r n a t i n g c u r r e n t mo to rs became v e r y

p o p u l a r . The p r i n c i p l e o f speed c o n t r o l can be seen i n t h e e q u a t i o n e x p r e s s i n g

t h e number o f r e v o l u t i o n s o f an a s y n c h r o n o u s motor ( i n rpm)

η = ( 6 0 f / p ) ( l - s ) ( 5 . 2 )

where f i s t h e s t a t o r f r e q u e n c y , ρ i s t h e number o f p o l e s , and s i s t h e motor

s l i p .

The s l i p can be d e f i n e d as

s = ( n ^ - n ) / n ^ ( 5 . 3 )

where n^ i s t h e s y n c h r o n o u s number o f r e v o l u t i o n s .

Page 219: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

208

S t a n d a r d s i n g l e - s p e e d a s y n c h r o n o u s moto rs c o n n e c t e d t o a f i x e d - f r e q u e n c y s o u r c e

have a l a r g e s l i p d u r i n g r u n n i n g - u p , t h i s b e i n g t h e cause o f e n e r g y l o s s e s . I n

p o l e - c h a n g e m o t o r s , m u l t i p l e w i n d i n g s w i t h d i f f e r e n t numbers o f p o l e s a r e

i n s t a l l e d . By s w i t c h i n g f rom one w i n d i n g t o a n o t h e r , s t e p - c h a n g e s o f t h e number

o f r e v o l u t i o n s can be o b t a i n e d . I n t h i s w a y , a v e r a g e s l i p and a s s o c i a t e d e n e r g y

l o s s e s d u r i n g r u n n i n g - u p can be r e d u c e d . By r e d u c i n g f o u r t o f i v e d i f f e r e n t

speeds r a t h e r than a s i n g l e - s p e e d m o t o r , l o s s e s can be r e d u c e d by 75-80%. I n

a d d i t i o n , e l e c t r i c a l r e g e n e r a t i v e b r a k i n g can be u t i l i z e d f o r p a r t i a l r e c o v e r y

o f t he k i n e t i c e n e r g y o f t h e mass b e i n g c e n t r i f u g e d .

Advances i n s e m i c o n d u c t o r t e c h n o l o g y made i t p o s s i b l e f o r d i r e c t c u r r e n t

d r i v e s t o become h i g h l y c o m p e t i t i v e i n r e c e n t y e a r s . The c o m p l i c a t e d and c o s t l y

Ward -Leona rd sys tems have been r e p l a c e d by s i m p l e and r o b u s t t h y r i s t o r -

c o n t r o l l e d d r i v e s ( r e f . 5 8 ) . As t h e d . c . motor i s n o t dependen t on c u r r e n t

f r e q u e n c y , t h e r e a r e no s l i p l o s s e s d u r i n g r u n n i n g - u p and b r a k i n g . More

e f f i c i e n t e n e r g y r e c o v e r y t e c h n i q u e s can a l s o be a p p l i e d i n d . c . d r i v e s . F o r

t h i s r e a s o n , t he d . c . motor uses l e s s e n e r g y t han a . c . mo to rs w i t h p o l e - c h a n g e .

A n o t h e r s o l u t i o n based on t h e a p p l i c a t i o n o f s e m i c o n d u c t o r d e v i c e s i s t h e

f r e q u e n c y c o n v e r t e r a . c . d r i v e ( r e f s . 5 9 , 6 0 ) . The speed c o n t r o l p r i n c i p l e

c o n s i s t s o f v a r y i n g t h e s t a t o r f r e q u e n c y ; i t i s a l s o n e c e s s a r y t o v a r y t h e

v o l t a g e p r o p o r t i o n a t e l y t o t h e f r e q u e n c y . The f r e q u e n c y c o n v e r t e r c o n v e r t s t h e

c o n s t a n t a l t e r n a t i n g q u a n t i t i e s o f t h e mains i n t o v a r i a b l e v a l u e s s u i t a b l e f o r

t h e speed s e t t i n g s o f t h e m o t o r . T h i s e n a b l e s t h e speed o f t h e motor t o be

i n f i n i t e l y v a r i a b l e . I f a c o n v e r t e r w i t h a d i r e c t c u r r e n t i n t e r m e d i a t e c i r c u i t

i s u s e d , t h e n e n e r g y r e c o v e r y when b r a k i n g i s p o s s i b l e w i t h o u t any a d d i t i o n a l

e f f o r t : t he motor i s s i m p l y o p e r a t i n g as a g e n e r a t o r and f e e d i n g e n e r g y back

i n t o t h e ma ins . The mains s i d e o f t h e c o n v e r t e r can a l s o be e q u i p p e d w i t h an

o s c i l l a t i o n c i r c u i t w h i c h compensates t h e b a s i c amount o f t h e c o n t r o l r e a c t i v e

powe r , t h u s e n s u r i n g a h i g h power f a c t o r .

The a v e r a g e e f f i c i e n c y o f t h e f r e q u e n c y c o n v e r t e r a . c . d r i v e i s comparab le

w i t h t h a t o f t h e d . c . d r i v e . The power d iag rams o f bo th d r i v e s i n a c e n t r i f u g i n g

c y c l e a r e compared i n F i g . 5.16 ( a f t e r r e f s . 5 8 - 6 0 ) .

Modern c e n t r i f u g a l d r i v e s a r e s u p p l i e d w i t h comp le te c o n t r o l s f o r t h e

t e c h n o l o g i c a l f l o w o f o p e r a t i o n s . E l e c t r o n i c c i r c u i t s t e n d t o d o m i n a t e , and

m i c r o p r o c e s s o r a p p l i c a t i o n s a r e i n c r e a s i n g l y f r e q u e n t . F o r t h e c y c l i c s e q u e n c e ,

a memory programmable c o n t r o l i s u t i l i z e d . I n many c a s e s , n o t o n l y i s t h e who le

c y c l e a u t o m a t i c b u t g r o u p s o f mach ines a r e a l s o a u t o m a t i c a l l y l i n k e d , f o r smooth

b a t t e r y o p e r a t i o n .

The b a t c h s u g a r c e n t r i f u g a l i s n e a r l y 150 y e a r s o l d . I t can now be c o n s i d e r e d

a v e r y t h o r o u g h l y d e v e l o p e d m a c h i n e , and f u r t h e r p r o g r e s s c o n s i s t s o f t h e

r e f i n e m e n t o f d e t a i l s . Among t he d e t a i l s w h i c h a re r e l a t e d t o e n e r g y p r o b l e m s .

Page 220: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

209

filling speeding up centrifuging braking discharging

F i g . 5 .16. Power - t ime d iagrams o f b a t c h c e n t r i f u g a l d r i v e s : ( a ) f r e q u e n c y c o n v e r t e r a . c . d r i v e , ( b ) d . c . d r i v e ( a f t e r r e f s . 5 8 - 6 0 ) . Shaded a r e a s i n d i c a t e e n e r g y r e c o v e r e d d u r i n g b r a k i n g .

wash sys tems s h o u l d be named. As a l r e a d y men t i oned i n S e c t i o n 1 .3 .4 , t h e

o p t i m i z a t i o n o f w a t e r wash i s i m p o r t a n t t o t h e e n e r g y consumpt ion i n t h e s u g a r

h o u s e . Modern wash sys tems s h o u l d t h e r e f o r e be f l e x i b l e enough t o make i t

p o s s i b l e t o o p t i m i z e t h e s p r a y g e o m e t r y , as w e l l as t h e t i m i n g and d u r a t i o n o f

t he wash . Examples o f c o n s i d e r a b l e improvements i n m a s s e c u i t e c i r c u l a t i o n

o b t a i n e d by wash o p t i m i z a t i o n can be f o u n d i n t h e l i t e r a t u r e ( r e f . 6 1 ) .

5 .6 .3 C o n t i n u o u s mach ines

Wi th r e s p e c t t o power demand, c o n t i n u o u s c e n t r i f u g a l s a r e c l e a r l y p r e f e r a b l e

t o b a t c h t y p e s . The d r i v e i s u s u a l l y f rom a s t a n d a r d a . c . m o t o r . The motor i s

smal l compared w i t h t h a t o f a b a t c h mach ine , s i n c e t h e h i g h a c c e l e r a t i n g /

d e c e l e r a t i n g l o a d s a r e no l o n g e r p r e s e n t .

The dom ina t i ng c o n t i n u o u s - a c t i o n d e s i g n p r i n c i p l e i s t h a t o f a v e r t i c a l - a x i s ,

c o n e - b a s k e t mach ine . The pe r f o rmance o f t h e c o n t e m p o r a r y c o n t i n u o u s c e n t r i f u g a l

i n l o w - g r a d e s t a t i o n s i s u s u a l l y e q u i v a l e n t t o t h a t o f t h e b a t c h mach ine . I n

t he c e n t r i f u g i n g o f h i g h - p u r i t y m a s s e c u i t e s , h o w e v e r , t h e c o n t i n u o u s c e n t r i f u g a l

i s g e n e r a l l y i n f e r i o r t o t h e b a t c h one ( r e f . 6 2 ) . I n c e r t a i n a p p l i c a t i o n s ,

c o n t i n u o u s c e n t r i f u g i n g i s f o l l o w e d by a f i n i s h i n g c r y s t a l t r e a t m e n t i n b a t c h

mach ines .

The main d i s a d v a n t a g e o f c o n t i n u o u s c e n t r i f u g i n g i s t h e c r y s t a l damage

r e s u l t i n g f rom c o l l i s i o n s o f c r y s t a l s , e j e c t e d a t a h i g h s p e e d , w i t h t h e s u g a r -

Page 221: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

210

c o l l e c t i n g c a s i n g . T h i s has a d i r e c t d e t r i m e n t a l e f f e c t on t h e g r a n u l o m e t r i c

d i s t r i b u t i o n o f c r y s t a l s ; i n d i r e c t l y , i n c r e a s e d m a s s e c u i t e c i r c u l a t i o n i n t h e

s u g a r house can be a r e s u l t . F o l l o w i n g y e a r s o f r e s e a r c h work on t h i s p rob lem

( r e f s . 2 5 , 6 3 ) , a t l e a s t one m a n u f a c t u r e r i s now o f f e r i n g a d e v i c e w h i c h can be

i n s t a l l e d i n c o n t i n u o u s mach ines t o r educe c r y s t a l damage. Formed as a wheel

p l a c e d between t h e baske t and t h e c a s i n g , i t i s r o t a t e d a t a speed l o w e r t han

t h a t o f t h e b a s k e t ( r e f . 6 4 ) .

A n o t h e r p rob lem i s t h a t t h e wash a c t s d i f f e r e n t l y i n a c o n t i n u o u s m a c h i n e ,

so t h e wash c o n t r o l canno t be q u i t e so f i n e as w i t h a w e l l d e s i g n e d b a t c h

mach ine . The s i t u a t i o n improves as work on t h e r e f i n e m e n t o f wash sys tems and

o t h e r d e t a i l s c o n t i n u e s . T a k i n g i n t o a c c o u n t t h a t t h e c o n t i n u o u s machine i s 50

y e a r s y o u n g e r t han t he b a t c h o n e , i t seems t h a t i t s e n e r g y - s a v i n g p o t e n t i a l has

n o t y e t been f u l l y u t i l i z e d .

REFERENCES

1 E. R e i n e f e l d , Über d i e Kampagne 1981, Z u c k e r i n d . , 107(5) (1982) 369-380. 2 C . Longue E p e e , L e c t u r e p r e s e n t e d a t t h e I n t e r n a t i o n a l E x h i b i t i o n

SVEKLOVODSTVO, K i e v , May 1986. 3 Anonymous, Le t a p i s - e c h a n g e u r j u s - c o s s e t t e du t y p e DE SMET, S u c r . B e i g e ,

103 (1985) 12. 4 G . V . G e n i e , E n e r g y s a v i n g t h r o u g h more e f f i c i e n t b e e t d i f f u s e r s , Z u c k e r i n d . ,

108(7) (1983) 643-647. 5 Τ . B a l o h , V e r f a h r e n s t e c h n i s c h e D a r s t e l l u n g d e r E x t r a k t i o n , Ζ . Z u c k e r i n d . ,

27 (6 ) (1977) 363-372. 6 G . V . G e n i e , J u i c e e x t r a c t i o n i n t he b e e t s u g a r f a c t o r y . Sugar T e c h . R e v . ,

9 ( 2 ) (1982) 119-270. 7 G . V . G e n i e , Computer s i m u l a t i o n o f s t e p w i s e d i f f u s e r s , Z u c k e r i n d . ,

109(5) (1984) 456-460. 8 G . V . G e n i e , Computer s i m u l a t i o n and mathemat i ca l m o d e l l i n g o f d i f f u s i o n ,

Z u c k e r i n d . , 111(2) (1986) 149-154. 9 R . F . Madsen and W. Ko fod N i e l s e n , D i e Kampagne 1977 i n d e r " A / S De Danske

S u k k e r f a b r i k k e r " , Z u c k e r i n d . , 103(10) (1978) 831-839. 10 S . V . M a r k i t a n ( e t a l . ) , Nag rev c i r k u l i r u y u s h c h e g o soka pa rokon tak tnym

sposobom, Sakh . P r o m . , ( 9 ) (1980) 43-46. 11 K. Vukov and I . S i p o s , V e r s u c h e z u r e n e r g i e s p a r e n d e r E rhöhung d e r g e w i n n

ba ren Zuckermenge be i d e r R ü b e n e x t r a k t i o n , Paper p r e s e n t e d a t t h e I n t e r n a t i o n a l C o n f e r e n c e " Improvement o f t h e Bee t Suga r P r o d u c t i o n " , Warszawa, May 1987.

12 P. V a l e n t i n , D i e A b h ä n g i g k e i t des H e i z w ä r m e b e d a r f s von H e i z f 1 ä c h e n g r ö s s e und R o h s a f t a b z u g , Z u c k e r i n d . , 104(8) (1979) 695-701.

13 P. Mosel ( e t a l . ) , O p t i m i e r u n g von E i n d i c k u n g s p r o z e s s e n i n d e r Z u c k e r i n d u s t r i e , Z u c k e r i n d . , 104(12) (1979) 1101-1106.

14 A . A . Knyazev and V . N . G o r o k h , V l i y a n i e u d e l n o i p l o s h c h a d i p o v e r k h n o s t i n a g r e v a v y p a r n o i u s t a n o v k i na r a s k h o d t e p l o v o i e n e r g i i d l y a t e k h n o l o g i c h e s k i k h nuzhd s v e k l o s a k h a r n o g o z a v o d a , Sakh . P r o m . , ( 3 ) (1976) 41-43 .

15 T . B a l o h , O p t i m i e r u n g von Z u c k e r f a b r i k s a n l a g e n u n t e r B e r ü c k s i c h t i g u n g des E n e r g i e h a u s h a l t s , Z u c k e r , 29(10) (1976) 541-548.

16 K. V u k o v , I . Körmendy and H.M. L o k o , A u f e n t h a l t s z e i t und S a f t v e r f ä r b u n g i n e i n e r V e r d a m p f s t a t i o n , Z u c k e r i n d . , 108(12) (1983) 1144-1149.

17 S . Z a g r o d z k i and A . K u b a s i e w i c z , Hea t economy i n b e e t s u g a r f a c t o r y e v a p o r a t i o n . Sugar T e c h . R e v . , 5 ( 1 / 2 ) (1977/78) 1-154.

18 P. T o b e , F a l l i n g - f i l m e v a p o r a t o r s f o r t h e cane s u g a r i n d u s t r y , W i e g a n d , E t t l i n g e n , 1986.

Page 222: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

211

19 U . C u r d t s , L e c t u r e p r e s e n t e d a t t h e I n t e r n a t i o n a l C o n f e r e n c e " Improvement o f t h e B e e t Sugar P r o d u c t i o n " , Warszawa, May 1987.

20 A . K u b a s i e w i c z , W y p a r k i . K o n s t r u k c j a i O b l i c z a n i e , WNT, Warszawa, 1977. 21 Anonymous, S e p a r a t e u r s de g o u t t e s EUROFORM pou r i n s t a l l a t i o n s d ' e v a p o r a t i o n

dans 1 ' i n d u s t r i e s u c r i e r e , S u c r . F r . , 118(June 1977) 262-265. 22 J . Kwasn iak , P o l i s h P a t e n t 79 895. 23 D.M. Humm, E n t r a i n m e n t s e p a r a t o r s f o r vacuum pans and e v a p o r a t o r s . Sugar J . ,

44(12) (1982) 8-14. 24 E. R e i n e f e l d , Über d i e Kampagne 1984, Z u c k e r i n d . , 110(5) (1985) 367-377. 25 Ε . R e i n e f e l d , Über d i e Kampagne 1985, Z u c k e r i n d . , 111(4) (1986) 303-313. 26 T e c h n i c a l i n f o r m a t i o n f rom Wiegand , i n : F . O . L i c h t s Yearbook and D i r e c t o r y ,

R a t z e b u r g , 1983, p p . H71-H74. 27 P. V e r m e u l e n , Sa f t e i ndamp fung m i t t e l s T r o c k n u n g s a b g a s be i dessen R e i n i g u n g ,

Z u c k e r i n d . , 110(8) (1985) 681-685. 28 W. L e k a w s k i , p e r s o n a l commun ica t i on . 29 Ε . Hess and H . v . Mal l a n d , E i n d i c k u n g s a n l a g e f ü r Rohzucke r 2 - A b l a u f ,

Z u c k e r i n d . , 109(4) (1985) 295-300. 30 N . R . T w a i t e , H . J . D a v e n p o r t and E . K . M a c d o n a l d , E n e r g y r e d u c t i o n and p r o c e s s

i n t e g r a t i o n . I n t . Suga r J . , 88(1055) (1986) 217-219, 88(1056) (1986) 230-236.

31 Ν. L o f t , p e r s o n a l commun i ca t i on . 32 A . A . Pochechun ( e t a l . ) , P r o i z v o d s t v e n n y e i s p y t a n i y a s e k t s i o n n o g o p o d o g r e v a

t e l y a soka p e r e d I I s a t u r a t s i e i , Sakh . P r o m . , ( 2 ) (1983) 43-45 . 33 Y u . S . R a z l a d i n ( e t a l . ) , Nagrev d i f f u z i o n n o g o soka ν s e k t s i o n n y k h a p p a r a t a k h

d l y a z a v o d a moshchnos tyu 6 t y s . t , Sakh . P r o m . , ( 1 ) (1984) 35-38. 34 V . G . B e l i k ( e t a l . ) , S e k t s i o n n y e p o d o g r e v a t e l i , Sakh . P r o m . , ( 6 ) (1986)

35-37. 35 H. S c h i w e c k , M ö g l i c h k e i t e n z u r Senkung des E n e r g i e b e d a r f s im Z u c k e r h a u s ,

Z u c k e r , 30(10) (1977) 525-535. 36 K . E . A u s t m e y e r , A n a l y s i s o f s u g a r b o i l i n g and i t s t e c h n i c a l c o n s e q u e n c e s .

I n t . Sugar J . , 88 ( 1 9 8 6 ) , P a r t I (1045) 3 - 7 , P a r t I I (1046) 23-29 , P a r t I I I (1047) 50-55.

37 C h . M o l l e r , Sugar b o i l i n g t h e o r y and p r a c t i c e . I n t . Sugar J . , 85(1045) (1983) 163-165.

38 E. H u g o t , Handbook o f Cane Sugar E n g i n e e r i n g , 3 r d e d n . , E l s e v i e r , Amsterdam, 1986.

39 H . N . Gupta and S . J . Pande, Optimum d e s i g n o f a vacuum p a n . I n t . Sugar J . , 88(1048) (1986) 66-68.

40 E r f a h r u n g e n m i t R ü h r w e r k s - A p p a r a t e n , Z u c k e r i n d . , 105(3) (1980) 227-244. 41 Μ. D m i t r o v s k i and A . Η . Kokke, US P a t e n t 3 981 739. 42 A . G e n a r t , I n s t a l l a t i o n d ' u n c r i s t a l 1 i s e u r c o n t i n u a l a R a f f i n e r i e N o t r e -

Dame a O r e y e , S u c r . B e i g e , 98(11) (1979) 337-345. 43 F. L a n g r e n e y , E r s t e E r g e b n i s s e des k o n t i n u i e r l i c h a r b e i t e n d e n E i n d a m p f -

k r i s t a l l i s a t o r s , B a u a r t " L a n g r e n e y " , Z . Z u c k e r i n d . , 26(12) (1976) 772-776. 44 W. W o z n i a k i e w i c z and M. W i e k l u k , P o l i s h P a t e n t 54 086. 45 K. T e s c h , E r f a h r u n g e n m i t R ü h r w e r k s - K o c h a p p a r a t e n i n d e r Z u c k e r f a b r i k

O c h s e n f u r t , Z u c k e r i n d . , 105(3) (1980) 240-242. 46 K . E . Aus tmeyer and T h . F r a n k e n f e l d , Der Weg z u r k o n t i n u i e r l i c h e n K r i s t a l l

f u s s g e w i n n u n g , Z u c k e r i n d . , 112(1) (1987) 36-45 . 47 H. H e r o l d , K o n s t r u k t i o n und A r b e i t s w e i s e d e r k o n t i n u i e r l i c h e n Kochappa ra te

von F i v e s - C a i l Babcock i n E l s d o r f , Z u c k e r i n d . , 112(2) (1987) 118-122. 48 Anonymous, Seed ing a c o n t i n u o u s vacuum pan w i t h l e s s t h a n 10% magma,

Z u c k e r i n d . , 112(3) (1987) 211. 49 P.W. R e i n , E x p e r i e n c e w i t h c o n t i n u o u s vacuum pans i n T o n g a a t - H u l e t t S u g a r ,

I n t . Sugar J . , 89(1058) (1987) 28-34. 50 H . - E . U e c k e r , K o n t i n u i e r l i c h e r K o c h a p p a r a t B a u a r t T o n g a a t - H u l e t t ,

Z u c k e r i n d . , 112(3) (1987) 202-203. 51 F . L a n g r e n e y , Le p o i n t s u r l e c r i s t a l 1 i s e u r c o n t i n u non c o m p a r t i m e n t e ,

I n d . A l i m . A g r i e , 102(7 -8 ) (1985) 673-678.

Page 223: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

212

52 Anonymous, Le c r i s t a l 1 i s e u r c o n t i n u ( L i c . L a n g r e n e y ) a l a S u c r e r i e de M a r i e , I n d . A l i m . A g r i e , 102(7-8 ) (1985) 713-717.

53 Ε . R e i n e f e l d , Über d i e Kampagne 1983, Z u c k e r i n d . , 109(5) (1984) 399-411. 54 E . D . B o s s e , A new e v a p o - c r y s t a l 1 i z a t i o n t o w e r f o r w h i t e s u g a r and low raw

p r o d u c t s . Sugar y A z ú c a r , 8 1 ( 5 ) (1986) 33-56. 55 Κ. Her rman , Neue Systeme z u r k o n t i n u i e r l i c h e n K o c h a r b e i t - BMA-Verdampfungs-

K r i s t a l l i s a t i o n s t u r m , Z u c k e r i n d . , 112(4) (1987) 277-280. 56 J . Be low , D ie V K T - A n l a g e i n L e h r t e , Z u c k e r i n d . , 112(4) (1987) 280-284. 57 J . O . S m i t h , Recen t p r o g r e s s i n s u g a r c e n t r i f u g i n g . Sugar T e c h . R e v . ,

4 ( 1 ) (1976/77) 49-87 . 58 Η. G r a s s , S p e z i a l a n t r i e b e f ü r d i e Z u c k e r i n d u s t r i e , Z u c k e r i n d . , 107(9) (1982)

863-868. 59 H. G r a s s , D i e E n t w i c k l u n g e l e k t r i s c h e r Z u c k e r z e n t r i f u g e n a n t r i e b e ,

Z u c k e r i n d . , 110(2) (1985) 132-136. 60 T e c h n i c a l i n f o r m a t i o n f rom Fe i t en&Gu i1 leaume E n e r g i e t e c h n i k , Nordenham,

1985. 61 E. R e i n e f e l d , Über d i e Kampagne 1982, Z u c k e r i n d . , 108(4) (1983) 307-319. 62 P. C r e d o z , J . Ledoux and G . J o u r n e t , The deve lopmen t o f c o n t i n u o u s

c e n t r i f u g i n g i n t h e f i e l d o f h i g h - p u r i t y s u g a r s , Sugar y A z ú c a r , 75 (2 ) (1980) 34-42 .

63 Ε . R e i n e f e l d , Über d i e Kampagne 1980, Z u c k e r i n d . , 106(5) (1981) 397-407. 64 Anonymous, K r i s t a l l r a d z u r V e r r i n g e r u n g von K r i s t a l 1bruch i n k o n t i n u i e r l i

chen Z e n t r i f u g e n , Z u c k e r i n d . , 112(1) (1987) 34.

Page 224: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

213

C h a p t e r 6

AUTOMATIC CONTROL FOR E F F I C I E N T ENERGY U T I L I Z A T I O N

6.1 SCOPE OF THE PROBLEMS

A u t o m a t i c p r o c e s s c o n t r o l i s i n d i s p e n s a b l e t o t h e c o n t e m p o r a r y s u g a r

i n d u s t r y . When imp lement ing o p t i m i z e d p r o c e s s e s o r p u t t i n g improved equ ipment

i n t o o p e r a t i o n , t h e a u t o m a t i c c o n t r o l o f t e n p l a y s a l e a d i n g r o l e i n e n s u r i n g

t h a t t h e i n t e n t i o n s o f a t e c h n o l o g i s t o r an equ ipment d e s i g n e r become a r e a l i t y .

To a l a r g e e x t e n t , t h i s i s a l s o t r u e i n t h e case o f improvements i n t r o d u c e d i n t o

t h e e n e r g y economy.

T h i s C h a p t e r p r e s e n t s a r e v i e w o f t h e a p p l i c a t i o n s o f a u t o m a t i c c o n t r o l t h a t

a r e p a r t i c u l a r l y u s e f u l i n o p t i m i z i n g e n e r g y c o n v e r s i o n and u t i l i z a t i o n i n t h e

s u g a r f a c t o r y . A c t u a l l y , t h e f u n c t i o n i n g o f a u t o m a t i c c o n t r o l s can be r e l a t e d t o

t h e e n e r g y economy i n a v a r i e t y o f w a y s . To b e g i n w i t h , examples can be named o f

a u t o m a t i c c i r c u i t s c o n t r o l l i n g e n e r g y p r o c e s s e s d i r e c t l y , such as combus t i on

c o n t r o l i n a b o i l e r o r i n a p u l p d r y i n g f u r n a c e ( r e f . 1 ) . T h i s t y p e o f c o n t r o l

a p p l i c a t i o n w i l l n o t be d i s c u s s e d h e r e , h o w e v e r , as i t i s n o t s p e c i f i c t o t h e

s u g a r i n d u s t r y .

A n o t h e r g roup o f a u t o m a t i c c o n t r o l c i r c u i t s s e r v e s t h e p u r p o s e o f s t a b i l i z i n g

p r o c e s s p a r a m e t e r s , w h i c h has some i n f l u e n c e on t h e e n e r g y demand o f t h e

p r o c e s s e s a f f e c t e d . T h i s can be e x e m p l i f i e d by t h e a u t o m a t i c c o n t r o l o f m i l k - o f -

l ime d e n s i t y and m i l k - o f - l i m e f l o w t o t h e j u i c e p u r i f i c a t i o n s t a t i o n . H e r e , t he

s e t t i n g s a r e a l w a y s a r r a n g e d t o e n s u r e t h e CaO doses r e q u i r e d by t h e j u i c e

p u r i f i c a t i o n p r o c e s s . C o n s e q u e n t l y , t he amount o f e x c e s s w a t e r i n t r o d u c e d i n

m i l k - o f - l i m e t o t h e p r o c e s s v a r i e s depend ing on t h e q u a l i t y o f t h e a u t o m a t i c

c o n t r o l , w i t h v a r y i n g hea t demand i n t h e e v a p o r a t i o n p r o c e s s as a r e s u l t . I n

p r i n c i p l e , a u t o m a t i c c o n t r o l s o f t h i s k i n d need n o t be d i s c u s s e d i n g r e a t e r

d e t a i l , as t h e e n e r g y - r e l a t e d r e q u i r e m e n t s on t h e i r o p e r a t i o n a r e r a t h e r

o b v i o u s . One p o s s i b l e e x c e p t i o n i s t h e f l o w c o n t r o l , e s p e c i a l l y i n a p p l i c a t i o n s

c o n c e r n e d w i t h l a r g e f l u i d s t r e a m s . I n t h i s c a s e , t h e w o r k i n g p r i n c i p l e o f t h e

c o n t r o l module may d i r e c t l y i n f l u e n c e t h e power demand o f f l u i d pumping under

chang ing f l o w s .

C e r t a i n c o n t r o l sys tems can be r e l a t e d t o t h e e n e r g y economy because t h e y

a f f e c t p o s s i b l e f l u c t u a t i o n s o f steam and v a p o u r f l o w s i n t h e the rma l s y s t e m .

Such f l u c t u a t i o n s can i n d u c e e x t r a hea t l o s s e s c h a r a c t e r i s t i c o f t r a n s i e n t

s t a t e s o f t h e e v a p o r a t o r , w i t h a d e t r i m e n t a l e f f e c t on t h e t i m e - a v e r a g e d

e f f e c t i v e n e s s r a t i o o f t h e the rma l s y s t e m . L e t us n o t e t h a t t h e r e a r e examples

o f a u t o m a t i c c o n t r o l s m a i n l y s e r v i n g t h e p u r p o s e o f s t a b i l i z a t i o n o f f l o w s o f

p r o c e s s med ia , l i k e t h e sys tem o f c o o r d i n a t i o n o f f l o w s i n t h e j u i c e

Page 225: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

214

p u r i f i c a t i o n s t a t i o n , o r t h e sys tem o f c o o r d i n a t i o n o f b a t c h equ ipment o p e r a t i o n

i n t he s u g a r h o u s e . A p p l i c a t i o n s o f such sys tems r e s u l t i n s t a b l e hea t demand i n

r e s p e c t i v e s e c t i o n s o f t h e s u g a r m a n u f a c t u r i n g p r o c e s s , l e a d i n g t o r e g u l a r i z e d

e v a p o r a t o r o p e r a t i o n .

P a r t i c u l a r l y i m p o r t a n t a p p l i c a t i o n s o f a u t o m a t i c c o n t r o l a re c o n c e r n e d w i t h

p r o c e s s e s i n w h i c h t h e r e q u i r e m e n t s o f s u g a r m a n u f a c t u r e a r e l i n k e d t o g e t h e r

w i t h t h o s e o f e n e r g y economy. I t was p o i n t e d o u t i n t h e p r e c e d i n g c h a p t e r s t h a t

t h e r e q u i r e m e n t s b e l o n g i n g t o t h e s e two g r o u p s o f t e n c o n f l i c t . The way such

c o n f l i c t s a r e r e s o l v e d may d e p e n d , t o a l a r g e e x t e n t , on t h e c o n t r o l s ys tem

a p p l i e d . The a s s o c i a t e d m u l t i v a r i a b l e , m u l t i - o b j e c t i v e c o n t r o l p rob lems a r e

o f t e n v e r y d i f f i c u l t t o s o l v e , h o w e v e r . T h i s s t i m u l a t e s t h e use o f computer

t e c h n o l o g y , w h i c h i s p a r t i c u l a r l y w e l l s u i t e d t o complex c o n t r o l t a s k s .

I t can be c o n c l u d e d f rom t h e above i n t r o d u c t i o n t h a t v a r i o u s a s p e c t s o f

a u t o m a t i c c o n t r o l and v a r i o u s c o n t r o l a p p l i c a t i o n s may a f f e c t t h e e f f i c i e n c y o f

e n e r g y u t i l i z a t i o n i n a s u g a r f a c t o r y . I n t h e s u b s e q u e n t S e c t i o n s , s i x d i f f e r e n t

p rob lem a r e a s a r e d i s c u s s e d :

- deve lopment o f compu te r -based c o n t r o l s y s t e m s ;

- f l o w c o n t r o l u s i n g v a r i a b l e speed d r i v e s ;

- e x t r a c t i o n c o n t r o l ;

- e v a p o r a t i o n c o n t r o l ;

- s u g a r c r y s t a l l i z a t i o n c o n t r o l ;

- p u l p d r y i n g c o n t r o l .

6 .2 COMPUTER-BASED CONTROL SYSTEMS

I t i s c h a r a c t e r i s t i c o f c o n v e n t i o n a l c o n t r o l t e c h n o l o g y t h a t t h e app roach t o

a p p l i c a t i o n s c o n s i s t s o f i d e n t i f y i n g n e c e s s a r y c o n t r o l f u n c t i o n s and s e l e c t i n g

s u i t a b l e c o n t r o l modules w h i c h add up t o a s y s t e m . I n t h e case o f a complex

c o n t r o l t a s k , a m u l t i t u d e o f c o n t r o l modules o r a s p e c i a l i z e d c o n t r o l l e r must be

a p p l i e d . F o r t h i s r e a s o n , such t a s k s may be v e r y c o s t l y t o au tomate .

The a d v e n t o f d i g i t a l computers made i t p o s s i b l e t o change t h e c o n v e n t i o n a l

a p p r o a c h . I n s t e a d o f p e r f e c t i n g t h e sys tem by a d d i n g , each t i m e , modules f o r

a d d i t i o n a l f u n c t i o n s , a s i n g l e module - t h a t i s , t h e c e n t r a l p r o c e s s o r o f t h e

computer - can be u t i l i z e d f o r i n f o r m a t i o n p r o c e s s i n g . A l l t h e n e c e s s a r y

o p e r a t i o n s , i n c l u d i n g c o m p u t a t i o n s , a r e c a r r i e d o u t s e q u e n t i a l l y a c c o r d i n g t o

a p r e - e s t a b l i s h e d p rog ram. The speed o f t h e computer i s u s u a l l y h i g h enough t o

f o l l o w t h e e v o l u t i o n o f s i g n a l s coming f rom t h e i n s t a l l a t i o n b e i n g c o n t r o l l e d .

T h e r e a re numerous examples o f c o m p u t e r - o r m i c r o p r o c e s s o r - b a s e d sys tems

e f f e c t i v e l y r e p l a c i n g c o n v e n t i o n a l l o o p s c o n t r o l l i n g combus t i on i n b o i l e r s and

p u l p d r y i n g f u r n a c e s , d e l i v e r y o f m a t e r i a l s t o l ime k i l n s , m i l k - o f - l i m e f l o w t o

j u i c e p u r i f i c a t i o n , o p e r a t i o n o f f i l t e r s t a t i o n s , c o o r d i n a t i o n o f f l o w s i n t h e

Page 226: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

215

m a n u f a c t u r i n g l i n e between e x t r a c t i o n and e v a p o r a t i o n , e t c . { r e f s . 2 - 9 ) .

S i g n i f i c a n t e n e r g y s a v i n g s r e s u l t i n g f rom improved c o n t r o l have been r e p o r t e d i n

some c a s e s ( r e f s . 2 , 3 , 8 ) .

Owing t o t h e deve lopment o f ha rdware and s o f t w a r e , t h e computer i s no l o n g e r

s o l e l y a d a t a p r o c e s s i n g machine b u t a l s o an e n g i n e e r i n g t o o l c a p a b l e o f

c o n t r o l l i n g complex i n s t a l l a t i o n s , as w e l l as c o l l e c t i n g d a t a f o r d i r e c t

management o f t h e p r o c e s s o r f o r t r a n s m i s s i o n t o o t h e r c o m p u t e r s . T h i s

s t i m u l a t e s n o t o n l y t he r e p l a c e m e n t o f c o n v e n t i o n a l c o n t r o l l o o p s by compu te r -

c o n t r o l l e d equ ipmen t , b u t a l s o t h e deve lopmen t o f d a t a a c q u i s i t i o n , t r a n s m i s s i o n

and p r o c e s s i n g sys tems t h a t c o u l d n o t e x i s t w i t h o u t computer t e c h n o l o g y . Two

p o s s i b l e p r i n c i p l e s o f a r c h i t e c t u r e o f complex c o m p u t e r - b a s e d c o n t r o l sys tems

a r e shown i n F i g . 6 .1 . The f u n c t i o n s o f such sys tems can be t a i l o r e d t o t h e

needs o f i n d i v i d u a l s t a t i o n s , p r o c e s s s e c t i o n s o r even an e n t i r e f a c t o r y and can

i n c l u d e a u t o m a t i c p r o c e s s c o n t r o l as w e l l as d a t a m o n i t o r i n g , p r o c e s s i n g and

r e c o r d i n g , h a n d l i n g o f a l a r m s , e t c .

(Q)

PROCESS

(b)

PROCESS

F i g . 6 .1 . Schemes o f complex c o m p u t e r - b a s e d c o n t r o l s y s t e m s : ( a ) h i e r a r c h i c a l s y s t e m , ( b ) d i s t r i b u t e d s y s t e m . 1 - s u p e r v i s o r y c o m p u t e r , 2 - dua l p r o c e s s c o n t r o l compu te r , 3 - d i s k s t o r a g e , 4 - c o n t r o l l o o p s , 5 - l o c a l c o n t r o l c o m p u t e r s , 6 - l o c a l a r e a n e t w o r k s i n c l u d i n g m u l t i p l e c o n t r o l l o o p s , 7 - i n p u t / o u t p u t i n t e r f a c e , 8 - d a t a b u s , 9 - d a t a commun ica t ion l i n k .

The impo r tance o f computer t e c h n o l o g y t o t h e d e s i g n and o p e r a t i o n o f s u g a r

f a c t o r i e s has been d i s c u s s e d e l s e w h e r e ( r e f s . 1 0 - 1 9 ) . C o n c e r n i n g e n e r g y economy,

new p o s s i b i l i t i e s o f improved e n e r g y u t i l i z a t i o n a r e d e r i v e d f rom t h e f o l l o w i n g

f e a t u r e s o f c o m p u t e r - b a s e d c o n t r o l s y s t e m s :

- i n t e g r a t i o n o f c o n t r o l o f i n d i v i d u a l s t a t i o n s , w i t h i n t e r a c t i o n s between them

taken i n t o a c c o u n t ;

Page 227: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

216

- i n t e g r a t i o n o f management and u t i l i z a t i o n o f d a t a o r i g i n a t i n g f rom v a r i o u s

s o u r c e s , such as t h e l a b o r a t o r y , a u t o m a t i c measur ing i n s t r u m e n t s , c o u n t e r s ,

f a c t o r y r e c o r d s , e t c .

I t i s f e l t t h a t t h e s e new p o s s i b i l i t i e s have n o t y e t been f u l l y r e a l i z e d .

Examples o f t h e i r u t i l i z a t i o n a r e men t ioned i n t h e s u b s e q u e n t S e c t i o n s and i n

C h a p t e r 7.

6.3 FLOW CONTROL USING VARIABLE SPEED DRIVES

6.3.1 I n t r o d u c t i o n

I t has a l r e a d y been men t ioned i n S e c t i o n 1.4.3 t h a t t h e d r i v e s o f pumps, f a n s

and compresso rs a r e t y p i c a l l y r e s p o n s i b l e f o r abou t 60% o f t h e e l e c t r i c a l e n e r g y

consumed i n a s u g a r f a c t o r y . Among the l a r g e s t power consumers , t h e f o l l o w i n g

mach ines can be named:

- b o i l e r f e e d pumps;

- b e e t pumps;

- main j u i c e pumps i n t h e j u i c e p u r i f i c a t i o n s t a t i o n ;

- w a s t e - w a t e r pumps;

- f o r c i n g f a n s and e x h a u s t f a n s i n t h e b o i l e r h o u s e ;

- mechan ica l v a p o u r c o m p r e s s o r s ;

- a i r f a n s i n l o w - t e m p e r a t u r e p u l p d r y e r s .

As t h e p r o c e s s i n g c a p a b i l i t y o f t h e f a c t o r y o r t h e t h r o u g h p u t s o f t h e i n d i v i d u a l

s t a t i o n s v a r y , t h e f l o w s o f media d e l i v e r e d by pumps and f a n s a r e v a r i e d t o o .

T h i s i s e n s u r e d by a u t o m a t i c modules w h i c h a d j u s t t h e f l o w s t o t he r e q u i r e d

v a l u e s . W i th t h e f l o w c o n t r o l methods w i d e l y a p p l i e d , t he most economica l

o p e r a t i o n o f t h e sys tem c o m p r i s i n g t h e mach ine , i t s d r i v e and t h e c o n t r o l module

i s a c h i e v e d a t t h e maximum f l o w . A t r e d u c e d f l o w , e n e r g y d i s s i p a t i o n t a k e s p l a c e

i n t h e sys tem and t h e d r i v e consumes more power t han r e a l l y n e c e s s a r y .

U s i n g v a r i a b l e speed c o n t r o l , t h e power consumed by t he d r i v e o f a pump o r

a f a n can be m i n i m i z e d f o r any f l o w v a l u e . The a t t a i n a b l e s a v i n g depends on t h e

c o n t r o l method r e p l a c e d ; t y p i c a l l y , i t i s o f t h e o r d e r o f 20-40% o f t h e

e l e c t r i c a l e n e r g y consumed by t h e d r i v e d u r i n g t h e e n t i r e o p e r a t i o n .

6 .3 .2 Pump d r i v e s

The t a s k o f t h e pump a t a g i v e n l i q u i d f l o w i s t o g e n e r a t e a p r e s s u r e h i g h

enough t o overcome the p r e s u r e l o s s i n t h e h y d r a u l i c sys tem t o w h i c h t h e l i q u i d

i s d e l i v e r e d . The p r e s s u r e l o s s i s an a p p r o x i m a t e l y q u a d r a t i c f u n c t i o n o f t h e

f l o w , w h i l e t h e p r e s s u r e g e n e r a t e d by a r o t o d y n a m i c pump a t a c o n s t a n t r a t e o f

r e v o l u t i o n depends on t h e f l o w , a c c o r d i n g t o t h e pump c h a r a c t e r i s t i c s .

C o n s e q u e n t l y , t h e p r e s s u r e e q u i l i b r i u m between an u n c o n t r o l l e d pump and t h e

h y d r a u l i c sys tem i s o b t a i n e d a t a d e f i n i t e f l o w v a l u e , as shown i n F i g . 6 . 2 .

When the r e q u i r e d f l o w d e v i a t e s f rom t h e e q u i l i b r i u m v a l u e , i t i s n e c e s s a r y t o

Page 228: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

217

Flow ( k g / s )

F i g . 6 . 2 . Pump c h a r a c t e r i s t i c s ( 1 ) and p r e s s u r e l o s s i n a h y d r a u l i c sys tem ( 2 ) . Hs - s t a t i c h e a d , - dynamic h e a d , Η - e f f e c t i v e h e a d , G - e q u i l i b r i u m f l o w . Dashed l i n e s i n d i c a t e pump c h a r a c t e r i s t i c s a t d i f f e r e n t r a t e s o f r e v o l u t i o n .

overcome the mismatch between t h e c h a r a c t e r i s t i c s o f t h e pump and t h a t o f t h e

h y d r a u l i c s y s t e m .

U s i n g a b y - p a s s c o n t r o l , a d i f f e r e n c e i s c r e a t e d between t h e f l o w o f l i q u i d

p a s s i n g t h r o u g h t h e pump and t h e f l o w o f t h e l i q u i d d e l i v e r e d t o t h e s y s t e m .

The pump i s o p e r a t e d a t a f l o w l a r g e r than r e a l l y n e e d e d , and t h e e x c e s s l i q u i d

i s r e c i r c u l a t e d t o t h e s u c t i o n n o z z l e . T h i s i s accompanied by e n e r g y d i s s i p a t i o n

i n t he b y - p a s s v a l v e . The power consumed by t h e pump d r i v e can be e x p r e s s e d as

= ( G ^ + G ^ ) g H / n b = N^,^ + ( 6 . 1 )

where G^ i s t h e mass f l o w o f l i q u i d d e l i v e r e d t o t h e h y d r a u l i c s y s t e m , G^ i s t h e

mass f l o w o f r e c i r c u l a t e d l i q u i d , g i s t h e a c c e l e r a t i o n o f g r a v i t y , Η i s t h e

e f f e c t i v e pump h e a d , x]^ i s t h e pump e f f i c i e n c y , i s t h e power consumed t o

d e l i v e r t h e f l o w o f l i q u i d r e a l l y n e e d e d , and i s t h e power l o s t by l i q u i d

r e c i r c u l a t i o n .

A method w h i c h i s by f a r t h e most p o p u l a r i n t h e s u g a r i n d u s t r y c o n s i s t s o f

f l o w c o n t r o l by t h r o t t l i n g . U s i n g a t h r o t t l i n g v a l v e i n s t a l l e d between t h e

d i s c h a r g e n o z z l e o f t he pump and t h e h y d r a u l i c s y s t e m , t h e dynamic head can be

changed and t h u s a d i f f e r e n c e can be c r e a t e d between t h e p r e s s u r e g e n e r a t e d by

t he pump and t he p r e s s u r e a t t h e sys tem i n l e t . The pump i s o p e r a t e d a t an

e f f e c t i v e head l a r g e r t han r e a l l y n e e d e d , w h i c h i s accompanied by e n e r g y

d i s s i p a t i o n i n t h e t h r o t t l i n g v a l v e . The power consumed by t h e pump d r i v e can be

e x p r e s s e d as

\ = G^g (H + H ^ / n ^ = N^^ + ( 6 . 2 )

where i s t h e e f f e c t i v e head l o s t by t h r o t t l i n g , i s t h e pump e f f i c i e n c y ,

N^^ i s t he power consumed t o d e l i v e r mass f l o w G ^ a t e f f e c t i v e head H , and N-j i s

t he power l o s t by t h r o t t l i n g . I t s h o u l d be n o t e d t h a t i s d i f f e r e n t f rom τ]^

because t h e pump i s o p e r a t e d a t a n o t h e r r e g i o n o f i t s c h a r a c t e r i s t i c s .

T y p i c a l l y , t h e e f f i c i e n c y o f a r o t o d y n a m i c pump o p e r a t e d a t c o n s t a n t speed

Page 229: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

218

d e c r e a s e s when moving away f rom t h e nominal o p e r a t i n g c o n d i t i o n s , t h i s

c o n t r i b u t i n g t o t he e n e r g y d i s s i p a t i o n i n d u c e d by t h e t h r o t t l i n g c o n t r o l .

The e n e r g y d i s s i p a t i o n e f f e c t s c h a r a c t e r i s t i c o f t h e f l o w c o n t r o l methods

d i s c u s s e d above can be e l i m i n a t e d by u s i n g a v a r i a b l e speed c o n t r o l . I t s

p r i n c i p l e can be seen i n F i g . 6 . 2 , where pump c h a r a c t e r i s t i c s c o r r e s p o n d i n g t o

d i f f e r e n t speeds a r e i n d i c a t e d by dashed l i n e s . By v a r y i n g t h e r e v o l u t i o n r a t e

o f t h e pump i m p e l l e r , t he e f f e c t i v e pump head can be n e a r l y i d e a l l y a d j u s t e d t o

t h e c h a r a c t e r i s t i c s o f t he h y d r a u l i c s y s t e m . C o n s e q u e n t l y , t h e pump d r i v e

consumes o n l y as much power as r e a l l y needed t o d e l i v e r t h e r e q u i r e d f l o w o f t h e

l i q u i d . A n o t h e r advan tage o f a v a r i a b l e r e v o l u t i o n speed i s t h a t t h e e f f i c i e n c y

o f t h e pump d e v i a t e s o n l y n e g l i g i b l y f rom i t s maximum v a l u e . A compar i son o f

power consumpt ion f o r v a r i a b l e speed c o n t r o l and t h r o t t l i n g c o n t r o l i s shown i n

F i g . 6 . 3 .

100

- 80 c

o I 60 3 § AO

20

0 20 AO 60 80 100 Flow ( 7 · )

F i g . 6 . 3 . Power consumed by a pump d r i v e a t v a r i a b l e f l o w . 1 - c o n t r o l by t h r o t t l i n g , 2 - v a r i a b l e speed c o n t r o l .

I n a s p e c i f i c a p p l i c a t i o n , t he e n e r g y s a v i n g w h i c h can be a t t a i n e d by u s i n g

v a r i a b l e speed c o n t r o l depends on t h e l o a d c h a r a c t e r i s t i c s o f t h e pump. The

f e a s i b i l i t y o f t he method i s a m a t t e r o f e c o n o m i c s , as t h e v a l u e o f e n e r g y saved

s h o u l d be we ighed a g a i n s t t h e i n c r e a s e d i n v e s t m e n t c o s t o f t h e d r i v e ( r e f . 2 0 ) .

6 .3 .3 Fan d r i v e s

The f l o w o f gas d e l i v e r e d by a f a n can a l s o be v a r i e d by u s i n g a b y - p a s s o r

t h r o t t l i n g c o n t r o l a c c o r d i n g t o t h e p r i n c i p l e s d i s c u s s e d i n t h e p r e c e d i n g

S e c t i o n ; one p o s s i b l e d i f f e r e n c e i s t h a t t h e t h r o t t l i n g v a l v e can be i n s t a l l e d

i n t h e s u c t i o n l i n e o f t h e f a n . A n o t h e r c o n t r o l method used i n c o n n e c t i o n w i t h

l a r g e - c a p a c i t y f a n s o p e r a t e d a t c o n s t a n t speed employs t h e p o s i t i o n i n g o f i n l e t

Page 230: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

219

g u i d e vanes f o r a v a r i a b l e p e r i p h e r a l component o f t h e gas v e l o c i t y a t i n l e t .

A c c o r d i n g t o E u l e r ' s pump and t u r b i n e e q u a t i o n , t h e t h e o r e t i c a l head can be

e x p r e s s e d as

"2 "2u l ^ l u ^ ( 6 . 3 )

where u i s t h e v e l o c i t y o f t r a n s p o r t a t i o n a t t h e mean r o t o r d i a m e t e r , c^ i s

t h e p e r i p h e r a l component o f t h e gas v e l o c i t y , and t h e s u b s c r i p t s deno te 1 -

i n l e t and 2 - o u t l e t ; g i s t h e a c c e l e r a t i o n o f g r a v i t y .

As can be s e e n , t he t h e o r e t i c a l head - and t h u s t h e e f f e c t i v e head t o o - v a r i e s

as c ^^ i s v a r i e d . When t h e a n g l e o f i n c l i n a t i o n o f t h e i n l e t g u i d e vanes i s

changed , t he gas f l o w e n t e r i n g t h e f a n r o t o r i s a l s o c h a n g e d . T h i s c o n t r o l

method i s more economica l t han c o n t r o l by t h r o t t l i n g , p a r t i c u l a r l y a t f l o w s

s m a l l e r t han 70-75% o f t h e maximum v a l u e .

S i m i l a r l y t o t h e case o f t h e pump, h o w e v e r , i t i s v a r i a b l e speed c o n t r o l

w h i c h e n s u r e s t h e most e n e r g y - e f f i c i e n t f a n o p e r a t i o n . A compar i son o f power

consumpt ion c u r v e s r e p r e s e n t i n g t h r e e d i f f e r e n t c o n t r o l methods i s shown i n

F i g . 6 . 4 . O b v i o u s l y , t h e f e a s i b i l i t y o f v a r i a b l e speed c o n t r o l i n a s p e c i f i c f a n

a p p l i c a t i o n depends on economic f a c t o r s ( r e f . 2 0 ) .

20 40 60 Flow ( " /«)

80 100

F i g . 6 . 4 . Power consumed by a f a n d r i v e a t v a r i a b l e f l o w . 1 - c o n t r o l by t h r o t t l i n g , 2 - p o s i t i o n i n g o f i n l e t g u i d e v a n e s , 3 - v a r i a b l e s p e e d .

6.4 EXTRACTION CONTROL

The dynamic r e s p o n s e o f t h e e x t r a c t i o n p r o c e s s p e r f o r m e d i n c o n t e m p o r a r y

c o n t i n u o u s e x t r a c t o r s i s v e r y s l o w . U s i n g c o n v e n t i o n a l c o n t r o l c i r c u i t s , t h e

t ime span between s e t - p o i n t a d j u s t m e n t and a t t a i n m e n t o f a d e s i r e d r e s u l t i s o f

t h e o r d e r o f s e v e r a l h o u r s . M a i n l y f o r t h i s r e a s o n , a human o p e r a t o r i s o f t e n

unab le t o c o n t r o l t h e e x t r a c t i o n p r o c e s s v e r y e f f e c t i v e l y , a l t h o u g h good r e s u l t s

can c e r t a i n l y be a c h i e v e d by e x p e r i e n c e d p e r s o n n e l . I f a d i s t u r b a n c e , such as

t o o l a r g e a j u i c e d r a f t , i s d e t e c t e d , t h e n s e v e r a l h o u r s may be needed t o b r i n g

t he s i t u a t i o n back t o n o r m a l . I n t h e meant ime, t h e f a c t o r y must be o p e r a t e d

Page 231: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

220

under abnormal c o n d i t i o n s i n d u c i n g an e x c e s s i v e h e a t c o n s u m p t i o n .

E f f e c t i v e e x t r a c t i o n c o n t r o l can be e n s u r e d i f t h e c o n v e n t i o n a l c o n t r o l l e r s

a r e r e p l a c e d by a compu te r -based c o n t r o l s y s t e m . T h i s makes i t p o s s i b l e t o

m o n i t o r t h e t r e n d s o f pa rame te rs measured and t o employ c o n t r o l a l g o r i t h m s

p r e v e n t i n g u n d e s i r a b l e s i t u a t i o n s . The s t a b i l i z a t i o n o f e x t r a c t i o n pa rame te r s

f a c i l i t a t e s e f f i c i e n t e n e r g y usage i n t h e e n t i r e s u g a r m a n u f a c t u r i n g p r o c e s s .

I f a d i s t u r b a n c e o c c u r s , t h e computer i s a b l e t o r e s t o r e t h e d e s i r e d paramete r

reg ime more q u i c k l y than a human o p e r a t o r .

V a r i o u s e x t r a c t o r t y p e s men t ioned i n S e c t i o n 5.2 r e q u i r e d i f f e r e n t app roaches

t o t h e i r c o n t r o l . The e s s e n t i a l f e a t u r e s o f c o n t r o l sys tems used i n c o n n e c t i o n

w i t h t o w e r , drum and m o v i n g - b e d e x t r a c t o r s have been p r e s e n t e d i n t h e l i t e r a t u r e

( r e f s . 1 4 , 2 1 , 2 2 ) . C o n t r o l o f t h e t r o u g h e x t r a c t o r i s p a r t i c u l a r l y s i m p l e , and

can be summarized he re f o r i l l u s t r a t i o n p u r p o s e s . An o u t l i n e o f a t r o u g h

e x t r a c t o r , w i t h i n d i c a t i o n s o f t h e measured and c o n t r o l l e d p a r a m e t e r s , i s g i v e n

i n F i g . 6 .5 . The i n p u t s a r e as f o l l o w s ( r e f . 6 ) :

- l e v e l s i n b e e t s i l o ;

- b e l t w e i g h e r on b e l t f o r c o s s e t t e s ;

- c o s s e t t e s l e v e l a t j u i c e e n d ;

- 4 b u b b l e - t u b e l e v e l s a t i n t e r m e d i a t e p o i n t s i n t h e t r o u g h ;

- f r e s h - w a t e r f l o w ;

- p r e s s - w a t e r f l o w ;

- l e v e l i n p r e s s - w a t e r t a n k .

The e s s e n t i a l t a s k o f t he c o n t r o l sys tem i s t o keep t h e l e v e l o f t h e c o s s e t t e s

Speed control of slicing machines

Speed control of h e l i c e s ^

^ Θ— Juice flow control

Press water and fresh water flow control

Temperature control

F i g . 6 . 5 . Work ing p r i n c i p l e o f t h e a u t o m a t i c c o n t r o l o f a t r o u g h e x t r a c t o r ( a f t e r r e f . 6 ) . P o i n t s o f measurements : C - r a t e o f d e l i v e r y o f c o s s e t t e s , L0 -L6 - l e v e l s , T 0 - T 5 - t e m p e r a t u r e s , F l and F2 - f l o w s .

Page 232: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

221

i n t he e x t r a c t o r s a t i s f a c t o r y under a l l c o n d i t i o n s . I n a d d i t i o n , t h e computer

t a k e s c a r e o f t h e t e m p e r a t u r e c o n t r o l , as w e l l as o f t h e s t a r t - u p and s h u t - d o w n

p r o c e d u r e s , i n c l u d i n g s t a r t i n g and s t o p p i n g o f a l l m o t o r s , open ing and c l o s i n g

o f main v a p o u r v a l v e , e t c .

The computer can a l s o be c h a r g e d w i t h d r a f t o p t i m i z a t i o n . T h i s p rob lem

o r i g i n a t e s f rom t h e f a c t t h a t t h e d r a f t and t he s u g a r l o s s i n e x h a u s t e d

c o s s e t t e s a r e i n t e r r e l a t e d . The i n f l u e n c e o f t h e d r a f t on e n e r g y demand can be

c a l c u l a t e d f rom t h e e v a p o r a t o r hea t b a l a n c e . The s u g a r c o n c e n t r a t i o n i n

e x h a u s t e d c o s s e t t e s can be e x p r e s s e d u s i n g S i l i n ' s f o r m u l a

b^ = ( ( a - l ) b ^ / ( a e x p ( ( ( a - 1 ) / a ) ( A T L x / y ) ) - 1) ( 6 . 4 )

where a i s t h e j u i c e d r a f t , b^ i s t h e s u g a r c o n c e n t r a t i o n i n t h e incoming

c o s s e t t e s , A i s a c h a r a c t e r i s t i c c o n s t a n t , Τ i s t h e a b s o l u t e t e m p e r a t u r e , L i s

t he l e n g t h o f 100 g c o s s e t t e s , τ i s t h e e x t r a c t i o n t i m e , and μ i s t h e j u i c e

v i s c o s i t y .

F o r g i v e n p r i c e s o f s u g a r and f u e l , i t t h u s becomes p o s s i b l e t o e x p r e s s t h e

v a l u e o f s u g a r l o s t i n e x h a u s t e d c o s s e t t e s , and t h e v a l u e o f t h e n e c e s s a r y

e n e r g y i n p u t , as f u n c t i o n s o f t he j u i c e d r a f t . T h i s makes i t p o s s i b l e t o

d e t e r m i n e t h e op t ima l d r a f t v a l u e .

A more r e l i a b l e d e t e r m i n a t i o n o f t h e s u g a r l o s s can be a c h i e v e d u s i n g o n - l i n e

measurements o f t h e s u g a r c o n t e n t o f t h e p r e s s w a t e r . Examples a r e a l s o known o f

t h e a p p l i c a t i o n s o f i n d u s t r i a l r e f r a c t o m e t e r s w i t h a u t o m a t i c j u i c e samp l i ng f o r

o n - l i n e measurements o f t h e j u i c e c o n c e n t r a t i o n . F u r t h e r m o r e , t h e o p t i m i z a t i o n

model can be e x t e n d e d t o i n c o r p o r a t e t h e consequences o f t h e e x t r a c t i o n o f

n o n s u g a r s , by p r e d i c t i n g t h e d i s t r i b u t i o n o f t h e e x t r a c t e d s u g a r between w h i t e

s u g a r and m o l a s s e s . I n t h i s c a s e , t h e op t ima l d r a f t depends a l s o on t h e p r i c e o f

m o l a s s e s .

Summaries o f o p e r a t i o n a l r e s u l t s o b t a i n e d w i t h c o m p u t e r - b a s e d e x t r a c t i o n

c o n t r o l can be f o u n d i n t h e l i t e r a t u r e ( r e f s . 2 1 , 2 3 ) . The r e p o r t e d r e d u c t i o n s o f

t h e j u i c e d r a f t a r e o f t h e o r d e r o f 1-2%.

6.5 EVAPORATION CONTROL

I t f o l l o w s f rom t h e c h a r a c t e r i s t i c s o f t h e the rma l sys tem t h a t two a s p e c t s o f

a u t o m a t i c e v a p o r a t i o n c o n t r o l a r e p a r t i c u l a r l y i m p o r t a n t t o t h e e n e r g y economy,

namely e f f e c t i v e s t a b i l i z a t i o n o f t h e c o n c e n t r a t i o n o f t h i c k j u i c e , and

e f f e c t i v e s t a b i l i z a t i o n o f v a p o u r p r e s s u r e s i n t h e i n d i v i d u a l e v a p o r a t o r

e f f e c t s . As p o i n t e d o u t by Z a g r o d z k i t h r e e decades ago ( r e f . 2 4 ) , p r e s s u r e

s t a b i l i z a t i o n i n t h e e f f e c t f rom w h i c h v a p o u r i s w i t h d r a w n f o r vacuum-pan

h e a t i n g i s a d e c i s i v e f a c t o r i n e n s u r i n g s t a b l e e v a p o r a t o r o p e r a t i o n .

O t h e r c o n t r o l r e q u i r e m e n t s a r e l i n k e d t o t h e c h a r a c t e r i s t i c f e a t u r e s o f t h e

m u l t i p l e - e f f e c t e v a p o r a t o r s t a t i o n . I t i s e s s e n t i a l t o e n s u r e economica l

Page 233: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

222

Operation o f t he ind iv idua l e f f e c t s , t h a t i s , t o maintain optimal c o n d i t i o n s f o r

hea t t r a n s f e r and t o m in im i ze s u c r o s e d e c a y . C o n c e r n i n g t h e p r o c e s s d y n a m i c s ,

f l e x i b l e a d a p t a t i o n o f t h e e v a p o r a t i n g c a p a c i t y o f t h e e n t i r e s t a t i o n t o

changes i n t h e f l o w o f t h i n j u i c e e n t e r i n g t h e e v a p o r a t o r i s p r i m a r i l y r e q u i r e d .

When p e r f o r m i n g t he n e c e s s a r y f u n c t i o n s , t h e a u t o m a t i c c o n t r o l sys tem s h o u l d

be a b l e t o e l i m i n a t e d i s t u r b a n c e s r e s u l t i n g f rom f l u c t u a t i o n s o f t h e f o l l o w i n g

q u a n t i t i e s :

- t h i n j u i c e f l o w and c o n c e n t r a t i o n ;

- j u i c e l e v e l s i n t h e e v a p o r a t o r b o d i e s ;

- h e a t i n g v a p o u r demand ( e s p e c i a l l y v a p o u r w i t h d r a w n f o r vacuum-pan h e a t i n g ) .

To t h e g e n e r a l r e q u i r e m e n t s l i s t e d a b o v e , v a r i o u s e x t e n s i o n s can be added

depend ing on t h e t y p e o f e v a p o r a t o r emp loyed . F o r examp le , t h e R o b e r t t y p e and

f a l l i n g - f i l m e v a p o r a t o r s a r e p r e f e r a b l y f e e d - c o n t r o l l e d , w h i l e t h e c l i m b i n g - f i l m

e v a p o r a t o r must be p r o v i d e d w i t h a h y d r a u l i c s e a l a t t h e o u t l e t , t h i s i m p l y i n g

d i s c h a r g e c o n t r o l . M o r e o v e r , owing t o t h e d i f f e r e n c e s i n j u i c e vo lumes

c o n t a i n e d , t h e dynamic r e s p o n s e o f t h e t h i n - f i l m e v a p o r a t o r s i s s e v e r a l t imes

f a s t e r t han t h a t o f t h e R o b e r t e v a p o r a t o r s .

The m u l t i t u d e o f r e q u i r e m e n t s c h a r a c t e r i z i n g v a r i o u s e v a p o r a t o r s t a t i o n s can

be met o n l y by a p p l y i n g v a r i o u s c o n t r o l s y s t e m s . T y p i c a l s o l u t i o n s a r e r e v i e w e d

e l s e w h e r e ( r e f s . 2 5 - 2 7 ) . The p r o c e s s e s t o be c o n t r o l l e d a r e v e r y comp lex ,

h o w e v e r , as t h e y c o n s i s t o f i n t e r r e l a t e d r a p i d phenomena o f h e a t t r a n s f e r and

r e l a t i v e l y s l o w phenomena o f mass t r a n s f e r . F o r t h i s r e a s o n , i t may be d i f f i c u l t

t o a t t a i n s a t i s f a c t o r y r e s u l t s w i t h t y p i c a l c o n t r o l s y s t e m s , and t h e v a r i a t i o n s

f ound i n p r a c t i c e seem t o be i n f i n i t e . T h i s can be e x e m p l i f i e d by a u t o m a t i c

c o n t r o l o f t h e c o n c e n t r a t i o n o f t h i c k j u i c e . Fou r d i f f e r e n t s o l u t i o n s a r e shown

s c h e m a t i c a l l y i n F i g . 6 . 6 . The sys tems under ( a ) , ( b ) and ( c ) a r e t o o p r i m i t i v e

t o p e r f o r m s a t i s f a c t o r i l y under a l l c o n d i t i o n s . B e t t e r r e s u l t s can be o b t a i n e d

w i t h t he f o u r t h s y s t e m , i n w h i c h t h e f l o w o f v a p o u r f rom t h e l a s t e v a p o r a t o r

e f f e c t i s measured and compared w i t h t h e r e q u i r e d v a l u e d e t e r m i n e d on t h e b a s i s

o f measurements o f j u i c e fow and c o n c e n t r a t i o n b e f o r e t h e l a s t e f f e c t . T h i s

p r i n c i p l e can be a l s o m o d i f i e d by i n t r o d u c i n g a c o r r e c t i o n o f t h e r e q u i r e d

v a p o u r f l o w depend ing on t h i c k - j u i c e c o n c e n t r a t i o n measured .

I t may be added t h a t even more complex sys tems o f s t a b i l i z a t i o n o f t h i c k -

j u i c e c o n c e n t r a t i o n a r e e n c o u n t e r e d i n p r a c t i c e . A t r e q u i r e d c o n c e n t r a t i o n

v a l u e s a p p r o a c h i n g 75% DS, due w e i g h t s h o u l d be g i v e n t o t h e s a f e t y r e q u i r e m e n t

c o n c e r n e d w i t h t h e r i s k o f t h i c k j u i c e becoming s u p e r s a t u r a t e d . As t h e s t a t e o f

s a t u r a t i o n depends on j u i c e t e m p e r a t u r e , a d d i t i o n a l measurements become

n e c e s s a r y and e x t e n d e d d e c i s i o n - m a k i n g must be i n c l u d e d i n t h e c o n t r o l

a l g o r i t h m .

A l t h o u g h good r e s u l t s can be o b t a i n e d u s i n g c o n v e n t i o n a l e v a p o r a t o r c o n t r o l .

Page 234: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

223

(α)

to condenser

η -βίο) to condenser

F i g . 6 .6 . P o s s i b l e s o l u t i o n s o f t h e a u t o m a t i c c o n t r o l o f t h i c k - j u i c e c o n c e n t r a t i o n : ( a ) t h i c k - j u i c e r e c i r c u l a t i o n , ( b ) t h i n - j u i c e b y - p a s s , ( c ) v a r i a b l e p r e s s u r e i n t h e l a s t e v a p o r a t o r e f f e c t , ( d ) v a r i a b l e v a p o u r f l o w f rom n e x t t o t h e l a s t e f f e c t t o t h e c o n d e n s e r . D, F - measurements o f d e n s i t y and f l o w , r e s p e c t i v e l y ; R, C - r e g i s t r a t i o n and c o n t r o l , r e s p e c t i v e l y ; U F , FFRC - e lements r e s p o n s i b l e f o r t h e c o m p u t a t i o n o f r e q u i r e d f l o w v a l u e and t he compar i son between a c t u a l and r e q u i r e d f l o w v a l u e s , r e s p e c t i v e l y .

Page 235: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

224

t h e above example can be seen as an i n d i c a t i o n o f t he f a c t t h a t e f f e c t i v e

c o n t r o l a l g o r i t h m s must be q u i t e c o m p l i c a t e d , and t h e i r i m p l e m e n t a t i o n u s i n g

c o n v e n t i o n a l c o n t r o l t e c h n o l o g y may be r a t h e r c o s t l y . F o r t h i s r e a s o n , c o m p u t e r -

based e v a p o r a t o r c o n t r o l i s now g a i n i n g p o p u l a r i t y ( r e f s . 1 , 3 , 1 4 , 2 2 ) . A s o l u t i o n

r e c e n t l y implemented i n a s e x t u p l e - e f f e c t e v a p o r a t o r can be c i t e d as an example

( r e f . 2 8 ) . The f u n c t i o n s pe r f o rmed by t h e computer p rogram a r e l o g i c a l l y d i v i d e d

i n t o t h r e e modu les .

( i ) P r e s s u r e c o n t r o l .

( i i ) S u p p r e s s i o n o f f l u c t u a t i o n s o f j u i c e c o n c e n t r a t i o n .

( i i i ) S t a b i l i z a t i o n o f t h i c k - j u i c e c o n c e n t r a t i o n a t a p r e d e t e r m i n e d l e v e l .

The l o c a t i o n s o f t h e c o n t r o l v a l v e s i n t h e e v a p o r a t o r scheme and t h e p o i n t s o f

measurement o f t h e e s s e n t i a l v a r i a b l e s a r e shown s c h e m a t i c a l l y i n F i g . 6 . 7 .

Module ( i ) i s r e s p o n s i b l e f o r a d j u s t m e n t s o f t h e p o s i t i o n o f t h e b y - p a s s v a l v e

between f i r s t - and f o u r t h - e f f e c t v a p o u r , as w e l l as o f t h e p o s i t i o n s o f t h e

v a l v e s on v a p o u r l i n e s c o n n e c t e d t o t h e c o n d e n s e r . Module ( i i ) a d j u s t s t h e

p o s i t i o n o f t he v a l v e c o n t r o l l i n g t h i n - j u i c e f l o w t o t h e i n l e t o f t h e f o u r t h

e f f e c t . The t h i r d module c o n t r o l s t h e b y - p a s s f l o w o f f o u r t h - t o s i x t h - e f f e c t

v a p o u r and t he f l o w o f s i x t h - e f f e c t v a p o u r t o t h e c o n d e n s e r . I f t h e

c o n c e n t r a t i o n o f t h i c k j u i c e t e n d s t o be t o o l o w , t h e b y - p a s s v a l v e c l o s e s and

t h e v a p o u r f l o w t o t h e c o n d e n s e r i s i n c r e a s e d . I n t h e o p p o s i t e c a s e , t h e b y - p a s s

f l o w i s i n c r e a s e d , t h i s be ing e q u i v a l e n t t o " n e g a t i v e c o n d e n s a t i o n " o f s i x t h -

e f f e c t v a p o u r .

I n t o t a l , t h e sys tem u t i l i z e s 28 ana log i n p u t s ( f l o w s , p r e s s u r e s and

c o n c e n t r a t i o n s ) , 6 b i n a r y i n p u t s ( s t a t e o f a c t i v a t i o n o f c o n t r o l f u n c t i o n s ) and

6 ana log o u t p u t s ( v a r i a b l e s c o n t r o l l e d ) .

thin juice

1 2 3 U 5 6

lb

to ^^condenser

thick juice

F i g . 6 . 7 . Work ing p r i n c i p l e o f t h e a u t o m a t i c c o n t r o l o f a s e x t u p l e - e f f e c t e v a p o r a t o r ( a f t e r r e f . 2 8 ) . P o i n t s o f measurement : a -d - f l o w s , e and f -c o n c e n t r a t i o n s , g - j - p r e s s u r e s .

Page 236: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

225

6.6 SUGAR CRYSTALL IZAT ION CONTROL

6.6.1 I n t r o d u c t i o n

The use o f a u t o m a t i c c o n t r o l i n t he s u g a r house was i n i t i a l l y s t i m u l a t e d by

t he r e q u i r e m e n t s o f s u g a r q u a l i t y , r e q u i r i n g r e p r o d u c i b l e r e s u l t s o f t h e

c r y s t a l l i z a t i o n p r o c e s s . R i s i n g e n e r g y c o s t s e x p o s e d t h e s i g n i f i c a n c e o f c o n t r o l

methods f o r i n c r e a s i n g t he e f f i c i e n c y o f e n e r g y u t i l i z a t i o n . The f o l l o w i n g

f a c t o r s a s s o c i a t e d w i t h t h e q u a l i t y o f p r o c e s s c o n t r o l a r e p a r t i c u l a r l y

i m p o r t a n t :

- e f f e c t i v e s t a b i l i z a t i o n o f p r o c e s s p a r a m e t e r s ;

- e x a c t d i s t r i b u t i o n o f mass f l o w s i n t h e c r y s t a l l i z a t i o n scheme;

- smooth w i t h d r a w a l o f h e a t i n g v a p o u r s f rom t h e e v a p o r a t o r s t a t i o n ;

- e n e r g y - e f f i c i e n t s u g a r b o i l i n g i n vacuum p a n s .

P r a c t i c a l e x p e r i e n c e p r o v e d t h a t good r e s u l t s can be a t t a i n e d i f a t w o - l e v e l

approach t o t h e c o n t r o l o f t h e s u g a r house i s a d o p t e d . The l o w e r l e v e l i n c l u d e s

t h e c o n t r o l l e r s o f t h e i n d i v i d u a l equ ipment u n i t s , w h i l e t h e upper l e v e l i s

c r e a t e d t o e n s u r e t h e c o o r d i n a t i o n o f i n t e r r e l a t e d p r o c e s s e s . A n o t h e r p r a c t i c a l

c o n c l u s i o n i s t h a t t h e c o m p l e x i t y o f c o n t r o l a l g o r i t h m s j u s t i f i e s t h e use o f

compu te r -based c o n t r o l s y s t e m s .

A p r e r e q u i s i t e f o r t h e e f f e c t i v e n e s s o f s u g a r house c o n t r o l i s t h e

s t a b i l i z a t i o n o f p r o c e s s i n p u t s . I n c o n t e m p o r a r y s u g a r f a c t o r i e s o p e r a t e d a t

t h i c k - j u i c e c o n c e n t r a t i o n s a p p r o a c h i n g 75% DS, t h e s t a b i l i z a t i o n o f pa rame te rs

o f t h e t h i c k j u i c e and s y r u p s becomes c r i t i c a l . I n o r d e r t o e n s u r e r e p r o d u c i b l e

r e s u l t s o f f e e d i n t a k e s t o t h e vacuum pans and t o r e d u c e t h e amount o f w a t e r

drawn f o r c o n t r o l p u r p o s e s , t h e r i s k o f u n d e s i r a b l e c r y s t a l f o r m a t i o n s h o u l d be

e l i m i n a t e d . As t h e s t a t e o f s a t u r a t i o n depends a l s o on s o l u t i o n t e m p e r a t u r e ,

t h i s i s no l o n g e r o n l y a q u e s t i o n o f c o n t r o l l i n g t h e c o n c e n t r a t i o n .

The t h i c k - j u i c e pa rame te rs can be s t a b i l i z e d i n a c o n d i t i o n e r shown

s c h e m a t i c a l l y i n F i g . 6 .8 . The j u i c e l e a v i n g t h e e v a p o r a t o r i s expanded i n a

v e s s e l i n s t a l l e d b e f o r e t h e t h i c k - j u i c e t a n k . The r e q u i r e d j u i c e t e m p e r a t u r e i s

m a i n t a i n e d by c o n t r o l l i n g t he p r e s s u r e . The v e s s e l i s a l s o l e v e l - c o n t r o l l e d . I f

t he s e l f - e v a p o r a t i o n o f t h i c k j u i c e i n c r e a s e s t h e c o n c e n t r a t i o n above t h e

r e q u i r e d v a l u e , t h e n t h e o u t l e t s t ream i s d i l u t e d w i t h t h i n j u i c e .

6 .6 .2 Sugar b o i l i n g

The e s s e n t i a l p a r t o f t h e hea t consumed i n t h e b a t c h vacuum pan i s needed t o

e v a p o r a t e w a t e r f rom s u g a r s o l u t i o n . I n t h e f i r s t phase o f t h e b o i l i n g c y c l e ,

t h e i n i t i a l l y drawn s o l u t i o n i s t h i c k e n e d i n o r d e r t o a t t a i n t h e r e q u i r e d

s u p e r s a t u r a t i o n . I n t h e r e m a i n i n g p h a s e s , w a t e r i n s u g a r s o l u t i o n s o r , i n some

i n s t a n c e s , pu re w a t e r i s drawn t o t h e vacuum pan f o r c o n t r o l p u r p o s e s . Water

i n t a k e s immed ia te l y a f t e r s e e d i n g a r e r e q u i r e d t o s t a b i l i z e t h e s u p e r s a t u r a t i o n .

Page 237: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

226

to condenser

to sugar house

F i g . 6 . 8 . Scheme o f a u t o m a t i c t h i c k - j u i c e c o n d i t i o n i n g . 1 - c o n d i t i o n i n g v e s s e l , 2 - t h i c k - j u i c e t a n k . P, L , D - p r e s s u r e , l e v e l and d e n s i t y , r e s p e c t i v e l y ; I , C - i n d i c a t i o n and c o n t r o l , r e s p e c t i v e l y .

L a t e r o n , c r y s t a l g r o w t h i s a s s o c i a t e d w i t h t h e need t o draw w a t e r m a i n t a i n i n g

t he b a l a n c e between e v a p o r a t i o n and c r y s t a l l i z a t i o n . F i n a l l y , w a t e r may be drawn

i n o r d e r t o keep t h e s t r i k e b e f o r e i t i s d i s c h a r g e d .

The impor tance o f an a u t o m a t i c b o i l i n g c o n t r o l t o e f f i c i e n t e n e r g y

u t i l i z a t i o n l i e s i n e l i m i n a t i n g t h e i n f l u e n c e o f i n d e t e r m i n i s t i c f a c t o r s -

a s s o c i a t e d w i t h t he i n t e r v e n t i o n s o f a human o p e r a t o r - on t h e amount o f w a t e r

drawn and t h u s on e n e r g y s p e n t d u r i n g t h e b o i l i n g c y c l e . The e s s e n t i a l f u n c t i o n s

o f c o n t e m p o r a r y a u t o m a t i c c o n t r o l s can be summarized as f o l l o w s ( r e f s . 2 9 - 3 5 ) .

( i ) C o n t i n u o u s measur ing o f t h e s y r u p and m a s s e c u i t e l e v e l s f o r a u t o m a t i c

c h a r g i n g , a u t o m a t i c t h i c k e n i n g and a u t o m a t i c change o f f e e d s u p p l y , vacuum and

h e a t i n g v a p o u r s u p p l y .

( i i ) C o n t i n u o u s c o n t r o l o f s u p e r s a t u r a t i o n , u s u a l l y by measur ing t h e d i e l e c t r i c

v a l u e o r c o n d u c t i v i t y o f t h e m a s s e c u i t e .

( i i i ) C o n t i n u o u s c o n t r o l o f t he vacuum l e v e l i n t h e p a n .

( i v ) C o n t i n u o u s c o n t r o l o f t h e h e a t i n g v a p o u r s u p p l y d u r i n g t h e who le c y c l e .

( v ) C o n t i n u o u s c o n t r o l o f t h e m a s s e c u i t e t e m p e r a t u r e .

( v i ) C o n t i n u o u s measur ing o f t h e power consumpt ion o f t he s t i r r e r , t h i s a l l o w i n g

f i n a l t h i c k e n i n g t o t h e optimum m a s s e c u i t e c o n c e n t r a t i o n b e f o r e d i s c h a r g e .

I n a compu te r -based c o n t r o l s y s t e m , t h e computer a l s o t a k e s c a r e o f a l l v a l v e

o p e r a t i o n s d u r i n g s t a r t i n g and s t o p p i n g o f t he vacuum-pan c y c l e .

The f u n c t i o n s under ( i i i ) and ( i v ) a r e p a r t i c u l a r l y u s e f u l i n m i n i m i z i n g h e a t

c o n s u m p t i o n . A t t h e b e g i n n i n g o f t h e c r y s t a l g r o w t h p h a s e , i t i s d e s i r a b l e t o

i n c r e a s e t h e t e m p e r a t u r e o f t h e s u g a r s o l u t i o n ; t h i s can be done by i n c r e a s i n g

t h e p r e s s u r e i n t h e p a n . I n t h i s w a y , t he c r y s t a l l i z a t i o n can be i n c r e a s e d

w i t h o u t s p e n d i n g a d d i t i o n a l e n e r g y t o i n t e n s i f y e v a p o r a t i o n . L a t e r o n , when t h e

c r y s t a l g r o w t h becomes l i m i t e d by t h e e v a p o r a t i o n , t h e p r e s s u r e s h o u l d be

Page 238: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

227

r e d u c e d , t h i s r e s u l t i n g i n r e d u c e d s o l u t i o n t e m p e r a t u r e and t h u s i n c r e a s e d h e a t

f l u x a t t h e h e a t i n g s u r f a c e . An a d d i t i o n a l e n e r g y - s a v i n g e f f e c t i s a l s o

o b t a i n e d , namely e x t r a c r y s t a l l i z a t i o n due t o r e d u c e d s o l u b i l i t y o f s u c r o s e

( i . e . , w i t h o u t h e a t e x p e n d i t u r e ) . The p r i n c i p l e o f p r o g r a m - c o n t r o l l e d

t e m p e r a t u r e changes d u r i n g t h e b o i l i n g c y c l e i s shown i n F i g . 6 . 9 ( a ) . When

p e r f o r m i n g t h e t e m p e r a t u r e r e d u c t i o n , t h e c o n t r o l a l g o r i t h m s h o u l d a v o i d

e x c e s s i v e t e m p e r a t u r e g r a d i e n t s , w i t h t h e a s s o c i a t e d r i s k o f f a l s e g r a i n

f o r m a t i o n .

(a) (b )

lower limit

Time Time

F i g . 6 . 9 . P r i n c i p l e s o f p r o g r a m - c o n t r o l l e d changes o f i m p o r t a n t v a r i a b l e s d u r i n g t h e a u t o m a t i c b o i l i n g c y c l e : ( a ) t e m p e r a t u r e , ( b ) h e a t i n g - v a p o u r f l o w . 1 - e v a p o r a t i o n o f t he i n i t i a l l y drawn s o l u t i o n , 2 - s e e d i n g and c r y s t a l f o r m a t i o n , 3 - c r y s t a l g r o w t h , 4 - t ime i n t e r v a l o f f l o w c o n t r o l u s i n g o p t i m i z a t i o n a l g o r i t h m .

The c o n t r o l o f h e a t i n g v a p o u r s u p p l y makes i t p o s s i b l e t o a v o i d u n n e c e s s a r y

w a t e r i n t a k e s accompanying t h e advanced c r y s t a l g r o w t h p h a s e . D u r i n g t h i s p a r t

o f t h e b o i l i n g c y c l e , t h e c o n t r o l a l g o r i t h m a d j u s t s t h e s e t - p o i n t v a l u e o f t h e

v a p o u r f l o w depend ing on t h e d r y s u b s t a n c e c o n t e n t o f t h e s o l u t i o n drawn and t h e

r a t e a t w h i c h t he m a s s e c u i t e l e v e l i s r a i s e d . The p r i n c i p l e o f p r o g r a m -

c o n t r o l l e d changes o f t h e v a p o u r f l o w i s shown i n F i g . 6 . 9 ( b ) .

The f u n c t i o n s under ( i ) and ( i i i ) can be u t i l i z e d t o v a r y t h e d u r a t i o n o f t h e

b o i l i n g c y c l e , a c c o r d i n g t o t h e r e q u i r e m e n t s d e f i n e d by t he u p p e r - l e v e l c o n t r o l .

More s p e c i f i c a l l y , i t i s p o s s i b l e t o r a i s e t h e m a s s e c u i t e l e v e l a t a

p r e d e t e r m i n e d r a t e , t h u s a f f e c t i n g t h e t ime needed t o r e a c h t h e maximum. I n

a d d i t i o n , t he s e t - p o i n t v a l u e o f t h e vacuum l e v e l and t h e moment when i t s change

i s i n i t i a t e d can be a d j u s t e d i n o r d e r t o i n f l u e n c e t h e r a t e o f c r y s t a l g r o w t h .

The c o m p l e x i t y o f c o m p u t e r - b a s e d b o i l i n g c o n t r o l s can be i l l u s t r a t e d by t h e

pa rame te rs o f one o f t h e sys tems a v a i l a b l e on t h e marke t ( r e f . 3 6 ) . I t uses 8

ana log and 32 d i g i t a l i n p u t s , as w e l l as 4 a n a l o g and 16 d i g i t a l o u t p u t s .

Page 239: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

228

Communicat ion w i t h t h e u s e r i s p o s s i b l e v i a d i s p l a y , p r i n t e r , k e y b o a r d and u s e r -

d e f i n e d p u s h - b u t t o n s . The sys tem i s a l s o e q u i p p e d w i t h a da ta communica t ion

c h a n n e l , w h i c h p e r m i t s da ta t r a n s m i s s i o n t o and f rom t h e upper c o n t r o l l e v e l .

6 .6 .3 C o o r d i n a t i o n o f s u g a r house o p e r a t i o n s

The r e p r o d u c i b l e r e s u l t s o f automated s u g a r b o i l i n g make i t p o s s i b l e t o

u n d e r t a k e t h e t a s k o f c o o r d i n a t i n g t h e p r o c e s s e s o f m u l t i - s t a g e c r y s t a l l i z a t i o n

t o a c h i e v e t he b e s t o v e r a l l r e s u l t s . The c o n c e p t o f t h e q u a l i t y o f r e s u l t s ,

h o w e v e r , i s f a r f rom o b v i o u s . L e t us f o r m u l a t e two h y p o t h e t i c a l o b j e c t i v e s o f

c o o r d i n a t i o n :

- m a x i m i z i n g w h i t e s u g a r o u t p u t p e r 100 kg b e e t p r o c e s s e d ;

- m a x i m i z i n g s u g a r house t h r o u g h p u t , e x p r e s s e d i n amount o f t h i c k j u i c e

p r o c e s s e d i n u n i t t i m e .

On t h e b a s i s o f t h e s e o b j e c t i v e s , two d i f f e r e n t c o n t r o l s t r a t e g i e s can be

d e f i n e d ; i t i s a l s o p o s s i b l e t o combine them i n t o one compromise s t r a t e g y ( r e f .

3 7 ) . A n a l o g o u s l y , one can imag ine t he m i n i m i z a t i o n o f t h e e n e r g y demand b e i n g

a c c e p t e d as one o f t h e c o n t r o l o b j e c t i v e s , and s e a r c h i n g f o r e n e r g y s a v i n g s

be ing i n c l u d e d i n t he c o n t r o l s t r a t e g y .

I n any c o n t r o l s t r a t e g y , a c c o u n t s h o u l d be t aken o f numerous c o n s t r a i n t s

r e l a t e d t o t h e i n t e r a c t i o n o f c o n t i n u o u s and b a t c h e q u i p m e n t , s t o r a g e vo lumes

a v a i l a b l e , l i m i t a t i o n s o f h e a t i n g v a p o u r s u p p l y , e t c . P r a c t i c a l e x p e r i e n c e

p r o v e s t h a t v i o l a t i o n s o f t h e s e c o n s t r a i n t s a r e t h e p r i m a r y cause o f t h e

d i s t u r b a n c e s o c c u r r i n g i n m a n u a l l y o p e r a t e d c r y s t a l l i z a t i o n s u b s y s t e m s .

A t t h e p r e s e n t s t a t e o f deve lopmen t o f c o o r d i n a t i o n c o n t r o l , a t t e n t i o n i s

c o n c e n t r a t e d on a v o i d i n g d i s t u r b a n c e s i n mass and e n e r g y f l o w s w i t h i n t h e s u g a r

h o u s e . A c o n t r i b u t i n g f a c t o r i s t h a t t h e e x i s t i n g c r y s t a l l i z a t i o n subsys tems and

t h e i r e n v i r o n m e n t a r e o f t e n n o t p a r t i c u l a r l y s u i t e d t o a u t o m a t i c s u g a r house

o p e r a t i o n . T h i s r e s u l t s i n a m u l t i t u d e o f s p e c i a l c o n s t r a i n t s t o be a c c o u n t e d

f o r i n t h e c o n t r o l a l g o r i t h m s . T y p i c a l examples a r e : l i m i t e d c a p a c i t y o f t h e

vacuum s y s t e m , t o o smal l s t o r a g e t a n k s , l i m i t e d range o f o p e r a t i o n o f t h e

e v a p o r a t o r c o n t r o l , e t c . F o r t h i s r e a s o n , t h e g e n e r a l o b j e c t i v e s o f c o o r d i n a t i o n

i n t h e e s t a b l i s h e d sys tems a r e l e s s i m p o r t a n t t han t h e c o n t r o l f u n c t i o n s aimed

a t s a t i s f y i n g t h e c o n s t r a i n t s , l i k e s c h e d u l i n g o f o p e r a t i o n o f b a t c h vacuum pans

and c e n t r i f u g a l s , p r e v e n t i n g tank o v e r f l o w , e t c . ( r e f s . 3 8 - 4 1 ) . These f u n c t i o n s

c o n s i s t m a i n l y o f s u p e r v i s i n g t h e l e v e l s i n s y r u p t a n k s and m a s s e c u i t e m i x e r s

and a d j u s t i n g t h e w o r k i n g c y c l e s o f t h e b a t c h equ ipmen t . I n t h i s manner ,

a r e g u l a r i z a t i o n o f s u g a r house o p e r a t i o n can be o b t a i n e d .

The r e s u l t s o b t a i n e d w i t h t h e c o o r d i n a t i o n sys tems a r e c l e a r l y p o s i t i v e .

The a t t a i n a b l e e n e r g y s a v i n g s can be i l l u s t r a t e d by r e d u c t i o n o f t h e amount o f

w a t e r drawn t o b a t c h vacuum pans i n a s u g a r f a c t o r y i n FRG ( r e f . 4 2 ) . A f t e r

imp lement ing t h e c o o r d i n a t i o n s y s t e m , w a t e r i n t a k e s t o vacuum pans C were

Page 240: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

229

reduced f rom t h e i n i t i a l l e v e l o f a b o u t 30 kg p e r 1 t magma t o z e r o . I n A

s t r i k e , w a t e r i n t a k e s were n e a r l y h a l v e d f rom abou t 12 t o 7 kg p e r 1 t magma.

I t i s f e l t t h a t f u r t h e r improvements a r e needed i n t h e methods o f

c o o r d i n a t i o n o f s u g a r house o p e r a t i o n . The e x i s t i n g c o o r d i n a t i o n sys tems do n o t

f u l l y u t i l i z e t h e t e c h n o l o g i c a l p o t e n t i a l o f i n t e g r a t e d c o n t r o l o f i n d i v i d u a l

s t a t i o n s and i n t e g r a t e d management o f d a t a on t h e d e t a i l s o f t h e s u g a r

c r y s t a l l i z a t i o n p r o c e s s .

6.7 PULP DRYING CONTROL

The goa l o f t h e p u l p d r y i n g p r o c e s s i s t o d r y t h e incoming p r e s s e d p u l p t o

a d e f i n i t e m o i s t u r e c o n t e n t . T y p i c a l l y , t h e f i n a l m o i s t u r e c o n t e n t o f t h e d r i e d

p u l p s h o u l d n o t be l o w e r t han 5-6%; i n t h e s u b s e q u e n t p e l l e t i n g , i t i s

e v e n t u a l l y i n c r e a s e d t o 9-11%. These v a l u e s a r e d e s i r a b l e w i t h r e s p e c t bo th t o

e n e r g y economy and t h e keep ing q u a l i t y o f t h e d r i e d p u l p .

The t a s k o f t h e a u t o m a t i c c o n t r o l s ys tem i s t o keep t h e f i n a l m o i s t u r e

c o n t e n t o f t h e d r i e d p u l p a t a p r e d e t e r m i n e d l e v e l . I t s h o u l d be p o s s i b l e t o

e l i m i n a t e d i s t u r b a n c e s r e s u l t i n g m a i n l y f rom f l u c t u a t i o n s o f t h e r a t e o f

d e l i v e r y o f p r e s s e d p u l p , t h e m o i s t u r e c o n t e n t o f p r e s s e d p u l p , and t h e q u a l i t y

o f p r e s s e d p u l p . The r e v i e w o f c o n t r o l p rob lems p r e s e n t e d be low i s l i m i t e d t o

t h e p rob lems c h a r a c t e r i s t i c o f d r u m - t y p e d r y e r s hea ted by combus t i on g a s e s .

C o n t r o l o f t h e combus t i on p r o c e s s i s e x c l u d e d f rom t h e r e v i e w as i t i s n o t

s p e c i f i c t o t h e s u g a r i n d u s t r y .

T h e r e a r e two main r e a s o n s f o r t h e d i f f i c u l t i e s e n c o u n t e r e d i n p u l p d r y i n g

c o n t r o l :

- a c c u r a t e measurements o f t h e m o i s t u r e c o n t e n t o f t h e p u l p a r e d i f f i c u l t t o

make;

- t h e p r o c e s s i s c h a r a c t e r i z e d by a l a r g e r a t i o o f gas f l o w t o p r e s s e d p u l p

f l o w ; i t s v a l u e depends on t h e d e t a i l s o f t h e p r o c e s s , and i s o f t h e o r d e r 2-4

i n h i g h - t e m p e r a t u r e d r y e r s ( l o w e r v a l u e s b e i n g c h a r a c t e r i s t i c o f d r y e r s

f e a t u r i n g gas r e c i r c u l a t i o n o r u t i l i z a t i o n o f b o i l e r f l u e g a s ) .

Because o f t h e f i r s t p r o b l e m , most a u t o m a t i c c o n t r o l sys tems p r e s e n t l y i n use

r e l y on measurement o f t h e e x i t gas t e m p e r a t u r e , i n d i r e c t l y r e p r e s e n t i n g t h e

f i n a l m o i s t u r e c o n t e n t o f t h e d r i e d p u l p . Depend ing on t h e a c t u a l v a l u e

measured , t h e sys tem a d j u s t s t h e e n e r g y i n p u t t o t h e d r y e r f u r n a c e . P o s s i b l e

c o r r e c t i o n s o f s e t t i n g s a r e i n t r o d u c e d a c c o r d i n g t o t h e r e s u l t s o f t h e

l a b o r a t o r y a n a l y s e s o f d r i e d p u l p s a m p l e s . The w o r k i n g p r i n c i p l e o f t h e d r y e r

c o n t r o l a f f e c t s t h e way t he d r y e r o p e r a t o r s a c t . I n o r d e r t o a v o i d t h e r i s k o f

t o o h i g h f i n a l m o i s t u r e c o n t e n t , t h e y t e n d t o o v e r d r y t he p u l p , w i t h t o o l a r g e

an e n e r g y consumpt ion as a r e s u l t .

The g a s / p u l p r a t i o , a l o n g w i t h a l a r g e s p e c i f i c volume o f t h e g a s , r e s u l t s i n

a c o n s i d e r a b l e d i f f e r e n c e between t h e r e t e n t i o n t ime o f t h e gas and t h a t o f

Page 241: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

230

t he p u l p i n t h e d r y e r drum. W h i l e t h e t ime needed f o r t he p u l p t o r e a c h t h e

d r y e r o u t l e t i s o f t he o r d e r o f one h o u r , t he r e t e n t i o n t ime o f t h e gas may be

s e v e r a l s e c o n d s . F o r t h i s r e a s o n , i f a d i s t u r b a n c e o c c u r s and t he h e a t b a l a n c e

o f t he d r y e r c h a n g e s , t h e e x i t gas t e m p e r a t u r e i s changed w i t h i n s e c o n d s , b u t

15-20 m inu tes a r e needed b e f o r e t h e f i n a l m o i s t u r e c o n t e n t o f t h e d r i e d p u l p

i s c h a n g e d . T h i s t ime l ag i s t h e u n d e r l y i n g cause o f t h e d i f f i c u l t i e s a s s o c i a t e d

w i t h c o n t r o l l i n g t r a n s i e n t p r o c e s s e s i n t h e d r y e r . F o r examp le , i n p u l p d r y i n g

s t a t i o n s e q u i p p e d w i t h two o r more d r y e r s w o r k i n g i n p a r a l l e l , one o f them i s

d e s t i n e d t o a b s o r b t h e s w i n g s i n t h e p r o c e s s . When e x p e c t i n g f l u c t u a t i o n s o f t h e

p a r a m e t e r s , t h e o p e r a t o r u s u a l l y t r i e s t o c a t c h t h e w o r s t c o n d i t i o n . A t y p i c a l

r e s u l t i s t h a t t h e e x i t gas t e m p e r a t u r e t e n d s t o be t o o h i g h , and t h e e n e r g y

consumpt ion l a r g e r than r e a l l y n e c e s s a r y .

V a r i o u s sys tems o f a u t o m a t i c p u l p d r y i n g c o n t r o l have been p r o p o s e d t o

overcome t h e t y p i c a l d i f f i c u l t i e s men t ioned above ( r e f s . 4 3 , 4 4 ) . C o n s i d e r a b l e

improvements have been a t t a i n e d by u s i n g new methods o f measurement o f t h e

m o i s t u r e c o n t e n t o f t h e p u l p ( r e f s . 2 2 , 4 5 ) . As t h e c o n t r o l f u n c t i o n s a r e

e x t e n d e d and c o n t r o l a l g o r i t h m s become i n c r e a s i n g l y c o m p l e x , h o w e v e r , t h e

c o n v e n t i o n a l sys tems become c o m p l i c a t e d and c o s t l y . A c o n t r i b u t i n g f a c t o r i s

t h a t t h e e n e r g y - s a v i n g e x t e n s i o n s o f t h e p u l p d r y i n g p r o c e s s , l i k e u t i l i z a t i o n

o f b o i l e r f l u e gas o r gas r e c i r c u l a t i o n , r e q u i r e t h e a d d i t i o n o f e x t r a c o n t r o l

l o o p s t o t he b a s i c s y s t e m .

A l t h o u g h an e x p e r i e n c e d d r y e r o p e r a t o r can a t t a i n v e r y good r e s u l t s u s i n g

a c o n v e n t i o n a l c o n t r o l sys tem and new deve lopmen ts a r e s t i l l p o s s i b l e i n t h i s

f i e l d ( r e f . 4 6 ) , t he f u t u r e i s c e r t a i n l y i n c o m p u t e r - b a s e d s y s t e m s . The

advan tages o f computer a p p l i c a t i o n have been c l e a r l y d e m o n s t r a t e d i n a s u g a r

f a c t o r y i n FRG, where computer t e c h n o l o g y was i n t r o d u c e d as a l o g i c a l s t e p i n

dr ied pulp

F i g . 6 .10 . P o i n t s o f measurement o f main v a r i a b l e s i n t h e a u t o m a t i c c o n t r o l o f a p u l p d r y e r : 1 - combus t ion gas t e m p e r a t u r e , 2 - t e m p e r a t u r e i n t h e drum, 3 - o u t l e t t e m p e r a t u r e , 4 - f i n a l m o i s t u r e c o n t e n t , 5 - f u e l f l o w , 6 - a i r f l o w , 7 - f e e d e r c a p a c i t y , 8 - i n i t i a l m o i s t u r e c o n t e n t . F - f u r n a c e , D - d r u m , A - a f t e r d r y e r .

Page 242: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

231

i m p r o v i n g t h e e x i s t i n g p u l p d r y i n g c o n t r o l s ( r e f . 4 7 ) . The mathemat i ca l model o f

t he p r o c e s s dynamics was i d e n t i f i e d on t h e b a s i s o f measurements r e c o r d e d i n t h e

a c t u a l p u l p d r y i n g s t a t i o n , u s i n g a method c o m p r i s i n g c o r r e l a t i o n a n a l y s i s and

e s t i m a t i o n o f model p a r a m e t e r s . A s k e t c h o f a d r y e r , w i t h i n d i c a t i o n o f i n p u t

and o u t p u t v a r i a b l e s o f t h e m o d e l , i s shown i n F i g . 6 .10 .

The computer c o n t r o l s t h r e e d r y e r s w o r k i n g i n p a r a l l e l . I t was e s t i m a t e d t h a t

t he imp lemen ta t i on o f t h i s sys tem r e s u l t e d i n a f u e l s a v i n g o f abou t 2.5%. I t i s

n o t e w o r t h y t h a t t h i s s a v i n g was o b t a i n e d r e l a t i v e t o d r y e r o p e r a t i o n s u p e r v i s e d

by e x p e r i e n c e d o p e r a t o r s u s i n g w e l l - f u n c t i o n i n g c o n v e n t i o n a l c o n t r o l s . S i m i l a r

r e s u l t s a r e r e p o r t e d f rom o t h e r cases o f a p p l i c a t i o n o f c o m p u t e r - b a s e d d r y e r

c o n t r o l s .

REFERENCES

1 J . D o b r z y c k i , A u t o m a t y z a c j a w P r z e m y s l e C u k r o w n i c z y m , WNT, Warszawa, 1974. 2 Anonymous, B o i l e r f u e l c o s t s r e d u c e d . Sugar J . , 4 4 ( 9 ) (1982) 21. 3 J . A . H e i n b a u g h , D i r e c t d i g i t a l c o n t r o l o f t h e b o i l e r h o u s e , p u l p d r i e r , and

m u l t i - e f f e c t e v a p o r a t o r s . Paper p r e s e n t e d a t 23rd ASSBT M e e t i n g , San D i e g o , F e b r u a r y 1985.

4 J . A . F i t z p a t r i c k , The a p p l i c a t i o n o f compute rs and e l e c t r o n i c s t o p r o c e s s c o n t r o l i n Thames R e f i n e r y , I n t . Sugar J . , 82(980) (1980) 231-236.

5 J . S . Hogg and D . F . A . H o r s l e y , The use o f sma l l compute rs i n B r i t i s h b e e t s u g a r f a c t o r i e s . I n t . Sugar J . , 82(980) (1980) 240-243.

6 R . F . Madsen, P r o g r e s s i n Dan i sh s u g a r p r o d u c t i o n w i t h i n t h e p a s t d e c a d e . Paper p r e s e n t e d a t t h e I n t e r n a t i o n a l C o n f e r e n c e " Improvement o f Bee t Sugar P r o d u c t i o n " , Warszawa, May 1987.

7 K .A . S c h u l t e s , M i k r o c o m p u t e r g e s t e u e r t e D i c k s a f t f i l t e r s t a t i o n , Z u c k e r i n d . , 104(11) (1979) 1029-1031.

8 P. S l u g o c k i , R e g u l a c j a p r z e p l y w u mas w Cukrown i C h e l m z a , G a z . C u k r . , 93 (4 ) (1985) 79-81.

9 M. S t a s z c z a k , A . B r a t e k and E . K u l a s z y n s k i , M i k r o p r o c e s o r o w y s y s t e m k o o r d y n a c j i p r z e p l y w u mas w s u r o w n i Cukrown i R o p c z y c e , G a z . C u k r . , 9 3 ( 5 - 6 ) (1985) 73-75.

10 H. Kemter , E i n neue r Weg be i d e r P r o z e s s a u t o m a t i s i e r u n g i n d e r Z u c k e r i n d u s t r i e , Z u c k e r i n d . , 103(11) (1978) 939-945.

11 G . W i n d a l , A p p o r t des t e c h n i q u e s modernes en a u t o m a t i s a t i o n de s u c r e r i e , I n d . A l i m . A g r i e , 9 6 ( 7 - 8 ) (1979) 737-745.

12 Η. P a s c h o l d , E i n s a t z von P r o z e s s r e c h n e r n i n b e l g i s c h e n und n i e d e r l ä n d i s c h e n Z u c k e r f a b r i k e n , Z u c k e r i n d . , 105(4) (1980) 343-344.

13 L . W e n z e l , B e i s p i e l e von A u t o m a t i s i e r u n g s k o n z e p t e n i n Z u c k e r f a b r i k e n , Z u c k e r i n d . , 107(10) (1982) 934-936.

14 G . W i n d a l , L ' i n f o r m a t i q u e i n d u s t r i e l l e dans 1 ' o p t i m i s a t i o n e n e r g e t i q u e du p r o c e d e de f a b r i c a t i o n , i n : P r o c . 17th C I T S , Copenhagen , 1983, p p . 45-65 .

15 H . S . B i r k e t t , Computer a p p l i c a t i o n s . Sugar J . , 46(10) (1984) 10-12. 16 Anonymous, A u t o m a t i s a t i o n e t i n f o r m a t i q u e i n d u s t r i e l l e , S u c r . F r . ,

127(103) (1986) 110-114. 17 P. Mosel ( e t a l . ) , P r o z e s s a u t o m a t i s i e r u n g und Daten-Management m i t dem neuen

D C I - S y s t e m im Werk P l a t t l i n g d e r S ü d d e u t s c h e n Z u c k e r - A G , Z u c k e r i n d . , 111(4) (1986) 321-328.

18 T h . C r o n e w i t z , W e c h s e l w i r k u n g e n be i d e r E n t w i c k l u n g von D a t e n v e r a r b e i t u n g und V e r f a h r e n s t e c h n i k - M ö g l i c h k e i t e n d e r P r o z e s s f ü h r u n g i n d e r Z u k u n f t , Z u c k e r i n d . , 112(2) (1987) 103-107.

19 P. P e t e r s , A u t o m a t i s i e r u n g s - und P r o z e s s d a t e n e r f a s s u n g s a n i agen i n s ü d d e u t s c h e n Z u c k e r f a b r i k e n - e i n e S t a n d o r t b e s t i m m u n g , Z u c k e r i n d . , 112(2) (1987) 107-114.

Page 243: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

232

20 J . M e r k l , E n e r g i e e i n s p a r u n g m i t d r e h z a h l r e g e ! b a r e n D r e h s t r o m a n t r i e b e n i n d e r Z u c k e r i n d u s t r i e , Z u c k e r i n d . , 110(2) (1985) 1082-1089.

21 P. M o s e l , E r f a h r u n g e n m i t e inem P r o z e s s r e c h n e r f ü r v o l l a u t o m a t i s c h e n B e t r i e b d e r E x t r a k t i o n , Z u c k e r , 27(10) (1974) 528-541.

22 P.W. van d e r P o e l , N . H . M . de V i s s e r and C . C . B l e y e n b e r g , Deve lopments i n computer and o n - l i n e c o n t r o l i n t h e b e e t s u g a r f a c t o r y . Sugar T e c h . R e v . , 9 ( 1 ) (1982) 1-58.

23 G . W i n d a l , B. P o r t a l e s and D. Maes, Le p o i n t s u r Γ a u t o m a t i s a t i o n des d i f f u s e u r s Continus p a r l e p rocede I R I S , S u c r . F r . , 126(93) (1985) 145-149.

24 S . Z a g r o d z k i , 0 zasadach samoczynne j r e g u l a c j i s t a c j i w y p a r n e j , G a z . C u k r o w . , 60 (4 ) (1958) 105-108.

25 W. Grasmann and 0. P a r i s e k , Messen und Rege ln des D u r c h f l u s s e s und d e r D i c h t e von D i c k s a f t und D ü n n s a f t , Z u c k e r , (1969) 432-438.

26 D ie Rege lung d e r V e r d a m p f s t a t i o n i n d e r Z u c k e r f a b r i k , T e c h n i c a l i n f o r m a t i o n f rom S iemens , F ü r t h , 1975.

27 T . W . B a k e r , E v a p o r a t i o n and h e a t i n g , i n : G . T . Meade and J . C . Chen ( E d s . ) , Cane Sugar Handbook, W i l e y , New Y o r k , 1977, p p . 185-235.

28 J . C . G i o r g i , P. G i r a u d and A . D e l e u r e n c e , G e s t i o n au tomat ique de l ' a t e l i e r d ' e v a p o r a t i o n , S u c r . F r . , 126(93) (1985) 123-128.

29 H . - F . K o r n , D ie P r a x i s des k o n t r o l l i e r t e n und a u t o m a t i s i e r t e n K o c h e n s , Z u c k e r , 19(13) (1966) 337-349.

30 R . J . Bass and J . Donovan , M i c r o p r o c e s s o r c o n t r o l o f s u g a r b o i l i n g , S u c r . B e i g e , 95 (8 ) (1976) 421-433.

31 G . Windal and A . D e l e u r e n c e , R e s u l t a t s i n d u s t r i é i s de l a c o n d u i t e des c u i t e s pa r m i c r o - o r d i n a t e u r , S u c r . F r . , 9 6 ( 3 ) (1979) 121-122.

32 P.W. van d e r Poel ( e t a l . ) , A u t o m a t i s i e r u n g d e r K o c h s t a t i o n d e r C S M - Z u c k e r -f a b r i k B r e d a , Z u c k e r i n d . , 107(2) (1982) 113-117.

33 P.W. van d e r Poel ( e t a l . ) , E n e r g i e e i n s p a r u n g e n be i d e r V e r d a m p f u n g s k r i s t a l l i s a t i o n , Z u c k e r i n d . , 108(10) (1983) 934-939.

34 D. Hoks , A u t o m a t i c a l l y c o n t r o l l e d s u g a r b o i l i n g s y s t e m . Sugar J . , 46 (7 ) (1983) 8 -9 .

35 S . C . H . McCarey and F. F e a r n s i d e , A s p e c t s o f a u t o m a t i c s u g a r b o i l i n g a t Newark f a c t o r y . I n t . Sugar J . , P a r t I 87(1043) (1985) 208-213, P a r t I I 87(1044) (1985) 223-227.

36 G . R . M o l l e r , A a n i s h m i c r o p r o c e s s o r c o n t r o l l e r f o r t h e pan f l o o r . Sugar y A z ú c a r , 80 (7 ) (1985) 33-35.

37 D. P i o t r o w s i c i and K. U r b a n i e c , Op t ima l c o n t r o l o f b a t c h - c o n t i n u o u s c r y s t a l ! f z a t i on o f s u g a r . Paper p r e s e n t e d a t 7 th I n t e r n a t i o n a l C o n g r e s s CHISAr^B l , P r a g u e , September 1981.

38 G . W i n d a l , A u t o m a t i s a t i o n pa r m i c r o - o r d i n a t e u r des c u i t e s 2eme e t 3eme j e t de l a S u c r e r i e de T o u r y , S u c r . F r . , 9 4 ( 3 ) (1977) 129-135.

39 G . Windal and A . D e l e u r e n c e , G e s t i ó n a s s i s t e e du c h a n t i e r de p r e m i e r j e t , S u c r . F r . , 9 6 ( 3 ) (1979) 123-126.

40 G . Windal and A . D e l e u r e n c e , A p p l i c a t i o n a l a c r i s t a l 1 i s a t i o n du p r o c e d e Cheops de g e s t i ó n c o o r d o n n e e , I n d . A l i m . A g r i e , 9 8 ( 7 - 8 ) (1981) 581-588.

41 Β. H a r r i s o n and J . R u z i c k a , S u p e r v i s o r y c o n t r o l and d a t a a c q u i s i t i o n f o r p r o c e s s . Sugar J . , 48 (1 ) (1985) 5 -9 .

42 W. Assenmacher , Η. Merensky and K. W ö h r l e , A u t o m a t i s c h e S t e u e r u n g e i n e r K o c h s t a t i o n m i t d i s k o n t i n u i e r l i c h e n K o c h a p p a r a t e n , Z u c k e r i n d . , 111(6) (1986) 549-554.

43 F. Baunack , T r o c k n u n g , i n : F . S c h n e i d e r ( E d . ) , T e c h n o l o g i e des Z u c k e r s , Schaper V e r l a g , H a n n o v e r , 1968, p p . 845-883.

44 H .A . P a s c h o l d , D i e Rege lung von a d i a b a t i s c h e n und n i c h t - a d i a b a t i s c h e n T r o c k n e r n am B e i s p i e l von Trommel - und d a m p f b e h e i z t e n R ö h r e n b ü n d e l t r o c k n e r n , Z u c k e r i n d . , 103(12) (1978) 1036-1030.

45 H. Kemter , Rege lung von S c h n i t z e l t r o m m e l t r o c k n e r n , Z u c k e r , 30(1 ) (1977) 7-10 . 46 H . P . G i l d e r s l e e v e , Bee t p u l p d r y i n g c o n t r o l . Sugar J . , 44 (5 ) (1981) 15-18. 47 P. Mosel ( e t a l . ) , Führung e i n e r T r o m m e l t r o c k n e r a n l a g e f ü r P r e s s s c h n i t z e l

m i t e inem P r o z e s s r e c h n e r , Z u c k e r i n d . , 105(6) (1980) 554-561.

Page 244: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

233

C h a p t e r 7

MONITORING OF THE HEAT CONSUMPTION

7.1 INTRODUCTORY REMARKS

7.1.1 Scope o f t h e p rob lems

The r e q u i r e m e n t s o f hea t economy i n a s u g a r f a c t o r y a r e , on t h e one hand , t o

e n s u r e a c o n t i n u o u s hea t s u p p l y t o a l l s e c t i o n s o f t h e p r o c e s s and t o m a i n t a i n

p r o p e r o p e r a t i n g c o n d i t i o n s f o r t h e f a c t o r y e q u i p m e n t , as t h e s e a r e t h e

p r e r e q u i s i t e s f o r smooth f a c t o r y o p e r a t i o n , and on t h e o t h e r h a n d , t o m i n i m i z e

hea t consumpt ion i n t he p r o c e s s . A l l t h e s e t a s k s c a n n o t be f u l f i l l e d w i t h o u t

m o n i t o r i n g h e a t consumpt ion i n i n d i v i d u a l equ ipment u n i t s and p r o c e s s s t a t i o n s ,

o v e r s e e i n g equ ipment o p e r a t i o n , i d e n t i f y i n g causes f o r hea t l o s s e s and

d e t e r m i n i n g t h e p o s s i b i l i t i e s f o r improvements i n h e a t economy.

I t i s t r a d i t i o n a l l y u n d e r s t o o d t h a t t he p rob lem a r e a under c o n s i d e r a t i o n

i n c l u d e s :

- f u e l and f u e l s t o r a g e ;

- f u e l combus t ion and steam g e n e r a t i o n i n b o i l e r s ;

- e l e c t r i c i t y g e n e r a t i o n i n t h e power h o u s e ;

- steam and v a p o u r u t i l i z a t i o n f o r p r o c e s s p u r p o s e s .

A long w i t h s a t i s f y i n g t h e s p e c i f i c needs o f t h e s u g a r i n d u s t r y , i t i s

n e c e s s a r y i n most c o u n t r i e s t o m o n i t o r f a c t o r y o p e r a t i o n a c c o r d i n g t o g e n e r a l

r e g u l a t i o n s c o n c e r n i n g t h e o p e r a t i o n o f e n e r g y - s u p p l y equ ipmen t . The r e g u l a t i o n s

u s u a l l y r e q u i r e keep ing o p e r a t i n g r e c o r d s and p e r i o d i c a l l y e v a l u a t i n g them f rom

t h e p o i n t o f v i e w o f e n e r g y u t i l i z a t i o n . T h i s a p p l i e s i n p a r t i c u l a r t o such

equ ipment a s :

- steam and w a t e r b o i l e r s ;

- t u r b i n e s ;

- l a r g e hea t r e c e i v e r s ( h e a t e x c h a n g e r s , d r y e r s , e t c . ) ;

- c o n t r o l l i n g and measur ing equ ipmen t .

I t can be s t a t e d t h a t , u n l i k e d e s i g n p r o b l e m s , m o n i t o r i n g p rob lems a s s o c i a t e d

w i t h t he hea t economy i n s u g a r f a c t o r i e s a r e n o t v e r y w e l l c o v e r e d i n t h e

l i t e r a t u r e . I n t h i s C h a p t e r , t h e b a s i c f a c t o r s needed t o m o n i t o r and e v a l u a t e

hea t economy c o r r e c t l y and e f f e c t i v e l y under a c t u a l o p e r a t i n g c o n d i t i o n s a r e

b r o u g h t t o g e t h e r .

As o n l y t h e most i m p o r t a n t t o p i c s can be d i s c u s s e d h e r e , t h e h i g h e s t p r i o r i t y

i s a t t r i b u t e d t o p rob lems d i r e c t l y a s s o c i a t e d w i t h e n e r g y s a v i n g s . The p rob lems

o f c o n t r o l l i n g s p e c i f i c a s p e c t s o f t h e o p e r a t i o n o f i n d i v i d u a l mach ines and

equ ipment u n i t s a r e r e g a r d e d as be ing beyond t h e scope o f t h i s C h a p t e r .

I t has been assumed t h r o u g h o u t t h i s C h a p t e r t h a t t h e s u g a r f a c t o r y under

Page 245: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

234

c o n s i d e r a t i o n i s c h a r a c t e r i z e d by an a v e r a g e l e v e l o f p r o c e s s i n s t r u m e n t a t i o n .

The advanced measur ing and a u t o m a t i c m o n i t o r i n g sys tems used i n some modern

p l a n t s a r e l a r g e l y i g n o r e d h e r e .

7 .1 .2 T h e o r e t i c a l background

I n t h e p u b l i c a t i o n s d e v o t e d s o l e l y t o t h e e n e r g y economy ( r e f s . 1 - 4 ) , and

a l s o i n t he s p e c i a l c h a p t e r s i n w e l l known books on b e e t s u g a r t e c h n o l o g y ( r e f s .

5 - 9 ) , m o n i t o r i n g o f t he hea t consumpt ion i s t r e a t e d o n l y m a r g i n a l l y . The

i n f o r m a t i o n g a t h e r e d i n t h e s e s o u r c e s may p r o v e i n s u f f i c i e n t as a b a s i s f o r

p r a c t i c a l e n g i n e e r i n g a n a l y s e s a s s o c i a t e d w i t h t h i s p r o b l e m . I t may t h e n become

n e c e s s a r y t o r e l y on g e n e r a l t h e o r e t i c a l r e l a t i o n s h i p s , p a r t i c u l a r l y i n such

f i e l d s as t h o s e l i s t e d b e l o w .

( i ) The f i r s t law o f t he rmodynamics , as a b a s i s f o r d e t e r m i n i n g t h e e n e r g y

b a l a n c e s o f therma l p r o c e s s e s and f l o w s i n s t a t i o n s , equ ipment o r equ ipment

p a r t s . T h i s i m p o r t a n t m a t t e r has been d i s c u s s e d i n g r e a t e r d e t a i l i n S e c t i o n

2 .1 . F o r an e x t e n s i v e t h e o r e t i c a l t r e a t m e n t r e f s . 10 and 11, o r o t h e r l i t e r a t u r e

on a p p l i e d t he rmodynamics , may be c o n s u l t e d .

( i i ) The thermodynamics o f w a t e r and s team, w h i c h a r e t h e b a s i c media i n t h e

thermal p r o c e s s e s . The books men t ioned above a l s o i n c l u d e c h a p t e r s d e v o t e d t o

t h i s t o p i c . T a b l e s o f thermodynamic f u n c t i o n s a r e g i v e n i n r e f s . 12, 13 and

o t h e r s o u r c e s , w h i l e f o r n u m e r i c a l a p p r o x i m a t i o n s f o r c a l c u l a t o r - o r c o m p u t e r -

a i d e d c a l c u l a t i o n s . A p p e n d i x 1 may be c o n s u l t e d .

( i i i ) C o m b u s t i o n . T h i s p r o c e s s i s p a r t i c u l a r l y w o r t h a t t e n t i o n , because i t may

g i v e r i s e t o c o n s i d e r a b l e e n e r g y l o s s e s ; l i t e r a t u r e as a b o v e .

( i v ) Heat t r a n s f e r , as a g roup o f phenomena c o n t r i b u t i n g t o t h e mechanism o f

most hea t l o s s e s . I n a d d i t i o n t o t h e above l i t e r a t u r e , r e f s . 14 and 15 can be

recommended.

( v ) The f o u n d a t i o n s o f i n d u s t r i a l measurement , as a b a s i s f o r t h e d a t a g a t h e r i n g

and da ta i n t e r p r e t a t i o n on w h i c h hea t -economy m o n i t o r i n g must r e l y . F o r

t e c h n i c a l d e t a i l s and f o r i n f o r m a t i o n on e r r o r a n a l y s i s , r e f s . 15-18 may be

c o n s u l t e d .

I t s h o u l d be added t h a t p r o p e r a n a l y s i s and e f f e c t i v e s o l v i n g o f t h e p rob lems

a s s o c i a t e d w i t h t h e u t i l i z a t i o n o f steam and v a p o u r f o r p r o c e s s p u r p o s e s o f t e n

r e q u i r e deep u n d e r s t a n d i n g o f t h e s u g a r m a n u f a c t u r i n g p r o c e s s .

An e s s e n t i a l p r o c e s s i n hea t -economy m o n i t o r i n g i s t o i d e n t i f y t h e h e a t

b a l a n c e s o f t h e o b j e c t s under c o n s i d e r a t i o n , i . e . equ ipment u n i t s , p r o c e s s

s t a t i o n s , o r even t h e e n t i r e f a c t o r y . The i d e n t i f i c a t i o n o f a h e a t b a l a n c e

c o n s i s t s o f e s t a b l i s h i n g t h e bounda ry o f a thermodynamic s y s t e m , d e t e r m i n i n g t h e

mass and e n e r g y s t reams c r o s s i n g t h e b o u n d a r y , and r e c o g n i z i n g t h e magn i tude o f

each s t r e a m . I n p r a c t i c e , i t r e q u i r e s t h a t measurements o f t h e a p p r o p r i a t e

Page 246: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

235

pa ramete rs a re t a k e n . Not a l l pa rame te rs need t o be known, h o w e v e r , as t h e

t h e o r e t i c a l b a l a n c e d e s c r i p t i o n e n a b l e s one t o c o n s t r u c t a sys tem o f e q u a t i o n s .

The measurements s h o u l d s u p p l y as many pa ramete r v a l u e s as r e q u i r e d f o r

d e t e r m i n i n g t he r e m a i n i n g ones f rom t h e e q u a t i o n s .

When p e r f o r m i n g t h e measurements , i t i s n e c e s s a r y t o o b s e r v e t h e c o n f o r m i t y

o f t h e s t a t e o f t he thermodynamic sys tem c o n s i d e r e d w i t h t h e c o n d i t i o n s f o r

w h i c h t h e t h e o r e t i c a l b a l a n c e d e s c r i p t i o n has been f o r m u l a t e d . I n p a r t i c u l a r ,

when u s i n g t h e f o r m u l a e o r i g i n a t i n g f rom e q n s . ( 2 . 3 ) o r ( 2 . 6 ) , s t e a d y - s t a t e

c o n d i t i o n s must be m a i n t a i n e d t h r o u g h o u t t h e t e s t p e r i o d . I f f l u c t u a t i o n s o f t h e

pa rame te rs c a n n o t be a v o i d e d , t h e t e s t p e r i o d s h o u l d be l ong enough t o e n s u r e

t h e v a l i d i t y o f mean v a l u e s ( t h e recommendat ions c o n c e r n i n g t e s t d u r a t i o n s f o r

i n d i v i d u a l s t a t i o n s a r e g i v e n b e l o w ) .

I n an e x i s t i n g f a c t o r y , t h e p r e r e q u i s i t e f o r measurements l e a d i n g t o a

c o r r e c t h e a t b a l a n c e i s t h a t t h e sys tem be e q u i p p e d w i t h good measu r i ng

equ ipmen t . C l e a r l y , e r r o n e o u s measurements may l e a d t o a f a l s e b a l a n c e and

f i n a l l y t o wrong c o n c l u s i o n s . I t i s t h u s recommended t h a t more measu r ing

i n s t r u m e n t s be i n s t a l l e d t han a r e t h e o r e t i c a l l y needed f o r s o l u t i o n o f t h e

sys tem o f b a l a n c e e q u a t i o n s . Measurement d a t a can t h e n be checked by compar ing

b a l a n c e r e s u l t s o b t a i n e d i n d i f f e r e n t w a y s .

7 .1 .3 Example

When i n v e s t i g a t i n g t he e n e r g y b a l a n c e o f t h e s u g a r h o u s e , i t i s n e c e s s a r y t o

overcome d i f f i c u l t i e s due t o t h e p e r i o d i c o p e r a t i o n o f t h e vacuum pans and

c e n t r i f u g a l s . F o r examp le , t he mass and e n e r g y b a l a n c e s o f a b a t c h vacuum pan

noncondensable gases

A U X I L I A R Y B O U N D A R I E S | "

cooling , A - b 1 water ' / r , ^ - " '

S U G A R H O U S E E Q U I P M E N T

~ " S Y S T E M " B O U N D A R Y ~ "

leaks

I ' heat losses

' sugar

4 -molasses

condensate

J

F i g . 7 .1 . E n e r g y b a l a n c e o f t h e s u g a r h o u s e .

Page 247: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

236

s h o u l d be a n a l y s e d f o r t he e n t i r e b o i l i n g c y c l e , w i t h t he a i d o f b a l a n c e

r e l a t i o n s h i p s based on e q n s . ( 2 . 1 ) and ( 2 . 4 ) . F o r s t a b i l i z e d s u g a r house o u t p u t ,

h o w e v e r , t h e b a l a n c e can r e l y on t h e r e l a t i o n s h i p s c o n c e r n i n g s t e a d y - s t a t e

c o n d i t i o n s , i . e . e q n s . ( 2 . 3 ) and ( 2 . 6 ) . The sys tem bounda ry i s p l a c e d as shown

i n F i g . 7 .1 , where an a u x i l i a r y bounda ry f o r t h e c o n d e n s e r b a l a n c e i s a l s o

i n d i c a t e d . The measurements n e c e s s a r y f o r e s t a b l i s h i n g the b a l a n c e s s h o u l d be

pe r f o rmed o v e r an adequate t i m e , so t h a t r e l i a b l e mean v a l u e s can be c a l c u l a t e d

f o r steam and condensa te f l o w s , b a r o m e t r i c w a t e r t e m p e r a t u r e , e t c . I n an o v e r a l l

e n e r g y b a l a n c e f o r t he s u g a r h o u s e , one can n e g l e c t r e l a t i v e l y smal l e n e r g y

s t reams such as c r y s t a l l i z a t i o n hea t and work pe r f o rmed by d r i v i n g moto rs

( e s p e c i a l l y i n m i x e r s , c e n t r i f u g a l s and pumps) . A n o t h e r c o n v e n i e n t assump t i on i s

t h a t t h e mass l o s s e s caused by u n c o n t r o l l a b l e l e a k s ( l e a k i n g s e a l s , e v a p o r a t i o n

f rom open t a n k s , e t c . ) a r e t r e a t e d j o i n t l y as mass s t ream G ^ ^ . The e n e r g y l o s s e s

i n l e a k s , h o w e v e r , may c o n v e n t i o n a l l y be added t o t h o s e r e s u l t i n g f rom hea t

t r a n s f e r t o t he e n v i r o n m e n t , and t r e a t e d j o i n t l y as hea t Q . Assuming t h a t a l l

t he rema in ing q u a n t i t i e s shown i n F i g . 7.1 have been d e f i n e d f rom t h e

measurements , t he e q u a t i o n s o f mass and e n e r g y b a l a n c e s can be w r i t t e n as

• sl " %2 " %3 " ^ 4 " <^s5 = ^1 ^ 2 * ^ 3 + ^ 4 + ^ 5

%A^ ^ S2^2 ^ ^ s 3 ^ 3 ^ «^54^4 ^ ^ 5 ^ 5 =

= ^^^^ * \z\z' ^ 3 ^ 3 ^ ^ 4 ^ 4 - ^

Hence t he t o t a l l eak s t ream and t o t a l u n c o n t r o l l a b l e hea t l o s s a r e

^ 5 = » sl ^ hz * " '^s4 ^ - ( ^ 1 ^ ^2 * ^ 3 * ^ 4 ^

Q - G^^h^T + G 2 2 ^ ^ 3 ^ 3 " ^ 4 ^ 4 -

- (Sl^l * S2^2 ' ^ S 3 h s 3 ^ 4 ^ 4 + Ss^S^

T y p i c a l b a l a n c e d a t a and r e s u l t s a r e g i v e n i n T a b l e 7 .1 .

TABLE 7.1

Mass and e n e r g y b a l a n c e o f t h e s u g a r h o u s e , c a l c u l a t e d f o r 100 kg b e e t .

St ream name G

(kg /100 kg b ) t

( °C) h

( k J / k g ) G-h

( k J / 1 0 0 kg b )

k I n l e t

1 T h i c k j u i c e 28.6 103.3 306 8752 2 T h i n j u i c e 2.4 95 371 890 3 Water 9.4 80 335 3149 4 V a p o u r s 26.4 2754 72706 5 C o o l i n g w a t e r 360.0 20 84 30240

j O u t l e t

1 Sugar 14.0 20 23 322 2 M o l a s s e s 3.6 20 105 378 3 Condensa te 25.2 95 398 10030 4 B a r o m e t r i c w a t e r 382.0 55 230 87860 5 Leaks 2.0 Hea t l o s s e s 17147

Page 248: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

237

7 .1 .4 M o n i t o r i n g and r e d u c t i o n o f t h e h e a t consumpt ion

The hea t economy i n a s u g a r f a c t o r y can be t r e a t e d as a sys tem kep t i n

o p e r a t i o n by a f u e l s u p p l y . As t h i s sys tem i s r e l a t i v e l y c o m p l i c a t e d , i t s

f u n c t i o n i n g can be e v a l u a t e d o n l y on t h e b a s i s o f r e c o r d e d v a l u e s o f c e r t a i n

pa ramete rs c h a r a c t e r i z i n g s e l e c t e d the rma l p r o c e s s e s . I t has been s u g g e s t e d

above t h a t t h e d a t a on sys tem o p e r a t i o n can be a p p l i e d t o i d e n t i f y h e a t l o s s e s

and t h e i r p o s s i b l e r e d u c t i o n . M o n i t o r i n g r e s u l t s t h u s e n a b l e one t o p o i n t o u t

w h e r e , and i n what manner , t h e e x i s t i n g i n s t a l l a t i o n can be improved and what

e f f e c t s can be e x p e c t e d .

E x p e r i e n c e p r o v e s t h a t i f no s y s t e m a t i c m o n i t o r i n g o f t h e hea t economy has

been c a r r i e d o u t p r e v i o u s l y , i n i t i a t i n g such a c t i o n may i m m e d i a t e l y y i e l d

advan tageous r e s u l t s . An i n v e n t o r y and d o c u m e n t a t i o n o f t h e e x i s t i n g the rma l

s y s t e m , even w i t h o u t hea t b a l a n c e s , e n a b l e s one t o d i s c o v e r t h e a b n o r m a l i t i e s

w h i c h a r e n o t v i s i b l e i n t h e f u n c t i o n i n g o f i n d i v i d u a l equ ipment u n i t s and

s t a t i o n s , l i k e e r r o r s i n c o n d e n s a t e l i n e s c a u s i n g i n c o m p l e t e u t i l i z a t i o n o f

condensa te e n e r g y , and e r r o r s i n v a p o u r l i n e s c a u s i n g sma l l u n c o n t r o l l a b l e

v a p o u r f l o w s between e v a p o r a t o r e f f e c t s . The most i m p o r t a n t c o n c l u s i o n on ways

t o r e d u c e h e a t consumpt ion can o f c o u r s e be drawn f rom t h e hea t b a l a n c e s o f

i n d i v i d u a l s t a t i o n s and o f t h e e n t i r e f a c t o r y . I t i s a n o t h e r m a t t e r , h o w e v e r ,

i n what manner t h e c o n c l u s i o n s a r e implemented i n p r a c t i c e . I n p r i n c i p l e , t h e

improvements a r e a l w a y s aimed a t r e d u c i n g h e a t consumpt i on p e r u n i t amount o f

raw m a t e r i a l , o r u n i t amount o f s u g a r . The e s s e n t i a l a i m , h o w e v e r , i s t o r e d u c e

m a n u f a c t u r i n g c o s t s . The economic f a c t o r s s h o u l d f i n a l l y d e c i d e w h e t h e r t h e

p o t e n t i a l r e d u c t i o n o f hea t consumpt ion i s u t i l i z e d o r n o t .

I t s h o u l d a l s o be remembered t h a t o n l y i n e x c e p t i o n a l c a s e s can t h e measures

r e d u c i n g hea t consumpt ion be r e g a r d e d as " p u r e " h e a t economy c o r r e c t i o n s . As

a r u l e , c o r r e c t i v e a c t i o n s a r e c o n c e r n e d w i t h t h e f a c t o r s a f f e c t i n g bo th p r o c e s s

and hea t economy. As an examp le , c o n s i d e r t h e c o n c e n t r a t i o n o f t h i c k j u i c e ,

a pa ramete r whose impo r tance t o t h e h e a t consumpt ion i n s u g a r m a n u f a c t u r e has

been d i s c u s s e d i n S e c t i o n 1 .3 .5 . Any c o r r e c t i o n o f t h i s p a r a m e t e r , h o w e v e r , i s

u n t h i n k a b l e w i t h o u t p r i o r a n a l y s i s o f p o s s i b l e consequences i n s u g a r y i e l d and

s u g a r q u a l i t y .

7.2 QUALITY OF WATER AND STEAM

7.2.1 Scope o f t h e q u a l i t y i n s p e c t i o n

I n o r d e r t o m a i n t a i n p r o p e r o p e r a t i n g c o n d i t i o n s f o r b o i l e r s and t u r b i n e s ,

i t i s n e c e s s a r y t o i n s p e c t t he q u a l i t y o f w a t e r and steam i n t h e the rma l sys tems

o f s u g a r f a c t o r i e s s y s t e m a t i c a l l y a n d , i f r e q u i r e d , t o t ake c o r r e c t i v e a c t i o n .

The aim o f t h e i n s p e c t i o n i s t o e s t a b l i s h , by measurement o r l a b o r a t o r y

a n a l y s i s , t h e amounts o f i m p u r i t i e s i n :

- f e e d w a t e r s u p p l i e d t o t h e b o i l e r ;

Page 249: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

238

- b o i l e r w a t e r and s team;

- c o n d e n s a t e , p a r t i c u l a r l y f rom t h e e v a p o r a t i o n s t a t i o n .

The pa rame te rs o f make-up w a t e r a re a l s o i m p o r t a n t , and t h u s t h e q u a l i t y

i n s p e c t i o n i n c l u d e s a n a l y s e s o f raw w a t e r and o f w a t e r a t t h e i n d i v i d u a l s t a g e s

o f t h e p u r i f i c a t i o n p r o c e s s .

Wi th r e s p e c t t o t h e i r p h y s i c a l p r o p e r t i e s , t he i m p u r i t i e s can be c l a s s i f i e d

a s :

- mechan ica l i m p u r i t i e s , w i t h p a r t i c l e s i z e s above 0.1 m i c r o n , a p p e a r i n g as

suspended m a t t e r o r s e d i m e n t ;

- c o l l o i d a l i m p u r i t i e s , w i t h p a r t i c l e s between 1 nm and 0.1 m i c r o n , c r e a t i n g

s u s p e n s o i d s ;

- m o l e c u l a r i m p u r i t i e s , w i t h p a r t i c l e s be low 1 nm a p p e a r i n g i n s o l u t i o n s .

W i th r e s p e c t t o t he chemica l p r o p e r t i e s , t h e c u m u l a t i v e c o n c e n t r a t i o n s o f

c e r t a i n g r o u p s o f compounds a re i m p o r t a n t ( e x a m p l e s : h a r d n e s s , a l k a l i n i t y ) , b u t

so a l s o t he i n d i v i d u a l c o n c e n t r a t i o n s o f some s p e c i f i c e lemen ts and compounds

( e x a m p l e s : o x y g e n , S i O ^ ) .

Owing t o t h e e x t r e m e l y h i g h q u a l i t y r e q u i r e m e n t s o f w a t e r and steam t h a t

r e s u l t f rom t h e advanced p o w e r - g e n e r a t i o n t e c h n o l o g i e s used i n l a r g e - s c a l e

e l e c t r i c i t y g e n e r a t i o n , t h e p rob lem o f q u a l i t y i n s p e c t i o n and c o n t r o l has

e v o l v e d i n t o an e n t i r e b ranch o f e n g i n e e r i n g s c i e n c e ( r e f . 1 9 ) . O n l y a sma l l

p a r t o f i t i s r e a l l y a p p l i c a b l e t o the rma l sys tems a s s o c i a t e d w i t h s u g a r

t e c h n o l o g y .

The d e t a i l s and p r i n c i p l e s o f q u a l i t y i n s p e c t i o n o f w a t e r and steam may v a r y

i n d i f f e r e n t s u g a r f a c t o r i e s , i n a c c o r d a n c e w i t h i n s t a l l a t i o n o r equ ipment

t y p e s , l o c a l c o n d i t i o n s o r l o c a l r e g u l a t i o n s . As a r u l e , t h e c h i e f t e c h n o l o g i s t

and c h i e f power e n g i n e e r j o i n t l y bea r t h e r e s p o n s i b i l i t y f o r i n s p e c t i o n

p r i n c i p l e s ; somet imes, t h e agreement o f t h e equ ipment m a n u f a c t u r e r i s r e q u i r e d .

7 .2 .2 Condensa te

The aim o f t h e i n s p e c t i o n o f c o n d e n s a t e f rom t h e e v a p o r a t o r s t a t i o n i s t o

e s t a b l i s h w h e t h e r o r n o t i t i s s u i t a b l e as a f e e d - w a t e r component t h a t can be

r e t u r n e d t o t h e b o i l e r h o u s e . ( T h e q u a l i t y o f d i r e c t f e e d w a t e r f o r t h e b o i l e r s

i s i n s p e c t e d s e p a r a t e l y . ) A t t e n t i o n s h o u l d be f o c u s e d on m o l e c u l a r i m p u r i t i e s

and p a r t i c u l a r l y on s u g a r c o n c e n t r a t i o n , w h i c h may i n d i c a t e l e a k i n g t u b e s i n

t h e e v a p o r a t o r o r t h e p r e s e n c e o f j u i c e d r o p l e t s i n v a p o u r s f rom t h e f i r s t

e f f e c t .

The p r e s e n c e o f s u g a r makes i t p r a c t i c a l l y i m p o s s i b l e t o d i r e c t c o n d e n s a t e

t o t h e b o i l e r , as t h i s m igh t cause f o u l i n g o f t h e h e a t i n g s u r f a c e and o t h e r

dange rous e f f e c t s . As h i g h c o n d e n s a t e t e m p e r a t u r e may i n d u c e t he d e c o m p o s i t i o n

o f s u c r o s e w h i c h t h e n becomes u n d e t e c t a b l e , o p e r a t o r s a r e recommended t o r e l y on

Page 250: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

239

t h e d e t e r m i n a t i o n o f oxygen c o n s u m p t i o n , w h i c h i s a measure o f t he c o n c e n t r a t i o n

o f o r g a n i c compounds. A c c o r d i n g l y , a n a l y s e s i n c o n d e n s a t e q u a l i t y i n s p e c t i o n

t y p i c a l l y dea l w i t h p H , s u g a r p r e s e n c e and o x y g e n c o n s u m p t i o n .

As f a r as t h e c o n d e n s a t e b y - p a s s i n g t h e b o i l e r s i s c o n c e r n e d , t h e i n s p e c t i o n

i a aimed a t d e t e c t i o n o f s u g a r as an i n d i c a t i o n o f imp rope r o p e r a t i o n o f

equ ipment ( j u i c e d r o p l e t s o r j u i c e foam i n v a p o u r s ) , o r l e a k i n g t u b e s . R o u t i n e

i n s p e c t i o n may r e l y on samples t aken f rom c o n d e n s a t e t a n k s . Once t h e p r e s e n c e

o f s u g a r i n a t ank has been d e t e c t e d , h o w e v e r , i t may become n e c e s s a r y t o o b t a i n

condensa te samples f rom the o u t l e t p i p e s c o n n e c t e d t o t h e i n d i v i d u a l equ ipment

u n i t s .

An i m p o r t a n t f a c t o r t o be a c c o u n t e d f o r i n e n s u r i n g t h e e f f i c i e n c y o f

condensa te q u a l i t y i n s p e c t i o n i s t h e f r e q u e n c y o f a n a l y s e s . D e t e c t i o n o f s u g a r

i n condensa te f rom t h e f i r s t and second e v a p o r a t o r e f f e c t s s h o u l d be p e r f o r m e d

c o n t i n u o u s l y . I f t h e r e a r e no a u t o m a t i c a n a l y s e r s , t h i s means t h a t t h e t e s t s a r e

r e p e a t e d o v e r a c y c l e o f s e v e r a l m i n u t e s a t a p o s i t i o n i n t he v i c i n i t y o f t h e

e v a p o r a t o r . A c c u r a t e l a b o r a t o r y t e s t s f o r s u g a r , t o g e t h e r w i t h o x y g e n

consumpt ion measurements , a r e r e q u i r e d a t l e a s t e v e r y 2 h o u r s . O t h e r c o n d e n s a t e

a n a l y s e s may be pe r f o rmed w i t h t h e same f r e q u e n c y , as i n t h e case o f f e e d - w a t e r

i n s p e c t i o n . An example o f a comp le te s e t o f c o n d e n s a t e a n a l y s e s , a c c e p t e d by t h e

b o i l e r m a n u f a c t u r e r f o r a s p e c i f i c s u g a r f a c t o r y , i s g i v e n i n T a b l e 7 . 2 .

TABLE 7.2

Example o f a s e t o f condensa te a n a l y s e s .

Q u a n t i t y D imens ion T e s t s ^ p e r ^ 8 - h o u r

pH 4 T o t a l h a r d n e s s m v a l / l i t r e 1 Oxygen consumpt ion mg KMnO¿^ / l i t r e 4 A l k a l i n i t y m v a l / l i t r e 2 Sugar p r e s e n c e 4*

* / number o f l a b o r a t o r y t e s t s aimed a t v e r i f i c a t i o n o f r o u t i n e t e s t s

7 .2 .3 Feed w a t e r and make-up w a t e r

Feed w a t e r s u p p l i e d t o t h e b o i l e r s c o n s i s t s o f e v a p o r a t o r c o n d e n s a t e t o w h i c h

make-up w a t e r i s added . The demand f o r make-up w a t e r i s u s u a l l y o n l y a few

p e r c e n t on b e e t s . G e n e r a l l y , q u a l i t y r e q u i r e m e n t s c o n c e r n i n g f e e d w a t e r depend

on t h e b o i l e r t y p e and steam p r e s s u r e . I n some c o u n t r i e s , s t a n d a r d s o r o t h e r

r e g u l a t i o n s have been i n t r o d u c e d i n t h i s f i e l d . Q u a l i t y recommendat ions i s s u e d

i n Be lg ium can be f ound i n t h e l i t e r a t u r e ( r e f . 2 0 ) . B e l o w , t h e r e q u i r e m e n t s

f o r m u l a t e d i n P o l i s h r e g u l a t i o n s ( r e f . 21) a r e r e v i e w e d .

The f e e d w a t e r must be c o l o u r l e s s and f r e e f rom mechan ica l i m p u r i t i e s . A pH

Page 251: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

240

above 7 i s r e q u i r e d and t he oxygen consumpt ion s h o u l d be as low as p o s s i b l e ,

p r e f e r a b l y be low 5-10 mg K M n O ^ / l i t r e . The w a t e r h a r d n e s s s h o u l d be as low as

p o s s i b l e , b u t i t s a l l o w a b l e upper l i m i t depends on t h e b o i l e r t y p e , steam

p r e s s u r e and t he hea t f l u x a t t h e h e a t i n g s u r f a c e ( f o r examp le , i n t h e case o f

w a t e r - t u b e r a d i a n t b o i l e r s a t 40 ba r o p e r a t i n g p r e s s u r e , f e e d w a t e r w i t h a

h a r d n e s s o f up t o 0.01 m v a l / l i t r e can be a c c e p t e d ) . The o x y g e n c o n t e n t s h o u l d be

as smal l as p o s s i b l e , n o t e x c e e d i n g 0 .02 -0 .03 m g / l i t r e f o r modern b o i l e r s . The

CO^ c o n t e n t - w i t h w h i c h t h e danger o f c o r r o s i v e a c t i o n i s a s s o c i a t e d - must n o t

exceed 20 m g / l i t r e .

Depending on t he b o i l e r p r e s s u r e , d i f f e r e n t l e v e l s o f a l k a l i n i t y and o f t h e

c o n t e n t o f s i l i c o n d i o x i d e , phospha tes and i r o n compounds can be a c c e p t e d . The

c o n c e n t r a t i o n o f o i l - t y p e i m p u r i t i e s c a n n o t e x c e e d a l i m i t w h i c h has been

d e f i n e d a t 10 m g / l i t r e f o r o l d e r b o i l e r s w i t h l a r g e w a t e r vo lume and a t 0 . 5 - 1 . 0

m g / l i t r e f o r modern b o i l e r s o p e r a t e d a t 40 ba r steam p r e s s u r e .

The same r e g u l a t i o n d e f i n e s t h e s e t o f o b l i g a t o r y f e e d - w a t e r a n a l y s e s . F o r

t he most w i d e l y used b o i l e r t y p e s , i t i s n e c e s s a r y t o d e t e r m i n e :

- p H ;

- oxygen c o n s u m p t i o n ;

- h a r d n e s s ;

- d i s s o l v e d oxygen c o n t e n t ;

- mechan ica l i m p u r i t i e s ;

- a l k a l i n i t y ;

- S i O ^ c o n c e n t r a t i o n ;

- CO^ c o n c e n t r a t i o n ;

- o i l - t y p e i m p u r i t i e s ;

- w a t e r a p p e a r a n c e .

F o r o l d e r b o i l e r s o p e r a t e d a t a p r e s s u r e be low 16 b a r , o n l y t h e f i r s t 5

a n a l y s e s on t h e l i s t a n d , a d d i t i o n a l l y , t he d e t e r m i n a t i o n o f t e m p o r a r y h a r d n e s s ,

a r e o b l i g a t o r y . An i m p o r t a n t s e c t i o n o f t h e r e g u l a t i o n s s t i p u l a t e s t h a t f o r

modern b o i l e r s n o t men t ioned i n t h e g e n e r a l s e c t i o n , t h e r e q u i r e m e n t s f o r m u l a t e d

by t h e b o i l e r ' s m a n u f a c t u r e r a r e d e c i s i v e .

W a t e r - q u a l i t y i n s p e c t i o n i n t h e w a t e r - t r e a t m e n t i n s t a l l a t i o n s may be aimed a t

c o n t r o l l i n g t h e f i n a l r e s u l t o f t h e t r e a t m e n t , t o g e t h e r w i t h t h e r e s u l t s o f u n i t

o p e r a t i o n s such as c o a g u l a t i o n , f i l t r a t i o n , d e c a r b o n i z a t i o n , and s o f t e n i n g .

The d e t a i l e d i n s p e c t i o n scheme s h o u l d be adap ted t o l o c a l c o n d i t i o n s , w h i c h

means t o t he p r o p e r t i e s o f t h e raw w a t e r , t he t r e a t m e n t p r o c e s s s t r u c t u r e and

r e q u i r e m e n t s imposed on f e e d - w a t e r p a r a m e t e r s . I n t h e case o f i o n exchange

t r e a t m e n t , c o n t r o l o f t h e i o n - e x c h a n g e r a c t i v i t y must be i n c l u d e d .

C o n c e r n i n g t h e f r e q u e n c y o f a n a l y s e s , t h e r e q u i r e m e n t s f o r m u l a t e d by t h e

b o i l e r m a n u f a c t u r e r a re b i n d i n g on o p e r a t o r s . U s u a l l y , a comp le te s e t o f

Page 252: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

241

a n a l y s e s s h o u l d be pe r f o rmed t h r e e t imes a d a y , i . e . once p e r 8 - h o u r w o r k i n g

s h i f t . Loca l c o n d i t i o n s may make i t n e c e s s a r y t o p e r f o r m c e r t a i n a n a l y s e s more

f r e q u e n t l y , w h i l e o t h e r s may even be o m i t t e d . I n t h e case o f new b o i l e r s ,

h o w e v e r , such changes must be a c c e p t e d by t h e m a n u f a c t u r e r .

An example o f a comple te s e t o f w a t e r a n a l y s e s i n t he d i f f e r e n t s t a g e s o f

a t r e a t m e n t p r o c e s s , and f e e d - w a t e r a n a l y s e s a c c e p t e d by t h e b o i l e r m a n u f a c t u r e r ,

i s shown i n T a b l e 7 . 3 .

7 .2 .4 B o i l e r w a t e r and steam

Steam g e n e r a t i o n i n b o i l e r s i s i n h e r e n t l y a s s o c i a t e d w i t h t h e i n c r e a s i n g

c o n c e n t r a t i o n o f i m p u r i t i e s i n t he b o i l e r w a t e r . T h i s , i n t u r n , c r e a t e s t he

danger o f d i s t u r b a n c e s i n b o i l e r o p e r a t i o n .

Mechan i ca l i m p u r i t i e s o f o r g a n i c o r i g i n t e n d t o i n c r e a s e b o i l e r f o a m i n g ; i f

combined w i t h m i n e r a l i m p u r i t i e s , t h e y cause t h e f o r m a t i o n o f a dange rous k i n d

o f b o i l e r s c a l e . Mechan i ca l i m p u r i t i e s o f m i n e r a l o r i g i n m igh t become

t r a n s f o r m e d i n t o s l u d g e o r h a r d b o i l e r s c a l e . C o l l o i d a l i m p u r i t i e s a l s o cause

foaming and s l u d g e f o r m a t i o n ; c o l l o i d a l s i l i c o n d i o x i d e i s p a r t i c u l a r l y

d a n g e r o u s , as i t becomes t r a n s f o r m e d i n t o b o i l e r s c a l e w h i c h i s v e r y d i f f i c u l t

t o remove. O i l o r l u b r i c a n t p r e s e n t i n b o i l e r w a t e r becomes s i n t e r e d on t h e

h e a t i n g s u r f a c e s , making h e a t t r a n s f e r more d i f f i c u l t ; e v e n t u a l l y , t h i s may l e a d

t o b u r n i n g o f t h e b o i l e r t u b e s . S i m i l a r e f f e c t s a r e i n d u c e d by t h e p r e s e n c e o f

o r g a n i c m o l e c u l a r i m p u r i t i e s ( e . g . s u c r o s e ) , w h i l e m i n e r a l m o l e c u l a r i m p u r i t i e s

cause s c a l e f o r m a t i o n o r c o r r o s i o n .

Q u a l i t y i n s p e c t i o n o f b o i l e r w a t e r i s aimed a t d e t e r m i n i n g w h e t h e r o r n o t t h e

c o n c e n t r a t i o n o f i m p u r i t i e s e x c e e d s t h e a l l o w a b l e l i m i t . The i n s p e c t i o n

r e q u i r e m e n t s can be f o r m u l a t e d by t h e b o i l e r m a n u f a c t u r e r o r by b o i l e r

i n s p e c t i o n a u t h o r i t i e s . The g e n e r a l p r i n c i p l e i s t h a t t h e c o n c e n t r a t i o n o f

i m p u r i t i e s must be smal l enough t o e n s u r e :

- e l i m i n a t i o n o f c o r r o s i o n p r o c e s s e s ;

- l i m i t a t i o n o f b o i l e r s c a l e and s l u d g e f o r m a t i o n ;

- m a i n t a i n i n g t h e p r o p e r steam p u r i t y , w h i l e h e a t l o s s e s r e s u l t i n g f rom t h e

b o i l e r blowdown a r e kep t r e a s o n a b l y s m a l l .

A c c o r d i n g t o P o l i s h r e g u l a t i o n s , q u a l i t y i n s p e c t i o n o f t h e b o i l e r w a t e r

s h o u l d c o m p r i s e , f o r most b o i l e r s , p a r t i c u l a t e and d i s s o l v e d m a t t e r , a l k a l i n i t y ,

S i O ^ c o n t e n t and P^O^ c o n t e n t . F o r o l d e r b o i l e r s , i t i s enough t o d e t e r m i n e

p a r t i c u l a t e and d i s s o l v e d m a t t e r , and a l k a l i n i t y .

I n o r d e r t o o b t a i n a t e m p o r a r y pH i n c r e a s e and t o c o u n t e r a c t s l u d g e

p r e c i p i t a t i o n , phospha te may be added t o b o i l e r w a t e r . H o w e v e r , e f f e c t i v e

c o n t r o l o f t h e c o n c e n t r a t i o n o f i m p u r i t i e s r e l i e s on b o i l e r b lowdown. W i th t h e

r e s u l t s o f a n a l y s e s o f b o i l e r w a t e r and make-up w a t e r , i t i s p o s s i b l e t o

p r e d e t e r m i n e t h e n e c e s s a r y blowdown r a t e i n o r d e r t o m a i n t a i n a c o n s t a n t d e s i r e d

Page 253: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

242

TABL

E 7.

3 Ex

ampl

e of

a s

et o

f an

alys

es f

or m

ake-

up w

ater

an

d fe

ed w

ater

(r

adia

nt

bo

iler

s,

40

bar

stea

m p

ress

ure

).

Uppe

r nu

mbe

r -

test

s pe

r 8-

hour

s

hif

t,

low

er

num

bers

-

allo

wab

le

valu

es.

_ W

ater

Aft

er

Aft

er

Qua

ntity

W

ith

Fil

tere

d

"^^^

^""^

^^

^^"^

Fe

ed

coag

ulan

t »-

T>T^

erea

g^

^han

ge

deso

rpti

on

exch

ange

H+

N

a+

1 in

24

h 8.

5-11

.0

O

O

7.0-

9.5

7.0

-9.5

Oxy

gen

cons

umpt

ion

, 4„

o/

, u

1 (m

g K

MnO

^/lit

re)

1 24

h

5.0-

10.0

Tota

l ha

rdne

ss

i o/

i u

—!

1 (m

va

l/li

tre

) 1

m

24

h Q

05

0.05

-0.1

0

Oxy

gen

cont

ent

1 (m

g/l

itre

) 0.

02-0

.03

PpOc

con

tent

1

(mg

/lit

re)

1.0-

3.0

Fe c

onte

nt

τ .

. 1

in 2

4 h

J ^

(mg

/lit

re)

1 in

24

h

^^^^

Q

5

Q

Q5

0.03

-0.0

5

Oil

cont

ent

irre

gu

lar

(mg

/lit

re)

0.05

-1.0

0

Page 254: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

243

c o n c e n t r a t i o n i n t h e b o i l e r w a t e r ( f o r d e t a i l s , see r e f . 2 2 ) . I t s h o u l d be

emphas ized t h a t e x c e s s i v e blowdown means a l o s s o f e n e r g y and s h o u l d t h e r e f o r e

be a v o i d e d .

Steam l e a v i n g t h e b o i l e r c o n t a i n s i m p u r i t i e s o r i g i n a t i n g f rom t h e b o i l e r

w a t e r , p a r t i c u l a r l y i f foaming o c c u r s . Such i m p u r i t i e s - e s p e c i a l l y s i l i c o n

d i o x i d e and i r o n compounds - a r e d a n g e r o u s , as t h e y f a l l i n t o t h e t u r b i n e and

t h e r e fo rm d e p o s i t s w h i c h a f f e c t t h e d u r a b i l i t y o f t h e t u r b i n e e l emen ts and

d i s t u r b t h e i r f u n c t i o n ( e . g . h i n d e r t h e movement o f v a l v e p a r t s ) . C o n t r o l o f

steam p u r i t y s h o u l d be by c o n t r o l o f t h e i m p u r i t y c o n t e n t o f t h e b o i l e r w a t e r .

The l i m i t o f i m p u r i t y c o n c e n t r a t i o n i n s team, as w e l l as t h e method o f i t s

i n s p e c t i o n , s h o u l d be d e t e r m i n e d by c o n s u l t a t i o n w i t h t h e b o i l e r and t u r b i n e

m a n u f a c t u r e r s , and f i n a l l y v e r i f i e d i n p r a c t i c a l o p e r a t i o n . T y p i c a l l y , s team

q u a l i t y m o n i t o r i n g s h o u l d i n c l u d e :

- S i O ^ c o n c e n t r a t i o n ;

- o v e r a l l Fe c o n c e n t r a t i o n ;

- e l e c t r i c a l c o n d u c t i v i t y o f t h e c o n d e n s a t e a t 20°C.

The f r e q u e n c y o f a n a l y s e s o f b o i l e r w a t e r and steam s h o u l d f o l l o w t h e

r e q u i r e m e n t s o f t h e b o i l e r m a n u f a c t u r e r : t y p i c a l l y , t h e r e q u i r e d f r e q u e n c y i s

t w i c e d a i l y . P r a c t i c a l e x p e r i e n c e p r o v e s , h o w e v e r , t h a t f o r e f f i c i e n t q u a l i t y

c o n t r o l , t h e b a s i c pa rame te rs o f b o i l e r w a t e r (pH and e l e c t r i c a l c o n d u c t i v i t y )

must be d e t e r m i n e d more f r e q u e n t l y .

An example o f a s e t o f b o i l e r w a t e r and steam a n a l y s e s , a c c e p t e d by t h e

b o i l e r m a n u f a c t u r e r f o r a s p e c i f i c s u g a r f a c t o r y , i s g i v e n i n T a b l e 7 .4 .

TABLE 7.4

Example o f a s e t o f b o i l e r w a t e r and steam a n a l y s e s .

Q u a n t i t y D imens ion A l l o w a b l e

v a l u e s T e s t s p e r

8 - h o u r s h i f t

B o i l e r w a t e r

pH E l e c t r i c a l c o n d u c t i v i t y A l k a l i n i t y " p " P2O5 c o n t e n t SÍO2 c o n t e n t

yS /cm m v a l / 1 i t r e m g / 1 i t r e m g / 1 i t r e

7 50-5000 0 . 1 - 6 . 0

3-10 ca 25

4 1-2

1 2

i r r e g u l a r

Steam Fe c o n t e n t SÍO2 c o n t e n t

m g / 1 i t r e m g / 1 i t r e

max. 0.02 max. 0.02

1 1

7 .2 .5 Sampl ing o f w a t e r and steam

Water samples a r e c o l l e c t e d and p r e s e r v e d i n g l a s s b o t t l e s w h i c h a r e washed

i n advance w i t h soap o r soda s o l u t i o n , t h e n t a p w a t e r and f i n a l l y w i t h d i s t i l l e d

w a t e r . S i m i l a r l y washed g l a s s p l u g s , o r c o r k s b o i l e d i n d i s t i l l e d w a t e r , a r e

u s e d . The method o f samp l i ng w a t e r s h o u l d be a d a p t e d t o t h e t y p e o f w a t e r s o u r c e

and t o t h e a n a l y s i s r e q u i r e d ( r e f . 2 3 ) . F o r e x a m p l e , raw w a t e r f rom a pump o r

Page 255: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

244

a p i p e l i n e s h o u l d f l o w f o r abou t 10 m inu tes b e f o r e a sample i s c o l l e c t e d ; i f

t h e a n a l y s i s i s c o n c e r n e d w i t h t h e c o n t e n t o f d i s s o l v e d g a s , sample a e r a t i o n

must be a v o i d e d .

Condensa te and b o i l e r w a t e r a r e sampled a c c o r d i n g t o s t a n d a r d methods ( r e f .

24) and samp l ing equ ipment can a l s o be s t a n d a r d i z e d ( r e f . 2 5 ) . Condensa te samples

can be o b t a i n e d t h r o u g h s p e c i a l gauge cocks i n s t a l l e d i n r e l e v a n t p i p e l i n e s , o r

t h r o u g h d r a i n cocks t h a t a r e p a r t s o f w a t e r - l e v e l i n d i c a t o r s . The l a t t e r

p o s s i b i l i t y i s p a r t i c u l a r l y i m p o r t a n t i f t h e condensa te p r e s s u r e i s l o w e r t han

t he a t m o s p h e r i c p r e s s u r e ; o t h e r w i s e , d r a i n cocks o r a i r - e s c a p e cocks a t t h e

steam t r a p s can be u s e d .

F e e d - w a t e r and b o i l e r - w a t e r samples must be c o o l e d . U s u a l l y , s i m p l e c o i l -

t y p e , w a t e r - c o o l e d hea t e x c h a n g e r s a r e i n s t a l l e d i n c o n n e c t i o n w i t h t he r e l e v a n t

t e s t c o c k s . I t s h o u l d be p o i n t e d o u t t h a t such c o o l e r s may be s u b j e c t t o

h y d r a u l i c t e s t s , t o g e t h e r w i t h t h e e n t i r e b o i l e r .

Sample c o o l i n g i s a l s o n e c e s s a r y i n t h e case o f steam s a m p l i n g ; steam i s

c o l l e c t e d i n condensa te form ( r e f . 2 6 ) . L i k e f e e d - w a t e r and b o i l e r - w a t e r

s a m p l i n g , condensa te f l o w must be a l l o w e d p r i o r t o sample c o l l e c t i o n , so t h a t

any i m p u r i t i e s i n i t i a l l y p r e s e n t i n t he p i p e and i n t he c o o l e r a r e washed away.

7 .2 .6 D e t e r m i n a t i o n o f p h y s i c a l p r o p e r t i e s

From t h e p o i n t o f v i e w o f s u i t a b i l i t y f o r h e a t economy s y s t e m s , o n l y

p h y s i c a l p r o p e r t i e s o f w a t e r r e l a t e d t o t h e c o n c e n t r a t i o n o f i m p u r i t i e s a r e

i m p o r t a n t .

The appearance o f w a t e r i s e v a l u a t e d by t r a n s p a r e n c y and t u r b i d i t y t e s t s .

Such t e s t s a r e g e n e r a l l y s t a n d a r d i z e d ( r e f . 2 7 ) .

The measure o f c o n c e n t r a t i o n o f n o n - v o l a t i l e i m p u r i t i e s i n w a t e r i s t h e d r y

m a t t e r c o n t e n t , i . e . t he amount o f d r y m a t t e r r e m a i n i n g a f t e r 1 l i t r e o f w a t e r

has been e v a p o r a t e d ; i t s w e i g h t i s d e t e r m i n e d a f t e r d r y i n g a t 105°C. T e s t

p r o c e d u r e s a r e a l s o s t a n d a r d i z e d ( r e f . 2 8 ) .

The t o t a l s a l t c o n t e n t i n w a t e r can be e x p r e s s e d i n d i r e c t l y by t h e w a t e r

d e n s i t y . F o r r a p i d measurements o f d e n s i t y , ae rome te r s c a l i b r a t e d i n k g / l i t r e

o r d e g r e e s Baume (°Bé) can be u s e d .

The c o n t e n t o f s a l t s , a c i d s and bases can be e x p r e s s e d by t h e s p e c i f i c

e l e c t r i c a l c o n d u c t i v i t y o f t h e w a t e r . As t h i s depends on t e m p e r a t u r e , i t i s

measured a t 20°C. I n t he case o f measurements made a t d i f f e r e n t t e m p e r a t u r e s ,

c o n d u c t i v i t y v a l u e s s h o u l d be c o r r e c t e d a c c o r d i n g t o s t a n d a r d i z e d f o r m u l a e . As

c o n d u c t i v i t y measurements can e a s i l y be r e c o r d e d a u t o m a t i c a l l y , t h e y a r e w i d e l y

a p p l i e d i n w a t e r and steam q u a l i t y i n s p e c t i o n . M e a s u r i n g p r o c e d u r e s a r e

s t a n d a r d i z e d ( r e f . 2 9 ) .

Page 256: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

245

7 .2 .7 T o t a l h a r d n e s s and t e m p o r a r y h a r d n e s s

Hardness i s a measure o f t h e t e n d e n c y o f w a t e r t o p r o d u c e d e p o s i t s and t o

fo rm b o i l e r s c a l e . Ha rdness i s caused by c a l c i u m and magnesium s a l t s t h a t appear

as b i c a r b o n a t e s , Ca(HC02)2 ^Qi^^O^'^Z' s a l t s o f i n o r g a n i c a c i d s ; t h a t

i s , s u l p h a t e s , c h l o r i d e s and n i t r a t e s ( C a S O ^ , M g C l ^ , Cdi(HÖ^)^) and o t h e r s . Water

h a r d n e s s can be e x p r e s s e d i n d e g r e e s , o r g r a m - e q u i v a l e n t s o r m i l l i g r a m -

e q u i v a l e n t s p e r u n i t vo lume . I n s e v e r a l European c o u n t r i e s , t h e s o - c a l l e d German

deg ree o f h a r d n e s s has been a p p l i e d ; i t c o r r e s p o n d s t o 10 g CaO i n 1 m* o f

w a t e r , o r 10 mg CaO i n 1 l i t r e .

The t o t a l h a r d n e s s o f w a t e r can be d e t e r m i n e d u s i n g t h e v e r s e n a t e method ,

t h a t i s , by t i t r a t i n g t he w a t e r sample w i t h sodium v e r s e n a t e ( r e f . 3 0 ) .

T o t a l h a r d n e s s can be r e g a r d e d as t h e sum o f t e m p o r a r y h a r d n e s s , caused by

c a l c i u m and magnesium b i c a r b o n a t e s , and permanent h a r d n e s s , caused by o t h e r

c a l c i u m and magnesium s a l t s . Tempora ry h a r d n e s s can be d e t e r m i n e d by t i t r a t i n g

w a t e r w i t h h y d r o c h l o r i c a c i d .

7 .2 .8 Oxygen consumpt ion and s u g a r c o n t e n t

Oxygen consumpt ion and a r e l a t e d q u a n t i t y , t h e chemica l o x y g e n demand, a r e

c o n v e n t i o n a l measures o f t h e c o n c e n t r a t i o n o f o r g a n i c i m p u r i t i e s and some o t h e r

e a s i l y o x i d i z a b l e i n o r g a n i c compounds.

The oxygen consumpt ion can be d e t e r m i n e d by t i t r a t i n g w a t e r w i t h p o t a s s i u m

permanganate s o l u t i o n . I t i s e x p r e s s e d i n t h e m i l l i g r a m s o f KMnO^ used t o

o x i d i z e t he i m p u r i t i e s i n 1 l i t r e o f w a t e r . By c o n v e r t i n g t h i s q u a n t i t y i n t o

t h e oxygen amount, we o b t a i n t h e chemica l o x y g e n demand.

T e s t s o f t he p r e s e n c e o f s u c r o s e i n w a t e r (2 m g / 1 i t r e o r more) can be

pe r f o rmed u s i n g t h e w e l l known a l p h a - n a p h t o l method . W i t h l a r g e r s u g a r

c o n c e n t r a t i o n s , c l a s s i c a l a n a l y s i s t e c h n i q u e s known i n s u g a r t e c h n o l o g y can be

a p p l i e d ( r e f . 3 1 ) . C o n d u c t o m e t r i c and o t h e r methods f o r c o n t i n u o u s measurement ,

p a r t i c u l a r l y s u i t a b l e f o r c o n d e n s a t e q u a l i t y m o n i t o r i n g , a r e a l s o i n u s e .

7 .2 .9 Hydrogen i o n c o n t e n t , a l k a l i n i t y and o t h e r p r o p e r t i e s

The v a l u e o f pH i n aqueous s o l u t i o n s can be d e t e r m i n e d by c o l o r i m e t r i c

a n a l y s i s o r by e l e c t r i c a l measurement . The l a t t e r method i s t h e most w i d e l y

u s e d ; i t c o n s i s t s o f measur ing t h e e l e c t r o m o t i v e f o r c e o f t h e s o - c a l l e d

p H - m e t r i c c e l l , i . e . two e l e c t r o d e s immersed i n t h e s o l u t i o n . I t s h o u l d be

p o i n t e d o u t , h o w e v e r , t h a t t h e measu r i ng e r r o r i s h i g h l y dependen t on t h e

e l e c t r o d e c o n d i t i o n . T h e r e f o r e , pH me te rs s h o u l d be t e s t e d o f t e n by measu r ing

t h e pH v a l u e s o f two r e f e r e n c e s o l u t i o n s . F o r r e l i a b l e measurement , i t i s

n e c e s s a r y t o e l i m i n a t e t h e p o s s i b i l i t y o f a c c i d e n t a l l y p o l l u t i n g w a t e r samples

w i t h any i m p u r i t i e s . The t e m p e r a t u r e o f t h e w a t e r t e s t e d s h o u l d be 20°C.

A l k a l i n i t y o f w a t e r i s caused by t h e p r e s e n c e o f h y d r o x i d e s and s a l t s o f

Page 257: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

246

e lements b e l o n g i n g t o t h e p o t a s s i u m and c a l c i u m g r o u p s . I t can be d e t e r m i n e d by

t i t r a t i n g w a t e r w i t h h y d r o c h l o r i c a c i d .

O t h e r chemica l a n a l y s e s i m p o r t a n t f o r w a t e r q u a l i t y i n s p e c t i o n a r e :

- oxygen ( u n d e r s t o o d as d i s s o l v e d f r e e o x y g e n ) c o n t e n t ;

- c a r b o n d i o x i d e c o n t e n t ;

- phospha te c o n t e n t ;

- s i l i c o n d i o x i d e c o n t e n t ;

- o i l ( u n d e r s t o o d as o i l - t y p e i m p u r i t i e s ) c o n t e n t ;

- i r o n ( u n d e r s t o o d as t o t a l i r o n i n v a r i o u s compounds) c o n t e n t .

7.3 FUEL ANALYSIS

7.3.1 Sampl ing o f f u e l s

F u e l s a r e e v a l u a t e d u s i n g t h e r e s u l t s o f l a b o r a t o r y t e s t s p e r f o r m e d on an

a v e r a g e d l a b o r a t o r y samp le . Samples s h o u l d be t aken f rom t h e f u e l t r a n s p o r t s

d u r i n g u n l o a d i n g , so t h a t n e c e s s a r y c l a i m s t o t h e s u p p l i e r can be made, and a l s o

f rom the f u e l s t ream i n t r o d u c e d t o t h e b o i l e r f u r n a c e , so t h a t t h e a c t u a l

h e a t i n g v a l u e can be a c c o u n t e d f o r i n t h e e n e r g y b a l a n c e . The most i m p o r t a n t

p r o p e r t i e s o f coa l and o t h e r s o l i d f u e l s a r e t h e p e r c e n t a g e s o f c o m b u s t i b l e

m a t t e r , m o i s t u r e and a s h . The c h a r a c t e r i s t i c s o f i m p o r t a n t c o a l t y p e s a r e

s t a n d a r d i z e d i n many c o u n t r i e s ( r e f . 3 2 ) . I n t h e case o f l i q u i d f u e l s , such

p r o p e r t i e s as v i s c o s i t y , t h e p e r c e n t a g e s o f s u l p h u r and vanadium o x i d e , and

f i n a l l y t h e p e r c e n t a g e o f w a t e r , a r e p a r t i c u l a r l y i m p o r t a n t . F o r d e t a i l s ,

n a t i o n a l s t a n d a r d s s h o u l d be c o n s u l t e d ( r e f . 3 3 ) .

C o r r e c t samp l ing o f f u e l i s a p r e r e q u i s i t e f o r r e l i a b l e d e t e r m i n a t i o n o f i t s

p r o p e r t i e s . The f o l l o w i n g c o n c e p t s a r e a p p l i e d i n d e f i n i n g samp l i ng p r o c e d u r e s :

- a p a r e n t l o t i s t h e amount o f a d e f i n i t e t y p e o f f u e l , n o t g r e a t e r t han

1000 t o n s ;

- a p r i m a r y sample i s a sample t aken f rom one p l a c e i n t h e p a r e n t l o t , o r a

s i n g l e sample taken f rom a f l o w i n g - f u e l s t r e a m ;

- a g r o s s sample i s a sample c o n t a i n i n g a l l p r i m a r y s a m p l e s ;

- an a v e r a g e d sample i s a p a r t o f t h e g r o s s sample d e s t i n e d f o r l a b o r a t o r y

a n a l y s e s .

I n t h e case o f c o a l o r o t h e r s o l i d f u e l s , i t i s d e s i r e d t h a t each p a r t i c l e i n

t h e p a r e n t l o t be g i v e n t he same p r o b a b i l i t y o f b e i n g chosen f o r t h e sample as

e v e r y o t h e r p a r t i c l e , d e s p i t e d i f f e r e n c e s i n p a r t i c l e s i z e o r s h a p e . P r i m a r y

samples s h o u l d p r e f e r a b l y be c o l l e c t e d f rom a f u e l s t ream on a c o n v e y o r , w i t h

t h e f r e q u e n c y a d j u s t e d t o t h e s i z e o f t h e p a r e n t l o t and t o t h e r e q u i r e d number

o f samp les . D i r e c t samp l ing f rom r a i l w a y c a r s , t r u c k s o r f u e l p i l e s i s a l l o w e d

o n l y i f t h e r e i s no p o s s i b i l i t y o f samp l i ng f rom c o n v e y o r s . The g r o s s sample i s

fo rmed by m i x i n g a l l p r i m a r y s a m p l e s ; c a r e s h o u l d be t aken t h a t t h e samples a r e

Page 258: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

247

hand led so as t o m i n i m i z e changes i n f u e l p r o p e r t i e s . F o r d e t a i l s , see t h e

a p p r o p r i a t e s t a n d a r d s ( r e f . 3 4 ) .

I n t h e case o f l i q u i d f u e l s , i t i s i m p o r t a n t t o a p p l y t h e same method o f

samp l ing when c o l l e c t i n g t h e p r i m a r y samples f rom w h i c h t h e a v e r a g e d sample w i l l

be o b t a i n e d . Sampl ing o f f u e l s i n s t o r a g e t a n k s s h o u l d be pe r f o rmed i n such

a way t h a t no p a r t i c u l a r l a y e r o f l i q u i d i s p r e f e r r e d ; i f a b a t c h o f l i q u i d i s

run i n t o a t a n k , t hen t h e f i r s t samp l ing s h o u l d o c c u r n o t e a r l i e r t han two h o u r s

l a t e r . Sampl ing f rom p i p e l i n e s may e i t h e r be done c o n t i n u o u s l y , p r o p o r t i o n a l l y

t o t h e f u e l f l o w , o r p e r i o d i c a l l y a t c o n s t a n t f r e q u e n c y ; p e r i o d s w i t h c o n s t a n t

f l o w c o n d i t i o n s a r e p r e f e r r e d .

The p r i m a r y sample vo lume i s d e f i n e d by t h e c a p a c i t y o f t h e samp l i ng d e v i c e ,

and s h o u l d be f i x e d f o r a g i v e n f u e l l o t . The g r o s s sample vo lume s h o u l d be

l a r g e enough f o r t h e p r e p a r a t i o n o f an a v e r a g e d sample o f a t l e a s t 3 kg . I n t h e

case o f a r b i t r a t i o n a n a l y s e s pe r f o rmed i n two o r t h r e e d i f f e r e n t l a b o r a t o r i e s ,

a v e r a g e d samples o f up t o 9 kg may be r e q u i r e d . F o r d e t a i l s on samp l ing o f

l i q u i d f u e l s , see r e f . 35.

7 .3 .2 D e t e r m i n a t i o n o f coa l p r o p e r t i e s

The m o i s t u r e c o n t e n t i s c e r t a i n l y one o f t h e most i m p o r t a n t p r o p e r t i e s o f

s o l i d f u e l s , as i t can a d v e r s e l y i n f l u e n c e b o i l e r c a p a c i t y and e f f i c i e n c y .

A h i g h m o i s t u r e c o n t e n t makes f u e l i g n i t i o n more d i f f i c u l t , w h i l e t h e h e a t i n g

v a l u e d e c r e a s e s .

A t low t e m p e r a t u r e s o f f l u e gas a p p r o a c h i n g t h e b o i l e r o u t l e t , c o n d e n s a t i o n

o f v a p o u r s o r i g i n a t i n g f rom f u e l m o i s t u r e i n t h e p r e s e n c e o f SO^ and SO^ causes

c o r r o s i o n o f b o i l e r p a r t s . A t f r e e z i n g ambien t t e m p e r a t u r e s , f u e l m o i s t u r e may

cause s e r i o u s p rob lems i n t r a n s p o r t a t i o n and u n l o a d i n g .

I n chemica l a n a l y s e s , t h e c o n c e p t s o f f r e e , i n h e r e n t and t o t a l m o i s t u r e a r e

a p p l i e d . F r e e m o i s t u r e i s t he p a r t o f t h e w a t e r i n s o l i d f u e l t h a t e v a p o r a t e s

w h i l e a t t a i n i n g e q u i l i b r i u m w i t h t h e e n v i r o n m e n t ( w a t e r removed by d r y i n g a t

ambien t t e m p e r a t u r e ) . I n h e r e n t m o i s t u r e i s t h e p a r t o f t h e w a t e r t h a t rema ins i n

t h e f u e l a f t e r a t m o s p h e r i c d r y i n g ; i t can be d e t e r m i n e d by f i n d i n g t h e mass

decrement o f f u e l w i t h o u t f r e e m o i s t u r e , a d d i t i o n a l l y d r i e d a t 1 0 5 - l l Ü ° C .

A s h , i . e . m i n e r a l m a t t e r , d e c r e a s e s t h e h e a t i n g v a l u e o f f u e l . A h i g h ash

c o n t e n t makes t he combus t i on p r o c e s s more d i f f i c u l t , and r e d u c e s b o i l e r c a p a c i t y

and e f f i c i e n c y . F l y ash i n f l u e gas may be r e s p o n s i b l e f o r t h e f o u l i n g o f

h e a t i n g s u r f a c e s and e r o s i o n wear o f b o i l e r p a r t s . I n o r d e r t o d e t e r m i n e t h e ash

c o n t e n t , a c o a l sample o f 1-2 g mass i s bu rned i n a l a b o r a t o r y oven a t 815^C,

and t he r e s i d u e i s a d d i t i o n a l l y r o a s t e d .

C o m b u s t i b l e m a t t e r i n c o a l i n c l u d e s t h e e l emen ts t h a t t a k e p a r t i n t h e

combus t ion p r o c e s s , i . e . c a r b o n , h y d r o g e n and s u l p h u r . Knowledge o f t h e c o n t e n t

o f c o m b u s t i b l e e lemen ts may be e s p e c i a l l y i m p o r t a n t i f t h e r e i s no p o s s i b i l i t y

Page 259: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

248

o f d i r e c t l y d e t e r m i n i n g t he combus t i on h e a t o r h e a t i n g v a l u e o f t h e f u e l , as

t h e s e q u a n t i t i e s can be a l t e r n a t i v e l y c a l c u l a t e d by an i n d i r e c t method ( s e e

S e c t i o n 7 . 3 . 4 ) . Sometimes i t may be i m p o r t a n t t o d e t e r m i n e t h e c o n t e n t o f

c o m b u s t i b l e m a t t e r i n b o i l e r a s h , as t h i s w o u l d a l l o w c a l c u l a t i o n o f t h e e n e r g y

l o s s r e s u l t i n g f rom i n c o m p l e t e c o m b u s t i o n .

F o r d e t a i l s o f coa l a n a l y s i s and s t a n d a r d s c o n c e r n i n g t h e l a b o r a t o r y

p r o c e d u r e s , t he l i t e r a t u r e s h o u l d be c o n s u l t e d ( r e f . 3 6 , 3 7 ) .

7 .3 .3 P r o p e r t i e s o f f u e l o i l

Perhaps t h e most i m p o r t a n t p r o p e r t y o f f u e l o i l i s t he v i s c o s i t y . L i g h t f u e l

o i l s o f v i s c o s i t y up t o 2°E ( d e g r e e s E n g l e r ) a t 20^C may be s u p p l i e d t o t h e

b u r n e r s w i t h o u t p r i o r h e a t i n g . Heavy f u e l o i l s o f h i g h v i s c o s i t y must be hea ted

e i t h e r o n c e , i . e . b e f o r e pumping, o r t w i c e , i . e . b e f o r e pumping and b e f o r e

d i s p e r s i n g i n b u r n e r s . The n e c e s s a r y t e m p e r a t u r e (up t o 150°C) depends on t h e

o i l t y p e , and can be f ound i n d iag rams o r nomographs ( r e f . 3 3 ) .

O t h e r e s s e n t i a l pa rame te rs a re t h e s u l p h u r c o n t e n t and vanadium o x i d e

c o n t e n t . S u l p h u r i s i m p o r t a n t n o t o n l y f o r e n v i r o n m e n t a l r e a s o n s ; i t may be

r e s p o n s i b l e f o r l o w - t e m p e r a t u r e c o r r o s i o n i n t h e o u t l e t p a r t s o f t h e b o i l e r .

Vanadium o x i d e , V20^ , may cause h i g h - t e m p e r a t u r e c o r r o s i o n o f b o i l e r p a r t s .

7 .3 .4 Heat o f combus t i on and h e a t i n g v a l u e

The h e a t o f c o m b u s t i o n , Q ^ , i s t h e amount o f e n e r g y r e l e a s e d pe r u n i t

q u a n t i t y o f f u e l i n compressed o x y g e n a t c o n s t a n t v o l u m e ; i t i s a d d i t i o n a l l y

assumed t h a t t h e f u e l t e m p e r a t u r e b e f o r e combus t i on and t h e t e m p e r a t u r e o f t h e

combus t ion p r o d u c t s i s 20°C, and t h e w a t e r i n i t i a l l y p r e s e n t i n t h e f u e l , o r

c r e a t e d by b u r n i n g o f h y d r o g e n , i s f i n a l l y c o n d e n s e d .

The d e t e r m i n a t i o n o f h e a t o f combus t i on i s one o f t he most i m p o r t a n t

l a b o r a t o r y measurements needed f o r hea t -economy m o n i t o r i n g , and t h u s p a r t i c u l a r

c a r e and a c c u r a c y i s r e q u i r e d . The s t a n d a r d method a p p l i c a b l e t o s o l i d and

l i q u i d f u e l s i s t he b o m b - c a l o r i m e t e r method . The a p p a r a t u s i s r e q u i r e d t o meet

a s t a n d a r d s p e c i f i c a t i o n , and t h e p r o c e d u r e used i s a l s o s t a n d a r d i z e d ( r e f . 3 7 ) .

The bomb i s a smal l s t a i n l e s s - s t e e l v e s s e l i n w h i c h a smal l mass o f t h e f u e l

( a b o u t 1 g ) i s h e l d i n a c r u c i b l e ( F i g . 7 . 2 ) . I f t h e f u e l i s s o l i d , i t i s

u s u a l l y c r u s h e d and t hen p r e s s e d i n t o t h e fo rm o f a p e l l e t i n a s p e c i a l p r e s s .

The p e l l e t i s i g n i t e d by f u s i n g a p i e c e o f w i r e w i t h w h i c h i t i s i n c o n t a c t ; t h e

p e l l e t can a l s o be made w i t h t h e f u s e w i r e p a s s i n g t h r o u g h i t .

The w i r e fo rms p a r t o f an e l e c t r i c a l c i r c u i t w h i c h can be comp le ted by a

f i r i n g b u t t o n w h i c h i s s i t u a t e d i n a p o s i t i o n remote f rom t h e bomb. I f a l i q u i d

f u e l i s be i ng t e s t e d , i t i s c o n t a i n e d i n a g e l a t i n e c a p s u l e and t h e f i r i n g may

be a s s i s t e d by i n c l u d i n g i n t h e c r u c i b l e a l i t t l e p a r a f f i n o f known h e a t o f

c o m b u s t i o n . The c r u c i b l e c a r r y i n g t h e f u e l i s l o c a t e d i n t h e bomb, and t h e t o p

Page 260: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

249

o f t he bomb i s sc rewed down. Oxygen i s t h e n a d m i t t e d s l o w l y u n t i l t h e p r e s s u r e

i s 20-35 b a r , depend ing on t he f u e l t y p e . The bomb i s l o c a t e d i n t h e c a l o r i m e t e r

and a measured q u a n t i t y o f w a t e r i s pou red i n t o t h e c a l o r i m e t e r .

F i g . 7 . 2 . Scheme o f t h e bomb c a l o r i m e t e r . 1 - i n s u l a t i n g c o v e r , 2 - w a t e r , 3 - bomb, 4 - i n s u l a t i n g f e e t , 5 - f u e l sample i n a c r u c i b l e .

The c a l o r i m e t e r i s c l o s e d , t h e e x t e r n a l c o n n e c t i o n s t o t he c i r c u i t a r e made,

and an a c c u r a t e thermometer o f t h e f i x e d - r a n g e o r t h e Beckman t y p e i s immersed

t o a p r o p e r dep th i n t h e w a t e r . The w a t e r i s s t i r r e d by a m o t o r - d r i v e n s t i r r e r

and t e m p e r a t u r e o b s e r v a t i o n s a r e t aken e v e r y m i n u t e . A t t h e end o f t h e f i f t h

m i n u t e , t he c h a r g e i s f i r e d and t e m p e r a t u r e r e a d i n g s a r e t aken e v e r y 10 seconds

u n t i l t h e r e a d i n g s b e g i n t o f a l l ; t h e n , t he f r e q u e n c y o f r e a d i n g s can a g a i n be

r e d u c e d t o e v e r y m i n u t e . The measured t e m p e r a t u r e r i s e , w h i c h s h o u l d n o t e x c e e d

2-3 K, i s c o r r e c t e d f o r v a r i o u s l o s s e s a c c o r d i n g t o t h e f o r m u l a e g i v e n i n t h e

r e s p e c t i v e s t a n d a r d s . The hea t o f combus t i on o f t h e f u e l t e s t e d i s f i n a l l y

c a l c u l a t e d f rom the h e a t b a l a n c e e q u a t i o n , a l s o g i v e n i n t h e s t a n d a r d s , and t h e

measur ing e r r o r can be e s t i m a t e d .

I f , f o r any r e a s o n , t he bomb c a l o r i m e t e r method c a n n o t be u s e d , b u t t h e

chemica l c o n s t i t u t i o n o f t h e f u e l i s known, t h e n i t i s p o s s i b l e t o c a l c u l a t e

t he hea t o f combus t ion u s i n g a p p r o p r i a t e f o r m u l a e . F o r e x a m p l e , i n t h e case o f

European coa l t y p e s , t h e s o - c a l l e d D u l o n g ' s f o r m u l a may be a p p l i e d

= 341C + 1444{H - (0 + Ν - l ) / 8 ) + 93S ( k J / k g ) ( 7 . 1 )

where C , H , 0 , N , and S a re t h e p e r c e n t a g e s o f c a r b o n , h y d r o g e n , o x y g e n ,

n i t r o g e n and s u l p h u r .

The a c c u r a c y o f t h e s e s o - c a l l e d i n d i r e c t methods f o r d e t e r m i n a t i o n o f t h e h e a t

o f combus t i on i s l i m i t e d . A t a c a r b o n c o n t e n t o f a b o u t 86%, and an o x y g e n

c o n t e n t be low 7.5%, t h e a c c u r a c y o f t h e D u l o n g ' s f o r m u l a i s a b o u t ±2%.

Page 261: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

250

The h e a t i n g v a l u e o f t h e f u e l i s equa l t o t h e h e a t o f combus t i on minus t h e

l a t e n t h e a t o f t h e w a t e r coming f rom t h e f u e l d u r i n g c o m b u s t i o n . T h i s

c o r r e s p o n d s t o t h e f a c t t h a t w a t e r v a p o u r formed i n f u r n a c e s i s e m i t t e d i n t h e

f l u e gas t o t h e a tmosphe re , and t h e l a t e n t h e a t i s l o s t ( c o n t r a r y t o a bomb

c a l o r i m e t e r measurement ) .

The h e a t i n g v a l u e o f t h e f u e l , Q ^ , can be c a l c u l a t e d as a f u n c t i o n o f t h e

combus t ion h e a t , Q ^ , t h e h y d r o g e n p e r c e n t a g e Η and t h e m o i s t u r e p e r c e n t a g e W.

A g a i n , d e t a i l e d f o r m u l a e can be f o u n d i n t h e r e l e v a n t s t a n d a r d s . F o r e x a m p l e ,

P o l i s h S t a n d a r d s s t a t e t h a t f o r l i q u i d f u e l s

= - 25 .19(9H + W) ( k J / k g ) ( 7 . 2 )

and f o r s o l i d f u e l s

= - 24 .55 (8 .9H + W) ( k J / k g ) ( 7 . 3 )

I t i s n o t e w o r t h y t h a t i n t h e case o f l i q u i d f u e l s , e m p i r i c a l f o r m u l a e a r e

a v a i l a b l e f o r c a l c u l a t i o n o f t h e h y d r o g e n c o n t e n t as a f u n c t i o n o f t h e h e a t o f

c o m b u s t i o n , w h i l e t h e h y d r o g e n c o n t e n t i n s o l i d f u e l s must be e x p e r i m e n t a l l y

d e t e r m i n e d .

I n d i r e c t c a l c u l a t i o n o f t h e h e a t i n g v a l u e u s i n g t h e f o r m u l a e g i v e n i n t h e

l i t e r a t u r e i s a l s o p o s s i b l e . F o r examp le , t h e f o l l o w i n g f o r m u l a may be a p p l i e d

t o European coa l t y p e s :

= 339(C - 0 . 7 5 ( 0 / 2 ) ) + 1193(H - 0 . 1 2 5 ( 0 / 2 ) ) + 105S - 25W. ( k J / k g ) ( 7 . 4 )

where i s t he p e r c e n t a g e o f i n h e r e n t m o i s t u r e ; o t h e r symbo ls as a b o v e .

7 .3 .5 Fue l s t o r a g e i n s p e c t i o n

Coa l p i l e s s h o u l d be v i s u a l l y i n s p e c t e d d a i l y d u r i n g t h e f i r s t 3 months a f t e r

t h e i r d e l i v e r y and t w i c e a week t h e r e a f t e r . A f i r e h a z a r d i s i n d i c a t e d b y :

- s p o t - w i s e d r y i n g o f t he p i l e s u r f a c e a f t e r r a i n f a l l ;

- e s c a p i n g steam c l o u d s ;

- d e p o s i t s o f ash and s u l p h u r a p p e a r i n g on t h e p i l e s u r f a c e ;

- e s c a p i n g smoke o f c h a r a c t e r i s t i c o d o u r .

A more p r e c i s e i n s p e c t i o n p r o c e d u r e r e q u i r e s t h a t t h e t e m p e r a t u r e o f t he c o a l

i n t h e p i l e s be measured . The s t a n d a r d measurement f r e q u e n c y i s t w i c e a week

d u r i n g t he f i r s t 2 months and once e v e r y two weeks t h e r e a f t e r . A c o a l

t e m p e r a t u r e above 45°C s h o u l d be i n t e r p r e t e d as an i n d i c a t i o n o f f i r e h a z a r d . I f

t h e t e m p e r a t u r e r i s e s above 60°C, t h e r e l e v a n t f u e l l o t must i m m e d i a t e l y be

d i r e c t e d t o t h e f u r n a c e .

A c c o r d i n g t o P o l i s h r e g u l a t i o n s , c o a l - s t o r a g e y a r d s w i t h c a p a c i t i e s l a r g e r

t han 500 t o n s must be e q u i p p e d w i t h permanent t e m p e r a t u r e - m e a s u r i n g s y s t e m s ,

c o n s i s t i n g o f i n s t r u m e n t s spaced l e s s t han 5 m a p a r t . The s i m p l e s t i n s t r u m e n t i s

a m e r c u r y - i n - g l a s s thermometer p l a c e d i n s i d e a s t e e l t ube t h a t can be i n s e r t e d

Page 262: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

251

i n t h e f u e l l a y e r . S p e c i a l s i g n a l l i n g the rmometers o r remote measu r i ng sys tems

can a l s o be a p p l i e d .

Fue l o i l i s h e l d i n s t o r a g e t a n k s o u t s i d e t h e b o i l e r h o u s e , and an

i n t e r m e d i a t e tank w i t h a c a p a c i t y o f a b o u t 8 - h o u r s ' b o i l e r s u p p l y i s u s u a l l y

i n s t a l l e d i n , o r c l o s e t o , t h e b o i l e r h o u s e . As h e a v y o i l r e q u i r e s h e a t i n g

b e f o r e i t can be pumped t o t h e b u r n e r s , t e m p e r a t u r e c o n t r o l i n t h e t a n k s and

p i p e l i n e s i s e s s e n t i a l . A s t a n d a r d s o l u t i o n t o t h i s p rob lem i s an a u t o m a t i c a l l y

c o n t r o l l e d h e a t i n g sys tem comp le te w i t h r e m o t e - t e m p e r a t u r e measurements and

d e v i c e s w a r n i n g o f e x c e s s t e m p e r a t u r e .

7.4 BOILERS

7.4.1 Methods o f measurement

The b o i l e r s can be r e g a r d e d as a s p e c i a l p a r t o f t h e the rma l s y s t e m , where

c o n s i d e r a b l e e n e r g y l o s s e s can o c c u r o r c o n s i d e r a b l e e n e r g y s a v i n g s can be

a t t a i n e d . E n e r g y d e l i v e r e d i n f u e l can be e f f i c i e n t l y u t i l i z e d i f b o i l e r s a r e

m a i n t a i n e d i n p r o p e r c o n d i t i o n . B o i l e r e f f i c i e n c y i s one o f t h e i m p o r t a n t

i n d i c e s t o be s y s t e m a t i c a l l y checked and c a r e f u l l y w a t c h e d , because even sma l l

d e v i a t i o n s f rom i t s op t ima l v a l u e , i f m a i n t a i n e d f o r a l o n g p e r i o d , may cause

c o n s i d e r a b l e e n e r g y l o s s e s .

I n some c o u n t r i e s , g e n e r a l s a f e t y r e g u l a t i o n s may a p p l y t o t h e b o i l e r s

i n s t a l l e d i n s u g a r f a c t o r i e s . T h i s can be e x e m p l i f i e d by t h e s o - c a l l e d

"Measurement l i s t f o r b o i l e r o p e r a t i o n " . T a b l e 7 . 5 , w h i c h i s o b l i g a t o r y i n

Po land ( r e f . 2 1 ) . I t s t a t e s wha t pa rame te r s s h o u l d be r e c o r d e d a t l e a s t e v e r y

h o u r , f o r r o u t i n e c h e c k i n g o f b o i l e r o p e r a t i o n .

A b o i l e r scheme w i t h an i n d i c a t i o n o f pa rame te r s needed f o r t h e b o i l e r e n e r g y

b a l a n c e i s shown i n F i g . 7 . 3 . The e s s e n t i a l p rob lem o f b o i l e r c h e c k i n g i s t o

t g . p g . D Tsuperheated steam

ι Η JTT Κ

\ \ \ \ \ \ \ \ ^ \ \ \ \ \ f e e d - w a t e r ^ ^ | j \ ^ p ^ . t ^ 21

F i g . 7 . 3 . Scheme o f a b o i l e r . M e a s u r i n g p o i n t s a r e i n d i c a t e d a c c o r d i n g t o t h e l i s t o f measurements . T a b l e 7 .5 .

Page 263: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

252

TABLE 7.5

Measurement l i s t f o r b o i l e r o p e r a t i o n , a c c o r d i n g t o P o l i s h r e g u l a t i o n s ( r e f . 2 1 ) .

No. Parameter B o i l e r c a p a c i t y 3 ^ ^ ^ ^ ^

1-5 t / h above 5 t / h

1 F e e d - w a t e r p r e s s u r e χ χ p^ 2 Steam p r e s s u r e a t b o i l e r o u t l e t r χ p^ 3 Steam p r e s s u r e i n b o i l e r drum χ χ 4 F e e d - w a t e r t e m p e r a t u r e χ χ t ^ 5 Tempera tu re a f t e r f e e d - w a t e r h e a t e r χ χ 6 Steam t e m p e r a t u r e a t b o i l e r o u t l e t χ χ 7 B l a s t a i r p r e s s u r e χ χ 8 A i r p r e s s u r e b e f o r e a i r h e a t e r χ r 9 A i r p r e s s u r e a f t e r a i r h e a t e r - r

10 F l u e gas t e m p e r a t u r e b e f o r e f e e d - w a t e r h e a t e r r r

11 F l u e gas t e m p e r a t u r e b e f o r e a i r h e a t e r - r 12 F l u e gas t e m p e r a t u r e b e f o r e ch imney χ χ 13 A i r t e m p e r a t u r e b e f o r e a i r h e a t e r - r 14 A i r t e m p e r a t u r e a f t e r a i r h e a t e r - r 15 D r a u g h t i n f u r n a c e above s t o k e r r χ 16 D r a u g h t b e f o r e f e e d - w a t e r h e a t e r r r 17 D r a u g h t a f t e r s u p e r h e a t e r r r 18 D r a u g h t b e f o r e a i r h e a t e r - r 19 D r a u g h t b e f o r e ch imney χ χ 20 CO2 c o n t e n t i n f l u e gas b e f o r e ch imney x * χ 21 F e e d - w a t e r f l o w χ χ 22 Steam f l o w x * * χ D 23 C o m b u s t i b l e m a t t e r i n ash r χ 24 Fue l f l o w χ χ Β

* 7 * * 7 X = r e q u i r e d ; r = recommended; e x c e p t h a n d - f i r e d f u r n a c e s ; o n l y i n b o i l e r s e q u i p p e d w i t h s u p e r h e a t e r s .

de te rm ine how much e n e r g y i s consumed i n t h e g e n e r a t i o n o f a d e f i n i t e amount o f

steam a t t h e r e q u i r e d p r e s s u r e and t e m p e r a t u r e . Two i n d i c e s can be u s e d , t h e

b o i l e r e f f i c i e n c y η and t he e n e r g y consumpt ion p e r 1 kg steam q .

η = D ( h ^ - h^ ) / (BQ^) -100% ( 7 . 5 )

where D i s t h e mass o f steam g e n e r a t e d i n t he b o i l e r , h^ i s t h e e n t h a l p y o f

steam a t t h e b o i l e r o u t l e t , h i s t h e e n t h a l p y o f f e e d w a t e r , Β i s t h e mass o f w

f u e l consumed i n t h e b o i l e r f u r n a c e , and i s t h e h e a t i n g v a l u e o f f u e l .

The e n e r g y consumpt ion p e r 1 kg steam can be c a l c u l a t e d as

q = BQ^/D ( 7 . 6 )

I n o r d e r t o d e t e r m i n e t he above i n d i c e s , i n a d d i t i o n t o t h e h e a t i n g v a l u e o f

f u e l , t he f o l l o w i n g q u a n t i t i e s must be f ound f rom measurements :

- t h e mass o f f u e l consumed;

- t h e mass o f steam g e n e r a t e d ;

- t he steam p r e s s u r e and t e m p e r a t u r e ( f o r e n t h a l p y d e t e r m i n a t i o n ) ;

- t he mass o f f e e d w a t e r d e l i v e r e d t o t h e b o i l e r ( c h e c k on s t e a m - f l o w

Page 264: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

253

measurement ) ;

- t h e f e e d - w a t e r t e m p e r a t u r e ( f o r e n t h a l p y d e t e r m i n a t i o n ) .

The amount o f s o l i d f u e l i s w e i g h e d , p r e f e r a b l y by an a u t o m a t i c s c a l e w h i c h

i s c a l i b r a t e d d a i l y . I n t h e absence o f s c a l e s , a v o l u m e t r i c method can be u s e d .

F u e l - o i l consumpt ion can be measured by f l o w me te rs i n s t a l l e d i n t he s u p p l y

p i p e l i n e . F o r a c c u r a t e hea t b a l a n c e s , i t i s recommended t h a t f l o w r e a d i n g s be

taken e v e r y f i v e m i n u t e s .

The amount o f steam i s measured by f l o w me te rs and e v e n t u a l l y checked a g a i n s t

t he i n d i c a t i o n s o f a w a t e r meter i n s t a l l e d on t he f e e d - w a t e r s u p p l y l i n e . I f a

h i g h - a c c u r a c y b a l a n c e i s r e q u i r e d , i t i s recommended t h a t t he s o o t b l o w e r s and

t he b o i l e r blowdown a re t e m p o r a r i l y c u t o f f ; i f t h e blowdown c a n n o t be a v o i d e d ,

t hen a p p r o p r i a t e c o r r e c t i o n s must be i n t r o d u c e d i n t h e f e e d - w a t e r meter

i n d i c a t i o n s .

Mean v a l u e s o f t h e w a t e r and steam p a r a m e t e r s can be e s t i m a t e d w i t h t h e a i d

o f t e m p e r a t u r e and p r e s s u r e r e c o r d s f rom t h e r e c o r d i n g i n s t r u m e n t s . F o r a c c u r a t e

e n e r g y b a l a n c e s , t h e pa rame te rs can be c a l c u l a t e d as mean v a l u e s o f i n s t r u m e n t

r e a d i n g s taken e v e r y 15 m i n u t e s .

A r o u t i n e b o i l e r check c o n s i s t s o f o b s e r v i n g t h e i n d i c a t i o n s o f t he i n s t a l l e d

measur ing i n s t r u m e n t s and r e c o r d i n g t h e i m p o r t a n t r e a d i n g s a t l e a s t e v e r y h o u r .

I n f o r m a t i o n g a t h e r e d i n t h i s way g e n e r a l l y e n a b l e s us t o e v a l u a t e b o i l e r

o p e r a t i o n , e s p e c i a l l y f u e l c o n s u m p t i o n , and t o e s t a b l i s h how i t i s i n f l u e n c e d by

l o a d f l u c t u a t i o n s r e s u l t i n g f rom o p e r a t i o n o f t h e s u g a r f a c t o r y .

P e r i o d i c checks s h o u l d be aimed a t a n a l y s i n g t h e e n e r g y b a l a n c e s o f t he

b o i l e r u n i t s a t l e a s t e v e r y 10 d a y s . E n e r g y b a l a n c e c a l c u l a t i o n s s h o u l d be based

on t h e r e s u l t s o f measurements t aken e v e r y 15 m inu tes d u r i n g a 6 - h o u r t e s t

p e r i o d ( r e f . 3 9 ) . The p r e r e q u i s i t e f o r a r e l i a b l e e n e r g y b a l a n c e i s s t a b i l i z e d

b o i l e r o p e r a t i o n d u r i n g t h a t t i m e .

7 .4 .2 Combus t ion e v a l u a t i o n

The e s s e n t i a l r e q u i r e m e n t s t o be a c c o u n t e d f o r i n combus t i on e v a l u a t i o n a r e

r e l a t e d t o t h e phenomena o c c u r r i n g i n t h e b o i l e r f u r n a c e . The combus t i on p r o c e s s

i n c l u d e s f u e l d e c o m p o s i t i o n and o x i d a t i o n o f c o m b u s t i b l e componen ts , i . e .

c a r b o n , s u l p h u r and h y d r o g e n , i n t o ca rbon d i o x i d e , s u l p h u r d i o x i d e and w a t e r ,

r e s p e c t i v e l y . Two b a s i c r e q u i r e m e n t s f o r e f f e c t i v e combus t i on a r e t h u s a

s u f f i c i e n t l y h i g h t e m p e r a t u r e and an adequa te o x y g e n s u p p l y .

E v a l u a t i o n o f t he combus t ion p r o c e s s i s based on f l u e - g a s a n a l y s i s , aimed a t

d e t e r m i n i n g t he c o n t e n t o f c a r b o n d i o x i d e , c a r b o n monox ide and o x y g e n . The

measured CO^ c o n t e n t e n a b l e s us t o e v a l u a t e t h e combus t i on p r o c e s s by compar i son

w i t h t he t h e o r e t i c a l CO^ c o n t e n t c a l c u l a t e d f rom s t o i c h o m e t r i c r e l a t i o n s h i p s . I f

t h e r e a l CO^ c o n t e n t i s l o w e r t han t h e t h e o r e t i c a l v a l u e , and t he 0^ c o n t e n t i s

h i g h , t h i s i n d i c a t e s an e x c e s s i v e a i r s u p p l y o r a l e a k y b o i l e r e x h a u s t c h a n n e l .

Page 265: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

254

From s i m u l t a n e o u s f u r n a c e t e m p e r a t u r e and d r a u g h t measurements , i t i s p o s s i b l e

t o d e t e r m i n e t h e r e a s o n s f o r t h e s i t u a t i o n .

The CO c o n t e n t i n d i c a t e s i n c o m p l e t e c o m b u s t i o n , r e s u l t i n g e i t h e r f rom

i n a d e q u a t e a i r f e e d o r , i n t h e case o f s o l i d f u e l s , f rom t o o t h i c k a f u e l l a y e r

on t h e s t o k e r .

The u l t i m a t e goa l o f combus t i on e v a l u a t i o n i s t o d e t e r m i n e t h e e n e r g y l o s s e s

r e s u l t i n g f rom t h e combus t ion p r o c e s s and t o t ake a p p r o p r i a t e c o r r e c t i v e

measu res . The ch imney l o s s depends on t h e CO^ c o n t e n t and t h e f l u e - g a s

t e m p e r a t u r e . T h i s i s t h e l a r g e s t o f t h e e n e r g y l o s s e s , n o r m a l l y amount ing t o

8-12% o f t h e e n e r g y d e l i v e r e d i n t h e f u e l . I n o l d e r b o i l e r t y p e s , i t can e x c e e d

20%. The ch imney l o s s can be c a l c u l a t e d f rom t h e S i e g e r t f o r m u l a

= a ( t ^ - t ^ (%) ( 7 . 7 )

0.10

0.09

0.08

0.07

0.05

0.04

1

16 18 CO2 content in f lue gas (%)

20 22

F i g . 7 .4 . C o e f f i c i e n t α i n t h e S i e g e r t f o r m u l a ( a f t e r r e f . 4 0 ) . S o l i d l i n e s -c o a l and l i g n i t e , dashed l i n e s - wood .

Page 266: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

255

where α i s a c o e f f i c i e n t depend ing on t h e c o n t e n t , f u e l t y p e and t h e f u e l

m o i s t u r e c o n t e n t ( t h e v a l u e o f α can be f o u n d i n F i g . 7 . 4 ) , t ^ i s t h e f l u e - g a s

t e m p e r a t u r e a t t h e b o i l e r o u t l e t i n and t ^ i s t h e ambien t t e m p e r a t u r e i n °C.

F o r g a s - and o i l - f i r e d b o i l e r s , f o r m u l a e e x p r e s s i n g t h e ch imney l o s s as a

f u n c t i o n o f CO^ and 0^ c o n t e n t i n t h e f l u e gas and t e m p e r a t u r e d i f f e r e n c e

t - t can be f ound i n t h e l i t e r a t u r e , and even c a l c u l a t o r p rograms t o g 3

automate t h e c a l c u l a t i o n s o f t h e ch imney l o s s have been p u b l i s h e d ( r e f . 4 1 ) .

The i n c o m p l e t e combus t ion l o s s , S j , depends i n p r i n c i p l e on t h e c o n t e n t o f

c o m b u s t i b l e gases ( C O , h y d r o c a r b o n s ) i n t h e f l u e g a s . I t amounts t o 0 .5-1.5%

i n b o i l e r s e q u i p p e d w i t h modern f u r n a c e s , and up t o 5% i n o l d e r b o i l e r s w i t h

h a n d - f i r e d f u r n a c e s . Due t o measurement d i f f i c u l t i e s , d e t e r m i n a t i o n o f t h e

i n c o m p l e t e combus t ion l o s s u s u a l l y r e l i e s on t h e CO c o n t e n t o f t h e f l u e g a s .

F i g . 7 .5 . We see t h a t 1% CO i n f l u e gas c o r r e s p o n d s t o an e n e r g y l o s s o f

a p p r o x i m a t e l y 4-6%.

The ash l o s s , S ^ , depends on t h e c o m b u s t i b l e m a t t e r c o n t e n t i n t h e a s h . T h i s

depends m o s t l y on t h e f u e l t y p e and t h e f u r n a c e t y p e . The ash l o s s i n o i l - f i r e d

CO content in f lue gas (%)

0.3 O.A 0.6 0.8 1.0 1.5

10 8 6 5 4 3 2 1.5 1.0 0.8 0.6 Incomplete combustion loss (%)

F i g . 7 .5 . I n c o m p l e t e combus t i on l o s s S j ( a f t e r r e f . 4 0 ) .

Page 267: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

2 5 6

Mass of ash as α percentage of fuel mass (%)

3 A 5 6 7 8 9 1 0 1 1 1 2 1 3 Κ 1 5 1 6

A s h l o s s ( % )

F i g . 7 . 6 . Ash l o s s ( a f t e r r e f . 3 7 ) .

b o i l e r s does n o t exceed 1 . 5 % , w h i l e i n t h e case o f c o a l - f i r e d b o i l e r s , i t can be

0 . 5 - 4 . 0 % i n pu l v e r i z e d - c o a l f u r n a c e s , 5 - 1 4 % i n s t o k e r - f i r e d b o i l e r s , and 6 - 1 8 %

i n h a n d - f i r e d f u r n a c e s . The ash l o s s can be e s t i m a t e d as a f u n c t i o n o f t he ash

mass and t h e c o m b u s t i b l e m a t t e r c o n t e n t C i n t h e ash samples ( F i g . 7 . 6 ) .

The r a d i a t i o n hea t l o s s , S ^ , i s caused by therma l r a d i a t i o n f rom b o i l e r w a l l s .

I t depends on b o i l e r c a p a c i t y ( F i g . 7 . 7 ) . T y p i c a l v a l u e s a r e 0 . 5 % i n l a r g e

b o i l e r s and up t o 1 0 % i n smal l b o i l e r s w i t h i n s u f f i c i e n t the rma l i n s u l a t i o n .

3.2

θ 2 Λ

o .1.6

^0.8 α:

\ \

8 10 ' lA '18 20 AO 60 80 100 12 16

Boiler capacity ( t / h )

F i g . 7 . 7 . R a d i a t i o n l o s s S R ( a f t e r r e f . 4 0 ) . 1 - b o i l e r s e q u i p p e d w i t h a i r h e a t e r s and f e e d - w a t e r h e a t e r s , 2 - b o i l e r s w i t h o u t h e a t e r s .

Page 268: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

257

7 . 4 . 3 Steam g e n e r a t i o n

A steam g e n e r a t i o n check s h o u l d be d i r e c t e d t o t h r e e e s s e n t i a l a r e a s :

o p e r a t i o n a l s a f e t y , t h e b a s i c o p e r a t i n g pa rame te r s and t h e c o r r e c t n e s s o f t h e

steam g e n e r a t i o n p r o c e s s . S a f e t y r e q u i r e m e n t s c o n c e r n i n g measur ing and

s i g n a l l i n g equ ipmen t , as w e l l as o v e r - p r e s s u r e p r o t e c t i o n , a re g o v e r n e d by

s a f e t y r e g u l a t i o n s i n most c o u n t r i e s and a r e o m i t t e d h e r e .

As t o b a s i c o p e r a t i n g p a r a m e t e r s , t h e d e v i a t i o n s f rom t h e i r nominal v a l u e s

canno t exceed t he l i m i t s t h a t a r e r e q u i r e d by o t h e r p o w e r - h o u s e e q u i p m e n t ,

m a i n l y t h e t u r b i n e s and t h e steam t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n . The steam

p r e s s u r e and t e m p e r a t u r e a r e a u t o m a t i c a l l y s t a b i l i z e d i n modern b o i l e r s , and

t h u s t he t a s k o f t he o p e r a t i n g p e r s o n n e l i s l i m i t e d t o c h e c k i n g t he c o r r e c t n e s s

o f t he a u t o m a t i c c o n t r o l .

As t o t h e steam g e n e r a t i o n p r o c e s s , i t s h o u l d be remembered t h a t i t c o n s i s t s

o f t he p r o c e s s e s i n t h r e e b o i l e r p a r t s : f e e d - w a t e r h e a t e r , b o i l e r p r o p e r and

s u p e r h e a t e r . These p r o c e s s e s can be e v a l u a t e d on t h e b a s i s o f t h e r e s u l t s o f

measurements s p e c i f i e d i n S e c t i o n 7 . 4 . 1 . R e c o r d i n g i n s t r u m e n t s s h o u l d p r e f e r a b l y

be u s e d ; o t h e r w i s e , r e a d i n g s t aken a t l e a s t e v e r y hou r s h o u l d be i n c l u d e d i n

o p e r a t i o n r e p o r t s .

7 . 4 . 4 E n e r g y b a l a n c e o f t he b o i l e r

I t i s recommended t h a t e n e r g y b a l a n c e s be s e t up a t l e a s t e v e r y t e n days

( t e s t c o n d i t i o n s a r e e x p l a i n e d i n S e c t i o n 7 . 4 . 1 ) . I n a d d i t i o n t o pa ramete r

v a l u e s , t h e h e a t i n g v a l u e o f t he f u e l must a l s o be known. The mean v a l u e s o f t h e

pa rame te rs a re a p p l i e d i n t he c a l c u l a t i o n s .

The e n e r g y o f t he f u e l s u p p l i e d t o t h e b o i l e r , Q p , i s t r a n s f o r m e d i n t o steam

e n e r g y , Q ^ , and e n e r g y l o s s e s , Qj^.

Qp = Q 3 + Q L ( 7 . 8 )

The e n e r g y s u p p l i e d can be c a l c u l a t e d as

Qp = B Q H ( 7 . 9 )

where Β i s t he mass o f f u e l s u p p l i e d t o t h e b o i l e r , and Q^ i s t h e h e a t i n g v a l u e

o f t he f u e l .

The e n e r g y consumed i n steam g e n e r a t i o n can be c a l c u l a t e d f rom t h e f o r m u l a

Qs = D ( h ^ - h^) ( 7 . 1 0 )

where D i s t he mass o f steam g e n e r a t e d , a c c o r d i n g t o f l o w measurement a t t h e

b o i l e r o u t l e t , h^ i s t he e n t h a l p y o f steam ( f o u n d i n steam t a b l e s o r d i a g r a m s ,

f o r t he measured p r e s s u r e p^ and t e m p e r a t u r e t ^ ) , and h i s t h e e n t h a l p y o f t he

s s w

f e e d w a t e r ( f o u n d i n t a b l e s f o r t he measured t e m p e r a t u r e t ^ ) .

I f Qp and Q^ have been c a l c u l a t e d , t h e b o i l e r e f f i c i e n c y can a l s o be

c a l c u l a t e d a c c o r d i n g t o e q n . ( 7 . 5 ) . The a c c u r a c y o f t h e e f f i c i e n c y v a l u e depends

Page 269: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

258

m a i n l y on measur ing e r r o r s i n t h e measurements o f steam f l o w and f u e l mass. I n

some i n s t a n c e s , b o i l e r e f f i c i e n c y can be c a l c u l a t e d more a c c u r a t e l y i f t h e h e a t

l o s s e s have been d e t e r m i n e d ( s e e S e c t i o n 7 . 4 . 2 ) . The r e l e v a n t f o r m u l a i s

η = 100 - ( S ^ + S j + S^ + S^) (%) ( 7 . 1 1 )

7 .4 .5 Example

A c o a l - f i r e d b o i l e r has been t e s t e d and t h e f o l l o w i n g d a t a summarize t h e t e s t

r e s u l t s :

- coa l c o n s u m p t i o n , Β = 5550 k g / h ;

- coa l h e a t i n g v a l u e , = 21440 k J / k g ;

- steam f l o w , D = 32900 k g / h ;

- steam e n t h a l p y , h^ = 3172 k J / k g ;

- f e e d - w a t e r e n t h a l p y , h , = 488 k J / k g . w

The e s s e n t i a l e n e r g y b a l a n c e components a r e t h u s :

- e n e r g y s u p p l i e d t o t he b o i l e r

Qp = 5550-21440 = 1.19-10^ k J / h ;

- e n e r g y consumed i n steam g e n e r a t i o n

Q 3 = 32900· (3172 - 488) = 0 .88-10^ k J / h ;

- e n e r g y l o s s

Q L = Qp - Q 3 = 0 .31-10^ k J / h .

I t i s now p o s s i b l e t o c a l c u l a t e t he b o i l e r e f f i c i e n c y

η = ( 0 . 8 8 - 1 0 ^ / 1 . 1 9 · 1 0 ^ ) · 1 0 0 = 73.9%

and t h e e n e r g y consumpt ion p e r 1 kg steam

q = 5550-21440/32900 = 3617 k J / k g .

7.5 TURBO-GENERATORS

7.5.1 Method o f measurement

The e s s e n t i a l p rob lem o f t u r b o - g e n e r a t o r c h e c k i n g i s t o d e t e r m i n e t h e h e a t

consumpt ion i n e l e c t r i c i t y g e n e r a t i o n . I t i s c o n v e n t i o n a l l y e x p r e s s e d as t h e

steam r a t e , S , t h a t i s , t he mass o f steam consumed i n t h e t u r b o - g e n e r a t o r p e r

1 kWh o f e l e c t r i c a l e n e r g y p r o d u c e d :

S = M/E (kg /kWh) ( 7 . 1 2 )

where Μ i s t h e mass o f steam s u p p l i e d t o t h e t u r b i n e w i t h i n a c e r t a i n t ime

p e r i o d i n kg , and Ε i s t h e e l e c t r i c a l e n e r g y p r o d u c e d a t t h e same t ime i n kWh.

The same i n d e x can a l s o be c a l c u l a t e d as

S = D/N (kg /kWh) ( 7 . 1 3 )

where D i s t h e mass f l o w o f steam i n k g / h , and Ν i s t h e e l e c t r i c a l e f f e c t o f

t h e t u r b o - g e n e r a t o r i n kW.

Page 270: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

259

The e s s e n t i a l i n f o r m a t i o n c o n t a i n e d i n t h e S v a l u e can a l t e r n a t i v e l y be

e x p r e s s e d u s i n g t h e c o n c e p t o f t h e o v e r a l l e f f i c i e n c y o f t h e t u r b o - g e n e r a t o r

( s e e S e c t i o n 7 . 5 . 5 ) . I n o r d e r t o c a l c u l a t e bo th i n d i c e s , t h e f o l l o w i n g

measurements a r e n e c e s s a r y :

- steam amount, Μ ( k g ) o r steam mass f l o w , D ( k g / h ) ;

- amount o f e l e c t r i c a l e n e r g y , Ε (kWh) o r e l e c t r i c a l e f f e c t , Ν ( k W ) ;

- i n l e t p r e s s u r e o f s team, p^ ( b a r ) ;

- i n l e t t e m p e r a t u r e o f s team, t ^ ( ° C ) ;

- o u t l e t t e m p e r a t u r e o f s team, t^ ( °C ) ( r e q u i r e d o n l y f o r t h e c a l c u l a t i o n o f

o v e r a l l e f f i c i e n c y ) .

The way i n w h i c h t h e t e s t i s p e r f o r m e d and t h e f r e q u e n c y o f t h e measurements

d e t e r m i n e how t h e t e s t r e s u l t s can be i n t e r p r e t e d . A r o u t i n e check i s based on

measurements r e p e a t e d e v e r y 30 m i n u t e s ; t u r b i n e o p e r a t i o n i s d e t e r m i n e d by steam

g e n e r a t i o n i n t h e b o i l e r and by t h e accompany ing e l e c t r i c a l and the rma l l o a d s .

The r e s u l t i n g S v a l u e r e f l e c t s n o t o n l y t h e t u r b o - g e n e r a t o r q u a l i t y b u t a l s o

t he method o f i t s u t i l i z a t i o n under a c t u a l l o a d c o n d i t i o n s .

As t o t h e p e r i o d i c c h e c k i n g , t h i s i s aimed a t t e s t i n g t u r b i n e o u t p u t and

e f f i c i e n c y under s t a b i l i z e d o p e r a t i n g c o n d i t i o n s . The t u r b i n e s h o u l d be b r o u g h t

i n t o the rma l e q u i l i b r i u m i n a d v a n c e , b e f o r e t h e t e s t i s i n i t i a t e d ; t h e l o a d

s h o u l d be s t a b i l i z e d and t h e n h e l d c o n s t a n t d u r i n g t h e e n t i r e t e s t . I t i s

recommended t h a t t h e f r e q u e n c y o f t h e measurements be r e l a t e d t o t h e d u r a t i o n o f

t h e t e s t . F o r examp le , t he recommendat ion o f r e f . 42 i s t h a t t h e t e s t d u r a t i o n

can be 15 o r 60 m i n u t e s , and t h e recommended measu r i ng f r e q u e n c y i s shown i n

T a b l e 7 .6 .

TABLE 7.6

Recommended f r e q u e n c y o f i n s t r u m e n t r e a d i n g s i n t u r b o - g e n e r a t o r t e s t s .

Measurement ^ ^ " ^ ^ ^ P " 15 m i n u t e s 60 m inu tes

E l e c t r i c a l e f f e c t 1 min 1 min Steam f l o w 1 min 1 min Tempera tu re o f incoming steam 1 min 5 min P r e s s u r e o f incoming steam 1 min 5 min Tempera tu re o f e x h a u s t steam 1 min 5 min P r e s s u r e o f e x h a u s t steam 1 min 5 min E l e c t r i c i t y meter i n d i c a t i o n s b e g i n n i n g and Steam c o u n t e r i n d i c a t i o n s end o f t e s t

7 .5 .2 Steam consumpt ion

The t r u e steam c o n s u m p t i o n , a q u a n t i t y on w h i c h t h e b a l a n c e and t h e r o u t i n e

c h e c k i n g o f t h e t u r b o - g e n e r a t o r a r e b a s e d , can be d e t e r m i n e d f rom s t e a m - c o u n t e r

i n d i c a t i o n s a t t h e b e g i n n i n g and end o f t h e t e s t . I t i s n e c e s s a r y t o m o d i f y t h e

Page 271: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

260

c o u n t e r i n d i c a t i o n s i f t h e steam p r e s s u r e and t e m p e r a t u r e d e v i a t e f rom t h e

nominal f l o w - m e t e r v a l u e s a t t h e t ime o f t h e t e s t . I n t h e case o f p e r i o d i c

checks aimed a t t h o r o u g h t u r b i n e i n s p e c t i o n , t h e steam consumpt ion v a l u e s h o u l d

be a d d i t i o n a l l y c o r r e c t e d f o r p r e s s u r e and t e m p e r a t u r e d e v i a t i o n s , a c c o r d i n g t o

t h e f o r m u l a

D = - M ^ ) f ^ / T ( k g / h ) ( 7 . 1 4 )

where τ i s t he t e s t d u r a t i o n i n h , M-j and a r e t h e m o d i f i e d c o u n t e r

i n d i c a t i o n s a t t h e b e g i n n i n g and a t t h e end o f t h e t e s t i n kg , and fj^ i s a

c o r r e c t i o n f a c t o r .

I f t h e measurements a re taken f rom a steam f l o w meter and η m o d i f i e d f l o w

v a l u e s D p D2, . . , D ^ have been r e c o r d e d , t hen t he f o l l o w i n g f o r m u l a i s u s e d :

D = O ^ f , ( 7 . 1 5 )

where D ^ i s t h e mean v a l u e o f t he steam f l o w . I f some measurements f a l l beyond

t h e ±2.5% i n t e r v a l a round t h e mean v a l u e , t h i s i s c a l c u l a t e d as

D = ( d / n ) Σ / D T ) 2 ( 7 . 1 6 ) ^ i = l ^

O t h e r w i s e , t h e mean a r i t h m e t i c v a l u e s h o u l d be t a k e n .

The c o r r e c t i o n f a c t o r , f j^ , i s c a l c u l a t e d f o r a b a c k - p r e s s u r e t u r b i n e as t h e

p r o d u c t o f t h r e e c o e f f i c i e n t s r e f l e c t i n g t h e d e v i a t i o n s o f i n l e t p r e s s u r e , i n l e t

t e m p e r a t u r e and o u t l e t p r e s s u r e f rom t h e i r nominal v a l u e s . The d a t a on t h e s e

c o e f f i c i e n t s s h o u l d be s u p p l i e d i n d iag ram o r t a b l e fo rm by t h e t u r b i n e

m a n u f a c t u r e r .

7 .5 .3 T u r b o - g e n e r a t o r power o u t p u t

I n power o u t p u t measurements , t he same g e n e r a l p r i n c i p l e i s a p p l i e d as i n t h e

case o f steam c o n s u m p t i o n . The b a l a n c e and r o u t i n e c o n t r o l o f t h e t u r b o

g e n e r a t o r s h o u l d be based on a c t u a l o u t p u t v a l u e s , w h i l e i n p e r i o d i c c o n t r o l ,

c o r r e c t i o n s f o r t h e d e v i a t i o n s o f o p e r a t i n g pa rame te r s a r e n e c e s s a r y .

I n t he case o f measurements t aken f rom an e l e c t r i c m e t e r , t h e t u r b o - g e n e r a t o r

power o u t p u t i s c a l c u l a t e d as

Ν = (E2 - E ^ ) A f p / T (kW) ( 7 . 1 7 )

where τ i s t h e t e s t d u r a t i o n i n h , E^ and E2 a r e t h e e l e c t r i c meter i n d i c a t i o n s

a t t h e b e g i n n i n g and a t t h e end o f t e s t i n kWh, A i s t h e e l e c t r i c meter c o n s t a n t

and f p i s t h e c o r r e c t i o n f a c t o r .

I f t he r e a d i n g s a re taken f rom a power o u t p u t m e t e r , t h e n t h e f o l l o w i n g

f o r m u l a i s u s e d :

Ν = N^fp (kW) ( 7 . 1 8 )

where i s t h e mean a r i t h m e t i c v a l u e o f t h e power o u t p u t , i n kW.

The c o r r e c t i o n f a c t o r , f ^ , i s a g a i n c a l c u l a t e d on t h e b a s i s o f t u r b i n e

Page 272: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

261

c h a r a c t e r i s t i c s , t a k i n g i n t o a c c o u n t t h e pa ramete r d e v i a t i o n s f rom t h e i r nominal

v a l u e s .

7 .5 .4 T u r b o - g e n e r a t o r e n e r g y b a l a n c e

I n t h e e n e r g y b a l a n c e o f a t u r b o - g e n e r a t o r , a l l i ncoming and o u t g o i n g mass

and e n e r g y f l o w s s h o u l d be a c c o u n t e d f o r :

- incoming s team;

- e x h a u s t s team;

- e l e c t r i c a l e n e r g y p r o d u c e d ;

- hea t d i s s i p a t e d t o t he e n v i r o n m e n t .

The scheme o f a t u r b o - g e n e r a t o r w i t h an i n d i c a t i o n o f t h e sys tem bounda ry and

e n e r g y s t reams i s shown i n F i g . 7 . 8 ( a ) .

(a) SYSTEM BOUNDARY

live steam TURBINE

r heat loss

L

electrical effect

>

exhaust steam

F i g . 7 .8 . E n e r g y c o n v e r s i o n p r i n c i p l e o f a t u r b o - g e n e r a t o r w i t h a b a c k - p r e s s u r e t u r b i n e , ( a ) e n e r g y b a l a n c e scheme, ( b ) steam e x p a n s i o n p r o c e s s shown i n t h e M o l l i e r d i a g r a m .

Assuming t h a t t h e f l o w s o f incoming steam and e x h a u s t steam a r e e q u a l , i t

f o l l o w s f rom the f i r s t law o f thermodynamics t h a t

Dh^ = Ν + Dk^ - Q ( 7 . 1 9 )

where Q i s t h e hea t l o s s , and h^ and h-j a r e t h e e n t h a l p i e s o f incoming steam and

e x h a u s t s team, r e s p e c t i v e l y .

7 .5 .5 T u r b i n e and t u r b o - g e n e r a t o r e f f i c i e n c y

The p r o c e s s t h a t i s t h e o r e t i c a l l y p o s s i b l e i n a steam t u r b i n e c o n s i s t s o f

t r a n s f o r m i n g i n t o mechan ica l work a p a r t o f t he steam e n e r g y , equa l t o t h e

Page 273: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

262

i s e n t r o p i c e n t h a l p y d rop w i t h t h e e x p a n s i o n f rom i n i t i a l t o f i n a l steam

p r e s s u r e . T h i s i s shown i n t h e M o l l i e r d i a g r a m , F i g . 7 . 8 ( b ) . As t h e r e a r e a l w a y s

f r i c t i o n l o s s e s and i n t e r n a l l e a k s a s s o c i a t e d w i t h steam e x p a n s i o n i n t h e

t u r b i n e , t h e r e a l p r o c e s s f o l l o w s t h e p a t t e r n shown i n t h e d i a g r a m , w h i l e o n l y

a p a r t o f t he i s e n t r o p i c e n t h a l p y d rop i s t r a n s f o r m e d i n t o mechan ica l w o r k .

The u t i l i z a t i o n o f t h e i s e n t r o p i c e n t h a l p y d rop i n a t u r b i n e can be e x p r e s s e d

by t h e s o - c a l l e d i n t e r n a l e f f i c i e n c y

^ i = ( ^ - - ^2^ ( ^ - 2 0 )

where h^ i s t he t h e o r e t i c a l e n t h a l p y v a l u e a f t e r i s e n t r o p i c e x p a n s i o n t o t h e

f i n a l p r e s s u r e , and t he r e m a i n i n g symbo ls a r e as a b o v e .

The v a l u e o f t h e i n t e r n a l e f f i c i e n c y i s o f p r i m a r y impo r t ance i f t h e combined

g e n e r a t i o n o f hea t and e l e c t r i c i t y i s c o n s i d e r e d . The h i g h e r t h e e f f i c i e n c y

v a l u e , t h e l a r g e r t he amount o f e l e c t r i c a l e n e r g y t h a t can be g e n e r a t e d f rom t h e

same amount o f s team. I f t h e p e r i o d i c t u r b i n e i n s p e c t i o n s r e v e a l t h a t t h e

i n t e r n a l e f f i c i e n c y i s d e c r e a s i n g , t h e n one may e x p e c t t h a t t h e c o n t r o l v a l v e s ,

i n t e r n a l s e a l s o r b l a d e sys tem r e q u i r e r e p a i r .

A c t u a l l y , o n l y a p a r t o f t h e mechan ica l work o b t a i n e d i n t h e t u r b i n e can be

t r a n s f o r m e d i n t o e l e c t r i c a l e n e r g y . E n e r g y l o s s e s i n t h e t u r b o - g e n e r a t o r a r e

caused by f r i c t i o n i n t he b e a r i n g s and p o s s i b l y i n t h e t r a n s m i s s i o n gea r between

t h e t u r b i n e and g e n e r a t o r , e n e r g y consumpt ion i n a u x i l i a r y mechanisms, and h e a t

d i s s i p a t i o n i n t he g e n e r a t o r w i n d i n g . These l o s s e s a r e c o n v e n t i o n a l l y a lowed

f o r , t o g e t h e r w i t h l o s s e s caused by steam l e a k s t h r o u g h t h e t u r b i n e s e a l s and by

hea t d i s s i p a t i o n f rom the s u r f a c e o f t h e t u r b i n e c y l i n d e r .

The o v e r a l l u t i l i z a t i o n o f t h e i s e n t r o p i c e n t h a l p y d rop i n a t u r b o - g e n e r a t o r

can be e x p r e s s e d by t h e o v e r a l l e f f i c i e n c y

= n . . 3 6 0 0 / ( S ( h ^ - h ^ ) ) ( 7 . 2 1 )

I t f o l l o w s f rom e q n s . ( 7 . 2 0 ) and ( 7 . 2 1 ) t h a t once t he q u a n t i t i e s d i s c u s s e d i n

S e c t i o n s 7 . 5 . 1 - 7 . 5 . 4 have been d e t e r m i n e d , i t becomes p o s s i b l e t o c a l c u l a t e t h e

i n t e r n a l e f f i c i e n c y o f t h e t u r b i n e and t h e o v e r a l l e f f i c i e n c y o f t h e t u r b o

g e n e r a t o r . No s i m p l e method e x i s t s , h o w e v e r , f o r d e t e r m i n a t i o n o f t h e t u r b i n e

mechan ica l e f f i c i e n c y , η ^ , t h e t r a n s m i s s i o n gea r e f f i c i e n c y , η ^ ^ , and t h e

g e n e r a t o r e f f i c i e n c y , η ^ . I t can t h u s be u s e f u l t o remember t h a t

V t g ' ^ g = ( ^ - 2 2 )

7 .5 .6 Example

A t u r b o - g e n e r a t o r d r i v e n by a b a c k - p r e s s u r e t u r b i n e has been t e s t e d and t h e

f o l l o w i n g d a t a summarize t h e t e s t r e s u l t s (mean v a l u e s ) :

- e l e c t r i c a l e f f e c t , N^ = 6593 kW; m

- steam f l o w , = 58830 k g / h ;

Page 274: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

263

- i n l e t p r e s s u r e and t e m p e r a t u r e o f s team, p^ = 34.33 b a r , t ^ = 433.2°C

( e n t h a l p y h^ = 3300 k J / k g ) ;

- o u t l e t p r e s s u r e and t e m p e r a t u r e o f s team, p-j = 3.52 b a r , t^ = 193.3°C

( e n t h a l p y h^ = 2851 k J / k g ) .

C o r r e c t i o n f a c t o r s , f rom d iagrams s u p p l i e d by t h e t u r b i n e m a n u f a c t u r e r , a r e

f ^ = 1-0.997-0.99 = 0.987 = 1 / f^ .

The c o r r e c t e d v a l u e s o f t h e e l e c t r i c a l e f f e c t and steam f l o w a r e t h u s

Ν = 6593/0.987 = 6679 kW,

D = 58830-0.987 = 58064 k g / h .

The steam r a t e i s

S = 58064/6679 = 8 . 6 9 kg/kWh.

The t h e o r e t i c a l e n t h a l p y v a l u e a f t e r i s e n t r o p i c e x p a n s i o n t o t h e o u t l e t

p r e s s u r e , f rom steam t a b l e s , i s h^ = 2732 k J / k g .

The i n t e r n a l t u r b i n e e f f i c i e n c y i s

η. = (3300 - 2851) / (3300 - 2732) = 0 .790.

The o v e r a l l t u r b o - g e n e r a t o r e f f i c i e n c y i s

= 0 .790-3600 / (8 .69 (3300 - 2851) ) = 0 .729.

7.6 PROCESS HEATING EQUIPMENT

7.6.1 E v a p o r a t o r

J u i c e t h i c k e n i n g i n a m u l t i p l e - e f f e c t e v a p o r a t o r depends on h e a t t r a n s m i s s i o n

f rom t h e h e a t i n g steam t o t h e v a p o u r s . C a s c a d e - t y p e h e a t i n g o f c o n s e c u t i v e

e v a p o r a t o r e f f e c t s e n s u r e s m u l t i p l e u t i l i z a t i o n o f hea t i n t h e c o n s e c u t i v e

e v a p o r a t i o n s t a g e s . Heat i s f u r t h e r u t i l i z e d i n s u g a r b o i l i n g , j u i c e h e a t i n g and

o t h e r p r o c e s s s e c t i o n s .

P r o p e r f u n c t i o n i n g o f t h e e v a p o r a t o r s t a t i o n i s v e r y much dependen t on t h e

f u n c t i o n i n g o f t h e i n d i v i d u a l e v a p o r a t o r e f f e c t s and t h e i r a u x i l i a r y e q u i p m e n t .

The c a s c a d e - h e a t i n g p r i n c i p l e works w e l l o n l y i f i n t e n s i v e hea t t r a n s f e r i s

e n s u r e d i n each e f f e c t .

I n t he case o f R o b e r t - t y p e e v a p o r a t o r s , t h e j u i c e l e v e l i n t h e h e a t i n g t u b e s

i s o f p r i m a r y i m p o r t a n c e . A c c o r d i n g t o some s o u r c e s ( r e f . 6 ) , t h e o p t i m a l j u i c e

l e v e l i s 20-30% o f t ube h e i g h t . The v a l u e s g i v e n i n o t h e r s o u r c e s a r e 10-15%

h i g h e r ( r e f . 8 ) . Even i f a d i f f e r e n c e o f , s a y , 10% tube h e i g h t has a l i m i t e d

i n f l u e n c e on t h e h e a t t r a n s f e r i n t e n s i t y , i t s h o u l d be remembered t h a t marked

d e v i a t i o n s f rom t h e s e v a l u e s wou ld have an u n f a v o u r a b l e e f f e c t on j u i c e

t h i c k e n i n g .

F o r t h e c o r r e c t o p e r a t i o n o f f a l l i n g - f i l m e v a p o r a t o r s , s u f f i c i e n t l i q u i d

w e t t i n g o f t h e tube w a l l i s n e c e s s a r y . Too sma l l a j u i c e f l o w i s a s s o c i a t e d

w i t h t h e r i s k t h a t t h e f i l m w i l l t e a r a p a r t , t h i s r e s u l t i n g i n l o c a l

s u p e r s a t u r a t i o n and i n c r u s t a t i o n s f o r m i n g on t h e t ube w a l l . P r a c t i c a l e x p e r i e n c e

p r o v e s t h a t l i q u i d w e t t i n g can be e v a l u a t e d u s i n g volume f l o w p e r u n i t l e n g t h o f

Page 275: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

264

tube c i r c u m f e r e n c e a t t he o u t l e t . As a f i r s t a p p r o x i m a t i o n o f minimum w e t t i n g

f o r t he e v a p o r a t i o n o f s u g a r s o l u t i o n s , t h e v a l u e o f 15 1 i t r e s / ( h - c m ) can be

u s e d .

Heat t r a n s f e r can a l s o be h i n d e r e d by i r r e g u l a r i t i e s i n steam c o n d e n s a t i o n on

t he o u t e r s u r f a c e s o f t he h e a t i n g t u b e s . T h i s can be a v o i d e d i f n o n c o n d e n s a b l e s

a r e v e n t e d e f f e c t i v e l y , and i f t h e condensa te d r a i n a g e p r e v e n t s t h e c o n d e n s a t e

l e v e l f rom r i s i n g above t h e o u t l e t n o z z l e s . Ex t reme c a r e i s recommended h e r e , as

bo th l e a k i n g steam t r a p s and e x c e s s i v e v e n t i n g may cause u n n e c e s s a r y v a p o u r

l o s s e s . F o r d e t a i l s , see condensa te d r a i n a g e under S e c t i o n 3.2.1 and v e n t i n g

under S e c t i o n 3 . 2 . 2 .

I n many s u g a r f a c t o r i e s , s c a l e b u i l d - u p on t he i n t e r n a l s u r f a c e s o f h e a t i n g

t u b e s and t h e accompanying r e d u c t i o n o f t h e hea t t r a n s f e r i n t e n s i t y may l e a d t o

a s i t u a t i o n where t h e t o t a l t e m p e r a t u r e d e c r e a s e i n t h e e v a p o r a t o r ( f r o m

h e a t i n g - s t e a m t e m p e r a t u r e t o t h i c k - j u i c e t e m p e r a t u r e ) becomes i n s u f f i c i e n t f o r

t he r e q u i r e d j u i c e t h i c k e n i n g . I f t he p r o c e s s i n g c a p a b i l i t y i s h e l d c o n s t a n t ,

a l o w e r c o n c e n t r a t i o n o f t h i c k j u i c e must be a l l o w e d w h i c h , i n t u r n , causes

i n c r e a s e d hea t consumpt ion i n t h e s u g a r house and f i n a l l y i n t h e e n t i r e s u g a r

f a c t o r y . The s i t u a t i o n can be b r o u g h t back t o normal i f t h e s c a l e i s removed .

A c t u a l l y , e a r l i e r s c a l e removal i s recommended, as i t a l l o w s e l i m i n a t i o n o f n o n -

op t ima l hea t u t i l i z a t i o n ; a l s o , i t i s e a s i e r t o remove t h e t h i n n e r s c a l e l a y e r s .

The c h o i c e o f t he moment a t w h i c h s c a l e removal s h o u l d be u n d e r t a k e n can be

based on o b s e r v a t i o n o f t he o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t s i n t h e e v a p o r a t o r

e f f e c t s . T h i s r e q u i r e s measur ing t h e q u a n t i t i e s needed t o c a l c u l a t e t he h e a t

t r a n s f e r c o e f f i c i e n t s .

As p r e s e n t e d a b o v e , t h e p u r p o s e o f t h e e v a p o r a t o r check i s t o d e t e r m i n e t h e

c o u r s e o f t h e m u l t i - s t a g e e v a p o r a t i o n p r o c e s s , and p o s s i b l y t o i n t r o d u c e some

p r o c e s s c o r r e c t i o n s aimed a t r e d u c t i o n o f t h e steam c o n s u m p t i o n . I n a w e l l

d e s i g n e d and p r o p e r l y m a i n t a i n e d e v a p o r a t o r , i t w o u l d be enough t o check t h e

t e m p e r a t u r e d i f f e r e n c e s i n t h e i n d i v i d u a l e f f e c t s and t h e o v e r a l l c o n c e n t r a t i o n

i n c r e a s e . I f , h o w e v e r , t e c h n i c a l c h a r a c t e r i s t i c s and c o r r e c t n e s s o f o p e r a t i o n

have t o be i n v e s t i g a t e d , t h e n t h e f o l l o w i n g measurements a r e n e c e s s a r y :

- steam f l o w t o t h e f i r s t e f f e c t , ( kg /100 kg b ) ;

- t e m p e r a t u r e and p r e s s u r e i n h e a t i n g chambers o f i n d i v i d u a l e f f e c t s , t p t ^ ,

. . , ( ° C ) ; p^ , p^ , . . , ( b a r ) ;

- t e m p e r a t u r e and p r e s s u r e i n v a p o u r chambers o f i n d i v i d u a l e f f e c t s , t p t^, . . ,

( ° C ) ; p^ , p^ , . . , ( b a r ) ;

- t h i n - j u i c e f l o w , G¿ (kg /100 kg b ) ;

- t h i n - j u i c e t e m p e r a t u r e , t ^ , and j u i c e t e m p e r a t u r e i n t he i n d i v i d u a l e f f e c t s ,

t l t ¡ , . . , ( ° C ) ;

- t h i n - j u i c e c o n c e n t r a t i o n , b^ , and j u i c e c o n c e n t r a t i o n s a t c o n s e c u t i v e o u t l e t s ,

Page 276: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

265

b p b^ , . . , (% D S ) .

I t i s i m p o r t a n t t o adap t t he measur ing t e c h n i q u e s t o t he p e c u l i a r i t i e s o f

m u l t i - s t a g e e v a p o r a t i o n , p a r t i c u l a r l y i n t e m p e r a t u r e d e t e r m i n a t i o n . I n t h e

f o l l o w i n g , i t i s assumed t h a t t h e the rmometers i n t h e v a p o u r chambers a r e p l a c e d

c l o s e t o t he t o p o f t h e h e a t i n g t u b e s , t h u s i n d i c a t i n g t h e t e m p e r a t u r e s o f t h e

s u p e r h e a t e d v a p o u r s ( s a t u r a t i o n t e m p e r a t u r e + b o i l i n g p o i n t e l e v a t i o n ) .

I t s h o u l d be p o i n t e d o u t t h a t r e l i a b i l i t y o f t he t e s t r e s u l t s can be a c h i e v e d

o n l y i f t he measurements a re pe r f o rmed d u r i n g s t e a d y - s t a t e e v a p o r a t o r o p e r a t i o n ,

when paramete r and j u i c e - l e v e l o s c i l l a t i o n s a r e l i m i t e d . Ex t reme c a r e i s

recommended when c o l l e c t i n g j u i c e samples f o r c o n c e n t r a t i o n measurements . I n

p r i n c i p l e , t e s t cocks f o r j u i c e samp l ing s h o u l d be p r o v i d e d w i t h w a t e r c o o l e r s ,

so t h a t t h e j u i c e can be c o o l e d t o abou t 20°C. D u r i n g t h e t e s t , t h e cocks a r e

opened so t h a t a s t e a d y j u i c e f l o w i s e n s u r e d , and t h e samples a r e c o l l e c t e d i n

v e s s e l s l a r g e enough t o e n s u r e c o n c e n t r a t i o n a v e r a g i n g .

S u f f i c i e n t samp l ing a c c u r a c y can be o b t a i n e d even i f t he j u i c e samples have

n o t been c o o l e d . T h e n , h o w e v e r , t he c o n c e n t r a t i o n v a l u e s d e t e r m i n e d i n t h e

l a b o r a t o r y s h o u l d be c o r r e c t e d f o r s e l f - e v a p o r a t i o n e f f e c t s ( t h e s e e f f e c t s must

be t aken i n t o a c c o u n t i n t h e samples o f t h i n j u i c e and j u i c e f rom t h e f i r s t and

second e v a p o r a t o r e f f e c t s ) . I f t he l a b o r a t o r y - e s t i m a t e d c o n c e n t r a t i o n v a l u e

i s b * , t h e n t h e t r u e c o n c e n t r a t i o n i s

b = b * / ( l + Am) (% DS) ( 7 . 2 3 )

where Am i s t he mass o f w a t e r e v a p o r a t e d f rom 1 kg o f j u i c e

Am = (h - h J / ( 2 6 7 6 - h ) ( k g ) ( 7 . 2 4 ) a

where h i s t h e j u i c e e n t h a l p y i n t h e t e s t cock o u t l e t , w h i c h can be c a l c u l a t e d

as a p p r o x i m a t e l y

h = 4.19(1 - 0 . 5 2 b / 1 0 0 ) t ( k J / k g ) ( 7 . 2 5 )

and h i s t h e e n t h a l p y o f t h e b o i l i n g j u i c e a t a t m o s p h e r i c p r e s s u r e . F o r t y p i c a l a

j u i c e c o n c e n t r a t i o n s , i t can be c a l c u l a t e d as

t h i n j u i c e h^ = 421 - 2.19b ( k J / k g )

j u i c e a f t e r f i r s t e f f e c t h^ = 423 - 2.20b ( k J / k g ) a

j u i c e a f t e r second e f f e c t h = 430 - 2.23b ( k J / k g ) . a

Once t h e above q u a n t i t i e s have been measu red , i t becomes p o s s i b l e t o

i d e n t i f y t h e c o u r s e o f t he m u l t i - s t a g e e v a p o r a t i o n p r o c e s s . From t h e d r y m a t t e r

b a l a n c e e q u a t i o n f o r t h e i - t h e v a p o r a t o r e f f e c t

G¿bo = GJb . ( 7 . 2 6 )

we can c a l c u l a t e t h e j u i c e f l o w

= G ¿ b Q / b . ( kg /100 kg b ) ( 7 . 2 7 )

N e x t , t he mass o f e v a p o r a t e d w a t e r can be c a l c u l a t e d

Page 277: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

266

W. = G^_^ - ( kg /100 kg b ) ( 7 . 2 8 )

The e f f e c t i v e t e m p e r a t u r e d i f f e r e n c e i n t h e i - t h e f f e c t i s

A t . = - ( 7 . 2 9 )

( T h i s f o r m u l a i s v a l i d o n l y i f tV i s t h e v a p o u r t e m p e r a t u r e measured i n t h e

v a p o u r chamber c l o s e t o t h e j u i c e s u r f a c e . I f t h e t e m p e r a t u r e i s measured a t t h e

v a p o u r chamber o u t l e t , t hen t h e e f f e c t i v e d i f f e r e n c e must be r e d u c e d by t h e

v a l u e o f b o l i n g p o i n t e l e v a t i o n . )

U s i n g t h e q u a n t i t i e s d e t e r m i n e d a c c o r d i n g t o t h e above f o r m u l a e , t h e o v e r a l l

h e a t t r a n s f e r c o e f f i c i e n t can be d e t e r m i n e d f rom a g r a p h g i v e n i n r e f . 2 . I t i s

a l s o p o s s i b l e t o a p p l y a s i m p l e i t e r a t i v e a l g o r i t h m w h i c h can c o n v e n i e n t l y be

c o m p u t e r i z e d . The a l g o r i t h m uses t h e thermodynamic f u n c t i o n s h " ( t ) and h ' ( t ) ,

i . e . e n t h a l p i e s o f d r y s a t u r a t e d steam and s a t u r a t e d w a t e r as f u n c t i o n s o f

t e m p e r a t u r e , and h ' ^ ( t , b ) , i . e . j u i c e e n t h a l p y as a f u n c t i o n o f t e m p e r a t u r e and

c o n c e n t r a t i o n . The amount o f h e a t t r a n s f e r r e d i n u n i t t ime i s

= (1 + e . ) ( W . ( h " ( t ^ ) - h ' ( t p ) + G ^ ( h J ( t ^ . p b . . ^ ) - h J ( t J , b . ) ) ) ( 7 . 3 0 )

where e / i s t h e h e a t l o s s c o e f f i c i e n t o f t h e i - t h e v a p o r a t o r e f f e c t .

The o v e r a l l hea t t r a n s f e r c o e f f i c i e n t can be c a l c u l a t e d f rom t h e f o r m u l a

k. = Q . / ( F . A t . ) ( 7 . 3 1 )

I n c o n c l u s i o n , l e t us s p e c i f y t h e recommendat ions f o r e v a p o r a t o r c h e c k i n g .

A r o u t i n e check s h o u l d c o n s i s t s o f r e c o r d i n g t h e j u i c e and v a p o u r t e m p e r a t u r e s

i n t h e i n d i v i d u a l e f f e c t s and t h e c o n c e n t r a t i o n s o f t h i n and t h i c k j u i c e . The

r e c o r d i n g f r e q u e n c y s h o u l d be a t l e a s t e v e r y 0 . 5 - 1 . 0 h o u r .

I n p e r i o d i c c h e c k s , a more d e t a i l e d i n v e s t i g a t i o n o f t h e e v a p o r a t o r ,

i n c l u d i n g t h e d e t e r m i n a t i o n o f hea t t r a n s f e r c o e f f i c i e n t s , i s n e c e s s a r y . I n

o r d e r t o e n s u r e t he r e l i a b i l i t y o f r e s u l t s , t e s t d u r a t i o n s o f a t l e a s t 4-6 h o u r s

s h o u l d be a d o p t e d . I n t h e case o f h e a t t r a n s f e r o b s e r v a t i o n s , t h e t e s t s s h o u l d

be pe r f o rmed e v e r y 10 d a y s , and even more f r e q u e n t l y when marked d r o p s i n h e a t

t r a n s f e r c o e f f i c i e n t s have been o b s e r v e d .

7 .6 .2 Example

I n a s u g a r f a c t o r y o p e r a t e d a t a c a p a c i t y o f 4000 t / d , a 4 - h o u r t e s t o f t h e

e v a p o r a t o r s t a t i o n has been p e r f o r m e d . The h e a t t r a n s f e r a r e a s i n f o u r 2

c o n s e c u t i v e e v a p o r a t o r e f f e c t s a r e : 2100, 2400, 2100 and 1050 m . The mean

v a l u e s o f t h i n - j u i c e f l o w and t h i n - j u i c e c o n c e n t r a t i o n a r e Gjj = 124.9 kg/100 kg

b e e t , bg = 13.9% DS. O t h e r t e s t d a t a a r e g i v e n i n t h e upper p a r t o f T a b l e 7 . 7 .

U s i n g e q n s . ( 7 . 2 7 ) , ( 7 . 2 8 ) and ( 7 . 2 9 ) , j u i c e f l o w s , amounts o f w a t e r

e v a p o r a t e d and e f f e c t i v e t e m p e r a t u r e d i f f e r e n c e s can be c a l c u l a t e d , as shown i n

t h e c e n t r e o f T a b l e 7 . 7 .

Page 278: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

267

F i n a l l y , t h e g raph g i v e n i n r e f . 2 can be u s e d . The r e s u l t i n g v a l u e s o f

o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t s a r e shown i n t h e l o w e r p a r t o f T a b l e 7 . 7 .

TABLE 7.7

Example o f e v a p o r a t o r t e s t r e s u l t s .

E f f e c t No . 1 2 3 4

J u i c e c o n c e n t r a t i o n a t o u t l e t (% DS) 21 35 52 60 Tempera tu re i n h e a t i n g chamber ( °C) 134.0 127.4 119.7 110.0 Tempera tu re i n v a p o u r chamber ( °C) 128.5 121.0 112.9 103.7

J u i c e f l o w (kg /100 kg b ) 82.0 49.3 33.2 28.7 Water e v a p o r a t i o n (kg /100 kg b ) 43.0 32.7 16.1 4.5 E f f e c t i v e t e m p e r a t u r e d i f f e r e n c e ( K ) 5.5 6.4 6.8 6.3

Heat t r a n s f e r c o e f f i c i e n t ( W i m h ) ) 3.84 2.20 1.14 0.70

7 .6 .3 E x t r a c t o r

The e s s e n t i a l e x t r a c t o r f u n c t i o n s , i . e . p r o p e r e x h a u s t i o n o f c o s s e t t e s and

o b t a i n i n g h i g h - p u r i t y raw j u i c e , a r e dependen t on r a p i d h e a t i n g o f t h e i n f l o w i n g

c o s s e t t e s f o r d e n a t u r a t i o n o f l i v i n g c e l l s , f o l l o w e d by e x t r a c t i o n a t a

t e m p e r a t u r e l e v e l o f 70-74°C. The p a r t o f t h e h e a t economy r e l a t e d t o e x t r a c t i o n

i s aimed p r e c i s e l y a t t h a t o p e r a t i o n . The f o l l o w i n g d i s c u s s i o n a p p l i e s m o s t l y t o

t he t r o u g h - t y p e (DOS) e x t r a c t o r s , b u t t h e g e n e r a l recommendat ions and comments

on m o n i t o r i n g p r i n c i p l e s and methods a r e a l s o v a l i d f o r o t h e r e x t r a c t o r t y p e s .

T h e r e a r e f o u r h e a t i n g j a c k e t s i n t r o u g h - t y p e e x t r a c t o r s ; two o f them a r e

u s u a l l y hea ted by s e c o n d - e f f e c t v a p o u r a t a t e m p e r a t u r e o f 112-115°C, w h i l e t h e

o t h e r two a r e hea ted by t h i r d - e f f e c t v a p o u r a t 103-105°C. E x t r a c t o r m o n i t o r i n g

i s aimed m a i n l y a t c h e c k i n g w h e t h e r t h e r e q u i r e m e n t s o f e x t r a c t i o n t e m p e r a t u r e

and c o r r e c t n e s s o f h e a t s u p p l y a r e f u l f i l l e d . The p r e r e q u i s i t e f o r c o r r e c t

e x t r a c t o r o p e r a t i o n i s e f f i c i e n t c o n d e n s a t e d r a i n a g e and e f f i c i e n t v e n t i n g o f

h e a t i n g j a c k e t s ; t h e c o n t r o l p rob lems i n t h i s a r e a were d i s c u s s e d i n S e c t i o n s

3.2.1 and 3 . 2 . 2 . O t h e r the rma l p rob lems c a n n o t be s e p a r a t e d f rom t h e e x t r a c t i o n

p r o c e s s i t s e l f . F o r c o r r e c t i n t e r p r e t a t i o n o f t h e check r e s u l t s , i t i s

recommended t h a t c o n s i d e r a t i o n be g i v e n t o h e a t t r a n s f e r i n two p a r t s o f t h e

e x t r a c t o r : A - c o s s e t t e s h e a t i n g z o n e ; Β - e x t r a c t i o n p r o c e s s zone (whe re t h e

t e m p e r a t u r e s o f j u i c e and c o s s e t t e s a r e e q u a l ) , as shown i n F i g . 7 . 9 . G d e n o t e s

t he mass f l o w i n k g / l O O kg b , t i s t h e t e m p e r a t u r e i n °C, and C i s t h e s p e c i f i c

hea t i n k J / ( k g K ) . The s u b s c r i p t s d e n o t e : b , c o s s e t t e s ; pw, p r e s s w a t e r ; w , f r e s h

w a t e r ; j , raw j u i c e ; p , p u l p ( e x h a u s t e d c o s s e t t e s ) ; m, j u i c e - c o s s e t t e s m i x t u r e

between zones A and B.

U s i n g t h e d e f i n i t i o n o f t h e e f f i c i e n c y o f h e a t exchange between j u i c e and

c o s s e t t e s a c c o r d i n g t o r e f . 43

Ε = 1 0 0 . G . C . ( t ^ - t j ) / ( G ( ^ C ^ , ( t ^ - t ( , ) ) (%) ( 7 . 3 2 )

Page 279: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

268

G j C j t j Β

Τ"

Gw CvA/t V

GpCptp

F i g . 7 .9 . Heat b a l a n c e scheme o f t h e t r o u g h e x t r a c t o r . A - f r o n t p a r t , Β - r e a r p a r t . Fo r t h e e x p l a n a t i o n o f s y m b o l s , see t e x t .

we can e x p r e s s t he hea t demand f o r c o s s e t t e s h e a t i n g as

= ( (100 - E ) / E ) G j ^ C ^ ( t ^ - t ^ ) ( k J / 1 0 0 kg b) ( 7 . 3 3 )

T a k i n g i n t o a c c o u n t t h a t = 1 0 0 - G / a , where a i s t h e raw j u i c e d r a f t i n %, t he

r e l a t i o n s h i p s between e x t r a c t i o n pa rame te rs can be shown d i a g r a m m a t i c a l l y

( F i g . 7 . 1 0 ) . I t can e a s i l y be seen t h a t t he the rma l phenomena a re h i g h l y

dependen t on such p r o c e s s f a c t o r s a s :

- c o s s e t t e s q u a l i t y , as l o w e r q u a l i t y causes a d e c r e a s e d Ε v a l u e ;

80 h

S 60

c D O Ε O ^ A O O Οι

Χ

20 h

50

A O

L_ Ζ)

Ε ο. Ε Φ

Φ ο

30

20

10

5 10 Cossettes temperature (°C)

15

α = 115 α=120

α=110

^ Ε = 8 0 /

E = go

Ε = 70

Ε =80

Ε =90

Ε = 100

F i g . 7 .10 . R e l a t i o n s h i p between e x t r a c t i o n pa rame te rs i n t h e f r o n t p a r t o f t h e e x t r a c t o r ( a f t e r r e f . 4 3 ) . a - j u i c e d r a f t ( % ) , Ε - hea t exchange e f f i c i e n c y {%

Page 280: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

269

- d e - a e r a t i o n o f t he j u i c e - c o s s e t t e s m i x t u r e , as i n s u f f i c i e n t d e - a e r a t i o n causes

Ε t o d e c r e a s e ;

- j u i c e d r a f t , as i t s i n c r e a s e i m m e d i a t e l y causes i n c r e a s e d h e a t consumpt ion i n

t he e x t r a c t o r ;

- s t a b i l i z a t i o n o f t he j u i c e l e v e l a t t he o u t l e t s c r e e n , as an i n c o r r e c t j u i c e

l e v e l may a l s o reduce t he v a l u e o f E .

The d iag ram a l s o d e m o n s t r a t e s t h a t c o r r e c t e x t r a c t o r o p e r a t i o n n e c e s s a r i l y

i n v o l v e s v a r i a b l e j u i c e t e m p e r a t u r e as a f u n c t i o n o f t h e c o s s e t t e s t e m p e r a t u r e .

I f t h e c o s s e t t e s t e m p e r a t u r e i s l o w , a l o w e r j u i c e t e m p e r a t u r e s h o u l d be

a c c e p t e d , w i t h s u b s e q u e n t j u i c e h e a t i n g i n t h e h e a t e r s b e f o r e t h e p u r i f i c a t i o n

s t a t i o n . The op t ima l t e m p e r a t u r e d i f f e r e n c e between j u i c e and c o s s e t t e s i s

10-15 K.

I n o r d e r t o a c h i e v e a comp le te e v a l u a t i o n o f t h e the rma l c o n d i t i o n s , t he

e x t r a c t o r check s h o u l d i f p o s s i b l e c o n s i s t o f measu r i ng a l l t he q u a n t i t i e s

i n c l u d e d i n t h e h e a t b a l a n c e ( s e e F i g . 7.9 and t h e e x p l a n a t i o n o f s y m b o l s ) . F o r

c o r r e c t i n t e r p r e t a t i o n o f t he t e s t r e s u l t s , t h e f o l l o w i n g d a t a a r e a l s o

n e c e s s a r y :

- t he c o s s e t t e s l e n g t h ;

- t h e j u i c e d r a f t ;

- comments on c o s s e t t e s q u a l i t y , d e - a e r a t i o n o f t h e j u i c e - c o s s e t t e s m i x t u r e and

t h e j u i c e l e v e l a t t h e o u t l e t s c r e e n .

Known v a l u e s o f t he i n w a r d and o u t w a r d mass f l o w s make i t p o s s i b l e t o

c a l c u l a t e t h e t h e o r e t i c a l hea t demand ( w i t h o u t l o s s e s t o t h e e n v i r o n m e n t ) f rom

t h e e n e r g y b a l a n c e e q u a t i o n

F o r hea t -economy m o n i t o r i n g p u r p o s e s , t h e r e a l h e a t consumpt ion w o u l d be

i n t e r e s t i n g , bu t t he measur ing equ ipment c o n v e n t i o n a l l y i n s t a l l e d a t t h e

e x t r a c t o r s does n o t a l l o w f o r such a measurement . I f a d d i t i o n a l equ ipment f o r

t h e d e t e r m i n a t i o n o f c o n d e n s a t e f l o w i s i n s t a l l e d , t h e n c o n d e n s a t e f l o w s ( e q u a l

t o v a p o u r f l o w s ) and Gg , i n kg/100 kg b , can be d e t e r m i n e d . P r o v i d i n g t h a t

t he v a p o u r t e m p e r a t u r e s t ^ and t g , and c o n d e n s a t e t e m p e r a t u r e s t ^ ^ and t ^ g , a r e

a l s o measured , i t becomes p o s s i b l e t o c a l c u l a t e t h e h e a t consumpt ion i n bo th

p a r t s o f t h e e x t r a c t o r

QA = S ^ ^ A " " ^ - ^ ^ ^ C A ) ^9 b) ( 7 . 3 5 )

Qß = Gg(hg - 4 . 1 9 t ^ g ) ( k J / 1 0 0 kg b) ( 7 . 3 6 )

where h^ and hg a r e t h e e n t h a l p i e s o f v a p o u r s i n k J / k g , a t t e m p e r a t u r e s t ^ and

t g , r e s p e c t i v e l y .

Depend ing on t h e c o s s e t t e s t e m p e r a t u r e , t h e v a p o u r consumpt ion i n P a r t A i s

1 .5-2.0 kg/100 kg b. I n P a r t B, a v a p o u r f l o w o f up t o 1 kg/100 kg b i s r e q u i r e d

Page 281: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

270

w i t h o u t p r e s s - w a t e r h e a t i n g , o r somewhat l e s s i f t h e p r e s s w a t e r i s h e a t e d .

Tempera tu re m o n i t o r i n g a t t h e e x t r a c t o r must be r o u t i n e l y pe r f o rmed d u r i n g

t he e n t i r e o p e r a t i o n s . A h e a t b a l a n c e d e t e r m i n a t i o n , p o s s i b l y i n c l u d i n g

c o n d e n s a t e - f l o w measurements , may become n e c e s s a r y i f unusua l p rob lems o c c u r i n

e x t r a c t o r o p e r a t i o n .

7 .6 .4 J u i c e h e a t e r s

The hea t s u p p l y t o t he j u i c e o r o t h e r media i n t h e h e a t e r s i s aimed a t

a t t a i n i n g t he t e m p e r a t u r e needed f o r such u n i t o p e r a t i o n s as l i m i n g ,

c a r b o n a t a t i o n , f i l t r a t i o n , e t c . A t t e n t i o n s h o u l d be d i r e c t e d , h o w e v e r , n o t o n l y

t o t he f u n c t i o n i n g o f each p a r t i c u l a r h e a t e r , b u t a l s o t o t h e o p e r a t i o n o f a l l

h e a t e r s v i e w e d as an i m p o r t a n t p a r t o f t h e hea t economy. From t h a t p o i n t o f

v i e w , hea t economy m o n i t o r i n g s h o u l d compr i se c h e c k i n g t h e t e m p e r a t u r e s o f t h e

media f o r t h e i r c o r r e s p o n d e n c e w i t h p r o c e s s r e q u i r e m e n t s , as w e l l as i n s p e c t i n g

t he s u i t a b i l i t y o f t h e d i s t r i b u t i o n o f h e a t i n g media ( c o n d e n s a t e and v a p o u r s

f rom the e v a p o r a t o r and vacuum p a n s ) . The e s s e n t i a l p r i n c i p l e o f h e a t - s a v i n g

media d i s t r i b u t i o n i s t o s u p p l y t h e h e a t e r w i t h a medium a t a t e m p e r a t u r e h i g h

enough t o hea t t h e j u i c e , b u t n o t t o o h i g h . Depend ing on h e a t e r d e s i g n , hea t

t r a n s f e r a r e a and j u i c e v e l o c i t y , t h e v a p o u r t e m p e r a t u r e s h o u l d be n o t h i g h e r

than 5-10 Κ above t h e f i n a l j u i c e t e m p e r a t u r e ( s e e a l s o S e c t i o n 3 .3 .2 on

u t i l i z a t i o n o f v a p o u r s ) .

R e g a r d i n g i n d i v i d u a l h e a t e r s , t h e y s h o u l d be t h o r o u g h l y i n s p e c t e d f o r t h e i r

f u n c t i o n i n g as hea t r e c e i v e r s . I n t h e case o f v a p o u r h e a t i n g , t h e c o n d e n s a t e

l e v e l i n t h e h e a t i n g chamber i s p a r t i c u l a r l y i m p o r t a n t ( s e e a l s o S e c t i o n 3.2.1

on condensa te d r a i n a g e ) . The c o n d e n s a t e l e v e l s h o u l d n o t be a l l o w e d t o r i s e

above t h e o u t l e t n o z z l e s , as t h i s w o u l d r e d u c e t h e e f f e c t i v e o v e r a l l hea t

t r a n s f e r c o e f f i c i e n t , making i t more d i f f i c u l t t o a t t a i n t h e p r o p e r j u i c e

t e m p e r a t u r e . S i m i l a r p rob lems o c c u r i f h e a t t r a n s f e r i s hampered by t h e

a c c u m u l a t i o n o f n o n c o n d e n s a b l e s ; t h e h e a t e r check s h o u l d t h u s i n c l u d e i n s p e c t i o n

o f t h e v e n t s ( s e e S e c t i o n 3 . 2 . 2 ) . The h e a t t r a n s f e r i n t e n s i t y can a l s o be

reduced by s c a l e b u i l d - u p i n t h e h e a t i n g t u b e s ; t h i s i s a n o t h e r p rob lem t o be

a c c o u n t e d f o r i n t he i n s p e c t i o n .

I n o r d e r t o make c a l c u l a t i o n s o f h e a t b a l a n c e p o s s i b l e , t h e f o l l o w i n g

measurements a r e r e q u i r e d :

- j u i c e mass f l o w , G (kg /100 kg b ) ;

- j u i c e i n l e t t e m p e r a t u r e , t^ ( ^ C ) ;

- j u i c e o u t l e t t e m p e r a t u r e , t ^ ( ° C ) ;

- j u i c e c o n c e n t r a t i o n , b (% D S ) ;

- v a p o u r o r condensa te ( s e e b e l o w ) mass f l o w , G^ (kg /100 kg b ) ;

- v a p o u r t e m p e r a t u r e , t ^ , and c o n d e n s a t e t e m p e r a t u r e , t ^ ( °C) ( o r , i n t h e case

Page 282: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

271

o f condensa te h e a t i n g , i n i t i a l and f i n a l t e m p e r a t u r e s , t ^ - j , t ^ ^ ( ° ^ ) »

condensa te l e v e l i n t he h e a t i n g chamber s h o u l d be wa tched a t t h e same t i m e ) .

The measurements s h o u l d be pe r f o rmed d u r i n g s t e a d y - s t a t e h e a t e r o p e r a t i o n ,

p o s s i b l y a t t he j u i c e f l o w c o r r e s p o n d i n g t o t he nominal p r o c e s s i n g c a p a b i l i t y o f

t he f a c t o r y . The recommended t e s t d u r a t i o n i s a t l e a s t 1-2 h o u r s , w i t h an

i n s t r u m e n t - r e a d i n g f r e q u e n c y o f 5-10 m i n u t e s . A f t e r mean pa ramete r v a l u e s have

been c a l c u l a t e d , t he hea t t r a n s f e r i n t e n s i t y s h o u l d be e v a l u a t e d f i r s t . I f t he

c o r r e c t v a l u e o f t h e v a p o u r ( o r i n l e t c o n d e n s a t e ) t e m p e r a t u r e i s accompanied by

an i n s u f f i c i e n t j u i c e t e m p e r a t u r e i n c r e a s e ( w i t h p r o p e r condensa te d r a i n a g e and

v e n t i n g ) , t hen s c a l i n g on t he h e a t i n g s u r f a c e s may be s u s p e c t e d .

A t known j u i c e - m a s s f l o w , G , t he hea t consumed can be c a l c u l a t e d as

Q = G C ( t 2 - t ^ ) ( l + n ) ( k J / 1 0 0 kg b ) ( 7 . 3 7 )

where the s p e c i f i c hea t o f t he j u i c e , C ( k J / ( k g K ) ) , can be f ound i n t a b l e s o r

c a l c u l a t e d as a f u n c t i o n o f t h e j u i c e c o n c e n t r a t i o n , b, and η i s t h e hea t l o s s

c o e f f i c i e n t .

On v a p o u r h e a t i n g , hea t consumpt ion on t h e v a p o u r s i d e can be d e t e r m i n e d o n l y

i f p e r f e c t o p e r a t i o n o f t h e steam t r a p s i s e n s u r e d ( t h a t i s , o n l y i f steam

leakage i n t h e condensa te s t ream i s e l i m i n a t e d ) . The condensa te f l o w can be

measured by a v o l u m e t r i c method , by c a t c h i n g t he c o n d e n s a t e i n a s p e c i a l

c o n t a i n e r . The h e a t consumpt ion can t hen be c a l c u l a t e d as

Q = G ^ ( h " - 4 . 1 9 t ^ ) ( k J / 1 0 0 kg b) ( 7 . 3 8 )

where h" d e n o t e s v a p o u r e n t h a l p y i n k J / k g . I n t h e case o f condensa te h e a t i n g , t he c o r r e s p o n d i n g f o r m u l a i s

Q = G ^ - 4 . 1 9 ( t ^ ^ - t ^ 2 ) kg b) ( 7 . 3 9 )

As t o t h e f r e q u e n c y o f h e a t e r check measurements , an i n s p e c t i o n o f

t e m p e r a t u r e s b e f o r e most i m p o r t a n t u n i t o p e r a t i o n s s h o u l d be p e r f o r m e d r o u t i n e l y

d u r i n g t he e n t i r e s e a s o n . Any i r r e g u l a r i t i e s n o t i c e d i n t he d i s t r i b u t i o n o f

h e a t i n g media t o t h e i n d i v i d u a l h e a t e r s must i m m e d i a t e l y be c o r r e c t e d . D e t a i l e d

i n v e s t i g a t i o n s o f h e a t e r o p e r a t i o n may be r e q u i r e d i f d i f f i c u l t i e s o c c u r i n t h e

h e a t i n g o f p r o c e s s med ia .

7 .6 .5 Ba tch vacuum pans

Sugar b o i l i n g i s a d e c i s i v e o p e r a t i o n f o r s u g a r y i e l d and s u g a r q u a l i t y . The

b o i l i n g t i m e , combined w i t h i n s t a l l e d pan v a p a c i t y , can be a l i m i t a t i o n t o s u g a r

f a c t o r y p r o c e s s i n g c a p a b i l i t y . I n a d d i t i o n , t h e h e a t consumpt ion f o r s u g a r

b o i l i n g may i n v o l v e 40-50% o f t he t o t a l p r o c e s s - h e a t c o n s u m p t i o n . As a

c o n s e q u e n c e , i n v e s t i g a t i o n s o f hea t consumpt ion i n vacuum pans must be ser: as

one o f t he most s e r i o u s t a s k s i n hea t -economy m o n i t o r i n g .

I n p r a c t i c e , a hea t economy check i n t h e s u g a r house canno t be s e p a r a t e d f rom

Page 283: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

272

a t e c h n o l o g i c a l check . The r e a s o n i s t h a t t he h e a t consumpt ion f o r s u g a r b o i l i n g

depends on t h e amounts and c o n c e n t r a t i o n s o f t h i c k j u i c e and r e m e l t , as w e l l as

on t he amount o f w a t e r i n t r o d u c e d i n t o t h e s u g a r house v i a such o p e r a t i o n s as

d i l u t i o n o f s y r u p s , wash ing and i n t a k e s t o vacuum p a n s .

The t o t a l consumpt ion o f v a p o u r s f o r s u g a r b o i l i n g i n a vacuum pan ( o r i n

a g roup o f vacuum pans ) can be e x p r e s s e d as t h e sum

= + G ^ (kg /100 kg b ) ( 7 . 4 0 )

where G^ i s t he v a p o u r consumpt ion f o r b o i l i n g s u g a r s o l u t i o n s , and G ^ i s t h e

v a p o u r consumpt ion f o r t h e e v a p o r a t i o n o f a d d i t i o n a l w a t e r f rom i n t a k e s . Both

q u a n t i t i e s depend on t e c h n o l o g i c a l pa rame te rs a c c o r d i n g t o t he f o r m u l a e ( r e f . 8)

G ^ = u M ^ Í C g í t ^ - t ^ ) + (1 - b ^ / b ^ ) ( h ^ - h ) ) / ( h ^ - h^) ( kg /100 kg b ) ( 7 . 4 1 )

G ^ = W(h^ - h ) / ( h ^ - h^) (kg /100 kg b) ( 7 . 4 2 )

where u i s t h e l o s s c o e f f i c i e n t ( 1 . 1 - 1 . 2 ) , i s t h e t o t a l amount o f s u g a r

s o l u t i o n s s u p p l i e d t o t he vacuum pan i n kg/100 kg b , bj^ i s t h e f i n a l

c o n c e n t r a t i o n o f m a s s e c u i t e i n % DS, i s t he mean s p e c i f i c h e a t o f t h e

s o l u t i o n s i n k J / ( k g K ) , t|^ i s t h e b o i l i n g t e m p e r a t u r e i n °C, t ^ i s t h e mean

i n i t i a l t e m p e r a t u r e o f t h e s o l u t i o n s i n °C, h , i s t h e e n t h a l p y o f t h e vacuum-pan w

v a p o u r , h i s t h e e n t h a l p y o f w a t e r a t t e m p e r a t u r e t ^ , h^ i s t h e e n t h a l p y o f t h e

h e a t i n g v a p o u r , h^ i s t he condensa te e n t h a l p y ( a l l e n t h a l p i e s i n k J / k g ) , and W

i s t he amount o f w a t e r f rom i n t a k e s , i n kg/100 kg b.

The above r e l a t i o n s h i p s p r o v e t h a t t h e most i m p o r t a n t f a c t o r i n o b t a i n i n g

hea t s a v i n g s i n s u g a r b o i l i n g i s adhe rence t o t h e t e c h n o l o g i c a l g u i d e l i n e s . I t

i s p a r t i c u l a r l y i m p o r t a n t t o m a i n t a i n h i g h v a l u e s i n t h e c o n c e n t r a t i o n s o f t h i c k

j u i c e , s y r u p s and r e m e l t . S h o u l d any o f t h e c o n c e n t r a t i o n s d e c r e a s e , t h e

r e s u l t i n g d e c r e a s e i n b^ v a l u e wou ld r e s u l t i n an i n c r e a s e d v a l u e o f v a p o u r

c o n s u m p t i o n , G ^ . Water i n t a k e s t o vacuum pans s h o u l d be r e d u c e d t o a minimum; o t h e r w i s e , t h e f a c t o r G wou ld cause an u n n e c e s s a r y i n c r e a s e i n v a p o u r

w

c o n s u m p t i o n . On t h e o t h e r h a n d , t h e vacuum i n t he pans i s a l s o i m p o r t a n t , as

t h i s i s t h e e s s e n t i a l f a c t o r i n e n s u r i n g i n t e n s i v e h e a t t r a n s f e r , w h i c h i s

n e c e s s a r y t o m a i n t a i n s h o r t b o i l i n g t imes w i t h o u t i n c r e a s i n g e n e r g y e x p e n d i t u r e .

As t o t he i n d i v i d u a l vacuum p a n s , t h e i r o p e r a t i o n as hea t r e c e i v e r s s h o u l d

be t h o r o u g h l y i n v e s t i g a t e d . The most i m p o r t a n t p o i n t s a r e :

- condensa te d r a i n a g e f rom t h e h e a t i n g chamber ;

- v e n t i n g o f t he h e a t i n g chamber ;

- e l i m i n a t i o n o f i n c r u s t a t i o n s f rom the hea t t r a n s f e r s u r f a c e .

The measurements needed f o r m o n i t o r i n g p u r p o s e s a r e :

- b o i l i n g t e m p e r a t u r e , t j ^ ;

- v a p o u r p r e s s u r e , Pj^;

- h e a t i n g - v a p o u r t e m p e r a t u r e , t ^ ;

Page 284: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

273

- condensa te t e m p e r a t u r e , t ^ .

V a l u e s o f t he above pa rame te rs e n a b l e u s , e v e n t u a l l y , t o d e t e r m i n e t h e e n t h a l p y

v a l u e s a p p e a r i n g i n e q n s . ( 7 . 3 9 ) and ( 7 . 4 0 ) . ( I t s h o u l d be p o i n t e d o u t t h a t

p e r f o r m i n g t he measurements e n t a i l s ove rcoming s p e c i f i c o b s t a c l e s r e l a t e d t o

suga r b o i l i n g ( r e f . 1 6 ) . ) A t t h e end o f t he s t r i k e , t h e amount o f m a s s e c u i t e M^,

and t he f i n a l c o n c e n t r a t i o n b|^, become known.

The measurements s h o u l d compr i se a t l e a s t two s t r i k e s . The f r e q u e n c y o f

i n s t r u m e n t r e a d i n g s s h o u l d be adap ted t o t h e s t r i k e d u r a t i o n ( a t l e a s t 10-15

r e a d i n g s ) .

U s i n g t h e e s t i m a t e d mean v a l u e o f t h e c o n c e n t r a t i o n o f s u g a r s o l u t i o n s

s u p p l i e d t o t h e vacuum p a n , t h e amount o f w a t e r e v a p o r a t e d f rom t h e s o l u t i o n s

can be c a l c u l a t e d as

= M ^ ( b . / b ^ - 1) ( kg /100 kg b) ( 7 . 4 3 )

D i r e c t measurement o f t he t o t a l v a p o u r consumpt ion i s o f t e n i m p o s s i b l e f o r

l a c k o f f l o w me te rs a t i n d i v i d u a l vacuum p a n s . P r o v i d i n g t h a t c o n d e n s a t e

d r a i n a g e and v e n t i n g do n o t cause v a p o u r l e a k s , v o l u m e t r i c d e t e r m i n a t i o n o f t h e

condensa te amount, equa l t o G ^ , can p o s s i b l y be u s e d . Condensa te f l o w can a l s o

be measured w i t h t h e a i d o f an i n d u c t i v e f l o w meter i n s t a l l e d as shown

s c h e m a t i c a l l y i n F i g . 7. 11. A c o n d e n s a t e tank e q u i p p e d w i t h a w a t e r - l e v e l

i n d i c a t o r and a s e p a r a t e s i g h t g l a s s make i t p o s s i b l e t o check t h e i n t e g r a l o f

t he f l o w meter r e c o r d s , and t o check t h e c o n d i t i o n s f o r c o r r e c t measurement

( l a r g e movements o f t he condensa te column must be a v o i d e d ) .

Wi th p r o p e r vacuum-pan o p e r a t i o n , t h e v a p o u r consumpt ion d u r i n g one s t r i k e

F i g . 7 .11. Measurement o f t he c o n d e n s a t e f l o w f rom t h e h e a t i n g chamber o f a vacuum pan ( a f t e r r e f . 4 4 ) . 1 - vacuum p a n , 2 - c o n d e n s a t e tank w i t h a w a t e r -l e v e l i n d i c a t o r , 3 - f l o w m e t e r , 4 - s i g h t g l a s s , 5 - p r e s s u r e - b a l a n c i n g p i p e .

Page 285: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

274

s h o u l d n o t exceed t he v a l u e

G. = ( 1 . 0 2 t o 1.15)W^ ( k g / l O O kg b ) ( 7 . 4 4 ) L e

I n r e f . 6, t h e upper l i m i t o f 1.20Wg i s m e n t i o n e d , b u t t h i s seems t o be

i n a p p r o p r i a t e i n t h e s e days o f e n e r g y s h o r t a g e s .

A v e r y u s e f u l a d d i t i o n t o t h e m o n i t o r i n g t e c h n i q u e s d e s c r i b e d above i s t h e

measurement o f t o t a l v a p o u r consumpt ion i n vacuum p a n s . T h i s r e q u i r e s

i n s t a l l a t i o n o f a f l o w meter on t h e main p i p e l i n e s u p p l y i n g v a p o u r t o t h e p a n s .

Even though t h i s method i s n o t e n t i r e l y a c c u r a t e when a p p l i e d t o s a t u r a t e d

s team, i t g i v e s a much-needed p r a c t i c a l o r i e n t a t i o n . F o r r o u t i n e vacuum-pan

c h e c k s , a c t u a l f l o w v a l u e s and f l o w o s c i l l a t i o n s can be e s t i m a t e d , w h i l e i n

p e r i o d i c c h e c k s , t h e o v e r a l l l e v e l o f v a p o u r consumpt ion and abnormal

consumpt ion jumps can be e v a l u a t e d and a n a l y s e d . I n p r i n c i p l e , i f t h e

c o n f i g u r a t i o n o f t he s u p p l y p i p e s a l l o w s , v a p o u r - f l o w measurement equ ipment

c o u l d be i n s t a l l e d a t each i n d i v i d u a l p a n .

7 .6 .6 O t h e r hea t r e c e i v e r s

I n a d d i t i o n t o t he main h e a t r e c e i v e r s d i s c u s s e d a b o v e , t h e r e a r e numerous

smal l h e a t r e c e i v e r s i n a s u g a r p l a n t : t h e s u g a r d r y e r , m e l t e r , hea ted s t o r a g e

t a n k s ( c o n t a i n i n g t h i c k j u i c e , r e m e l t , s y r u p s , m o l a s s e s , e t c . ) , n o z z l e sys tems

f o r wash ing and s t e a m i n g , and mo lasses pumping s y s t e m . I f u s e d , cube s u g a r

p r o d u c t i o n and p u l p p e l l e t i n g a l s o c o n t r i b u t e t o hea t c o n s u m p t i o n .

As each o f t h e i n d i v i d u a l hea t r e c e i v e r s men t ioned above i s r e s p o n s i b l e f o r

a v e r y sma l l p o r t i o n o f t h e t o t a l h e a t c o n s u m p t i o n , t h e y a r e u s u a l l y p o o r l y

s u p e r v i s e d o r even t r e a t e d m a r g i n a l l y . N e v e r t h e l e s s , t h e y d e s e r v e more a t t e n t i o n ,

as t h e i r combined hea t consumpt ion may c o n s t i t u t e a c o n s i d e r a b l e p o r t i o n o f t h e

t o t a l .

The e s s e n t i a l p rob lem i n t he m o n i t o r i n g o f smal l hea t r e c e i v e r s i s t h e

d e t e c t i o n o f e x c e s s i v e - t h a t i s , o u t o f a l l p r o p o r t i o n t o p r o c e s s

r e q u i r e m e n t s - consumpt ion o f steam o r v a p o u r s . Even i f t h e equ ipment i s

p r o p e r l y m a i n t a i n e d , t h i s may happen because o f o p e r a t o r e r r o r s ; t y p i c a l c a s e s

a r e s u g a r wash ing and t he s t e a m i n g - o u t o f vacuum p a n s .

App rox ima te v a l u e s o f the rma l pa rame te rs and t he consumpt ion o f h e a t i n g

media i n v a r i o u s u n i t s a r e g i v e n i n T a b l e 7 .8 . The o p e r a t i o n o f t h e s u g a r d r y e r

r e q u i r e s t h a t some p r o c e s s pa rame te rs a re a d d i t i o n a l l y measu red . I t i s

recommended t h a t t h e m o i s t u r e c o n t e n t i n s u g a r f rom c e n t r i f u g a l s be m a i n t a i n e d

a t 0 .5-1 .5%, t h e a i r f l o w a t 5-15 kg/100 kg b , and t h e a i r t e m p e r a t u r e a t

110-120°C.

Smal l hea t r e c e i v e r s s h o u l d be examined a t t h e b e g i n n i n g o f t h e s e a s o n , and

a l s o f o l l o w i n g t e m p o r a r y s h u t - d o w n s o r equ ipment r e p a i r s . I n t h e case o f

equ ipment where hea t consumpt ion depends on o p e r a t o r q u a l i f i c a t i o n s , a d d i t i o n a l

Page 286: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

275

TABLE 7.8

H e a t i n g o f v a r i o u s smal l h e a t r e c e i v e r s .

Equipment H e a t i n g medium Consumpt ion ( kg /100 kg b )

Sugar d r y e r e x h a u s t s team, I s t - e f f e c t v a p o u r be low 1.0

S t o r a g e t a n k s ( comb ined) 2 n d - e f f e c t v a p o u r be low 1.5 M e l t e r 2 n d - e f f e c t v a p o u r 0 . 2 - 0 . 3 Sugar wash ing steam 5 b a r , 200°C 1 .5-2 .0 S t e a m i n g - o u t o f vacuum pans e x h a u s t s team,

1 s t - o r 2 n d - e f f e c t v a p o u r be low 1.5 Pu lp p e l l e t i n g steam 5 ba r be low 0.2

s p o t checks a r e recommended ( t h i s a p p l i e s t o s u g a r wash ing i n c e n t r i f u g a l s and

t o t h e s t e a m i n g - o u t o f vacuum pans and p i p e l i n e s ) .

7.7 AUXIL IARY EQUIPMENT

7.7.1 T h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n

The t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n s e r v e s t o r educe t h e steam p r e s s u r e and

d e c r e a s e i t s t e m p e r a t u r e so t h a t c e r t a i n d e f i n i t e v a l u e s o f bo th p a r a m e t e r s a r e

a t t a i n e d . I n the rma l s y s t e m s , such s t a t i o n s a r e a p p l i e d t o t r a n s f o r m l i v e steam

i n t o l o w - p r e s s u r e s team, t o supp lemen t t h e t u r b i n e - e x h a u s t s team, o r t h e

i n t e r m e d i a t e - p r e s s u r e steam ( u s u a l l y abou t 5 b a r ) t o be used i n c e n t r i f u g a l s .

The t h r o t t l i n g - d e s u p e r h e a t i n g p r o c e s s i s shown i n t h e M o l l i e r d i ag ram i n

F i g . 7 .12 . The p r e s s u r e r e d u c t i o n c o n s i s t s o f t h r o t t l i n g t h e steam f l o w i n a

r e d u c i n g v a l v e a t c o n s t a n t e n t h a l p y (segment A B ) . The t e m p e r a t u r e i s d e c r e a s e d

by i n j e c t i n g w a t e r a t s t a t e D i n such an amount ( a u t o m a t i c a l l y c o n t r o l l e d ) t h a t

a f t e r m i x i n g i t w i t h steam a t s t a t e B, t h e f i n a l s t a t e o f t h e m i x t u r e C i s c l o s e

t o s a t u r a t i o n . I n p r a c t i c e , steam a t t h e o u t l e t o f t h e t h r o t t l i n g - d e s u p e r h e a t i n g

s t a t i o n may be s l i g h t l y s u p e r h e a t e d , t h a t i s , i t s t e m p e r a t u r e may be 30-40 Κ

above t h e s a t u r a t i o n t e m p e r a t u r e .

F o r t h e e n t i r e the rma l s y s t e m , t h e f u n c t i o n i n g o f t h e t h r o t t l i n g -

d e s u p e r h e a t i n g s t a t i o n t h a t s u p p l i e s make-up steam t o t h e e x h a u s t steam i s o f

p a r t i c u l a r i m p o r t a n c e . The demand f o r e x h a u s t steam f l u c t u a t e s , f o l l o w i n g t h e

changes i n e v a p o r a t o r l o a d s . The t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n s h o u l d

compensate f o r t h e s e f l u c t u a t i o n s , so t h a t c o n s t a n t p r e s s u r e i s m a i n t a i n e d a t

t h e i n l e t t o t h e h e a t i n g chamber o f t h e f i r s t e v a p o r a t o r e f f e c t .

The check o f t h e t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n s h o u l d be aimed a t

v e r i f i c a t i o n o f t h e p r o c e s s p a r a m e t e r s . I n a d d i t i o n t o t h e mean pa ramete r

v a l u e s , f l u c t u a t i o n s o f a c t u a l v a l u e s a r e a l s o i m p o r t a n t . D u r i n g a t e s t o f a t

l e a s t 1-2 h o u r s , t h e f o l l o w i n g i n s t r u m e n t r e a d i n g s a r e r e q u i r e d e v e r y 5 m i n u t e s :

- l i v e steam p r e s s u r e and t e m p e r a t u r e ;

Page 287: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

276

Entropy

F i g . 7 .12 . Work ing p r i n c i p l e o f t he t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n . SC - s a t u r a t i o n c u r v e , p^ - p r e s s u r e o f l i v e s team, pg - p r e s s u r e o f make-up s team; A - s t a t e o f steam a t i n l e t , Β - s t a t e o f steam a f t e r r e d u c i n g v a l v e , C - s t a t e o f steam a t o u t l e t , D - s t a t e o f w a t e r b e f o r e d e s u p e r h e a t e r .

- steam p r e s s u r e a f t e r t he r e d u c i n g v a l v e ;

- steam p r e s s u r e and t e m p e r a t u r e a f t e r t h e d e s u p e r h e a t e r ;

- p r e s s u r e and t e m p e r a t u r e o f w a t e r s u p p l i e d t o t h e d e s u p e r h e a t e r .

F l u c t u a t i o n s o f steam p r e s s u r e can be e s t i m a t e d s i m p l y by i n c r e a s i n g t h e

f r e q u e n c y o f t he i n s t r u m e n t r e a d i n g s , f o r example t o e v e r y m i n u t e . T e m p e r a t u r e

f l u c t u a t i o n s can be e v a l u a t e d o n l y r o u g h l y , as t h e l ag o f i n d u s t r i a l

thermometers i s t o o l a r g e . The r e s u l t s s h o u l d be e v a l u a t e d a g a i n s t t he f o l l o w i n g

g u i d e l i n e s :

- a t t he mean i n l e t - p r e s s u r e v a l u e , c o n s t r a i n e d w i t h i n t he r e g i o n ±5% a round t h e

nominal v a l u e , t h e t o l e r a n c e o f t h e mean v a l u e o f t he r e d u c e d p r e s s u r e i s a l s o

- v e r y good r e d u c e d - p r e s s u r e s t a b i l i z a t i o n means t h a t p r e s s u r e f l u c t u a t i o n s do

n o t exceed ±2% o f i t s mean v a l u e . Howeve r , l a r g e r f l u c t u a t i o n s can be a l l o w e d ,

p r o v i d e d t h a t d i s t u r b a n c e s i n t h e sys tem o p e r a t i o n ( e s p e c i a l l y t he t u r b i n e ) a r e

a v o i d e d ;

- t he steam t e m p e r a t u r e a f t e r t he d e s u p e r h e a t i n g s h o u l d be h i g h e r than t h e

s a t u r a t i o n t e m p e r a t u r e , because t h i s i s t he o n l y way t o e l i m i n a t e t h e

u n c o n t r o l l a b l e p r e s e n c e o f e x c e s s w a t e r . Howeve r , s u p e r h e a t i n g s h o u l d n o t

exceed 40 K.

I n o r d e r t o i n t e r p r e t t e s t r e s u l t s c o r r e c t l y , a t t e n t i o n s h o u l d be g i v e n t o

t he o p e r a t i n g c o n d i t i o n s . T h e r e a r e a t l e a s t t h r e e r e q u i r e m e n t s f o r normal

Page 288: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

277

o p e r a t i o n o f t h e t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n ; name ly , l o a d f l u c t u a t i o n s

s h o u l d be no more i n t e n s i v e than under a v e r a g e o p e r a t i n g c o n d i t i o n s , t h e b o i l e r

l o a d s h o u l d be r e a s o n a b l y l o w e r t han i t s maximum c a p a c i t y , and t h e p r e s s u r e o f

w a t e r s u p p l i e d t o t h e d e s u p e r h e a t e r s h o u l d be a t l e a s t 4 b a r h i g h e r t han t h e

reduced steam p r e s s u r e .

I t i s recommended t h a t t h e t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n i s checked a t

t he b e g i n n i n g o f t h e season and t h e n p e r i o d i c a l l y e v e r y t e n days o r two weeks .

7 .7 .2 B a r o m e t r i c c o n d e n s e r s

The v a p o u r - c o n d e n s i n g s t a t i o n p l a y s an i m p o r t a n t r o l e , as i t i n f l u e n c e s such

i m p o r t a n t p r o c e s s e s as s u g a r b o i l i n g , w h i l e a l s o i n t e r a c t i n g w i t h t h e the rma l

sys tem because i t a b s o r b s l a r g e amounts o f hea t t o be d i s s i p a t e d t o t h e

e n v i r o n m e n t . An i m p o r t a n t p r o c e s s r e q u i r e m e n t i s t h a t t he c o n d e n s e r s s h o u l d

e n s u r e t he c o n s t a n t low p r e s s u r e ( h i g h vacuum) t h a t i s n e c e s s a r y t o o b t a i n low

b o i l i n g t e m p e r a t u r e s and r a p i d t h i c k e n i n g o f s u g a r s o l u t i o n s i n t he b a t c h vacuum

p a n s . A therma l r e q u i r e m e n t i s t h a t t he t e m p e r a t u r e o f b a r o m e t r i c w a t e r s h o u l d

be as low as p o s s i b l e , bu t h i g h enough t o e n s u r e r a p i d hea t d i s s i p a t i o n i n t h e

c o o l i n g t o w e r s . I n d o u b l e - s t a g e c o n d e n s i n g s y s t e m s , i t may be i m p o r t a n t t o g e t

w a t e r f rom t h e f i r s t s t a g e w i t h a t e m p e r a t u r e s u f f i c i e n t l y h i g h t o s e r v e as f e e d

w a t e r f o r t h e e x t r a c t i o n p r o c e s s . S i m u l t a n e o u s l y , t h e o p e r a t i o n o f t h e v a p o u r -

condens ing s t a t i o n i s dependen t on e f f i c i e n t e v a c u a t i o n o f n o n c o n d e n s a b l e s by

vacuum pumps and a l s o on hea t d i s s i p a t i o n f rom t h e c o o l i n g t o w e r s .

The e s s e n t i a l p rob lem i n c o n d e n s e r i n s p e c t i o n i s t o d e t e r m i n e t h e c o o l i n g -

w a t e r consumpt ion w h i l e c o l l e c t i n g i n f o r m a t i o n on t h e c o n d e n s a t i o n p r o c e s s . T h i s

makes i t p o s s i b l e t o check w h e t h e r p r o c e s s r e q u i r e m e n t s a r e s a t i s f i e d , and

whe the r t he w a t e r consumpt ion can be d e c r e a s e d . The recommended c o n d e n s e r - t e s t

d u r a t i o n i s 4-6 h o u r s . The f o l l o w i n g measurements s h o u l d be r e c o r d e d e v e r y 20-30

m i n u t e s :

- t h e vacuum i n t h e condense r a t t h e v a p o u r i n l e t n o z z l e l e v e l ;

- t h e vacuum i n t h e upper p a r t o f t h e c o n d e n s e r above t h e c o o l i n g w a t e r i n l e t ;

- t h e t e m p e r a t u r e o f t he v a p o u r s s u p p l i e d t o t h e c o n d e n s e r ;

- t he mass f l o w o f c o o l i n g w a t e r ;

- t he t e m p e r a t u r e o f t he c o o l i n g w a t e r b e f o r e t h e c o n d e n s e r ;

- t he t e m p e r a t u r e o f t h e b a r o m e t r i c w a t e r a t t he c o n d e n s e r o u t l e t ( a t bo th

o u t l e t s i n a d o u b l e - s t a g e c o n d e n s i n g s t a t i o n ) .

T e s t r e s u l t s s h o u l d be i n t e r p r e t e d a g a i n s t t h e f o l l o w i n g g u i d e l i n e s :

- t h e d e s i r a b l e vacuum i n t h e c o n d e n s e r c e n t r e i s abou t 0.8 b a r (600 mm H g ) , as

a g a i n s t 0.88 ba r (660 mm Hg) i n i t s upper p a r t ;

- t h e d e s i r a b l e t e m p e r a t u r e o f t h e b a r o m e t r i c w a t e r i n a s i n g l e - s t a g e c o n d e n s e r

i s 45-50°C;

Page 289: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

278

- i n a d o u b l e - s t a g e c o n d e n s e r , t h e t e m p e r a t u r e o f t he b a r o m e t r i c w a t e r s h o u l d

be 60-65°C i n t he f i r s t s t a g e and 40-45°C i n t h e second s t a g e ;

- t he d i f f e r e n c e between t h e s a t u r a t i o n t e m p e r a t u r e a t a c t u a l c o n d e n s e r p r e s s u r e

and t he b a r o m e t r i c w a t e r t e m p e r a t u r e s h o u l d n o t e x c e e d 5 K.

O p e r a t i n g c o n d i t i o n s a t t he t ime o f t he t e s t s h o u l d be a c c o u n t e d f o r i n t h e

e v a l u a t i o n o f t e s t r e s u l t s . The e f f i c i e n c y o f t he vacuum pumps and t h e

t e m p e r a t u r e o f t he c o o l i n g w a t e r a r e e s p e c i a l l y i m p o r t a n t , as w e l l as v a p o u r -

f l o w f l u c t u a t i o n s , because a t e m p o r a r y f l o w i n c r e a s e may i n d u c e l o w e r e d vacuum.

Under normal f a c t o r y - o p e r a t i n g c o n d i t i o n s , p o s s i b l e d i f f i c u l t i e s i n

m a i n t a i n i n g a p p r o p r i a t e vacuum, as w e l l as t o o l a r g e a d i f f e r e n c e between

s a t u r a t i o n and b a r o m e t r i c - w a t e r t e m p e r a t u r e s , i n d i c a t e t h a t t he condense r i s

o v e r l o a d e d by e x c e s s i v e v a p o u r f l o w . I n t h i s c a s e , t he f l o w v e l o c i t y o f t h e

v a p o u r s i n t h e f r e e - f l o w c r o s s - s e c t i o n a r e a o f t h e c o n d e n s e r s h o u l d be v e r i f i e d .

The a p p r o x i m a t e v a l u e ( n e g l e c t i n g h e a t l o s s e s t o t h e e n v i r o n m e n t ) o f t h e v a p o u r

mass f l o w , G^, can be c a l c u l a t e d f rom the e q u a t i o n s o f c o n d e n s e r mass and

e n e r g y b a l a n c e s

+ = G , (7.45)

where G. i s t he unknown mass f l o w o f b a r o m e t r i c w a t e r i n k g / h , G, i s t h e known

D W mass f l o w o f c o o l i n g w a t e r i n k g / h , and h ^ , h^ and hj^ a re e n t h a l p i e s i n k J / k g ,

w h i c h can be d e t e r m i n e d as f u n c t i o n s o f known t e m p e r a t u r e s t ^ , t ^ and t ^ . Upon

d e t e r m i n a t i o n o f t h e v a p o u r mass f l o w

^ = • - \ ^ ( k g / h ) (7.47)

t he f l o w v e l o c i t y can be c a l c u l a t e d as

w = G^vy((TTd2/4)-3600) ( m / s ) (7.48) where v ^ i s t he s p e c i f i c v o l u m e , i n m'^/kg, o f d r y s a t u r a t e d steam a t t e m p e r a t u r e

t ^ , and d i s t h e i n n e r d i ame te r o f t h e condense r b o d y , i n m. The f l o w v e l o c i t y

s h o u l d n o t exceed 50-60 m/s .

I t i s recommended t h a t t h e c o n d e n s e r s a r e checked a t t he b e g i n n i n g o f t h e

s e a s o n ; a f t e r t h a t , i n s p e c t i o n s h o u l d be u n d e r t a k e n whenever d e v i a t i o n s f rom

normal c o n d e n s e r o p e r a t i o n o c c u r .

7.7.3 Steam t r a p s

As emphas ized i n S e c t i o n 3.2.1, one o f t h e e s s e n t i a l r e q u i r e m e n t s o f p r o p e r

steam o r v a p o u r h e a t i n g i s r e l i a b l e condensa te d r a i n a g e . T h i s r e q u i r e m e n t can be

s a t i s f i e d , p r o v i d i n g t h a t t h e e n t i r e sys tem i s p r o p e r l y d e s i g n e d and m a i n t a i n e d .

I n p r a c t i c e , i t i s n o t unusua l t h a t d e s i g n e r r o r s o r m a k e s h i f t m o d i f i c a t i o n s

cause steam consumpt ion i n i n d i v i d u a l equ ipment u n i t s t o i n c r e a s e by 25-50% above t he a c t u a l n e e d . I t s h o u l d be u n d e r s t o o d he re t h a t t he p r e r e q u i s i t e f o r

Page 290: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

279

r o u t i n e c h e c k i n g o f steam t r a p s i s t o e l i m i n a t e such e r r o r s .

Check ing o f steam t r a p s i s aimed a t d e t e c t i n g and e l i m i n a t i n g m a l f u n c t i o n i n g

t r a p s . Condensa te d r a i n a g e can be o b s e r v e d a t w a t e r - l e v e l gauges t h a t i n d i c a t e

t h e condensa te l e v e l i n t h e h e a t i n g chambers o f t h e r e l e v a n t a p p a r a t u s . N o z z l e -

t y p e steam t r a p s a r e o f t e n e q u i p p e d w i t h s i g h t - g l a s s e s t h a t make i t p o s s i b l e t o

o b s e r v e steam l e a k s . When i r r e g u l a r i t i e s a r e d e t e c t e d , i t may be n e c e s s a r y t o

r e f e r t o t h e measur ing i n s t r u m e n t s i n t h e the rma l s y s t e m ; h o w e v e r , i f t h e

p r e s s u r e d rop a c r o s s t he t r a p does n o t d i f f e r much f rom i t s nominal v a l u e , t r a p

damage can be s u s p e c t e d . A damaged t r a p must be r e p l a c e d w i t h o u t d e l a y .

Steam t r a p o p e r a t i o n can a l s o be i n v e s t i g a t e d u s i n g an u l t r a s o n i c sound

d e t e c t o r ( r e f . 4 5 ) . A l e s s r e l i a b l e method employs a s t e t h o s c o p e , o r even a

metal r o d t o u c h i n g t he t r a p s u r f a c e (an i n i t i a l t r i a l s h o u l d be made t o e n s u r e

t h a t t h i s method i s e f f i c i e n t ) .

7 .7 .4 Steam and v a p o u r p i p e l i n e s

The equ ipment and machines i n a the rma l sys tem a re i n t e r c o n n e c t e d by

p i p e l i n e s f o r t r a n s p o r t o f s team, v a p o u r o r w a t e r . Steam and v a p o u r p i p e l i n e s

a re p a r t i c u l a r l y i m p o r t a n t because o f t h e i r i n f l u e n c e on t h e e n e r g y u t i l i z a t i o n .

I t s h o u l d be p o i n t e d o u t t h a t c o r r e c t o p e r a t i o n o f a steam p i p e l i n e d e p e n d s ,

i n t he f i r s t p l a c e , on s a t i s f y i n g b a s i c c o n s t r u c t i o n r u l e s such as p i p e -

p o s i t i o n i n g w i t h t he s l o p e needed f o r c o n d e n s a t e f l o w - o f f , a p p l y i n g n e c e s s a r y

d r a i n a g e and v e n t i n g , p r o v i d i n g a p p r o p r i a t e the rma l i n s u l a t i o n , i n s t a l l i n g b y

pass l i n e s , e t c . These r u l e s a r e p a r t i c u l a r l y i m p o r t a n t f o r s a f e s t a r t - u p and

s h u t - d o w n , as w e l l as f o r t h e smooth r e p a i r and ma in tenance o f i n d i v i d u a l

equ ipment u n i t s w i t h o u t a f f e c t i n g t he o p e r a t i o n o f t h e e n t i r e s y s t e m . I t i s n o t

unusua l i n p r a c t i c e , h o w e v e r , t o f i n d t h a t t h e s e r u l e s a r e n o t c o m p l e t e l y

s a t i s f i e d due t o d e s i g n e r r o r s o r m a k e s h i f t m o d i f i c a t i o n s . I t s h o u l d be

u n d e r s t o o d he re t h a t t h e p r e r e q u i s i t e f o r normal p i p e l i n e c h e c k i n g i s t o

e l i m i n a t e e r r o r s o f t h a t k i n d .

Check ing o f steam p i p e l i n e s i s aimed a t :

- s t eam- leakage d e t e c t i o n and e l i m i n a t i o n ;

- t h e r m a l - i n s u l a t i o n i n s p e c t i o n and r e p a i r .

S team- leakage d e t e c t i o n c o n s i s t s o f f i n d i n g l e a k a g e s t o t h e e n v i r o n m e n t and

u n c o n t r o l l e d f l o w s t h r o u g h f a u l t y d r a i n s o r v e n t s , as w e l l as f l o w s i n d u c e d by

l e a k i n g v a l v e s i n b y - p a s s o r r e s e r v e l i n e s . T h i s may be a d i f f i c u l t t a s k i n

complex p i p i n g s y s t e m s ; i t can be made e a s i e r i f t he rmometers and manometers a r e

i n s t a l l e d i n a l l t h e p i p i n g s e c t i o n s . I t i s s u f f i c i e n t t o p e r f o r m s t e a m - l e a k a g e

checks a t t h e b e g i n n i n g o f t h e season and a f t e r t e m p o r a r y s h u t - d o w n s o r

equ ipment r e p a i r s .

The aim o f t h e checks o f the rma l i n s u l a t i o n i s t o i d e n t i f y and e l i m i n a t e

Page 291: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

280

u n n e c e s s a r y h e a t l o s s e s f rom the p i p e l i n e s u r f a c e . Wet o r damaged i n s u l a t i o n

s e c t i o n s s h o u l d immed ia te l y be r e p a i r e d . I n cases o f we t i n s u l a t i o n , i t i s

enough t o e l i m i n a t e t h e w a t e r i n f l o w , as hea t f l u x f rom the p i p e s u r f a c e w i l l

cause s u b s e q u e n t d r y i n g . I n s u l a t i o n c h e c k i n g s h o u l d be pe r f o rmed a t t h e f a c t o r y

s t a r t - u p , and a f t e r equ ipment o r p i p i n g r e p a i r s . A t t e n t i o n s h o u l d be d i r e c t e d

t o p i p e s e c t i o n s c l o s e t o f i t t i n g s , hange rs and compensa t ion p i e c e s .

7 .7 .5 V e n t s

The h e a t i n g chambers o f equ ipment hea ted by v a p o u r s , such as e v a p o r a t o r s ,

j u i c e h e a t e r s and p r i m a r i l y vacuum p a n s , s h o u l d be c o n t i n u o u s l y v e n t e d .

Noncondensab le gases p r e s e n t i n c o n d e n s i n g v a p o u r s t e n d t o accumu la te i n t h e

l o w e r r e g i o n s o f h e a t i n g chambers . I t i s u s u a l l y a t t h e s e p o i n t s , and

p a r t i c u l a r l y where t h e v a p o u r p a t h s e n d , t h a t v e n t i n g n o z z l e s s h o u l d be

i n s t a l l e d ( r e f . 4 6 ) ; t he n o z z l e s s h o u l d be c o n n e c t e d t o p i p e s e q u i p p e d w i t h

v a l v e s t h a t make i t p o s s i b l e t o c o n t r o l t he f l o w .

I f v e n t i n g does n o t p r e v e n t t h e a c c u m u l a t i o n o f noncondensab le g a s e s , t hen

t h e i r i n c r e a s e d p a r t i a l p r e s s u r e causes t he p a r t i a l p r e s s u r e o f t he steam t o

d e c r e a s e , w h i c h i n t u r n d e c r e a s e s t he c o n d e n s a t i o n t e m p e r a t u r e . I n s u f f i c i e n t

v e n t i n g t h u s r e s u l t s i n a d e c r e a s e d e f f e c t i v e t e m p e r a t u r e d i f f e r e n c e and l e s s

i n t e n s i v e hea t t r a n s f e r w h i c h means:

- d e c r e a s e d j u i c e e v a p o r a t i o n i n t h e e v a p o r a t o r s ;

- d e c r e a s e d f i n a l j u i c e t e m p e r a t u r e i n t h e h e a t e r s ;

- l o n g e r b o i l i n g t ime i n t h e ba t ch vacuum p a n s .

V e n t i n g a l w a y s causes a c e r t a i n amount o f steam t o e s c a p e , t o g e t h e r w i t h t he

noncondensab le g a s e s . I t i s t h u s i m p o r t a n t t o r educe t h a t amount t o a minimum

a n d , i f p o s s i b l e , t o r e c o v e r h e a t f rom t h e e s c a p i n g m i x t u r e . Most o f t e n , v e n t i n g

p i p e s a re c o n n e c t e d a t s e l e c t e d p l a c e s i n t h e therma l s y s t e m , as e x p l a i n e d i n

S e c t i o n 3 . 2 . 2 .

When c o n t r o l l i n g t h e f l o w o f a g a s - v a p o u r m i x t u r e , i t i s recommended t h a t t h e

v a l v e s p i n d l e be t u r n e d n o t more t han 1/4 t o 1/3 r e v o l u t i o n a t a t i m e . I t s h o u l d

be o b s e r v e d t h a t t h i s k i n d o f f l o w c o n t r o l i s r e a l i z a b l e o n l y i n t h e case o f

v e n t s opened t o the a t m o s p h e r e , as e x c e s s i v e v e n t i n g i s i n d i c a t e d t h e r e by

v i s i b l e steam o u t f l o w .

The a c c u r a t e c o n t r o l o f v e n t i n g t h a t i s p a r t i c u l a r l y needed i n t he

e v a p o r a t o r s wou ld r e q u i r e i n s t a l l a t i o n o f p r e c i s i o n thermometers a t t he steam

n o z z l e b e f o r e the h e a t i n g chamber i n l e t and i n t he h e a t i n g chamber c l o s e t o

t he v e n t i n g n o z z l e . Open ing o f t h e c o n t r o l v a l v e s h o u l d r e s u l t i n a t e m p e r a t u r e

d i f f e r e n c e o f abou t 1 K. As i t i s p r a c t i c a l l y i m p o s s i b l e t o measure such a smal l

t e m p e r a t u r e d i f f e r e n c e w i t h adequate a c c u r a c y i t i s recommended t h a t , i n s t e a d o f

two t he rmome te r s , a s p e c i a l measur ing sys tem be used i n c l u d i n g f o u r r e s i s t a n c e

Page 292: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

281

thermometers and an e l e c t r i c a l b r i d g e e q u i p p e d w i t h f o u r r e s i s t o r s ( r e f . 4 7 ) .

T h i s i s p a r t i c u l a r l y u s e f u l i n t he second and t h i r d e v a p o r a t o r e f f e c t s where t h e

c o n c e n t r a t i o n o f n o n c o n d e n s a b l e s i s h i g h e s t .

Check ing o f v e n t i n g sys tems s h o u l d p r i m a r i l y be c a r r i e d o u t a t t h e b e g i n n i n g

o f t he s e a s o n , a f t e r t e m p o r a r y s h u t - d o w n s and a f t e r equ ipment r e p a i r s . A l s o i n

cases o f i r r e g u l a r i t i e s , i n d i c a t e d by t o o low f i n a l j u i c e t e m p e r a t u r e s i n t h e

h e a t e r s o r t o o s l o w s u g a r b o i l i n g i n t h e vacuum p a n s , a v e n t i n g check s h o u l d be

a s t a n d a r d r o u t i n e .

7.8 PULP DRYER

7.8.1 Methods o f measurement

I t i s assumed t h r o u g h o u t t h i s S e c t i o n t h a t t h e d r y e r under c o n s i d e r a t i o n i s

a c l a s s i c a l d r u m - t y p e d r y e r hea ted by combus t i on g a s e s . Compared t o a the rma l

sys tem i n s u g a r m a n u f a c t u r e , a p u l p d r y e r e q u i p p e d w i t h i t s own f u r n a c e i s

e x t r e m e l y p r i m i t i v e , as t he hea t i s u t i l i z e d o n l y once ( t h e same a p p l i e s t o

d r y e r s u t i l i z i n g f l u e gases f rom b o i l e r s ) . Any h e a t l o s s i n p u l p d r y i n g i s t h u s

i r r e c o v e r a b l e , and t h a t i s why t he d r y i n g p r o c e s s s h o u l d be c a r e f u l l y m o n i t o r e d .

A d r u m - t y p e p u l p d r y e r i s shown s c h e m a t i c a l l y i n F i g . 7 .13 , t o g e t h e r w i t h

a l i s t o f q u a n t i t i e s t h a t appear i n t h e mass and h e a t b a l a n c e s .

pressed pulp

B . Q H

exhaust gas t 2 . C 0 2

F i g . 7 .13 . P o i n t s o f measurement i n p u l p d r y e r c h e c k . 1 - f u r n a c e , 2 - f e e d e r , 3 - a f t e r d r y e r . F o r t he e x p l a n a t i o n o f s y m b o l s , see t e x t .

The e s s e n t i a l p rob lem o f m o n i t o r i n g e n e r g y usage i n a p u l p d r y e r i s t o

de te rm ine t h e hea t consumpt ion w h i l e d r y i n g a d e f i n i t e amount o f p u l p . The h e a t

consumpt ion can c o n v e n t i o n a l l y be e x p r e s s e d by two i n d i c e s : t he d r y e r

e f f i c i e n c y , η, and the hea t consumpt ion f o r t he e v a p o r a t i o n o f 1 kg o f w a t e r , q .

The d r y e r e f f i c i e n c y can be d e f i n e d as

Page 293: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

282

where i s t h e t h e o r e t i c a l h e a t demand f o r e v a p o r a t i n g w a t e r f rom t h e p u l p i n

k J , Β i s t h e f u e l consumpt ion i n kg , and i s t h e h e a t i n g v a l u e o f f u e l i n

k J / k g .

The hea t consumpt ion f o r e v a p o r a t i o n o f 1 kg w a t e r can be c a l c u l a t e d f rom t h e

f o r m u l a

q = BQ^/W ( k J / k g ) ( 7 . 5 0 )

where W i s t h e mass o f w a t e r e v a p o r a t e d i n t h e d r y e r i n kg .

I n o r d e r t o de te rm ine t h e above i n d i c e s , i t i s n e c e s s a r y t o measure t he

f o l l o w i n g q u a n t i t i e s :

- mass o f f u e l consumed, Β ( k g ) ;

- h e a t i n g v a l u e o f f u e l , ( k J / k g ) ;

- mass o f p r e s s e d p u l p , ( k g ) , o r mass o f d r i e d p u l p , G^ ( k g ) ;

- mass o f mo lasses added b e f o r e t h e d r y e r , G ^ ( k g ) ;

- d r y m a t t e r c o n t e n t i n p r e s s e d p u l p , s^ ( % ) , i n d r i e d p u l p , S2 ( % ) , and i n

m o l a s s e s , s ^ ( % ) ;

- p r e s s e d p u l p t e m p e r a t u r e b e f o r e t h e d r y e r , t^^ ( ° C ) ;

- gas t e m p e r a t u r e b e f o r e t h e d r y e r drum, t^ ( ° C ) , and a t t h e d r y e r o u t l e t ,

( °C ) .

I n o r d e r t o a t t a i n s a t i s f a c t o r y measur ing a c c u r a c y , c a r e i s r e q u i r e d i n t a k i n g

r e p r e s e n t a t i v e p u l p samples f o r t h e d e t e r m i n a t i o n o f d r y m a t t e r c o n t e n t .

Tempera tu re measurements b e f o r e t h e d r y e r o u t l e t a r e a l s o v e r y i m p o r t a n t . The

f l u e gas t e m p e r a t u r e b e f o r e t he drum must n o t be measured a t t h e f u r n a c e o u t l e t ,

bu t i n s t e a d where t he f l u e gas has a l r e a d y been mixed w i t h s e c o n d a r y a i r ( f e d

f o r t e m p e r a t u r e a d j u s t m e n t p u r p o s e s ) and a l s o w i t h a i r l e a k i n g i n t h r o u g h gaps

between t h e f u r n a c e and t he drum, as w e l l as a round t he p u l p i n t a k e . T e m p e r a t u r e

d e t e c t o r s s h o u l d t h u s be i n s t a l l e d a t t he drum beyond t he p u l p i n t a k e . As t o t h e

o u t l e t t e m p e r a t u r e measurements , s y s t e m a t i c e r r o r s due t o i r r e g u l a r i t i e s o f t he

t e m p e r a t u r e d i s t r i b u t i o n i n t h e drum o u t l e t must be a v o i d e d . The r i g h t p l a c e f o r

t e m p e r a t u r e measurement i s t h e o u t l e t n o z z l e o f t he e x h a u s t f a n .

A v e r y u s e f u l a d d i t i o n t o t he above measurements i s d e t e r m i n a t i o n o f t h e CO2

c o n t e n t i n t he gas a t t he d r y e r o u t l e t . Gas samples s h o u l d be taken f rom t h e

o u t l e t n o z z l e o f t h e e x h a u s t f a n .

I n t h e case o f a p e r i o d i c d r y e r c h e c k , i t i s recommended t h a t t h e sys tem o f

measur ing used makes i t p o s s i b l e t o d e t e r m i n e t h e hea t consumpt ion i n d i c e s and

a l s o t o i d e n t i f y t h e r e a s o n s f o r any i r r e g u l a r i t i e s d e t e c t e d . P a r t i c u l a r l y

u s e f u l a re t h e measurements o f CO2 c o n t e n t i n t h e gas b e f o r e t h e d r y e r drum and

a t t he d r y e r o u t l e t , as t he d i f f e r e n c e i n CO2 c o n t e n t shows w h e t h e r t h e drum i s

p r o p e r l y s e a l e d . I n a d d i t i o n , i f t he o u t l e t CO2 c o n t e n t and t e m p e r a t u r e a r e

known, t h e n app rox ima te v a l u e s o f hea t consumpt ion and gas h u m i d i t y can be f o u n d

i n t h e d iagrams g i v e n i n r e f . 8 o r o t h e r s o u r c e s .

Page 294: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

283

R o u t i n e d r y e r m o n i t o r i n g s h o u l d be based on i n s t r u m e n t r e a d i n g s t aken e v e r y

h o u r . Then t he mean v a l u e s o f pa rame te rs ( c a l c u l a t e d o v e r t h e e n t i r e t e s t

p e r i o d ) r e f l e c t n o t o n l y t h e q u a l i t y o f t h e d r y e r - f u r n a c e s y s t e m , b u t a l s o t h e

i n f l u e n c e o f d i s t u r b a n c e s i n t h e o p e r a t i n g c o n d i t i o n s , such as c h a n g i n g m o i s t u r e

c o n t e n t o r mass f l o w o f t h e p r e s s e d p u l p .

I n p e r i o d i c c h e c k s , t he i n v e s t i g a t i o n s a r e aimed a t t he d e t e r m i n a t i o n o f

d r y e r e f f i c i e n c y . R e l i a b l e t e s t r e s u l t s can o n l y be o b t a i n e d i f t h e d r y e r l o a d

i s s t a b i l i z e d and no s i g n i f i c a n t d i s t u r b a n c e s o c c u r . O t h e r w i s e , t h e the rma l

c a p a c i t y o f t h e d r y e r may i n t r o d u c e a c o n s i d e r a b l e h e a t - b a l a n c e e r r o r . The t e s t

d u r a t i o n s h o u l d be 8-12 h o u r s , w i t h pa ramete r r e a d i n g s taken e v e r y 30 m inu tes

and p u l p samples c o l l e c t e d e v e r y h o u r .

7 .8 .2 Mass and hea t b a l a n c e s o f a p u l p - d r y i n g p l a n t

The mass b a l a n c e can be a n a l y s e d on t h e b a s i s o f t h e e q u a t i o n d e s c r i b i n g t h e

d r y m a t t e r s t ream

G^s^ = G2S2 ( 7 . 5 1 )

P r o v i d e d t h a t t h e p u l p samples a r e r e a l l y r e p r e s e n t a t i v e , v e r y a c c u r a t e v a l u e s

o f s^ and S2 can be o b t a i n e d f rom l a b o r a t o r y a n a l y s e s . T h u s , e q n . ( 7 . 5 1 ) makes

i t p o s s i b l e t o v e r i f y t h e i n d i c a t i o n s o f t h e p r e s s e d - p u l p s c a l e s . The mass o f

d r i e d p u l p l e a v i n g t h e d r y e r , G ^ , can be d e t e r m i n e d by d i r e c t i n g t h e d r i e d p u l p

i n t o a c o n t a i n e r . Once t h e b a t c h has been w e i g h e d , one can c a l c u l a t e G^ f rom

e q n . ( 7 . 5 1 ) .

The mass o f w a t e r e v a p o r a t e d i n t h e d r y e r can be c a l c u l a t e d as

W = G^(S2 - S ^ ) / S 2 + G^(S2 - s ^ ) / s 2 ( k g ) ( 7 . 5 2 )

The t h e o r e t i c a l hea t demand f o r w a t e r e v a p o r a t i o n can be c a l c u l a t e d as

= W(h^ - h^) ( k J ) ( 7 . 5 3 )

where h^ i s t he e n t h a l p y o f t h e v a p o u r s i n t h e gas a t t h e d r y e r o u t l e t i n k J / k g ,

and h^ i s t h e e n t h a l p y o f w a t e r i n t h e p r e s s e d p u l p i n k J / k g . The e n t h a l p y h^

can be d e t e r m i n e d f rom steam t a b l e s o r d i a g r a m s . A c t u a l l y , v a p o u r s i n t h e o u t l e t

gases a r e s u p e r h e a t e d ; t h e t e m p e r a t u r e i s t ^ and t h e p r e s s u r e s h o u l d be

u n d e r s t o o d as t h e p a r t i a l p r e s s u r e o f H^O i n g a s . H o w e v e r , a s a t i s f a c t o r y

a p p r o x i m a t i o n i s o b t a i n e d by assuming t h a t t h e p r e s s u r e i s 1 ba r ( t h e r e s u l t i n g

e r r o r does n o t e x c e e d 1%). The o t h e r e n t h a l p y v a l u e i s h^ = 4 .19 tp^ ( k J / k g ) .

7 .8 .3 Economica l p u l p d r y e r o p e r a t i o n

I n a r e a s o n a b l y w e l l o p e r a t e d p u l p d r y e r w i t h an i n d i v i d u a l f u r n a c e , a

t y p i c a l e f f i c i e n c y v a l u e i s 0 . 7 5 - 0 . 8 5 , w h i l e h e a t consumpt ion p e r 1 kg

e v a p o r a t e d w a t e r does n o t e x c e e d 3140-3560 k J / k g .

I n a d r y e r hea ted by b o i l e r f l u e g a s , t h e e f f i c i e n c y v a l u e c o n v e n t i o n a l l y

c a l c u l a t e d p e r t o t a l amount o f f u e l consumed i n t h e b o i l e r i s 0 . 1 0 - 0 . 1 5 , and

Page 295: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

284

t he hea t consumpt ion ( c a l c u l a t e d i n t h e same way) amounts t o 21500-28000 k J / k g .

Keep ing the thermal i n d i c e s o f a d r y e r a t an a p p r o p r i a t e l e v e l r e q u i r e s good

u n d e r s t a n d i n g o f t he r e l a t i o n s h i p s t h a t a f f e c t i t s hea t b a l a n c e , s c h e m a t i c a l l y

shown i n a s i m p l i f i e d Sankey d iag ram i n F i g . 7 .14 .

( i ) The s m a l l e s t p o s s i b l e h e a t consumpt ion i s r e l a t e d t o t he t h e o r e t i c a l h e a t

demand, c a l c u l a t e d a c c o r d i n g t o e q n . ( 7 . 5 3 ) .

( i i ) Pu lp d r y i n g r e q u i r e s t h a t t he e n e r g y i n t r o d u c e d i n t o the d r y i n g gas must

exceed t he t h e o r e t i c a l demand by t h e combined e n e r g y l o s s i n t h e o u t l e t g a s ,

p l u s t he hea t l o s s f rom the d r y e r drum.

( i i i ) I n o r d e r t o g e n e r a t e t h e r i g h t amount o f gas a t t h e p r o p e r t e m p r e r a t u r e ,

i t i s n e c e s s a r y t o burn an amount o f f u e l t h a t c o r r e s p o n d s t o t he above amount

o f e n e r g y , p l u s combus t ion l o s s e s and hea t l o s s f rom the f u r n a c e t o t he

e n v i ronment .

ω l_ φ >

•σ ω

o QJ Χ

χ Cí ώ

Losses from furnace

Cf m

Heat theoretically needed

Exhaust and radiation

losses

F i g . 7 .14. Heat b a l a n c e o f t h e p u l p d r y i n g p l a n t .

I t f o l l o w s f rom ( i ) t h a t p r o c e s s t o l e r a n c e s s h o u l d be o b s e r v e d , and t h e f i n a l

d r y m a t t e r c o n t e n t i n d r i e d p u l p s h o u l d n o t exceed t h e r e q u i r e d v a l u e .

The need t o m i n i m i z e t he e x h a u s t l o s s i s a p p a r e n t i n ( i i ) ; t h e o u t l e t gas

t e m p e r a t u r e s h o u l d n o t exceed 90-115°C, and t h e gas f l o w s h o u l d be m i n i m a l . An

e q u i v a l e n t f o r m u l a t i o n o f t h e l a t t e r r e q u i r e m e n t i s t o keep t h e gas t e m p e r a t u r e

b e f o r e t he d r y e r drum r a t h e r h i g h , a t 800-900°C.

F i n a l l y , ( i i i ) i m p l i e s t h a t gas g e n e r a t i o n s h o u l d p r o c e e d w i t h e x c e s s a i r

be low 100-150%; o t h e r w i s e , t he gas t e m p e r a t u r e b e f o r e t h e d r y e r drum w o u l d be

t o o l o w . I n a c t u a l combus t ion c o n d i t i o n s , t h e amount o f e x c e s s a i r i s l o w e r .

The rema in ing a i r ( s e c o n d a r y a i r ) i s i n t r o d u c e d s e p a r a t e l y b e f o r e t he drum i n l e t

and u t i l i z e d f o r g a s - t e m p e r a t u r e a d j u s t m e n t . U n c o n t r o l l a b l e a i r l e a k s t h r o u g h

t h e gaps between t h e drum and t he f u r n a c e , and a t t he p u l p i n t a k e , a r e c l e a r l y

d i s a d v a n t a g e o u s , l e a d i n g sometimes t o an u n a c c e p t a b l y l a r g e t e m p e r a t u r e d r o p .

The l e a k s may a l s o cause t e m p e r a t u r e d i s t r i b u t i o n i r r e g u l a r i t i e s o v e r t he drum

Page 296: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

285

c r o s s - s e c t i o n , hamper ing t h e p u l p - d r y i n g p r o c e s s .

I n keep ing t h e e n t i r e a i r f e e d under c o n t r o l , CO^ measurement i n t h e gas a t

t he d r y e r o u t l e t i s e s p e c i a l l y u s e f u l . P r o v i d i n g t h e chemica l c o m p o s i t i o n o f t h e

f u e l and t he r e q u i r e d e x c e s s a i r a r e known, i t i s p o s s i b l e t o d e t e r m i n e t h e

d e s i r a b l e v o l u m e t r i c c o m p o s i t i o n o f t he f l u e gas b e f o r e t h e d r y e r drum. T a k i n g

i n t o a c c o u n t t h e f u e l m o i s t u r e and t h e w a t e r e v a p o r a t e d f rom t h e p u l p , t h e

recommended c o n t e n t a t t h e d r y e r o u t l e t can a l s o be d e t e r m i n e d ( a n d ,

p r e f e r a b l y , e x p e r i m e n t a l l y v e r i f i e d ) . The d r y e r o p e r a t o r s h o u l d keep t h e a c t u a l

c o n t e n t c l o s e t o t he recommended v a l u e , a v o i d i n g l o w e r v a l u e s t h a t i n d i c a t e

t o o much e x c e s s a i r .

As a c o n c l u d i n g comment t o ( i i i ) , i t s h o u l d be s t a t e d t h a t t h e f u r n a c e must

be m a i n t a i n e d i n p r o p e r c o n d i t i o n i n o r d e r t o keep combus t i on l o s s e s and h e a t

d i s s i p a t i o n a t a minimum.

As a m a t t e r o f f a c t , p u l p - d r y i n g o p e r a t i o n c o n s i s t s o f ma tch ing t h e

r e q u i r e m e n t s on t h e e f f e c t o f t h e d r y i n g p r o c e s s and t h e e n e r g y c o n s u m p t i o n .

The pa ramete r v a l u e s g i v e n above make i t p o s s i b l e t o a c h i e v e a compromise i n

d r y e r c a p a c i t y , c l o s e t o i t s nominal l e v e l . C a p a c i t y changes r e q u i r e m o d i f y i n g

paramete r v a l u e s , wh i ch c a u s e s , as a r u l e , i n c r e a s e o f h e a t c o n s u m p t i o n . F o r

t h i s r e a s o n , t h e f i r s t p r i n c i p l e o f p u l p - d r y e r o p e r a t i o n i s t o keep t h e c a p a c i t y

c o n s t a n t ; i f p o s s i b l e , c l o s e t o i t s nominal v a l u e .

7 .8 .4 Example

An o i l - f i r e d , d r u m - t y p e p u l p d r y e r has been t e s t e d i n a 12-hour t e s t and t h e

f o l l o w i n g d a t a summarize t h e t e s t r e s u l t s :

- mass o f f u e l o i l consumed, Β = 14077 kg ;

- o i l h e a t i n g v a l u e , = 40400 k J / k g ;

- mass o f p r e s s e d p u l p , G-j = 223510 kg ;

- mass o f mo lasses added b e f o r e d r y e r , G ^ = 8975 kg ;

- d r y m a t t e r c o n t e n t i n p r e s s e d p u l p , s-j = 17%, i n d r i e d p u l p , S2 = 90.8%, and

i n m o l a s s e s , s = 76.3%;

- p r e s s e d p u l p t e m p e r a t u r e b e f o r e d r y e r , t^-j = 20 C ;

- gas t e m p e r a t u r e b e f o r e d r y e r drum, t-j = 803^0, and a t d r y e r o u t l e t , t2 = 102°C.

The mass o f w a t e r e v a p o r a t e d i n t h e d r y e r

W = 223510(90.7 - 1 7 ) / 9 0 . 7 + 8975(90.7 - 7 6 . 3 ) / 9 0 . 7 = 183042 kg

The v a p o u r e n t h a l p y a t t he d r y e r o u t l e t , f rom steam t a b l e s

h^ = 2682 k J / k g

The t h e o r e t i c a l hea t demand

= 183042(2682 - 4 .19 -20) = 4 .756-10^ kJ

The d r y e r e f f i c i e n c y

η = 4 .756-10^ / (14077-40400) = 0.836

Page 297: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

286

The hea t consumpt ion f o r e v a p o r a t i o n o f 1 kg w a t e r

q = (14077·40400) /183042 = 3106 k J / k g

7.9 COMPUTER-AIDED MONITORING

I t can be c o n c l u d e d f rom p r e c e d i n g S e c t i o n s o f t h i s C h a p t e r t h a t once methods

o f i d e n t i f i c a t i o n o f t h e h e a t b a l a n c e s needed t o s u p e r v i s e t h e h e a t economy

i n a s u g a r f a c t o r y have been e s t a b l i s h e d , t h e m o n i t o r i n g p r o c e d u r e s can be

r o u t i n e l y a p p l i e d on a r e p e t i t i v e b a s i s . The p r a c t i c a l m o n i t o r i n g t h e n c o n s i s t s

m a i n l y o f da ta a c q u i s i t i o n , da ta p r o c e s s i n g and r e p o r t g e n e r a t i n g , and can be

automated w i t h t he a i d o f a d i g i t a l compu te r . T h i s a p p l i e s , i n t he f i r s t p l a c e ,

t o t he r o u t i n e m o n i t o r i n g t a s k s ( r o u t i n e c h e c k s ) w h i c h a r e pe r f o rmed most o f t e n ,

so t h a t t he i n i t i a l e f f o r t needed t o p r e p a r e c o m p u t e r i z e d t o o l s can be p a i d back

most q u i c k l y .

The impor tance o f c o m p u t e r - a i d e d m o n i t o r i n g t o t h e e n e r g y economy l i e s i n t h e

f a c t t h a t , by r e d u c i n g t h e amount o f r e p e t i t i v e and t e d i o u s work a s s o c i a t e d w i t h

the p r e p e r a t i o n o f t he hea t b a l a n c e s , i t c r e a t e s t he p o s s i b i l i t y o f

s y s t e m a t i c , d e t a i l e d e v a l u a t i o n o f t he e n e r g y p r o c e s s e s . T h i s a p p l i e s n o t o n l y

t o t h e i n d i v i d u a l s t a t i o n s d i s c u s s e d i n S e c t i o n s 7 . 2 - 7 . 8 , b u t a l s o t o t he e n t i r e

therma l s y s t e m . On t h i s b a s i s i t becomes p o s s i b l e t o c o n t r o l and o p t i m i z e , i n

r e s p e c t o f t he e n e r g y economy o f t h e e n t i r e f a c t o r y , t h e o p e r a t i n g c o n d i t i o n s a t

t h e most d e c i s i v e p r o c e s s s t a t i o n s .

A g e n e r a l scheme o f t h e d a t a f l o w on w h i c h c o m p u t e r - a i d e d m o n i t o r i n g o f t h e

f a c t o r y o p e r a t i o n i s based can be seen i n F i g . 7 .15 . The p r a c t i c a l a p p l i c a t i o n s

o f t he g e n e r a l i d e a a r e d i f f e r e n t i a t e d w i t h r e s p e c t t o d a t a a c q u i s i t i o n

t e c h n i q u e s , d a t a - b a s e s t r u c t u r e and v o l u m e , t he d a t a - b a s e u p d a t i n g and s e a r c h

t e c h n i q u e s u s e d , u s e r programs a v a i l a b l e and d a t a p r e s e n t a t i o n methods emp loyed .

By a d o p t i n g t h i s k i n d o f s t r u c t u r i n g o f da ta p r o c e s s i n g f u n c t i o n s , h o w e v e r , one

i s a b l e t o a p p l y w i d e l y c i r c u l a t e d , w e l l p r o v e n s o f t w a r e components f a c i l i t a t i n g

MEASURING INSTRUMENTS

DATA INPUT USER TERMINALS TERMINALS

Software system

Updating programs

1 Data acquisi t ion

1 programs

Data

base

User programs T T

Search

programs

PRINTER

PLOTTER

F i g . 7 .15 . Scheme o f da ta f l o w i n c o m p u t e r - a i d e d m o n i t o r i n g o f t h e f a c t o r y o p e r a t i o n .

Page 298: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

287

smooth i m p l e m e n t a t i o n and h i g h r e l i a b i l i t y o f t h e m o n i t o r i n g s y s t e m .

M o n i t o r i n g o f t h e e n e r g y economy can be t r e a t e d as one o f t h e f u n c t i o n s o f

an e x t e n s i v e m o n i t o r i n g sys tem c o v e r i n g v a r i o u s a s p e c t s o f f a c t o r y o p e r a t i o n , o r

i t can be pe r f o rmed by a s p e c i a l i z e d s y s t e m . The d a t a management f o r m o n i t o r i n g

p u r p o s e s can be i n t e g r a t e d w i t h t h a t r e q u i r e d f o r c o m p u t e r - b a s e d a u t o m a t i c

c o n t r o l , o r can be t r e a t e d i n d e p e n d e n t l y o f t h e a u t o m a t i c c o n t r o l f u n c t i o n s .

Among t h e m o n i t o r i n g p rob lems w h i c h must be s o l v e d i n o r d e r t o r e c o g n i z e t h e

c o n d i t i o n o f t h e e n e r g y p r o c e s s e s , e v a p o r a t o r m o n i t o r i n g i s o f c r i t i c a l

i m p o r t a n c e . I t d e t e r m i n e s t he q u a l i t y o f i n f o r m a t i o n on t he most i m p o r t a n t

pa ramete rs o f t he e n e r g y p r o c e s s e s , and i s d e c i s i v e i n c r e a t i n g p o s s i b i l i t i e s

o f c o r r e c t l y d i a g n o s i n g t h e i n a d e q u a c i e s o f t h e e n e r g y economy.

The s i m p l e s t app roach t o e v a p o r a t o r m o n i t o r i n g i s t o use a p a r t o f t h e d a t a

on f a c t o r y o p e r a t i o n , s t o r e d o f f - l i n e i n t h e computer memory f o r s t a t i s t i c a l

p u r p o s e s , f o r d e t e r m i n a t i o n o f t he t r e n d s i n pa ramete r v a l u e s and f o r p e r i o d i c

mass and h e a t b a l a n c e c a l c u l a t i o n s . The e v a p o r a t i o n p r o c e s s can be i d e n t i f i e d i n

terms o f a v e r a g e v a l u e s o f t h e p a r a m e t e r s , t y p i c a l l y c a l c u l a t e d once p e r day o r

once pe r s h i f t . An example o f a p p l i c a t i o n o f t h i s app roach can be f o u n d i n

r e f . 45.

A more advanced e v a p o r a t o r m o n i t o r i n g p r o c e d u r e i s based on o n - l i n e r e c o r d i n g

o f t h e e s s e n t i a l p a r a m e t e r s , measured c o n t i n u o u s l y i n t he i n d i v i d u a l e f f e c t s ,

and o f f - l i n e s t o r i n g o f t he da ta on j u i c e c o n c e n t r a t i o n s p e r i o d i c a l l y d e t e r m i n e d

by l a b o r a t o r y a n a l y s e s . The c a l c u l a t i o n s o f mass and h e a t b a l a n c e s can o n l y be

pe r f o rmed u s i n g t i m e - a v e r a g e d v a l u e s o f t h e pa rame te r s c o r r e s p o n d i n g t o t h e

p e r i o d s between l a b o r a t o r y a n a l y s e s . H o w e v e r , t h e r e c o r d e d v a l u e s o f p r e s s u r e s ,

t e m p e r a t u r e s and f l o w s can be d i s p l a y e d o r p r i n t e d , t h u s making i t p o s s i b l e t o

p e r f o r m d e t a i l e d a n a l y s e s o f pa ramete r changes d u r i n g f a c t o r y o p e r a t i o n .

Examples o f a p p l i c a t i o n o f t h i s t y p e o f m o n i t o r i n g p r o c e d u r e s have been

ment ioned i n t h e l i t e r a t u r e ( r e f . 4 9 ) .

A m o n i t o r i n g p r o c e d u r e o f f e r i n g a lmos t c o n t i n u o u s a v a i l a b i l i t y o f comp le te

da ta on t he e v a p o r a t i o n p r o c e s s i s t o measure c o n t i n u o u s l y , and t o r e c o r d o n

l i n e , a l l t h e pa rame te rs needed t o c a l c u l a t e t h e mass and h e a t b a l a n c e s . T h i s

does n o t n e c e s s a r i l y mean t h a t a l l t h e j u i c e c o n c e n t r a t i o n v a l u e s c h a r a c t e r i z i n g

the s t a t e o f t h e e v a p o r a t o r have t o be a u t o m a t i c a l l y measu red . I t i s p o s s i b l e t o

i d e n t i f y c e r t a i n d e t a i l s o f t he mass and h e a t b a l a n c e s o f t h e e v a p o r a t o r u s i n g

i n d i r e c t measurements , as d e m o n s t r a t e d by an example r e p o r t e d i n r e f . 50. The

amount o f hea t t r a n s f e r r e d i n t h e e v a p o r a t o r b o d i e s can be d e t e r m i n e d u s i n g t h e

measurements o f condensa te f l o w , and t h e c o n d e n s e r l o s s f rom t h e l a s t e f f e c t can

be c a l c u l a t e d by measur ing t h e v a p o u r f l o w t o t h e c o n d e n s e r . I t i s i n t e r e s t i n g

t o no te t h a t t he s p e c i a l hea t -economy m o n i t o r i n g sys tem d e s c r i b e d i n r e f . 50

employs a d a t a a c q u i s i t i o n u n i t h a n d l i n g 64 i n p u t s i g n a l s , and t h e da ta

Page 299: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

288

( i n c l u d i n g t he c a l c u l a t i o n s o f t h e mass and hea t b a l a n c e s ) a re p r o c e s s e d by two

h a n d - h e l d programmable c a l c u l a t o r s .

I t can be e x p e c t e d t h a t t h e deve lopmen t o f computer t e c h n o l o g y and t h e r i s i n g

impo r tance o f e n e r g y economy w i l l r e s u l t i n w i d e s p r e a d use o f c o m p u t e r - a i d e d

m o n i t o r i n g o f e n e r g y p r o c e s s e s . Numerous m o n i t o r i n g sys tems o f t h i s k i n d a r e

p r e s e n t l y be i ng implemented i n v a r i o u s c o u n t r i e s .

REFERENCES

Symbols o f N a t i o n a l S t a n d a r d s used b e l o w : ASTM - USA, BS - G r e a t B r i t a i n , NF -F r a n c e , DIN - FRG, COST - USSR, PN - P o l a n d .

1 K. S c h i e b l , W ä r m e w i r t s c h a f t i n d e r Z u c k e r i n d u s t r i e , Τ . S t e i n k o p f f V e r l a g , D r e s d e n / L e i p z i g , 1939.

2 Τ . B a l o h , Wärmeat las f ü r d i e Z u c k e r i n d u s t r i e , Schaper V e r l a g , H a n n o v e r , 1975.

3 S . Z a g r o d z k i and A . K u b a s i e w i c z , Heat economy i n b e e t s u g a r f a c t o r y e v a p o r a t i o n , Sugar T e c h . R e v . , 5 ( 1 / 2 ) (1977/78) 1-154.

4 S . Z a g r o d z k i , Gospodarka C i e p l n a C u k r o w n i , WNT, Warszawa, 1979. 5 P. H o n i g , P r i n c i p l e s o f Sugar T e c h n o l o g y , E l s e v i e r , Amsterdam, 1963. 6 F. S c h n e i d e r ( E d . ) , T e c h n o l o g i e des Z u c k e r s , Schaper V e r l a g , H a n n o v e r , 1968. 7 R .A . M c G i n n i s ( E d . ) , Bee t Sugar T e c h n o l o g y , Beet Sugar Dev . F o u n d . ,

F o r t C o l l i n s , 1971. 8 J . D o b r z y c k i ( E d . ) , P o r a d n i k I n z y n i e r a - C u k r o w n i c t w o , WNT, Warszawa, 1973. 9 D. Urban ( e t a l . ) , Z u c k e r h e r s t e l l u n g , F a c h b u c h v e r l a g , L e i p z i g , 1980.

10 F. B o s n j a k o v i c , T e c h n i s c h e Thermodynamik , T . S t e i n k o p f f V e r l a g , D r e s d e n , 1965.

11 T . D . Eas top and A . McConkey, A p p l i e d Thermodynamics f o r E n g i n e e r i n g T e c h n o l o g i s t s , 3 rd e d n . , Longmans, London and New Y o r k , 1978.

12 U . G r i g u l l ( E d . ) , P r o p e r t i e s o f Water and Steam i n S l - U n i t s , 2nd e d n . , S p r i n g e r - V e r l a g , B e r l i n - H e i d e l b e r g - N e w Y o r k , 1979.

13 M.P. V u k a l o v i c h , T e p l o f i z i c h e s k i e S v o i s t v a Vody i Vodyanogo P a r a , M a s h i n o s t r o e n i e , Moskva , 1967.

14 J . P . Holman, Heat T r a n s f e r , 5 th e d n . , M c G r a w - H i l l , H a m b u r g - L o n d o n - P a r i s , 1981.

15 J . C h u d z i n s k i ( e t a l . ) , P o r a d n i k T e r m o e n e r g e t y k a , 2nd e d n . , WNT, Warszawa, 1974.

16 J . D o b r z y c k i , A u t o m a t y z a c j a w P r z e m y s l e C u k r o w n i c z y m , WNT, Warszawa, 1974. 17 J . S tanek ( E d . ) , Handbuch d e r M e s s t e c h n i k i n d e r B e t r i e b s k o n t r o l l e ,

A k a d e m i e v e r l a g , L e i p z i g , 1979. 18 R .P . B e n e d i c t , Fundamenta ls o f T e m p e r a t u r e , P r e s s u r e , and F low Measurements ,

W i l e y , New Y o r k , 1969. 19 R. F r e i e r , K e s s e l s p e i s e w a s s e r , K ü h l w a s s e r - T e c h n o l o g i e , B e t r i e b s a n a l y s e ,

W a l t e r de G r u y t e r , B e r l i n , 1963. 20 F. C o g e t and M. W i n k e l , Le t r a i t e m e n t des eaux de c h a u f f e r i e s dans l e s

s u c r e r i e s , S u c r . B e i g e , 102 (1984) 5-11. 21 R e g u l a t i o n s o f t h e P o l i s h M i n i s t r y o f M i n i n g and E n e r g y ( i n P o l i s h ) ,

M o n i t o r P o l s k i , (51) ( 1 9 6 7 ) . 22 R . H . L . Howe, B o i l e r - w a t e r c o n t r o l f o r e f f i c i e n t steam p r o d u c t i o n , i n :

R. Greene ( E d . ) , P r o c e s s E n e r g y C o n s e r v a t i o n , M c G r a w - H i l l , New Y o r k , 1982, p p . 185-188.

23 Sampl ing o f i n d u s t r i a l w a t e r , ASTM D 510-68, BS 1328:1968; PN-74 /C-04620 . 24 Sampl ing o f w a t e r f rom b o i l e r s , ASTM 860-54, BS 1328:1968; PN-74 /C-04620 . 25 Equipment f o r samp l ing i n d u s t r i a l w a t e r and s team, ASTM 1192-70;

PN-74/C-04620. 26 Sampl ing o f s team, ASTM 1066-69; BS 3285; PN-74/C-04621. 27 Appearance o f w a t e r , ASTM D 1889-71; BS 2690: P a r t 9 ; NF Τ 90-002 /50 ;

PN-79 /C-04583.

Page 300: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

289

28 P a r t i c u l a t e and d i s s o l v e d m a t t e r i n w a t e r , ASTM D 1888-67; NF Τ 90-029 /70 ; COST 18164-72; PN-78/C-04541.

29 E l e c t r i c a l c o n d u c t i v i t y o f w a t e r , ASTM D 1125-61; BS 2690: P a r t 9 ; NF Τ 90-031 /73 ; PN-77 /C-04542.

30 Water h a r d n e s s , ASTM D 1126-67; BS 1427:1962; NF Τ 90-003 /58 ; PN-71 /C-04554. 31 F. S c h n e i d e r ( E d . ) , Sugar A n a l y s i s - ICUMSA M e t h o d s , ICUMSA, P e t e r b o r o u g h ,

1979. 32 Coal and o t h e r s o l i d f u e l s , NF Μ 10-002; GOST 19292-73; PN-82/G-97001. 33 Fue l o i l s , ASTM D 396-73; BS 2869; NF Μ 15-010 and 011/68; DIN 51603-66;

GOST 10585-63; PN-75/C-96024. 34 Sampl ing o f c o a l , ASTM D 2234-72; BS 1017:1977; NF Μ 01-001; DIN 51701;

GOST 16479-70; PN-80/G-04502. 35 Sampl ing o f l i q u i d f u e l s , ASTM D 270; BS 3195:1959; NF Μ 07-001 /60 ;

DIN 51570; GOST 2517-60; PN-66 /C-04000 . 36 A . A . A v d e e v a , B . S . B e l o s e l s k i i and M.N. K r a s n o v , K o n t r o l T o p l i v a ν E l e k t r o -

s t a n t s i y a k h , E n e r g i y a , Moskva , 1973. 37 H. K a r o l c z u k , R a c j o n a l n a Gospodarka Weglem E n e r g e t y c z n y m , WNT, Warszawa,

1978. 38 Heat o f combus t i on by bomb c a l o r i m e t e r . S o l i d f u e l s , BS 1016: P a r t 5;

DIN 51900; GOST 147-74; PN-81/G-04513. L i q u i d f u e l s , ASTM D 240-64; NF Μ 07-030/65; GOST 6712-53; PN-71 /C-04062 .

39 Requ i remen ts and a c c e p t a n c e t e s t s , steam b o i l e r s , I S O / T C - 6 4 P u b l i c a t i o n s No. 40-50 ( 1 9 5 7 - 5 9 ) ; DIN 1942; PN-72/M-3128.

40 P. O r l o w s k i , K o t l y Parowe w E n e r g e t y c e P r z e m y s l o w e j , WNT, Warszawa, 1976. 41 T . A . S t o a , C a l c u l a t i n g b o i l e r e f f i c i e n c y and e c o n o m i c s , i n : R. Greene ( E d . ) ,

P r o c e s s E n e r g y C o n s e r v a t i o n , M c G r a w - H i l l , New Y o r k , 1982, p p . 245-250. 42 Requ i rements and a c c e p t a n c e t e s t s , steam t u r b i n e s , l E C No. 45 /1970;

PN-71/M-35520. 43 A . K u b a s i e w i c z and W. L e k a w s k i , P r z e b i e g wymiany c i e p l a w e k s t r a k t o r z e

ko ry towym, G a z . C u k r o w . , 83 (3 ) ( 1 9 7 5 ) . 44 K . E . A u s t m e y e r , A n a l y s i s o f s u g a r b o i l i n g and i t s t e c h n i c a l c o n s e q u e n c e s .

I n t . Sugar J . , 88 ( 1 9 8 6 ) , P a r t I (1045) 3 - 7 , P a r t I I (1046) 23-29 , P a r t I I I (1047) 50-55.

45 S . J . V a l l e r y , A re y o u r steam t r a p s w a s t i n g e n e r g y ? , i n : R. Greene ( E d . ) , P r o c e s s E n e r g y C o n s e r v a t i o n , M c G r a w - H i l l , New Y o r k , 1982, p p . 170-184.

46 D. V o i t and A . H u t s i n p i 1 l e r , A p r a c t i c a l app roach t o t h e v e n t i n g o f n o n c o n d e n s a b l e s . Paper p r e s e n t e d a t 23rd ASSBT M e e t i n g , San D i e g o , F e b r u a r y 1985.

47 S . Z a g r o d z k i and J . D o b r z y c k i , Removal o f i n c o n d e n s a b l e gases f rom c a l a n d r i a s . I n t . Sugar J . , 71 (1969) 235-237.

48 B . L . K a r r e n and M.K. F a v i e l l , A computer app roach t o t e c h n i c a l r e c o r d s i n t he b e e t s u g a r f a c t o r y l a b o r a t o r y , S u c r . B e i g e , 99 (2 ) (1980) 63-80.

49 D. P i o t r o w s k i and K. U r b a n i e c , Anwenderprogramme f ü r den P r o z e s s r e c h n e r e i n s a t z i n Z u c k e r f a b r i k e n , Z u c k e r i n d . , 106(2) (1981) 135-138.

50 C h . M o l l e r and H. J a n s d o r f , Heat economy and s u p e r v i s o r y computer c o n t r o l . I n t . Sugar J . , 87(1034) (1985) 26-31.

Page 301: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

290

C h a p t e r 8

S T E P - B Y - S T E P IMPROVEMENTS OF E X I S T I N G ENERGY SYSTEMS

8.1 THE S T E P - B Y - S T E P APPROACH

8.1.1 I n t r o d u c t i o n

From t h e t e c h n i c a l s t a n d p o i n t , i t i s d i f f i c u l t t o make a c l e a r d i s t i n c t i o n

between s t e p - b y - s t e p improvements and an e x t e n s i v e m o d e r n i z a t i o n o f a s u g a r

f a c t o r y . Managers o f f a c t o r i e s o p e r a t e d under d i f f e r e n t c o n d i t i o n s wou ld

p r o b a b l y i n t e r p r e t t h e s e two terms d i f f e r e n t l y , depend ing on t he economic

r e s o u r c e s w h i c h a re a v a i l a b l e t o them. I t seems, h o w e v e r , t h a t t he most d i s t i n c t

d i f f e r e n c e s between s t e p - b y - s t e p improvements and a m o d e r n i z a t i o n can be f o u n d

i n the me thodo logy o f i m p l e m e n t a t i o n o f changes d e c i d e d upon .

W h i l e t h e m o d e r n i z a t i o n o f a f a c t o r y c o n s i s t s o f a package o f e x t e n s i v e

changes t o be i n t r o d u c e d a t o n c e , s t e p - b y - s t e p improvements may i n v o l v e numerous

s m a l l e r u n d e r t a k i n g s s p r e a d o v e r a l o n g e r t ime p e r i o d . On t h e b a s i s o f r e p e a t e d

r e v i e w s o f t he f a c t o r y ' s n e e d s , t h e o b j e c t i v e s a r e p e r i o d i c a l l y upda ted and

r a t i o n a l i z a t i o n measures a r e s e l e c t e d f rom a l i m i t e d f i e l d o f p o s s i b l e

s o l u t i o n s , t he l i m i t a t i o n s be ing d e f i n e d by t h e a v a i l a b l e economic r e s o u r c e s .

C o n s e q u e n t l y , improvements i n t h e ene rgy -economy a r e a can be d e c i d e d upon and

implemented o n l y i f t h e y r e a l l y a r e more u r g e n t than o t h e r a c t i o n s a l s o

c o n s i d e r e d d e s i r a b l e . H i g h p r i o r i t y i s u s u a l l y a s s i g n e d , h o w e v e r , t o measures

wh i ch improve s u g a r y i e l d o r p r o d u c t q u a l i t y , o p e r a t i o n a l s a f e t y and equ ipment

r e l i a b i l i t y , w h i l e a l s o b e n e f i t i n g e n e r g y economy.

W i t h i n t he g e n e r a l f rame t h u s o u t l i n e d , v a r i o u s c o u r s e s o f a c t i o n may be

adop ted i n a s p e c i f i c f a c t o r y i n a c c o r d a n c e w i t h t h e l o c a l c o n d i t i o n s . P o s s i b l e

r a t i o n a l i z a t i o n measures i n t he a r e a o f e n e r g y economy i n s u g a r manu fac tu re can

be s y s t e m a t i z e d by d i s t i n g u i s h i n g between t h r e e ways t o reduce t h e e n e r g y demand,

( i ) B r i n g i n g t h e e n e r g y - s y s t e m o p e r a t i o n i n t o p a r i t y w i t h i t s nominal

c a p a b i l i t i e s , by e l i m i n a t i n g u n n e c e s s a r y d e v i a t i o n s f rom t h e r e q u i r e d c o u r s e o f

e n e r g y p r o c e s s e s and i m p r o v i n g m a l f u n c t i o n i n g subsys tems and components o f t h e

e n e r g y s y s t e m . T y p i c a l measures a r e as f o l l o w s :

- e l i m i n a t i n g steam and v a p o u r l e a k s i n t he condensa te l i n e s ;

- e l i m i n a t i n g the causes o f abnormal pa ramete r f l u c t u a t i o n s ;

- i m p r o v i n g condensa te d r a i n a g e f rom s team- and v a p o u r - h e a t e d e q u i p m e n t ;

- i m p r o v i n g t he w i t h d r a w a l o f n o n c o n d e n s a b l e s f rom t h e h e a t i n g chambers o f

e v a p o r a t o r s and h e a t e r s ;

- p r e v e n t i n g t h e f o r m a t i o n o f s c a l e ;

- s e c u r i n g p r o p e r q u a l i t y o f t h e condensa te r e t u r n e d f rom t h e e v a p o r a t o r t o t h e

b o i l e r s ;

Page 302: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

291

- s e c u r i n g p r o p e r f u n c t i o n i n g o f t h e measu r ing i n s t r u m e n t s w h i c h a r e e s s e n t i a l

i n m o n i t o r i n g e n e r g y c o n v e r s i o n , d i s t r i b u t i o n and u t i l i z a t i o n p r o c e s s e s .

( i i ) Reduc ing t h e t o t a l e n e r g y demand o f t h e s u g a r m a n u f a c t u r i n g p r o c e s s . Among

o t h e r s , t h e f o l l o w i n g measures can be u n d e r t a k e n :

- r e d u c i n g t h e hea t d i s s i p a t i o n f rom t h e p r o c e s s equ ipment and p i p i n g t o t h e

e n v i r o n m e n t ;

- r e d u c i n g t h e e n e r g y consumpt ion f o r a u x i l i a r y p u r p o s e s i n t h e p r o c e s s p l a n t ;

- r e d u c i n g t h e w a t e r i n t a k e t o t h e p r o c e s s ;

- r e d u c i n g t h e t o t a l w a t e r i n t a k e t o t h e s u g a r h o u s e ;

- r e p l a c i n g o u t d a t e d p r o c e s s - e q u i p m e n t u n i t s by new ones f a c i l i t a t i n g a b e t t e r

e n e r g y economy;

- i m p r o v i n g t h e a u t o m a t i c c o n t r o l s f o r b e t t e r e n e r g y u t i l i z a t i o n i n t h e p r o c e s s .

( i i i ) I m p r o v i n g t h e c a p a b i l i t i e s o f t he e n e r g y s y s t e m , i n c l u d i n g t h e

e f f e c t i v e n e s s r a t i o o f t h e therma l s y s t e m . T y p i c a l measures a r e as f o l l o w s :

- r e d u c i n g t h e e n e r g y l o s s e s and t h e e n e r g y consumpt ion f o r a u x i l i a r y p u r p o s e s

i n t he power h o u s e ;

- i m p r o v i n g t h e power f a c t o r o f t h e e l e c t r i c a l s u b s y s t e m ;

- r e d u c i n g t h e hea t d i s s i p a t i o n f rom t h e components o f t h e e n e r g y sys tem t o t h e

e n v i r o n m e n t ;

- i m p r o v i n g t h e u t i l i z a t i o n o f c o n d e n s a t e s ;

- i m p r o v i n g t h e u t i l i z a t i o n o f l o w - p r e s s u r e v a p o u r s ;

- o p t i m i z i n g t h e u t i l i z a t i o n o f v a p o u r s f rom t h e e v a p o r a t o r ;

- r e p l a c i n g o u t d a t e d e n e r g y - s y s t e m equ ipment by more modern and e f f i c i e n t

m a c h i n e r y ;

- i m p r o v i n g a u t o m a t i c c o n t r o l s t o a c h i e v e b e t t e r e f f i c i e n c y o f e n e r g y c o n v e r s i o n

and d i s t r i b u t i o n p r o c e s s e s .

8 .1 .2 Rev iew o f examples

T h e r e i s a v a s t l i t e r a t u r e d e v o t e d t o s t e p - b y - s t e p improvements i n t h e e n e r g y

economy o f s u g a r f a c t o r i e s , a l t h o u g h i t i s f e l t t h a t p rob lems o f r a t i o n a l i z a t i o n

o f power b a l a n c e s a r e n o t a d e q u a t e l y c o v e r e d . Some p u b l i c a t i o n s s i m p l y p r e s e n t

p a r t i c u l a r measures unde r t aken i n s p e c i f i c f a c t o r i e s ( r e f s . 1 , 2 ) . V e r y v a l u a b l e

i n f o r m a t i o n can be f ound i n t h e a r t i c l e s a t t e m p t i n g t o draw g e n e r a l i z e d

c o n c l u s i o n s f rom t h e e x p e r i e n c e s o f c o n s u l t a n t s , e n g i n e e r i n g companies o r s u g a r

i n d u s t r y managers i n v o l v e d i n e n e r g y - r a t i o n a l i z a t i o n programmes implemented i n

a number o f s u g a r f a c t o r i e s ( r e f s . 3 - 1 2 ) .

The most i n t e r e s t i n g g roup o f p u b l i c a t i o n s i s t h a t d e v o t e d t o t h e e x p e r i e n c e s

accumu la ted i n s p e c i f i c f a c t o r i e s d u r i n g l o n g e r p e r i o d s o f s t e p - b y - s t e p

improvements ( r e f s . 1 3 - 1 6 ) . As p r e s e n t a t i o n s o f t h i s k i n d a r e r a t h e r s c a r c e , l e t

us a d d i t i o n a l l y c o n s i d e r two examples o f s t e p - b y - s t e p improvement programmes

Page 303: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

292

wh i ch have been e f f e c t e d d u r i n g a p e r i o d o f 15 y e a r s i n Swed ish s u g a r f a c t o r i e s .

The da ta p r e s e n t e d be low have been e x t r a c t e d by t h e p r e s e n t a u t h o r f rom t h e

p u b l i s h e d o p e r a t i o n s r e p o r t s .

The p r o c e s s i n g c a p a b i l i t i e s o f t he f a c t o r i e s c o n s i d e r e d a r e 2100 and 5800

t o n s p e r d a y . As bo th f a c t o r i e s be long t o t he same company, i t can be assumed

t h a t t h e y have been s u b j e c t t o t he p r e s s u r e o f i d e n t i c a l economic s t i m u l a t o r s

and t h a t t h e same l e v e l o f t e c h n o l o g i c a l e x p e r t i s e has been a v a i l a b l e t o them.

T h e i r s t a r t i n g p o s i t i o n s i n 1970 can be summarized as f o l l o w s :

- bo th f a c t o r i e s were equ ipped w i t h t o w e r - t y p e e x t r a c t o r s , c l a s s i c a l j u i c e

p u r i f i c a t i o n s t a t i o n s , q u i n t u p l e - e f f e c t e v a p o r a t o r s and t h r e e - b o i l i n g

c r y s t a l l i z a t i o n schemes w i t h t h e a f f i n a t i o n o f C s u g a r ;

- bo th f a c t o r i e s were e q u i p p e d w i t h o i l - f i r e d b o i l e r s o p e r a t e d a t l i v e - s t e a m

pa rame te rs 40 ba r and 430°C;

- i n bo th c a s e s , abou t 10% o f t he power demand was c o v e r e d by power p u r c h a s e s

f rom the e x t e r n a l g r i d ;

- as t h e f l u e gases f rom b o i l e r s i n t h e l a r g e r o f t he two f a c t o r i e s were

u t i l i z e d i n t he p u l p - d r y e r f u r n a c e , no e c o n o m i z e r s were i n s t a l l e d t h e r e , t h i s

r e s u l t i n g i n a b o i l e r e f f i c i e n c y 8% l o w e r t h a n t h a t i n t h e s m a l l e r f a c t o r y ;

- f o l l o w i n g i n v e s t m e n t s made d u r i n g 1950s and 1960s, t h e l a r g e r f a c t o r y was

g e n e r a l l y e q u i p p e d w i t h more modern m a c h i n e r y and a u t o m a t i c c o n t r o l c i r c u i t s .

T a b l e s 8.1 and 8.2 l i s t t he r a t i o n a l i z a t i o n measures t h a t were implemented i n

t he e n e r g y economy and o t h e r r e l a t e d a r e a s i n bo th f a c t o r i e s d u r i n g t h e p e r i o d

1970-1985. The r e s u l t s were c a r e f u l l y c o n t r o l l e d a s , s t a r t i n g f rom the f i r s t o i l

c r i s i s i n 1974, t he f a c t o r i e s adop ted e n e r g y - m o n i t o r i n g p r o c e d u r e s based on

f r e q u e n t 24 -hou r e n e r g y - c o n s u m p t i o n t e s t s . I n a d d i t i o n , d e t a i l e d i n v e s t i g a t i o n s

o f t he e n e r g y economy emp loy ing one-week t e s t p e r i o d s were pe r f o rmed e v e r y

second o r t h i r d y e a r .

I n bo th f a c t o r i e s , t he m o d i f i c a t i o n s o f j u i c e h e a t i n g and t h e improvements

i n t r o d u c e d i n t he s u g a r houses seem t o have p l a y e d a d e c i s i v e r o l e i n r e d u c i n g

t he e n e r g y c o n s u m p t i o n . The t o t a l w a t e r i n t a k e and t he m a s s e c u i t e c i r c u l a t i o n

were r e d u c e d i n t he s u g a r h o u s e s , and t he pa ramete r f l u c t u a t i o n s o r i g i n a t i n g

f rom b a t c h w i s e o p e r a t i o n o f t he s u g a r house equ ipment were s u b s t a n t i a l l y

1 i m i t e d .

I n t he l a r g e r f a c t o r y , most o f t he i n v e s t m e n t s p r o p o s e d t o implement t h e

ene rgy -economy improvements were pe r f o rmed d u r i n g t h e a c t u a l p e r i o d . On t h e

c o n t r a r y , t he managers o f t he s m a l l e r f a c t o r y were n e i t h e r a b l e t o m o d e r n i z e t h e

t owe r e x t r a c t o r f o r l o w e r j u i c e d r a f t , n o r a b l e t o m o d i f y t h e j u i c e p u r i f i c a t i o n

s t a t i o n f o r l o w e r CaO r a t e ( t h r o u g h o u t t he p e r i o d o f i n t e r e s t i n c l u d i n g t h e 1985

s e a s o n , t h e CaO r a t e was 20-25% h i g h e r than i n t he l a r g e r f a c t o r y ) .

N e v e r t h e l e s s , t h e r e s u l t s o f t h e 1 5 - y e a r deve lopmen ts a r e q u i t e i m p r e s s i v e i n

Page 304: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

293

TAB

LE

8.Ί

En

erg

y-s

avin

g

an

d

oth

er

rela

ted

m

ea

sure

s in

tro

du

ce

d

19

70

-19

85

, a

nd sta

tisti

ca

l d

ata

o

n

no

rma

l-fu

el

(he

ati

ng

va

lue

2

93

00

kJ/k

g)

co

nsu

mp

tio

n

in

sug

ar

ma

nu

factu

re

in

a

58

00

t/d

facto

ry.

\/,^

^w,

c^r

^^

'-c

A^

^^

-A^

^

No

rma

l fu

el

cons

umed

Y

ea

r S

pe

cif

ica

tio

n

^^^^^^^

19

66

-19

69

3.7

0-4

.17

1970

A

uto

ma

tic

bo

ilin

g

co

ntr

ols

in

sta

lle

d

on

va

cuu

m

pa

ns

C.

3.9

3

1971

T

wo

n

ew

li

me

d-j

uic

e

he

ate

rs

wit

h

incre

ase

d

he

ati

ng

su

rfa

ce

a

rea

s in

sta

lle

d.

He

ati

ng

3

.79

su

rfa

ce

a

rea

in

fo

urt

h

eva

po

rato

r e

ffe

ct

inc

rea

se

d.

Te

mp

era

ture

co

ntr

oll

ers

in

sta

lle

d

on

h

ea

ters

b

efo

re fi

rst

an

d

seco

nd

ca

rbo

na

tati

on

. 19

72

Le

ve

l c

on

tro

lle

rs

ins

tall

ed

o

n

wa

ter

se

als

(a

cti

ng

a

s st

ea

m

tra

ps

) in

co

nd

en

sate

3

.58

d

rain

ag

e

lin

es

fr

om

2

nd

, 3

rd

an

d

4th

e

va

po

rato

r e

ffe

cts

. 19

74

Th

erm

al

insu

lati

on

o

f fu

el

tan

ks

imp

rove

d.

Ne

w

bo

ile

r fo

r o

ff-s

ea

so

n

he

ati

ng

a

nd

ro

om

3.5

6

tem

pe

ratu

re

co

ntr

oll

ers

in

sta

lle

d.

On

e

ne

w

vacu

um

pan

A

e

qu

ipp

ed w

ith

a sti

rre

r a

nd

an

a

ir-t

igh

t,

low

-pre

ss

ure

ste

am

ing

syste

m i

nsta

lle

d.

1975

T

hre

e

co

nti

nu

ou

s a

ffin

ati

on

c

en

trif

ug

als

in

sta

lle

d.

On

e

co

nti

nu

ou

s ce

ntr

ifu

ga

l 3

.23

in

sta

lle

d

in

Β

str

ike

fo

r a

cce

pta

nce te

sts

. 19

76

Fo

ur

co

nti

nu

ou

s c

en

trif

ug

als

in

sta

lle

d

in

Β

str

ike

. O

ne

co

nti

nu

ou

s ce

ntr

ifu

ga

l 3

.42

in

sta

lle

d

in

C

str

ike

fo

r a

cce

pta

nce te

sts

. 19

77

Ne

w

ste

am

ing

-ou

t sy

ste

m

usin

g

se

co

nd

-eff

ect

va

po

ur

ins

tall

ed

in

a

ll va

cuum

p

an

s A

. 3

.21

19

78

Op

tim

iza

tio

n

of

C-m

asse

cu

ite

sta

tio

n

co

mp

lete

d.

3.3

6

1979

E

con

om

ize

r in

sta

lle

d

in

on

e

bo

ile

r.

Ve

nti

ng

o

f n

on

con

de

nsa

ble

s im

pro

ve

d.

Wa

ter

inta

ke

3

.38

to

ca

rbo

na

tati

on

slu

dg

e

sw

ee

ten

ing

-off

re

du

ce

d.

1980

F

low

m

ete

r in

sta

lle

d

on

w

ate

r su

pp

ly

to

the

su

ga

r h

ou

se.

3.2

8

1982

S

tirr

er

ins

tall

ed

in

o

ne

va

cuu

m

pa

n

A.

3.2

0

1983

T

ow

er

extr

acto

r m

od

ern

ize

d

for

low

er

juic

e

dra

ft.

Au

tom

ati

c b

oil

ing

c

on

tro

ls

on

va

cuu

m

3.1

8

pa

ns

A

mo

de

rniz

ed

. C

on

de

nsa

te-h

ea

ted

pla

te

he

at

exc

ha

ng

er

ins

tall

ed

a

s th

ick

-ju

ice

he

ate

r in

ste

ad

o

f a

tub

ula

r h

ea

t e

xch

an

ge

r h

ea

ted

by

thir

d-e

ffe

ct

va

po

ur.

19

84

Syr

up

w

ash

teste

d

in

on

e

ce

ntr

ifu

ga

l in

A str

ike

. 3

.15

19

85

Imp

rove

d

oil

bu

rne

rs

ins

tall

ed

in

o

ne

bo

ile

r.

Mic

roc

om

pu

ter-

ba

se

d

bo

ile

r co

ntr

ol

3.1

3

syst

em

im

ple

me

nte

d.

Page 305: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

294

TAB

LE

8.2

En

erg

y-s

avin

g

an

d

oth

er

rela

ted

m

ea

sure

s in

tro

du

ce

d

19

70

-19

85

, a

nd sta

tisti

ca

l d

ata

on

no

rma

l-fu

el

(he

ati

ng

v

alu

e

29

30

0 kJ/k

g)

co

nsu

mp

tio

n

in

sug

ar

ma

nu

factu

re

in

a

21

00

t/d

fac

tory

.

^ e

.jr-

4.·

N

orm

al

fue

l co

nsum

ed

Ye

ar

Sp

ec

ific

ati

on

^

^^

/^^

^

19

67

-19

70

3.8

8-4

.02

1971

N

ew

m

ea

su

rin

g

instr

um

en

ts

insta

lle

d

on

the

eva

po

rato

r sta

tio

n.

Eq

uip

me

nt

op

era

tors

4

.09

instr

ucte

d

on

the

pri

nc

iple

s

of

smo

oth

o

pe

rati

on

o

f A

-ma

sse

cu

ite sta

tio

n.

1972

E

ne

rgy

econ

omy

an

aly

se

d

an

d

eq

uip

me

nt

mo

de

rniz

ati

on

p

rog

ram

me

pro

po

se

d.

3.9

8

1973

T

he

rma

l in

su

lati

on

re

pla

ce

d

on

thre

e

eva

po

rato

r b

od

ies

an

d

on

e

co

nd

en

sa

te

tan

k.

4.1

7

1974

S

tirr

er

insta

lle

d

in

on

e

vacu

um

pan

A.

New

b

oile

r fo

r o

ff-s

ea

so

n

he

ati

ng

insta

lle

d.

3.9

6

1975

N

ew

m

ea

su

rin

g

instr

um

en

ts

insta

lle

d

on

the

extr

acto

r a

s w

ell

as

on

va

cuum

p

an

s Β

a

nd

C.

3.4

9

1977

P

erf

orm

an

ce

of

C-m

asse

cu

ite

sta

tio

n

an

aly

se

d

an

d

mo

de

rniz

ati

on

p

rop

ose

d.

3.6

6

1978

C

on

tin

uo

us

ce

ntr

ifu

ga

ls

insta

lle

d

for

incre

ase

d

thro

ug

hp

ut

of

C-m

asse

cu

ite

sta

tio

n.

3.7

7

1979

A

uto

ma

tic

tem

pe

ratu

re

co

ntr

ol

cir

cu

it

insta

lle

d

on

exh

au

st

ste

am

su

pp

ly

to

the

3.6

5

eva

po

rato

r sta

tio

n.

Le

ve

l co

ntr

olle

rs

insta

lle

d

on

wa

ter

se

als

(a

cti

ng

a

s st

ea

m t

rap

s)

in

co

nd

en

sa

te

dra

ina

ge

lin

es

b

etw

ee

n

eva

po

rato

r e

ffe

cts

3

an

d

4

as

we

ll

as

4

an

d

5.

1980

S

yru

p

was

h im

ple

me

nte

d

in

ce

ntr

ifu

ga

ls

A

an

d

B.

En

erg

y ec

onom

y a

na

lyse

d.

3.7

3

1981

C

he

mic

al

sc

ale

p

reve

nti

on

im

ple

me

nte

d.

3.4

5

1982

S

tea

m-t

urb

ine

dri

ve

n

kiln

-ga

s

pum

ps

rep

lace

d

by

ne

w e

lec

tric

all

y-d

riv

en

o

ne

s.

Ne

w

3.4

0

he

ate

r fo

r th

in ju

ice

insta

lle

d.

Va

po

ur

dis

trib

uti

on

sc

hem

e a

dju

ste

d

for

be

tte

r u

tiliza

tio

n

of

low

-te

mp

era

ture

va

po

urs

. E

ne

rgy

econ

omy

an

aly

se

d.

1983

A

uto

ma

tic

leve

l-co

ntr

ol

cir

cu

its

in

th

e

eva

po

rato

r sta

tio

n

mo

de

rniz

ed

. S

pir

al

he

at

3.4

6

exc

ha

ng

ers

h

ea

ted

by

co

nd

en

sa

te

an

d

fou

rth

-eff

ect

vap

ou

r im

ple

me

nte

d

as

raw

-ju

ice

he

ate

rs.

Inte

gra

ted

a

uto

ma

tic

co

ntr

ol

of

the

be

et

ho

use

im

ple

me

nte

d.

1984

S

tirr

ers

in

sta

lle

d

in

all

vacu

um

pa

ns

A.

Co

nti

nu

ou

s ce

ntr

ifu

ga

ls

insta

lle

d

in

Β str

ike

. 3

.14

Pro

gra

mm

ab

le

co

ntr

ol

of

A

ce

ntr

ifu

ga

ls

imp

lem

en

ted

. C

he

mic

al

sc

ale

p

reve

nti

on

im

pro

ve

d.

1985

3

.23

Page 306: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

295

bo th c a s e s . The f u e l consumpt ion e x p r e s s e d i n kg normal f u e l p e r 100 kg b e e t has

been reduced by abou t 20% i n t he l a r g e r f a c t o r y and by abou t 30% i n t he s m a l l e r .

I n o r d e r t o i n i t i a t e ene rgy -economy improvements u s i n g t h e s t e p - b y - s t e p

a p p r o a c h , s u f f i c i e n t i n f o r m a t i o n must be a v a i l a b l e on t h e e x i s t i n g s t a t e o f

t h i n g s and p o s s i b l e c o u r s e s o f a c t i o n . I n t h e f o l l o w i n g , two examples a re

p r e s e n t e d o f t h e r e s u l t s o f s t u d i e s i n t e n d e d t o c r e a t e c o n v e n i e n t s t a r t i n g

p o i n t s f o r s t e p - b y - s t e p improvements .

The f i r s t example ( S e c t i o n 8 .2 ) i s r e p r e s e n t a t i v e o f r a t h e r s m a l l , n o t - s o -

modern f a c t o r i e s c h a r a c t e r i z e d by r a t h e r p o o r e n e r g y u t i l i z a t i o n and v e r y

l i m i t e d i n i t i a l knowledge o f measures t h a t can be taken t o improve i t . The

i n i t i a l f u e l consumpt ion i n s u g a r manu fac tu re i s abou t 6.7 kg normal f u e l p e r

100 kg b e e t . P o s s i b l e improvements a r e s t u d i e d on t he b a s i s o f mass and hea t

b a l a n c e s w h i c h a r e c a l c u l a t e d u s i n g i n p u t d a t a e x t r a c t e d f rom r o u t i n e f a c t o r y

r e c o r d s . The h e a t s a v i n g w h i c h can be o b t a i n e d by t a k i n g t h e most u r g e n t

r a t i o n a l i z a t i o n measures (a imed m a i n l y a t r e d u c i n g t h e e n e r g y w a s t e ) i s

e s t i m a t e d a t abou t 20% o f t he i n i t i a l hea t c o n s u m p t i o n . I n o r d e r t o p r e p a r e

d e c i s i o n s on f u r t h e r improvemen ts , a d e t a i l e d d e s i g n s t u d y i s recommended.

The second example ( S e c t i o n 8 .3 ) i s c o n c e r n e d w i t h a m e d i u m - c a p a c i t y s u g a r

f a c t o r y c h a r a c t e r i z e d by a q u i t e e f f e c t i v e e n e r g y economy. The i n i t i a l f u e l

consumpt ion i n s u g a r manu fac tu re i s 3.5 kg normal f u e l pe r 100 kg b e e t . An

a n a l y s i s o f ways t o improve t he hea t economy i s pe r f o rmed u s i n g t h e r e s u l t s o f

measurements o f t he pa rame te rs o f e n e r g y c o n v e r s i o n and u t i l i z a t i o n p r o c e s s e s .

I n t h i s manner , a r e l i a b l e b a s i s i s c r e a t e d f o r e v a l u a t i o n o f t he consequences

o f smal l improvements o f t h e v a p o u r d i s t r i b u t i o n . The e s t i m a t e d hea t s a v i n g i s

o f t he o r d e r o f 2% o f t he i n i t i a l hea t c o n s u m p t i o n .

The e x p e r i e n c e p r o v e s t h a t even h i g h l y e f f i c i e n t modern e n e r g y sys tems can be

improved u s i n g t he s t e p - b y - s t e p a p p r o a c h . To i l l u s t r a t e t h i s p o i n t . S e c t i o n 8.4

p r e s e n t s a summary o f e n e r g y - s a v i n g measures t aken d u r i n g a 1 0 - y e a r p e r i o d i n

a l a r g e r a w - s u g a r f a c t o r y . A t p r e s e n t , t h e f a c t o r y i s consuming l e s s t han 2 kg

normal f u e l p e r 100 kg b e e t . T h i s example i n d i c a t e s a l s o t h e impo r tance o f

c o o r d i n a t i n g t he hea t and power b a l a n c e s a t a v e r y low hea t demand. I n a d d i t i o n ,

t he d i f f i c u l t y i s demons t ra ted o f d i s t i n g u i s h i n g between s t e p - b y - s t e p

improvements and a m o d e r n i z a t i o n . A l t h o u g h t h e g e n e r a l app roach t o t h e

improvements can be c o n s i d e r e d as e v o l u t i o n a r y , some o f t h e s t e p s t aken i n v o l v e

e x t e n s i v e t e c h n o l o g i c a l changes and r a t h e r c o s t l y i n v e s t m e n t s .

8.2 FACTORY CHARACTERIZED BY POOR I N I T I A L ENERGY U T I L I Z A T I O N

8.2.1 I n t r o d u c t o r y remarks

The example p r e s e n t e d i n t h i s S e c t i o n i s based on a r e a l case i n v e s t i g a t e d by

t he p r e s e n t a u t h o r a few y e a r s a g o . The c o n s u l t a n t was i n v i t e d t o t h e f a c t o r y i n

Page 307: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

296

q u e s t i o n by a manager whose i n t e r e s t i n e n e r g y economy was o b v i o u s l y s t i m u l a t e d

by t h e r a p i d l y r i s i n g o i l p r i c e s a t t h a t t i m e . A n o t h e r c o n t r i b u t i n g f a c t o r was

t h e p l a g u e o f f r e q u e n t b o i l e r f a i l u r e s t h a t s e r i o u s l y a f f e c t e d t h e o p e r a t i o n a l

r e s u l t s . T h e r e was an e x p e c t a t i o n t h a t some q u i c k a c t i o n s c o u l d be u n d e r t a k e n

d u r i n g t h e s u b s e q u e n t o f f - s e a s o n p e r i o d , w i t h t he aim o f a c h i e v i n g s u b s t a n t i a l

e n e r g y s a v i n g s a l r e a d y i n t he n e x t s e a s o n . The manager was r e a d y t o c o n t i n u e

t he r a t i o n a l i z a t i o n o f t he e n e r g y economy i n coming y e a r s , b u t he made i t c l e a r

t h a t i n t h e f o r e s e e a b l e f u t u r e , no i n v e s t m e n t f u n d s w o u l d be a v a i l a b l e f o r an

e x t e n s i v e m o d e r n i z a t i o n o f t h e f a c t o r y .

The i n v i t a t i o n came as t he season app roached i t s e n d . No a c t u a l d a t a were

a v a i l a b l e on t h e d e t a i l s o f t he f a c t o r y ' s e n e r g y b a l a n c e . As t h e r e was no t ime

l e f t f o r p r e p a r i n g a d d i t i o n a l measurements , i t became c l e a r t h a t e v a l u a t i o n o f

t he mass and e n e r g y b a l a n c e s s h o u l d be pe r f o rmed on t h e b a s i s o f t h e d a t a

e x t r a c t e d f rom t h e f a c t o r y r e c o r d s o r measured by t h e e x i s t i n g i n s t r u m e n t a t i o n .

8 .2 .2 B a s i c f a c t o r y d a t a and scheme o f t h e s u g a r m a n u f a c t u r i n g p r o c e s s

P r o c e s s i n g c a p a b i l i t y : 2100 t / d .

P o l a r i z a t i o n o f c o s s e t t e s : 16.18%.

E x t r a c t o r : t r o u g h - t y p e .

J u i c e d r a f t : 120%.

R a w - j u i c e c o n c e n t r a t i o n and p u r i t y : 15.80% DS and 86.82%.

Pu lp p r e s s e d t o : 17.3% DS.

P o l a r i z a t i o n o f p r e s s e d p u l p : 1%.

K i l n g a s : 30-32% CO^ v o l .

J u i c e p u r i f i c a t i o n a c c o r d i n g t o t he c l a s s i c a l scheme, c o m p r i s i n g :

- h o t p r e - l i m i n g a t 45°C, CaO r a t e 0.30 kg/100 kg b;

- main l i m i n g a t 85°C, CaO r a t e 2.01 kg/100 kg b ;

- c a r b o n a t a t i o n I a t 80-85°C;

- d o u b l e - s t a g e f i l t r a t i o n I ;

- c a r b o n a t a t i o n I I a t 93-97°C;

- s i n g l e - s t a g e f i l t r a t i o n I I .

P u r i f i c a t i o n e f f e c t : 36%.

T h i n - j u i c e c o n c e n t r a t i o n and p u r i t y : 15.63% DS and 91.19%.

E v a p o r a t o r s t a t i o n : q u a d r u p l e - e f f e c t , R o b e r t - t y p e b o d i e s .

T h i c k - j u i c e c o n c e n t r a t i o n : 61.4% DS.

Sugar h o u s e :

- r a w - s u g a r a d d i t i o n 3.21 kg/100 kg b;

- t h r e e - b o i l i n g scheme w i t h t h e a f f i n a t i o n o f C s u g a r and raw s u g a r ;

- Β s u g a r me l t ed i n w a t e r ;

- m i x t u r e o f a f f i n e d C s u g a r and raw s u g a r m e l t e d i n t h i n j u i c e .

Page 308: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

297

Sugar o u t p u t ( i n c l u d i n g s u g a r i n t r o d u c e d as raw s u g a r ) : 15.73 kg/100 kg b.

Power h o u s e :

- o i l - f i r e d b o i l e r s , s i x u n i t s r a t e d 12.5 t / h and one 6.5 t / h , a v e r a g e

e f f i c i e n c y abou t 80%;

- l i v e steam pa ramete rs 25 ba r and 425°C;

- two b a c k - p r e s s u r e t u r b i n e s r a t e d 3 MW e a c h ;

- b a c k - p r e s s u r e 3.3 b a r .

Steam s u p p l y t o t he s u g a r m a n u f a c t u r i n g p r o c e s s :

- l i v e steam t h r o t t l e d t o 4 .9 ba r t o t h e c e n t r i f u g a l s ;

- h e a t i n g steam 3.3 bar ( e x h a u s t steam and t h r o t t l e d l i v e steam) t o t he

rema in ing r e c e i v e r s .

H e a t i n g steam c o n s u m p t i o n : 56-57 kg/100 kg b.

Normal f u e l c o n s u m p t i o n : abou t 6.5 kg/100 kg b.

The schemes o f t h e bee t house and s u g a r house a r e shown i n F i g s . 8.1 and 8 . 2 ,

r e s p e c t i v e l y .

8 .2 .3 Scheme o f t he therma l sys tem

The scheme i s shown i n F i g . 8 . 3 . T h e r e a r e s e v e r a l q u e s t i o n a b l e d e t a i l s t o

a c c o u n t f o r i n t h e e v a l u a t i o n o f t he hea t economy:

- t h e h e a t i n g sys tems o f t h e f a c t o r y b u i l d i n g s and s u g a r s i l o s a r e s u p p l i e d w i t h

e x h a u s t s team;

- m e l t e r , r e m e l t h e a t e r , t h i n - j u i c e h e a t e r and s y r u p t a n k s a r e h e a t e d by e x h a u s t

s team;

- s t e a m i n g - o u t o f vacuum pans i s p e r f o r m e d u s i n g e x h a u s t s team;

- most condensa te f rom s team- and v a p o u r - h e a t e d e q u i p m e n t , and t h e c o n d e n s a t e

f rom t h e h e a t i n g s y s t e m s , i s w a s t e d ;

- t he f o u r t h e v a p o r a t o r e f f e c t i s o p e r a t e d as a c o n c e n t r a t o r , i m p l y i n g t h a t t h e

e v a p o r a t o r i s e s s e n t i a l l y o p e r a t e d as a t r i p l e - e f f e c t ;

- t he v a p o u r d i s t r i b u t i o n scheme i s r a t h e r p r i m i t i v e and t h e t e m p e r a t u r e s o f t h e

v a p o u r s s u p p l i e d t o t h e i n d i v i d u a l h e a t e r s do n o t s a t i s f y t he r e q u i r e m e n t o f

minimum t e m p e r a t u r e d i f f e r e n c e s ;

- t h e scheme o f t he c o n d e n s a t e subsys tem i n t he e v a p o r a t o r a r e a i s a l s o

p r i m i t i v e , r e s u l t i n g i n poo r u t i l i z a t i o n o f t h e c o n d e n s a t e e n e r g y ;

- t he h e a t i n g s u r f a c e a r e a s o f t he e v a p o r a t o r b o d i e s and most j u i c e h e a t e r s a r e

v e r y l a r g e .

8 .2 .4 A d d i t i o n a l i n f o r m a t i o n a c q u i r e d i n t h e f a c t o r y

I n t h e p r o c e s s h e a t i n g a r e a , a number o f m a l f u n c t i o n i n g subsys tems and

components were i d e n t i f i e d :

- a l l t h e steam t r a p s were o f t he f l o a t t y p e and some o f them were l e a k i n g

v a p o u r t o t he condensa te l i n e s ;

Page 309: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

298

feed water

S c

.5

01 Ε

o ι

1

cossettes

• press water

EXTRACTOR

raw juice wet pulp —J

HEATERS

PRESSES

pressed pulp

to drying

PRE-LIMING

MAIN LIMING

HEATERS

•D Ό (Λ ι -

Ζ) (/)

CARBONATATION I

THICKENERS I

juice

HEATER

1 Γ CARBONATATION I I

THICKENERS I I

τ

HEATER

i i r~ juice -J_J: sweet water

VACUUM FILTERS

Τ

to lime slaking

sludge water

to evaporation^

FILTERS

HEATERS

thin j thin j uice

f

SULPHITATION |

to sugar house^

ju ice sludge^

F i g . 8 . 1 . Scheme o f e x t r a c t i o n and j u i c e p u r i f i c a t i o n .

Page 310: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

299

thic

k ju

ice

thin

juic

e w

ater

ro

w su

gar

VACU

UM P

ANS

A [

VACU

UM P

ANS

Β |

VACU

UM P

ANS

C |

I M

IXER

S A

^ I

MIX

ERS

Β | ^

MIX

ERS

C [

ω

I (-

r- I

Ol

I

' I

CENT

RIFU

GALS

A I

?

á I

CENT

RIFU

GALS

ΒI

f CE

NTRI

FUGA

LS C

suga

r A

suga

r Β

suga

r C

I ME

LTER

Β

I M

IXER

|

MIX

ER

affin

atio

n m

asse

cuite

^ I

»ELT

ER C

I

I I 'Ώ

J°M

J

^ I

777^

I

riR

I AF

FINA

TION

I

ΏST

I

I ^"

-TŁR

I

οω

I

CENT

RIFU

GALS

|

o

whi

te s

ugar

|

| f

| |

f m

olas

s

Fig.

8.

2.

Sche

me

of t

he

suga

r ho

use.

Page 311: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

300

to boi ler — — house — 1 L to 6^

F i g . 8 . 3 . Scheme o f t h e the rma l sys tem i n the p r o c e s s h e a t i n g a r e a . Condensa te d r a i n a g e l i n e s n o t shown i n t he p i c t u r e a r e c o n n e c t e d t o t h e sewer s y s t e m . The meaning o f numbers d e n o t i n g equ ipment u n i t s i s i d e n t i c a l t o t h a t i n F i g . 1.5.

- s t a r t - u p v e n t s i n s e v e r a l steam t r a p s were kep t p e r m a n e n t l y o p e n , l e a k i n g

v a p o u r t o t he e n v i r o n m e n t ;

- v e n t i n g o f noncondensab les was c l e a r l y i n a c h a o t i c c o n d i t i o n , h e a t e r v e n t s

be ing kep t c l o s e d and vacuum-pan v e n t s l e a k i n g t o o much v a p o u r t o t h e

e n v i r o n m e n t ;

- a number o f measur ing i n s t r u m e n t s were m i s s i n g o r o u t o f o r d e r .

I n t he power house a r e a , t he equ ipment seemed t o be r a t h e r w e l l m a i n t a i n e d .

Among t h e measur ing i n s t r u m e n t s , f l u e gas a n a l y s e r s were o u t o f o r d e r and steam

f l o w meters were c l e a r l y n o t w o r k i n g r e l i a b l y . The most s e r i o u s p rob lem seemed

t o be t he poo r q u a l i t y o f make-up w a t e r , w i t h r e s u l t i n g c o r r o s i o n damage

f r e q u e n t l y o c c u r r i n g i n t he b o i l e r t u b e s .

C o n c e r n i n g t he hea t d i s t r i b u t i o n and u t i l i z a t i o n p r o c e s s e s , a number o f

Page 312: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

301

d e f i c i e n c i e s i n t he thermal sys tem and i n t h e s u g a r m a n u f a c t u r i n g p r o c e s s can be

immed ia te l y i d e n t i f i e d :

- e x c e s s i v e hea t l o s s e s due t o l a r g e s e c t i o n s o f the rma l i n s u l a t i o n b e i n g i n

poo r c o n d i t i o n o r m i s s i n g ( e . g . a few h e a t e r s , v a p o u r p i p e l i n e s f rom t h e t h i r d

e v a p o r a t o r e f f e c t and a number o f c o n d e n s a t e p i p e s ) ;

- e x c e s s i v e hea t consumpt ion i n t he r o o m - h e a t i n g s y s t e m , due t o l a c k o f room

t e m p e r a t u r e c o n t r o l ;

- e x c e s s i v e hea t l o s s e s due t o u n c o v e r e d t a n k s i n t h e s u g a r house (most o f t h e

e x i s t i n g c o v e r s kep t p e r m a n e n t l y o p e n ) ;

- n o n - o p t i m a l o p e r a t i o n o f t he e v a p o r a t o r and e x c e s s i v e pa ramete r f l u c t u a t i o n s

due t o i n a d e q u a t e a u t o m a t i c c o n t r o l s .

I t g r a d u a l l y became c l e a r d u r i n g t he v i s i t t o t h e f a c t o r y t h a t i t s e n e r g y -

economy p rob lems were caused m a i n l y by a was te o f hea t i n t h e p r o c e s s h e a t i n g

a r e a . T h i s was accompanied by a was te o f c o n d e n s a t e s , and t h u s e x c e s s i v e

consumpt ion o f make-up w a t e r w h i c h must be added t o t h e b o i l e r f e e d . When

o v e r l o a d i n g t h e w a t e r - t r e a t m e n t s t a t i o n by a l a r g e f l o w o f p o l l u t e d r i v e r w a t e r ,

t he q u a l i t y o f make-up w a t e r became u n s a t i s f a c t o r y . T h i s c o n t r i b u t e d t o

a c c e l e r a t e d c o r r o s i o n , w h i c h was t h e immediate cause o f b o i l e r - t u b e f a i l u r e s .

T a k i n g i n t o a c c o u n t t h a t no p o w e r - b a l a n c e p rob lems were d e t e c t e d and t h a t t he

power house seemed t o be w e l l m a i n t a i n e d and o p e r a t e d , t h e above c o n c l u s i o n s

p o i n t a t p r o c e s s h e a t i n g as t h e e s s e n t i a l p rob lem t o w h i c h a t t e n t i o n s h o u l d be

d i r e c t e d when p e r f o r m i n g s u b s e q u e n t s t a g e s o f t h e a n a l y s i s .

8 .2 .5 Mass b a l a n c e o f t h e s u g a r m a n u f a c t u r i n g p r o c e s s

The c a l c u l a t e d mass b a l a n c e o f t h e b e e t house i s shown i n T a b l e 8 . 3 . The

pa rame te rs o f t he e x t r a c t i o n and j u i c e p u r i f i c a t i o n p r o c e s s e s can be r e g a r d e d as

e s s e n t i a l l y c o r r e c t .

The c a l c u l a t e d mass b a l a n c e o f t he s u g a r house i s shown i n T a b l e 8 . 4 . The

pa rame te rs o f g r e e n s y r u p s A and B, i . e . h i g h p u r i t i e s and r e l a t i v e l y low

c o n c e n t r a t i o n s , i n d i c a t e t h a t t o o much wash w a t e r i s s u p p l i e d t o A and Β

c e n t r i f u g a l s . As a r e s u l t , c r y s t a l s d i s s o l v e i n e x c e s s w a t e r , c a u s i n g a r e d u c e d

c r y s t a l y i e l d and i n c r e a s e d c i r c u l a t i o n o f m a s s e c u i t e s i n t h e s u g a r h o u s e . T h i s

c o n t r i b u t e s t o t h e e x c e s s i v e h e a t demand i n t h e s u g a r h o u s e .

8 .2 .6 Heat b a l a n c e o f t he the rma l sys tem and h e a t economy e v a l u a t i o n

The hea t b a l a n c e c a l c u l a t i o n s were p e r f o r m e d a c c o r d i n g t o t h e e v a p o r a t o r -

r e c e i v e r a p p r o a c h . The r e s u l t s , e x p r e s s e d i n steam and v a p o u r f l o w s , a r e shown

i n T a b l e 8 . 5 . The b a l a n c e da ta seem t o c o n f i r m t h e i m p r e s s i o n g a i n e d f rom t h e

r e v i e w o f t he the rma l sys tem scheme t h a t t h e v a p o u r and condensa te d i s t r i b u t i o n

i s r a t h e r p r i m i t i v e . I t can a l s o be seen t h a t t h e c a l c u l a t e d steam demand i s

3 .5 -4 .5 kg/100 kg b l e s s t han t h e steam consumpt i on t aken f rom t h e f a c t o r y

Page 313: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

302

TABLE 8.3

Mass b a l a n c e o f t h e b e e t h o u s e .

No. St ream name T o t a l f l o w C o n c e n t r a t i o n P u r i t y

No. St ream name (kg /100 kg b) (% DS) (%)

1 C o s s e t t e s 100.00 85.70

2 Wet p u l p 85.00 3 P r e s s e d p u l p 30.70 17.30 4 P r e s s w a t e r 54.30 1.50 5 F r e s h w a t e r 50.70 6 Raw j u i c e 120.00 15.17 86.82 7 J u i c e t o p r e - l i m i n g 123.76 8 J u i c e t o main l i m i n g 125.28 9 J u i c e t o c a r b o n a t a t i o n I 135.35

10 J u i c e f rom vacuum f i l t e r s 17.37 11 J u i c e t o t h i c k e n e r s I 152.45 12 J u i c e t o c a r b o n a t a t i o n I I 130.20 13 S u b s i d e r s l u d g e I 22.25 14 S w e e t e n i n g - o f f w a t e r t o vacuum f i l t e r s ; 14.33 15 S ludge 9.55 16 Sweet w a t e r f rom vacuum f i l t e r s 9.55 17 J u i c e t o t h i c k e n e r s I I 130.16 18 S u b s i d e r s l u d g e I I t o p r e - l i m i n g 3.76 19 J u i c e t o f i n e f i l t e r s 126.40 20 T h i n j u i c e 126.40 13.56 91.19 21 T h i n j u i c e t o e v a p o r a t i o n 119.57 22 M i l k - o f - l i m e t o p r e - l i m i n g 1.52 23 M i l k - o f - l i m e t o main l i m i n g 10.07 24 K i l n gas t o c a r b o n a t a t i o n I 4.49 25 K i l n gas t o c a r b o n a t a t i o n I I 0.40

r e c o r d s . Most p r o b a b l y , t h i s i s an i n d i c a t i o n o f steam a n d / o r v a p o u r l e a k s

o c c u r r i n g i n t h e condensa te d r a i n a g e s u b s y s t e m .

On t he b a s i s o f t he da ta t h u s a c q u i r e d , t h e f o l l o w i n g g e n e r a l c o n c l u s i o n s

were d r a w n .

( i ) The the rma l sys tem i s c l e a r l y w o r k i n g l e s s e f f e c t i v e l y t han c o u l d be

e x p e c t e d on t h e b a s i s o f i t s d e s i g n and equ ipment c h a r a c t e r i s t i c s . The most

i m p o r t a n t r e a s o n s a r e :

- steam and v a p o u r l e a k s w i t h i n t h e sys tem o r d i r e c t l y t o t he e n v i r o n m e n t ;

- u n r e l i a b l e v e n t i n g o f n o n c o n d e n s a b l e s ;

- e x c e s s i v e hea t d i s s i p a t i o n t o t h e e n v i r o n m e n t .

( i i ) The d e s i g n and pa rame te rs o f t he s u g a r m a n u f a c t u r i n g p r o c e s s i n t h e s u g a r

house a r e a a r e c o n t r i b u t i n g t o t h e e x c e s s i v e t o t a l h e a t demand. The e s s e n t i a l

d e f i c i e n c i e s a r e :

- u n n e c e s s a r y w a t e r i n t a k e t o Β r e m e l t ;

- t o o l a r g e w a s h - w a t e r consumpt ion i n A and Β c e n t r i f u g a l s .

( i i i ) The e f f e c t i v e n e s s o f t h e h e a t d i s t r i b u t i o n scheme i n t he p r o c e s s h e a t i n g

a r e a i s t o o l o w . The u n d e r l y i n g r e a s o n s a r e :

- was te o f c o n d e n s a t e s ;

Page 314: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

303

TABLE 8.4

Mass b a l a n c e o f t he s u g a r h o u s e .

7Γ ¡ri77~T7Z T o t a l f l o w C o n c e n t r a t i o n P u r i t y No. St ream name ^^^^^^^ ./ o/ ^

1 T h i c k j u i c e 26.24 61.40 91 .14 2 T h i n j u i c e 6.83 13.56 91 .19 3 Raw s u g a r 3.21 98.73 98.70 4 A m a s s e c u i t e 41.33 91.90 93.74 5 Green s y r u p A 24.15 79.70 89.00 6 Wash s y r u p A 3.84 74.19 91.94 7 Whi te s u g a r 15.73 99.95 99.80 8 Β m a s s e c u i t e 18.51 92.00 88.39 9 Green s y r u p Β 8.15 81.80 79.20

10 Wash s y r u p Β 3.79 74.18 85.69 11 Β s u g a r 7.59 99.50 97.50 12 C m a s s e c u i t e 13.32 94.60 82.93 13 C s u g a r 8.56 98.50 92.50 14 M o l a s s e s 4.76 87.60 63.60 15 A f f i n a t i o n m a s s e c u i t e 21.26 90.00 91.93 16 A f f i n a t i o n s y r u p 11.04 78.81 87.42 17 A f f i n e d C s u g a r 10.65 98.00 95.69 18 Β r e m e l t 11.86 65.00 97.55 19 C - a f f . r e m e l t 17.48 65.00 95.32 20 Water t o c e n t r i f u g a l s A 1.53 21 Steam t o c e n t r i f u g a l s A 1.03 22 Water t o c e n t r i f u g a l s Β 1.02 23 Water t o Β r e m e l t 4.11

TABLE 8.5

Steam and v a p o u r f l o w s (kg /100 kg b) between s o u r c e s and r e c e i v e r s i n t he p r o c e s s - h e a t i n g a rea o f t h e the rma l s y s t e m .

S o u r c e s No. R e c e i v e r s E x h a u s t E v a p o r a t o r e f f e c t s n4-höv-c

steam 1 2 3 4 ^^"^^^^

1 E x t r a c t o r 1.18 1.85 2 R a w - j u i c e h e a t e r s 1.23 c o n d e n s a t e 3 L i m e d - j u i c e h e a t e r s 0.44 6.30 4 H e a t e r i n c a r b o n a t a t i o n I 1.30 5 C l e a r - j u i c e h e a t e r 3.67 6 T h i n - j u i c e h e a t e r s 5.85 7 T h i c k - j u i c e h e a t e r 0.45 8 M e l t e r 0.40 9 I n d i r e c t l y - h e a t e d s y r u p t a n k s 0.38

10 D i r e c t l y - h e a t e d s y r u p t a n k s 0.55 11 Remel t h e a t e r 0.36 12 Vacuum pans A 18.61 13 Vacuum pans Β 3.46 14 Vacuum pans C 2.67 15 Vacuum-pan s teaming 1.80 16 O t h e r smal l r e c e i v e r s 0.50 17 Sugar d r y e r 0.50 18 Condense r 0.58 19 E v a p o r a t o r t o t a l 5.85 30.03 10.67 0.58 20 E x h a u s t - s t e a m consumpt ion 51.58

Page 315: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

304

thic

k ju

ice

thin

ju

ice

raw

sugar

VAC

UU

M

PAN

S A

V

AC

UU

M

PAN

S Β

V

AC

UU

M

PAN

S C

<

' I

' <

C

D

' I

' C

D

* I

' ^

MIX

ER

S A

^

Φ

MIX

ER

S Β

^

MIX

ER

S C

CEN

TRIF

UG

ALS

A I

Γ

• I

CE

NTR

IFU

GA

LS Β

I

Γ

CE

NTR

IFU

GA

LS C

I

suga

r A

su

gar

Β

suga

r C

-slu

mps—

^ j

^ 1

LI-*—,

|—I 1—,

I M

ELT

ER

B

I I

""-ψ

I

I I

^ ^

j affin

atio

n

mas

secu

ite

φ

Mp

iTP

Rr

rpm

pit

Β

AFF

INA

TIO

N

Ε

^^^^

^ C

re

me

ltB

^

| M

IXER

S

c

I 7

^

I I

AFFI

NAT

ION

I §

^

I '^"-^

'^ I

I C

EN

TRIF

UG

ALS

|

σ

wh

ite s

ugar

| I

| |

| t

mo

lass

es

Fig

. 8

.4.

Mo

dif

ied

sc

hem

e o

f th

e

sug

ar

ho

us

e.

Page 316: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

305

- no u t i l i z a t i o n o f f o u r t h - e f f e c t v a p o u r ;

- i n a d e q u a t e u t i l i z a t i o n o f t h i r d - e f f e c t v a p o u r ;

- u n n e c e s s a r y h e a t i n g w i t h e x h a u s t s team;

- u n n e c e s s a r y u t i l i z a t i o n o f e x h a u s t steam f o r a u x i l i a r y p u r p o s e s .

8 .2 .7 P o s s i b l e improvements and i m p l e m e n t a t i o n s t r a t e g y

E v a l u a t i o n o f t h e hea t economy i n d i c a t e s t h a t s u b s t a n t i a l improvements can be

o b t a i n e d by t a k i n g v a r i o u s r a t i o n a l i z a t i o n measu res . As t he pa rame te rs o f t he

equ ipment a r e s u f f i c i e n t l y w e l l s u i t e d t o t h e f a c t o r y ' s n e e d s , t he s t e p - b y - s t e p

approach a v o i d i n g l a r g e i n v e s t m e n t s seems t o be s u f f i c i e n t t o c u t down t h e hea t

consumpt ion c o n s i d e r a b l y .

The imp lemen ta t i on s t r a t e g y e v o l v e s n a t u r a l l y f rom t h e f o l l o w i n g l o g i c a l

sequence o f c o r r e c t i v e a c t i o n s .

( i ) F i r s t , t h e was te o f e n e r g y s h o u l d be i m m e d i a t e l y e l i m i n a t e d by r e p a i r i n g o r

r e p l a c i n g a l l t h e m a l f u n c t i o n i n g a u x i l i a r y components o f t h e therma l s y s t e m ,

t h a t i s :

- l e a k i n g steam t r a p s ;

- u n r e l i a b l e v e n t s ;

- i n o p e r a t i v e measur ing i n s t r u m e n t s .

( i i ) S e c o n d , t h e t o t a l hea t demand o f t he s u g a r m a n u f a c t u r i n g p r o c e s s s h o u l d be

reduced b y :

- r e p a i r i n g o r i n s t a l l i n g damaged o r m i s s i n g s e c t i o n s o f t h e the rma l i n s u l a t i o n

i n t h e p r o c e s s h e a t i n g a r e a ;

- e l i m i n a t i n g t he use o f e x h a u s t steam f o r a u x i l i a r y p u r p o s e s and r e p l a c i n g i t

by f i r s t - o r s e c o n d - e f f e c t v a p o u r ;

- m o d i f y i n g t he c r y s t a l l i z a t i o n scheme t o t h e fo rm shown i n F i g . 8 . 4 , t h u s

c u t t i n g down the t o t a l w a t e r i n t a k e t o t he s u g a r house (B r e m e l t i s p r e p a r e d

u s i n g t h i n j u i c e i n s t e a d o f w a t e r ) ;

- r e d u c i n g t h e consumpt ion o f wash w a t e r i n A and Β c e n t r i f u g a l s ;

- r e d u c i n g t h e t o t a l w a t e r i n t a k e t o t h e s u g a r house even f u r t h e r by i n c r e a s i n g

t he t h i c k - j u i c e c o n c e n t r a t i o n .

The e s t i m a t e d mass b a l a n c e o f t he s u g a r house a f t e r w a t e r i n t a k e r e d u c t i o n s i s

shown i n T a b l e 8 . 6 .

( i i i ) The e f f e c t i v e n e s s r a t i o o f t he the rma l sys tem s h o u l d be i m p r o v e d . F i r s t o f

a l l , i t i s n e c e s s a r y t o e l i m i n a t e t h e was te o f c o n d e n s a t e s by i n s t a l l i n g

condensa te d r a i n a g e l i n e s l i n k i n g a l l t h e h e a t e r s w i t h p r o p e r l y s e l e c t e d

r e s p e c t i v e condensa te t a n k s . W h i l e i m p r o v i n g t h e e n e r g y r e c o v e r y , t h i s w i l l

r educe t he d e f i c i t o f make-up w a t e r and c o n t r i b u t e t o improved b o i l e r

r e l i a b i l i t y . F u r t h e r improvement i n t h i s r e s p e c t can be o b t a i n e d by r e p l a c i n g

t he o l d - f a s h i o n e d steam h e a t i n g o f f a c t o r y b u i l d i n g s by w a t e r h e a t i n g . To

comple te t h e c o r r e c t i v e a c t i o n s r e l a t e d t o t h e c o n d e n s a t e subsys tem

Page 317: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

306

T o t a l f l o w C o n c e n t r a t i o n P u r i t y No. St ream name ^ ^ ^ / ^ ^ ^ (o/^j

1 T h i c k j u i c e 24.57 65.00 91.14 2 T h i n j u i c e 7.91 13.56 91.19 3 Raw s u g a r 3.21 98.73 98.70 4 A m a s s e c u i t e 31.27 92.00 94.11 5 Green s y r u p A 12.43 81.00 85.00 6 Wash s y r u p A 3.25 76.93 92.91 7 Wh i te s u g a r 16.05 99.96 99.95 8 Β m a s s e c u i t e 11.80 93.00 86.29 9 Green s y r u p Β 5.24 83.00 72.00

10 Wash s y r u p Β 1.26 79.27 85.29 11 Β s u g a r 5.66 99.50 97.50 12 C m a s s e c u i t e 7.86 93.50 76.87 13 C s u g a r 3.55 98.50 95.50 14 Mo lasses 4.62 83.50 60.00 15 A f f i n a t i o n m a s s e c u i t e 11.99 90.50 92.33 16 A f f i n a t i o n s y r u p 6.17 78.64 84.69 17 A f f i n e d C s u g a r 6.06 99.00 98.52 18 Β r e m e l t 9.73 65.00 97.03 19 C a f f . r e m e l t 10.06 65.00 97.91 20 Water t o c e n t r i f u g a l s A 0.47 21 Steam t o c e n t r i f u g a l s A 0.16 22 Water t o c e n t r i f u g a l s Β 0.35 23 Water t o c r y s t a l 1 i z e r s C 0.31

i t i s n e c e s s a r y t o a d d , t o t h e e x i s t i n g equ ipment and p i p i n g , a c o n d e n s a t e tank

and a few f l a s h - v a p o u r c o n n e c t i o n s making i t p o s s i b l e t o u t i l i z e f u l l y t h e

a v a i l a b l e condensa te e n e r g y i n t h e e v a p o r a t o r .

The n e x t s t e p t o improve t h e e f f e c t i v e n e s s r a t i o c o n s i s t s o f e l i m i n a t i n g

p r o c e s s - e q u i p m e n t h e a t i n g w i t h e x h a u s t s team, i m p r o v i n g u t i l i z a t i o n o f t h i r d -

e f f e c t v a p o u r and i n t r o d u c i n g t h e u t i l i z a t i o n o f f o u r t h - e f f e c t v a p o u r . T h i s

amounts t o a r e c o n s t r u c t i o n o f t he v a p o u r d i s t r i b u t i o n scheme and must be

c o o r d i n a t e d w i t h t h e i n s t a l l a t i o n o f t h e condensa te d r a i n a g e l i n e s men t i oned

b e f o r e .

The m o d i f i e d v a p o u r d i s t r i b u t i o n scheme i s shown i n F i g . 8 . 5 . I n o r d e r t o

take f u l l advan tage o f t h e r e c o n s t r u c t i o n o f t h e e v a p o r a t i o n s u b s y s t e m , t h e

e v a p o r a t o r s h o u l d a l s o be e q u i p p e d w i t h a u t o m a t i c l e v e l c o n t r o l s .

Equipment r e p a i r and changes n e c e s s a r y f o r i n t r o d u c i n g t h e m o d i f i c a t i o n s

men t ioned under ( i ) and ( i i ) can e a s i l y be comp le ted d u r i n g one o f f - s e a s o n

p e r i o d . I t can be e s t i m a t e d t h a t t h e r e s u l t i n g r e d u c t i o n o f t h e steam

consumpt ion w i l l be a t l e a s t 4 . 5 - 5 . 0 kg/100 kg b. As r e g a r d s r e c o n s t r u c t i o n o f

t h e v a p o u r d i s t r i b u t i o n scheme, i t must be p r e c e d e d by a d e s i g n s t u d y on t h e

n e c e s s a r y p i p i n g m o d i f i c a t i o n s . A p r e l i m i n a r y h e a t b a l a n c e ( e x p r e s s e d i n steam

and v a p o u r f l o w s ) o f t h e m o d i f i e d the rma l sys tem i s p r e s e n t e d i n T a b l e 8 . 7 . As

TABLE 8.6

M o d i f i e d mass b a l a n c e o f t h e s u g a r h o u s e .

Page 318: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

307

to ammonia water

i tank

ί

5

Ϊ

r - m -

exhaust steam -4^ :

to boiler -——M3I j ' ljj

7

Β

- Q -

exhaust steam

house

to 6*

. J

F i g . 8 . 5 . M o d i f i e d scheme o f t h e the rma l sys tem i n t h e p r o c e s s h e a t i n g a r e a . Condensa te d r a i n a g e l i n e s n o t shown i n t he p i c t u r e a r e c o n n e c t e d t o t h e ammonia w a t e r t a n k . The meaning o f numbers d e n o t i n g equ ipment u n i t s i s i d e n t i c a l t o t h a t i n F i g . 1.5.

can be s e e n , t h e steam consumpt ion can be r e d u c e d t o abou t 41.8 kg/100 kg b ,

w h i c h i s n e a r l y 10 kg/100 kg b l e s s t han i n d i c a t e d i n t he h e a t b a l a n c e o f t h e

e x i s t i n g the rma l sys tem ( T a b l e 8 . 5 ) .

I t s h o u l d be p o i n t e d o u t t h a t even a f t e r t h e c o m p l e t i o n o f t h e

r a t i o n a l i z a t i o n programme p r o p o s e d a b o v e , t h e h e a t economy w i l l remain r a t h e r

p r i m i t i v e , as t h e e f f e c t i v e n e s s r a t i o o f a the rma l sys tem w i t h o u t f u l l

u t i l i z a t i o n o f t h e l o w - t e m p e r a t u r e h e a t c a n n o t be v e r y h i g h . U n l e s s a d e t a i l e d

d e s i g n s t u d y i s p e r f o r m e d , i t i s i m p o s s i b l e t o d e t e r m i n e w h e t h e r o r n o t t h e

a p p l i c a t i o n o f more advanced s o l u t i o n s c o u l d be e c o n o m i c a l l y v i a b l e . I t i s

t h e r e f o r e recommended t o e v a l u a t e t h e e n e r g y economy a g a i n a f t e r two o r t h r e e

y e a r s o f t h e s t e p - b y - s t e p improvement programme, and t o r e p e a t t h e a n a l y s i s o f

p o s s i b l e e n e r g y - s a v i n g measu res . The i n d i v i d u a l measures can be e v a l u a t e d

Page 319: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

308

TABLE 8.7

Steam and v a p o u r f l o w s (kg /100 kg b) between s o u r c e s and r e c e i v e r s i n t he p r o c e s s - h e a t i n g a r e a o f t h e m o d i f i e d the rma l s y s t e m .

No. R e c e i v e r s S o u r c e s E x h a u s t E v a p o r a t o r e f f e c t s

steam Ί 2 3 4 "

1 E x t r a c t o r 1 .18 1 .87 2 R a w - j u i c e h e a t e r s 0, .30 condensa te 3 L i m e d - j u i c e h e a t e r s 2.44 4, .33 4 H e a t e r i n c a r b o n a t a t i o n I 1.32 5 C l e a r - j u i c e h e a t e r s 1, .14 2.54 6 T h i n - j u i c e h e a t e r s 2.21 2 .99 7 T h i c k - j u i c e h e a t e r 0, .35 8 9

M e l t e r I n d i r e c t l y - h e a t e d s y r u p t a n k s

0, 0,

.40

.30 10 D i r e c t l y - h e a t e d s y r u p t anks 0, .24 11 Remelt h e a t e r 0, .26 12 Vacuum pans A 13, .04 13 Vacuum pans Β 2, .87 14 Vacuum pans C 1, .42 15 Vacuum-pan s t e a m i n g - o u t 1, .80 16 O t h e r smal l r e c e i v e r s 0 .50 17 Sugar d r y e r 0 .50 18 Condenser 1. .02 19 E v a p o r a t o r t o t a l 2.21 25. .99 8.16 4. .63 20 E x h a u s t - s t e a m consumpt ion 41 , .77

e c o n o m i c a l l y , c r e a t i n g a b a s i s f o r d e c i s i o n s on t h e f u t u r e c o u r s e o f a c t i o n . I f

t he l a c k o f i n v e s t m e n t f u n d s c o n t i n u e s , t h e n e x t s t a g e o f t he s t e p - b y - s t e p

improvement programme can be p l a n n e d ; o t h e r w i s e , a m o d e r n i z a t i o n o f t he f a c t o r y

can be c o n s i d e r e d .

8.3 FACTORY CHARACTERIZED BY GOOD I N I T I A L ENERGY U T I L I Z A T I O N

8.3.1 I n t r o d u c t o r y remarks

The example p r e s e n t e d i n t h i s S e c t i o n i s based on a r e a l case i n v e s t i g a t e d

by a s p e c i a l i z e d team a few y e a r s ago i n Sweden ( r e f . 1 7 ) . The i n v e s t i g a t i o n was

p l anned i n advance by the f a c t o r y manager ( as a r u l e , e v e r y Swed ish s u g a r

f a c t o r y has i t s e n e r g y economy i n v e s t i g a t e d e v e r y t h i r d o r f o u r t h y e a r ) .

The f a c t o r y was known f o r i t s r a t h e r low steam c o n s u m p t i o n , abou t 30-32 kg

pe r 100 kg b , r e s u l t i n g f rom i n v e s t m e n t s pe r f o rmed m a i n l y i n t h e 1950s and 1960s

and s t e p - b y - s t e p improvements i n t r o d u c e d i n t h e 1970s. F o r economic r e a s o n s , t h e

s t e p - b y - s t e p app roach i s a l s o l i k e l y t o remain t h e o n l y p r a c t i c a l method o f

i n t r o d u c i n g improvements i n t he f o r e s e e a b l e f u t u r e .

I t was p l anned t o a c q u i r e t h e n e c e s s a r y da ta d u r i n g 5 measurements s e s s i o n s

o r g a n i z e d a p p r o x i m a t e l y e v e r y two weeks f rom t h e b e g i n n i n g t o t he end o f t h e

s e a s o n . T h i s a r rangement was f o r s t u d y i n g t h e pa rame te rs o f t h e hea t u t i l i z a t i o n

p r o c e s s e s as f u n c t i o n s o f t i m e , t h u s making i t p o s s i b l e t o i d e n t i f y t he

Page 320: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

309

i n f l u e n c e o f t h e s c a l e b u i l d - u p . The u l t i m a t e goa l was t o p r e p a r e a comp le te

s u r v e y o f t h e hea t u t i l i z a t i o n i n t h e s u g a r m a n u f a c t u r i n g p r o c e s s and f o r

a u x i l i a r y p u r p o s e s , and p a r t i c u l a r l y i n t h e e v a p o r a t o r s t a t i o n , s u g a r house and

a number o f smal l steam r e c e i v e r s . On t h e b a s i s o f t h e s u r v e y r e s u l t s , t h e most

e f f e c t i v e measures t o reduce t h e hea t demand c o u l d be d e t e r m i n e d .

D u r i n g t h e o f f - s e a s o n p e r i o d p r e c e d i n g t h e a c t u a l s e a s o n ' s o p e r a t i o n s , a

s p e c i a l measur ing sys tem i n d e p e n d e n t o f t h e f a c t o r y ' s measu r ing i n s t r u m e n t s was

i n s t a l l e d w i t h t h e aim o f p r o v i d i n g v e r y a c c u r a t e d a t a on t h e most i m p o r t a n t

p a r a m e t e r s , namely p r e s s u r e s and t e m p e r a t u r e s i n t h e e v a p o r a t i o n s u b s y s t e m ,

i n c l u d i n g c o n d e n s a t e t a n k s . O r i f i c e s were i n s t a l l e d i n t h e main v e n t i n g l i n e s

i n o r d e r t o make i t p o s s i b l e t o e v a l u a t e t h e f l o w s o f n o n c o n d e n s a b l e s .

A r rangements were a l s o made w i t h t h e l a b o r a t o r y t o p e r f o r m a number o f e x t r a

a n a l y s e s , m o s t l y o f t he d r y s u b s t a n c e c o n t e n t and p o l a r i z a t i o n ( a s w e l l as

a l k a l i n i t y and c a l c i u m s a l t s i n t h e case o f samples taken f rom t h e j u i c e

p u r i f i c a t i o n s t a t i o n ) o f j u i c e and s y r u p s a m p l e s . The p o i n t s o f samp l i ng were

p l a n n e d t o a c h i e v e a h i g h a c c u r a c y o f i d e n t i f i c a t i o n o f t he p r o c e s s mass b a l a n c e

and o f t h e the rma l p r o p e r t i e s o f a l l t h e i m p o r t a n t mass s t r e a m s . I n t h e

e v a p o r a t o r a r e a , j u i c e samples were t o be c o l l e c t e d i n a manner a l l o w i n g

d e t e r m i n a t i o n o f i n l e t and o u t l e t j u i c e c o n c e n t r a t i o n s i n a l l t he e v a p o r a t o r

b o d i e s .

I t was p l a n n e d t o a c q u i r e t h e r e m a i n i n g d a t a f rom t h e o r d i n a r y f a c t o r y

i n s t r u m e n t a t i o n , and t o take c e r t a i n i n s t r u m e n t r e a d i n g s s o l e l y f o r t h e pu rpose

o f c r o s s - c h e c k i n g t h e i n d i c a t i o n s o f t h e s p e c i a l measu r ing s y s t e m . A f t e r

c a l c u l a t i n g t he t ime a v e r a g e d v a l u e s o f t h e key p a r a m e t e r s , e v e r y measurement

p e r i o d ( l a s t i n g abou t one w o r k i n g s h i f t ) was e x p e c t e d t o p r o d u c e abou t 300 d a t a

t o be used i n t h e hea t b a l a n c e c a l c u l a t i o n s .

8 . 3 .2 B a s i c f a c t o r y d a t a and scheme o f t h e s u g a r m a n u f a c t u r i n g p r o c e s s

P r o c e s s i n g c a p a b i l i t y : 3700 t / d .

P o l a r i z a t i o n o f c o s s e t t e s : 15.7%.

E x t r a c t o r : t r o u g h - t y p e .

J u i c e d r a f t : 120%.

R a w - j u i c e c o n c e n t r a t i o n : 15.0%.

P u l p p r e s s e d t o : 21.4% DS.

K i l n g a s : 36-38% CO^ v o l .

J u i c e p u r i f i c a t i o n a c c o r d i n g t o t he c l a s s i c a l scheme, c o m p r i s i n g :

- h o t p r e - l i m i n g a t 60-65°C;

- main l i m i n g a t abou t 85°C;

- c a r b o n a t a t i o n I a t 80-85°C;

- d o u b l e - s t a g e f i l t r a t i o n I ;

- c a r b o n a t a t i o n I I a t 92-95°C;

Page 321: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

310

- d o u b l e - s t a g e f i l t r a t i o n I I .

T h i n - j u i c e c o n c e n t r a t i o n : 14.2% DS.

E v a p o r a t o r : q u i n t u p l e - e f f e c t , f a l l i n g - f i l m b o d i e s i n t h e f i r s t and f i f t h

e f f e c t s , R o b e r t - t y p e b o d i e s i n t h e r e m a i n i n g e f f e c t s .

T h i c k - j u i c e c o n c e n t r a t i o n : 64.8% DS.

Sugar h o u s e :

- t h r e e - b o i l i n g scheme w i t h t h e a f f i n a t i o n o f C s u g a r ;

- a f f i n e d C s u g a r me l t ed i n t h i n j u i c e ;

- s t a n d a r d l i q u o r p r e p a r e d f rom t h i c k j u i c e , Β s u g a r and C - a f f . r e m e l t .

Power h o u s e :

- o i l - f i r e d b o i l e r r a t e d 50 t / h , e f f i c i e n c y 91%;

- l i v e - s t e a m pa rame te rs 60 ba r and 470°C;

- b a c k - p r e s s u r e t u r b i n e r a t e d 6 MW;

- b a c k - p r e s s u r e 3.5 b a r .

Steam s u p p l y t o t h e s u g a r m a n u f a c t u r i n g p r o c e s s : steam 3.5 bar ( i n p r i n c i p l e ,

e x h a u s t steam o n l y , and t h r o t t l e d l i v e steam i f n e c e s s a r y ) .

H e a t i n g steam c o n s u m p t i o n : 30-32 kg/100 kg b.

Normal f u e l c o n s u m p t i o n : abou t 3.6 kg/100 kg b.

The schemes o f t h e b e e t house and s u g a r house a r e shown i n F i g s . 8.6 and 8 . 7 ,

r e s p e c t i v e l y . I t can immed ia te l y be seen t h a t t h e s u g a r m a n u f a c t u r i n g p r o c e s s

has been c a r e f u l l y p l a n n e d t o m i n i m i z e w a t e r i n t a k e s and t o e l i m i n a t e

u n n e c e s s a r y r e c y c l i n g o f t h e p r o c e s s med ia .

8 .3 .3 Scheme o f t h e therma l sys tem

The scheme i s shown i n F i g . 8 . 8 . A number o f d e t a i l s d e s e r v e t o be n o t e d , as

t h e y i n d i c a t e t h a t a h i g h d e g r e e o f r a t i o n a l i z a t i o n o f t h e e n e r g y economy has

a l r e a d y been a t t a i n e d .

I n t he p r o c e s s h e a t i n g a r e a , t h r e e f a c t o r s make i t p o s s i b l e t o a t t a i n a h i g h

e f f e c t i v e n e s s r a t i o :

- t h e a p p l i c a t i o n o f a q u i n t u p l e - e f f e c t e v a p o r a t o r s t a t i o n and t h e u t i l i z a t i o n

o f f i f t h - e f f e c t v a p o u r i n r a w - j u i c e h e a t i n g ;

- t he u t i l i z a t i o n o f t he vacuum-pan v a p o u r s i n r a w - j u i c e h e a t i n g ;

- t h e u t i l i z a t i o n o f t h e c o n d e n s a t e i n h e a t i n g p r e - l i m e d j u i c e .

The e v a p o r a t o r s t a t i o n c o n s i s t s o f n i n e b o d i e s , two o f them o f t h e f a l l i n g -

f i l m t y p e and t he rema inde r o f t h e R o b e r t t y p e . A scheme o f j u i c e and v a p o u r

c o n n e c t i o n s , i n c l u d i n g v e n t i n g l i n e s , i s shown i n F i g . 8 . 9 . ( H e a t i n g s u r f a c e

a r e a s a r e g i v e n i n T a b l e 8 . 9 . )

A f a l l i n g - f i l m body i n t h e f i r s t e v a p o r a t o r e f f e c t i s c h a r a c t e r i z e d by a

l a r g e o v e r a l l hea t t r a n s f e r c o e f f i c i e n t w h i c h rema ins n e a r l y c o n s t a n t t h r o u g h o u t

t h e s e a s o n . T h i s i s a d e c i s i v e f a c t o r keep ing t h e e v a p o r a t i o n c a p a c i t y a t a h i g h

l e v e l , even i f s c a l e b u i l d - u p t a k e s p l a c e i n t h e second and t h i r d e f f e c t s .

Page 322: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

311

(/) o CT»

c Ξί

cosset tes

α;

• σ

Χ3

1

• p ress water -

Γ HEATER

EXTRACTOR

HEATERS

PRE-L IMING

HEATERS

MAIN LIMING

CARBONATATION I

THICKENERS I

τ

ω

HEATERS

FILTERS

CARBONATATION I I

HEATERS

THICKENERS Π

milk-of - lime

i LIME SLAKING — Γ Τ

ju ice CaO

I

f L-wet pulp —J PRESSES I-raw juice I \ 1

i

VACUUM FILTERS

water

HEATERS

thin ju ice

l _ i SAFETY FILTERS

- ju ice -

1

pressed pulp

to dry ing

sludge

to evaporation

to sugar house

F i g . 8 . 6 . Scheme o f e x t r a c t i o n and j u i c e p u r i f i c a t i o n . 1 - h e a t e x c h a n g e r i n wh i ch condensa te ( f r e s h w a t e r ) warms up p r e s s w a t e r .

Page 323: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

3 1 2

thin

thi

ck

juic

e ju

ice

| ^

"}

^ j

I VA

CUUM

PAN

S A

I I

VACU

UM P

ANS

Β VA

CUUM

PAN

S C

MIX

ERS

A M

IXER

S Β

MIX

ERS

C

CENT

RIFU

GALS

A

CENT

RIFU

GALS

Β

CENT

RIFU

GALS

C

g su

garC

15

was

h sy

rup

A—

—I

Logr

een

syru

p A

—I

I »

syru

p Β

—I—

• ^

|

. su

gar

B-

1 |

^^IX

ER

|

——

^ af

finat

ion

mas

secu

ite

>,

MELT

ER

I I

^

I 1

I AF

FINA

TION

I

I I

1 I

I M

IXER

S I

g

g AF

FINA

TION

£

CENT

RIFU

GALS

I ^

^ ,

f>—

af

fined

sug

ar C

'

' '

MELT

ER C

I I

white

sug

ar

mol

asse

;

Fig.

8.

7.

Sche

me

of t

he

suga

r ho

use.

Page 324: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

313

— hot feed water

from 13

saturated i steam 6Ab ί 16 i CM

Ε

fuel - a _ i _ ^ m a k e - u p

water

• power

• OIL TANKS

PULP DRYING & PELLETING

STORAGE HOUSES

FACTORY BUILDING

OFFICE BUILDING

FROM BOILER BLOWDOWN

F i g . 8 . 8 . Scheme o f t he the rma l s y s t e m . 14 - e x t r a c t o r , 18 - p r e s s - w a t e r h e a t e r ; t h e r ema in i ng numbers have t h e same meaning as i n F i g . 1.5. D u r i n g t h e measurements , h e a t e r 6"*" was o u t o f o p e r a t i o n .

Page 325: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

314

to the 2nd thin juice heater

thin juice 1

1

2A

π 2B

π

3A1

π 3B

π

3Α2

ΑΑ A B

to condenser

thick juice

F i g . 8 . 9 . Scheme o f j u i c e and v a p o u r c o n n e c t i o n s i n t h e e v a p o r a t o r s t a t i o n . D o t t e d l i n e s i n d i c a t e v e n t i n g c o n n e c t i o n s .

A n o t h e r f a l l i n g - f i l m body i n t h e f i f t h e v a p o r a t o r e f f e c t a l s o p l a y s an i m p o r t a n t

r o l e . I t s l a r g e hea t t r a n s f e r c o e f f i c i e n t makes i t p o s s i b l e t o keep t h e

t e m p e r a t u r e o f t h e f i f t h - e f f e c t v a p o u r s u f f i c i e n t l y h i g h t o u t i l i z e t h e l o w -

t e m p e r a t u r e h e a t , even d u r i n g t he f i n a l weeks o f t h e s e a s o n . T h i s w o u l d be v e r y

d i f f i c u l t t o a c h i e v e w i t h a R o b e r t - t y p e b o d y .

V e n t i n g l i n e s f rom c e r t a i n e v a p o r a t o r b o d i e s and v e n t i n g l i n e s f rom s e l e c t e d

h e a t e r s a r e c o n n e c t e d t o v a p o u r s u p p l y p i p e s o f o t h e r h e a t e r s . T h i s makes i t

p o s s i b l e t o u t i l i z e t he e n e r g y o f t h e m i x t u r e o f v a p o u r and n o n c o n d e n s a b l e s

p r i o r t o d i s c h a r g i n g i t t o t he e n v i r o n m e n t o r t o t h e c o n d e n s e r .

P l a t e hea t e x c h a n g e r s a r e a p p l i e d as c l e a r - j u i c e h e a t e r s ( b e f o r e

c a r b o n a t a t i o n I ) and as j u i c e h e a t e r s a f t e r c a r b o n a t a t i o n I I . Owing t o t h e i r

l a r g e hea t t r a n s f e r c o e f f i c i e n t s , t h e s e h e a t e r s can be s u p p l i e d w i t h v a p o u r s o f

r e l a t i v e l y low t e m p e r a t u r e s .

I n t h e power house a r e a , b o i l e r blowdown i s p e r f o r m e d v i a a f l a s h tank

c o n n e c t e d t o t h e e x h a u s t - s t e a m p i p e l i n e . F l a s h v a p o u r o b t a i n e d f rom t h e b o i l e r

w a t e r ( s u b s e q u e n t l y d i s c h a r g e d t o t h e sewer sys tem) i s t h u s mixed w i t h e x h a u s t

s team. A n a l o g o u s l y , t he v e n t i n g l i n e f rom t h e main f e e d - w a t e r t ank i s c o n n e c t e d

t o t h e p i p e s u p p l y i n g t h i r d - e f f e c t v a p o u r t o t h e h e a t i n g chamber o f t h e f o u r t h

e v a p o r a t o r e f f e c t . I n t h i s a r r a n g e m e n t , t h e f e e d w a t e r i s f l a s h e d f rom t h e

p r e s s u r e ^ o f s e c o n d - e f f e c t v a p o u r t o t h a t o f t h i r d - e f f e c t v a p o u r .

8 .3 .4 I n f o r m a t i o n o b t a i n e d f rom t h e measurements

U s i n g t h e r e c o r d e d v a l u e s o f j u i c e c o n c e n t r a t i o n s , as w e l l as v a p o u r and

condensa te t e m p e r a t u r e s measured i n t h e e v a p o r a t o r a r e a , mass and hea t b a l a n c e s

o f t h e e v a p o r a t o r were c a l c u l a t e d f o r each measurement s e s s i o n . An example o f

a comple te s e t o f i n p u t d a t a and c a l c u l a t i o n r e s u l t s ( c o r r e s p o n d i n g t o t h e

Page 326: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

315

TABL

E 8

.8

Mas

s an

d he

at b

alan

ces

of

the

evap

orat

or

stat

ion

. Bo

dy 4

B w

as

disc

onne

cted

dur

ing

the

actu

al

mea

sure

men

t se

ssio

n.

Evap

orat

or

body

1

2A

2B

3

A1

3A

2 3B

4

A

4B

5

Inpu

t da

ta:

« H

eatin

g su

rfac

e ar

ea

(m^^

) 12

00

12

10

800

880

800

1200

1

10

0 86

0 70

0 Ju

ice

conc

entr

atio

n (%

DS

) in

let

14

.2

18

.8

18

.8

29

.3

40

.0

25

.2

44

.8

59

.7

ou

tlet

1

8.8

2

9.3

2

5.2

4

0.0

4

8.0

4

0.9

5

5.7

6

4.8

Va

pour

tem

pera

ture

( C

) he

atin

g ch

ambe

r 1

37

.4

12

5.2

1

24

.7

11

5.6

1

15

.3

11

5.6

1

08

.2

91

.3

vapo

ur

cham

ber

12

8.8

1

17

.0

11

7.8

1

08

.8

10

7.1

1

07

.9

92

.5

77

.7

Con

dens

ate

tem

pera

ture

C)

13

6.0

1

26

.7

12

6.0

1

17

.3

11

8.3

1

17

.3

11

4.7

9

1.7

Fl

ow o

f no

ncon

dens

able

s (k

g/10

0 kg

b

) 0

.07

0.1

0 0

.14

0.1

0 0

.10

0.1

4 0

.07

0.1

0 R

esul

ts:

Juic

e te

mpe

ratu

re (

°C)

inle

t 1

33

.0

12

8.8

1

28

.8

11

7.0

1

08

.8

11

7.8

1

08

.0

93

.5

ou

tlet

1

28

.8

11

7.0

1

17

.8

10

8.8

1

08

.1

10

7.9

9

3.5

8

0.7

Ju

ice

flow

(k

g/10

0 kg

b

) in

let

11

3.7

5

0.5

3

5.3

3

2.4

2

3.7

2

6.4

3

6.0

5

1.7

* o

utl

et

85

.8

32

.4

26

.4

23

.7

19

.8

16

.2

29

.0

24

.9

Vapo

ur f

low

(k

g/10

0 kg

b

) he

atin

g ch

ambe

r 2

7.8

1

7.8

9

.0

8.7

4

.4

10

.3

6.7

3

.5

vapo

ur

cham

ber

27

.9

18

.1

9.0

8

.7

4.1

1

0.3

7

.1

4.2

C

onde

nsat

e fl

ow

(kg/

100

kg

b)

27

.7

17

.7

8.9

8

.7

4.3

1

0.2

6

.6

4.5

H

eat

flu

x at

he

atin

g su

rfac

e (k

W/m

^) ^

2

0.6

1

3.2

9

.8

8.9

4

.7

7.7

5

.5

4.5

O

vera

ll he

at t

ran

sfer

co

effi

cien

t (W

/(m

^K))

2400

16

0 1

42

0 1

31

0 66

0 10

00

37

5 43

0

*/ re

circ

ula

tio

n fl

ow

Page 327: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

3 1 6

second s e s s i o n , i . e . t h e t h i r d week o f t h e s e a s o n ) i s g i v e n i n T a b l e 8 . 8 . As can

be s e e n , t he r e s u l t s i n c l u d e hea t f l u x e s and o v e r a l l hea t t r a n s f e r c o e f f i c i e n t s

i n t h e i n d i v i d u a l e v a p o r a t o r b o d i e s . T h i s makes i t p o s s i b l e t o e v a l u a t e t h e

i n f l u e n c e o f s c a l e b u i l d - u p on t h e hea t t r a n s f e r i n t e n s i t y i n t h e e v a p o r a t o r

s t a t i o n .

The o v e r a l l hea t t r a n s f e r c o e f f i c i e n t s i n t h e i n d i v i d u a l e v a p o r a t o r e f f e c t s

a r e shown as f u n c t i o n s o f t ime i n F i g . 8 .10 . As can be s e e n , t h e t e n d e n c i e s

c h a r a c t e r i s t i c o f R o b e r t - t y p e b o d i e s have been r e g i s t e r e d i n e f f e c t s 2 -4 . The

r e d u c t i o n o f t h e hea t t r a n s f e r i n t e n s i t y i n t he f o u r t h e f f e c t was so d r a s t i c

a f t e r f i v e weeks t h a t a s t a n d - b y body (48) was c o n n e c t e d t o t h i s e f f e c t . As

r e g a r d s the f a l l i n g - f i l m b o d i e s , no s c a l e b u i l d - u p i s v i s i b l e i n t h e f i r s t

e f f e c t , w h i l e t h e hea t t r a n s f e r i n t e n s i t y i n t he f i f t h e f f e c t d e c r e a s e s l i k e

t h a t i n R o b e r t - t y p e b o d i e s .

U s i n g t he r e c o r d e d v a l u e s o f t he t e m p e r a t u r e s o f h e a t i n g v a p o u r s , as w e l l as

j u i c e t e m p e r a t u r e s and j u i c e f l o w s , t he hea t b a l a n c e s o f j u i c e h e a t e r s were

2500

- 2000

ε

§ 1500

ΙΛ C

I 1000

α χ :

6 500h

1st effect

4 6

Time (weeks)

10

F i g . 8 .10 . Changes o f t he a v e r a g e d o v e r a l l hea t t r a n s f e r c o e f f i c i e n t s i n t h e e v a p o r a t o r s t a t i o n ( s t a n d - b y body c o n n e c t e d t o t h e f o u r t h e f f e c t a f t e r 5 w e e k s ) .

Page 328: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

317

c a l c u l a t e d f o r each measurement s e s s i o n . An example o f a comp le te s e t o f i n p u t

da ta and c a l c u l a t i o n r e s u l t s ( c o r r e s p o n d i n g t o t h e second s e s s i o n ) i s g i v e n i n

T a b l e 8 . 9 . As t h e r e s u l t s i n c l u d e t h e o v e r a l l hea t t r a n s f e r c o e f f i c i e n t s o f t he

i n d i v i d u a l h e a t e r s , t h e e f f e c t s o f s c a l e b u i l d - u p i n t h e h e a t e r s can be s t u d i e d .

TABLE 8.9

Heat b a l a n c e s o f t h e j u i c e h e a t e r s .

Medium hea ted Raw j u i c e P r e -

1 i med j u i c e

C l e a r j u i c e J u i ce a f t e r 2nd c a r b . ' *

T h i n j u i c e Medium hea ted

1 2

P r e -1 i med j u i c e

1* 2*

J u i ce a f t e r 2nd c a r b . ' * 1 2 3 4

I n p u t d a t a : H e a t i n g s u r f a c e a r e a (m^) 125 125 259 70.2 70.8 100 150 150 150 150 H e a t i n g v a p o u r . e x e f f e c t No. ^ 5 5 4 4 4 3 3 2 1 h a u s t t e m p e r a t u r e ( C) 77.7 77.7 92.5 92.5 92.5 108.1 108.1 117.3 128.8 137.4 J u i c e t e m p e r a t u r e ( C)

i n l e t 42.3 42.3 75.1 80.7 88.7 85.0 95.5 105.5 116.0 124.4 o u t l e t 60.1 58.8 84.3 88.7 91.5 98.5 105.5 116.0 124.4 133.0

J u i c e f l o w (kg /100 kg b) 56.6 106.4 147.2 138.2 138.2 116.8 113.7 113.7 113.7 113.7

R e s u l t s : Vapour demand (kg /100 kg b ) 3.09 2.86 1.86 1.86 0.65 2.70 1 .96 2.08 1 .69 1.76 O v e r a l l hea t t r a n s f e r c o e f f i c i e n t (W/ (m2K) ) 950 850 720 3660 4280 1680 1970 2790 1340 1360

V p l a t e hea t e x c h a n g e r s

The o v e r a l l h e a t t r a n s f e r c o e f f i c i e n t s i n t h e i n d i v i d u a l j u i c e h e a t e r s a r e

shown as f u n c t i o n s o f t ime i n F i g . 8 .11 . These c o e f f i c i e n t s a re g e n e r a l l y v e r y

h i g h , w h i c h i n d i c a t e s t h a t t h e h e a t e r s a r e u t i l i z e d e f f e c t i v e l y . The e f f e c t s o f

t h e s c a l e b u i l d - u p can be seen e x a c t l y where t h e y m igh t be e x p e c t e d , namely i n

r a w - j u i c e , p r e - 1 i m e d - j u i c e and c l e a r - j u i c e h e a t e r s .

I t can be c o n c l u d e d t h a t t he j u i c e - t e m p e r a t u r e p r o f i l e s d e t e r m i n e d d u r i n g t h e

measurement s e s s i o n s a r e e s s e n t i a l l y c o r r e c t . A compar i son o f t e m p e r a t u r e

p r o f i l e s c o r r e s p o n d i n g t o t h e b e g i n n i n g and end o f t h e season i s shown i n

F i g . 8 .12 . N o t e w o r t h y a re t h e v e r y smal l v a l u e s - somet imes as low as 2 Κ - o f

t he minimum t e m p e r a t u r e d i f f e r e n c e i n t h e t h i n - j u i c e h e a t e r s , w h i c h a r e o f

t u b u l a r d e s i g n .

The e x h a u s t steam consumpt ion was d e t e r m i n e d a t 30 .5 -34 .0 kg/100 kg b i n

measurement s e s s i o n s 1-4. I t i n c r e a s e d t o 43.1 kg/100 kg b i n measurement

s e s s i o n 5, w h i c h was r e p r e s e n t a t i v e o f t h e f i n a l s t a g e o f t h e s e a s o n . C o n c e r n i n g

Page 329: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

318

4000 h

3000 h

2000 h

clear juice (PHE)

c ω 'ο

I o

(Λ C O

1000 h

3000 h α o»

2

O

2000 h

1000 h

A 6 Time (weeks)

F i g . 8 .11. O v e r a l l hea t t r a n s f e r c o e f f i c i e n t s i n t he j u i c e h e a t e r s as f u n c t i o n s o f t i m e . PHE - p l a t e hea t e x c h a n g e r s . * d e n o t e s two h e a t e r s c o n n e c t e d i n p a r a l l e i .

Page 330: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

319

F i g . 8 .12 . T e m p e r a t u r e s o f h e a t i n g v a p o u r s ( dashed l i n e s ; numbers deno te e v a p o r a t o r e f f e c t s ) and j u i c e ( s o l i d l i n e s ) . T h i c k l i n e s - f i r s t week o f t h e s e a s o n , t h i n l i n e s - t e n t h week o f t h e s e a s o n .

t he hea t consumpt ion components , p a r t i c u l a r a t t e n t i o n was p a i d t o t h e s u g a r

h o u s e . The h e a t i n g - v a p o u r demand o f t h e vacuum pans was c a l c u l a t e d on t h e b a s i s

o f t h e mass b a l a n c e o f t h e s u g a r c r y s t a l l i z a t i o n p r o c e s s . The demand f i g u r e s

c o r r e s p o n d i n g t o t h e f i v e measurement s e s s i o n s were c o n t a i n e d i n t h e range

14 .1-16 .8 kg/100 kg b , w i t h a t e n d e n c y t o i n c r e a s e as t h e season p r o g r e s s e d . As

t he v a p o u r used i n vacuum-pan s t e a m i n g - o u t was s u p p l i e d v i a a s e p a r a t e s u p p l y

l i n e , i t was p o s s i b l e t o measure i t s consumpt ion d i r e c t l y , and i n measurement

s e s s i o n s 1-4 t h e r e s u l t s were n e a r l y i d e n t i c a l , a t 0 . 9 - 1 . 0 kg/100 kg b. The

v a l u e d e t e r m i n e d i n measurement s e s s i o n 5 was 1.4 kg/100 kg b.

I n a d d i t i o n t o t he e x h a u s t s team, s a t u r a t e d b o i l e r steam ( w i t h d r a w n f rom t h e

b o i l e r drum) t h r o t t l e d t o 12 ba r i s s u p p l i e d t o t h e f a c t o r y f o r such p u r p o s e s as

h e a t i n g f u e l o i l b e f o r e t he b u r n e r s , as w e l l as o i l a t o m i z a t i o n i n t h e b u r n e r s

i n s t a l l e d i n t h e b o i l e r f u r n a c e and i n t h e l ime k i l n . I n t h e f i v e measurement

s e s s i o n s , t he consumpt ion o f 12 ba r steam remained n e a r l y c o n s t a n t a t

0 .3 -0 .4 kg/100 kg b.

Page 331: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

320

8 .3 .5 Heat b a l a n c e o f t h e therma l sys tem

The hea t b a l a n c e c a l c u l a t i o n s were pe r f o rmed i n t h e f o l l o w i n g manner :

- u s i n g t h e r e s u l t s o f f l o w measurements ( o r t he c a l c u l a t e d mass b a l a n c e d a t a )

and t he t e m p e r a t u r e v a l u e s measu red , t he v a p o u r o r steam consumpt ion was

d e t e r m i n e d f o r a l l hea t r e c e i v e r s , and t h e t o t a l consumpt ion o f v a p o u r s f rom t h e

i n d i v i d u a l e v a p o r a t o r e f f e c t s was c a l c u l a t e d ;

- u s i n g t he v a l u e s o f t h e e v a p o r a t o r pa rame te rs measu red , t h e mass and hea t

b a l a n c e s o f t h e e v a p o r a t o r , i n c l u d i n g v a p o u r f l o w s ( a v a i l a b l e f o r p r o c e s s

h e a t i n g ) f rom t h e i n d i v i d u a l e f f e c t s , were c a l c u l a t e d .

Owing t o measurement e r r o r s , t h e t o t a l v a p o u r consumpt ion may d i f f e r f rom

t h e c a l c u l a t e d a v a i l a b l e v a p o u r f l o w . I f t h e d i f f e r e n c e i s l e s s t han

TABLE 8.10

Steam and v a p o u r f l o w s (kg /100 kg b ) between s o u r c e s and r e c e i v e r s i n t he thermal s y s t e m .

No. R e c e i v e r s E x h a u s t steam 1

S o u r c e s E v a p o r a t o r e f f e c t s O t h e r s

10

11

12 13

14 15 16 17 18 19

20 21 22 23

E x t r a c t o r R a w - j u i c e h e a t e r s P r e - 1 i m e d - j u i c e h e a t e r s C l e a r - j u i c e h e a t e r s H e a t e r a f t e r c a r b o n a t a t i o n I I 2.70 T h i n - j u i c e h e a t e r s 1.76 1.69 2.08 1.96 O i l t a n k s 0.25 Pu lp d r y i n g and p e l l e t i n g 0.02 H e a t i n g o f p r o d u c t s t o r e s 0.50 H e a t i n g o f f a c t o r y b u i l d i n g s 0.19 H e a t i n g o f o f f i c e b u i l d i n g s 0.16 Main f e e d - w a t e r tank 0.13 M o l a s s e s and a f f . - s y r u p t a n k s 0.12 M e l t e r C 0.02 Sy rup A t anks 0.37 Sy rup Β t anks 0.12 M e l t e r Β 0.33 Vacuum pans A , B, C 14.13 Vacuum-pan s t e a m i n g - o u t 0.86 C e n t r i f u g a l s 0.22 Sugar d r y e r 0.48 E v a p o r a t o r t o t a l 1.8 4.4 E x h a u s t - s t e a m consumpt ion 30.6 O i l b u r n e r s i n b o i l e r and l ime k i l n

0.83

1.86 2.51

5.95 vacuum-pan v a p o u r

condensa te

18.8 5.2 6.0

12 ba r steam 24

Page 332: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

321

1 kg/100 kg b , t hen t he a c c u r a c y o f t h e measurements can be r e g a r d e d as

s a t i s f a c t o r y . I t can be added t h a t t h i s v a l u e i s e q u i v a l e n t t o d e t e r m i n i n g j u i c e

c o n c e n t r a t i o n s i n t he f i r s t and second e v a p o r a t o r e f f e c t s w i t h an a c c u r a c y o f

0.1% DS.

The hea t b a l a n c e d e t e r m i n e d u s i n g t h e r e s u l t s o f t h e second measurement

s e s s i o n ( t h i r d week o f t he s e a s o n ) i s p r e s e n t e d i n T a b l e 8 .10 .

8 .3 .6 E v a l u a t i o n o f t he hea t economy and i d e n t i f i c a t i o n o f p o s s i b l e improvements

The r e s u l t s o f t h e measurements and t h e s u b s e q u e n t hea t b a l a n c e c a l c u l a t i o n s

c o n f i r m e d t h a t t h e hea t economy i s q u i t e e f f e c t i v e . No s u b s t a n t i a l d i s c r e p a n c i e s

were o b s e r v e d between t he p o t e n t i a l e f f e c t i v e n e s s o f t h e e n e r g y c o n v e r s i o n and

d i s t r i b u t i o n p r o c e s s e s and t he r e a l b e h a v i o u r o f t h e the rma l s y s t e m . From

a d e t a i l e d r e v i e w o f t he hea t r e c e i v e r s , h o w e v e r , a number o f p o s s i b l e smal l

improvements o f hea t u t i l i z a t i o n can be i d e n t i f i e d .

As r e g a r d s t he s u g a r h o u s e , i t was o b s e r v e d d u r i n g s e s s i o n 5 t h a t t h e v a p o u r

consumpt ion i n vacuum-pan s t e a m i n g - o u t changed w i t h o u t a p p a r e n t r e a s o n ; t h i s

i n d i c a t e s t h a t i f more a t t e n t i o n i s p a i d t o t he f u n c t i o n i n g o f t h e s teaming

equ ipmen t , t hen v a p o u r can be s a v e d . As some smal l s y r u p t a n k s a r e hea ted by

f i r s t - e f f e c t v a p o u r , a hea t s a v i n g can be o b t a i n e d u s i n g s e c o n d - e f f e c t v a p o u r

i n s t e a d . F u r t h e r m o r e , some o t h e r s y r u p t a n k s a r e d i r e c t l y hea ted by s e c o n d -

e f f e c t v a p o u r w i t h o u t any a r rangemen ts t o s e c u r e a u n i f o r m t e m p e r a t u r e

d i s t r i b u t i o n i n t h e s y r u p vo lume . T h i s i s a s s o c i a t e d w i t h a r i s k o f l o c a l l y

o v e r h e a t e d zones c a u s i n g e x c e s s i v e hea t c o n s u m p t i o n . T h i s s i t u a t i o n can be

improved e i t h e r by imp lement ing i n d i r e c t h e a t i n g , o r by i n s t a l l i n g m i x i n g

d e v i c e s i n d i r e c t l y hea ted t a n k s .

As r e g a r d s smal l e x h a u s t - s t e a m r e c e i v e r s , some o f them can a c t u a l l y be

s u p p l i e d w i t h f i r s t - o r s e c o n d - e f f e c t v a p o u r . I n t h e f i r s t p l a c e , t h i s a p p l i e s

t o o i l - t a n k h e a t i n g , as w e l l as t o h e a t i n g o f f a c t o r y b u i l d i n g s . The h e a t i n g

sys tem i n t h e o f f i c e b u i l d i n g can a l s o be s u p p l i e d w i t h s e c o n d - e f f e c t v a p o u r .

F i n a l l y , i t was o b s e r v e d t h a t t h e f l o w o f t h e m i x t u r e o f v a p o u r and

noncondensab les w i t h d r a w n f rom t h e e v a p o r a t o r by v e n t i n g c o u l d be r e d u c e d

w i t h o u t any a d v e r s e e f f e c t s i n t h e hea t t r a n s f e r i n t e n s i t y . The a s s o c i a t e d

e n e r g y - s a v i n g p o t e n t i a l can be u t i l i z e d , p r o v i d i n g t h e o p e r a t i n g p e r s o n n e l

o p e r a t e t he v e n t i n g sys tem more c a r e f u l l y .

The e s t i m a t e d e f f e c t s o f t h e improvements l i s t e d above were c a l c u l a t e d u s i n g

a computer p rogram f o r e v a p o r a t o r b a l a n c e c a l c u l a t i o n s . The r e s u l t s a r e l i s t e d

i n T a b l e 8 .11. O n l y i n t he case o f r e p l a c i n g e x h a u s t steam by v a p o u r s i n t h e

h e a t i n g o f c e r t a i n r e c e i v e r s , h o w e v e r , can t h e e s t i m a t e s be t r e a t e d as t h e

v a l u e s o f e x p e c t e d s a v i n g s . O t h e r e s t i m a t e s , o b t a i n e d on t h e " i f - t h e n " b a s i s ,

i n d i c a t e t h e o r d e r o f magn i tude b u t l e a v e a marg in o f u n c e r t a i n t y abou t t h e

Page 333: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

322

TABLE 8.11

E s t i m a t e d h e a t i n g - s t e a m s a v i n g s r e s u l t i n g f rom v a r i o u s improvements o f t h e h e a t economy.

~ I 77. ~ E s t i m a t e d steam No. S p e c i f i c a t i o n 3 ^ ^ . ^ g

1 Reduc ing t he v a p o u r consumpt ion i n vacuum-pan s t e a m i n g - o u t by 15% 0, .06

2 R e p l a c i n g f i r s t - e f f e c t v a p o u r by s e c o n d - e f f e c t v a p o u r i n t h e h e a t i n g o f smal l s y r u p t a n k s 0 .02

3 Reduc ing t h e consumpt ion o f s e c o n d - e f f e c t v a p o u r i n t he d i r e c t h e a t i n g o f s y r u p t a n k s 0 .20

4 R e p l a c i n g e x h a u s t steam by f i r s t - and s e c o n d - e f f e c t v a p o u r i n t he h e a t i n g o f o i l t anks and f a c t o r y b u i l d i n g s 0 .28

5 R e p l a c i n g e x h a u s t steam by s e c o n d - e f f e c t v a p o u r i n t he h e a t i n g o f t h e o f f i c e b u i l d i n g 0, .06

6 Reduc ing t he f l o w o f v a p o u r - n o n c o n d e n s a b l e s m i x t u r e w i t h d r a w n f rom t h e e v a p o r a t o r by 25% 0, .10

a t t a i n a b l e v a l u e s o f t h e s a v i n g s . (Mos t n o t a b l y , t h i s a p p l i e s t o t h e vacuum-pan

s t e a m i n g - o u t and t o t he v e n t i n g o f n o n c o n d e n s a b l e s . I f r e d u c t i o n s o f t h e v a p o u r

f l o w s by 15% and 25%, r e s p e c t i v e l y , can be a t t a i n e d , t hen steam s a v i n g s o f

0.06 kg/100 kg b and 0.10 kg/100 kg b , r e s p e c t i v e l y , seem t o be w i t h i n r e a c h .

The assump t i ons on v a p o u r - f l o w r e d u c t i o n , h o w e v e r , can o n l y be p r o v e d by

p r a c t i c a l r e s u l t s . ) T h e r e f o r e , T a b l e 8.11 can o n l y be r e g a r d e d as a r e v i e w o f

p o s s i b l e r a t i o n a l i z a t i o n measures and t h e i r r e l a t i v e i m p o r t a n c e , bu t n o t t h e i r

a b s o l u t e e f f e c t s .

8.4 FACTORY FEATURING AN ADVANCED ENERGY SYSTEM

8.4.1 I n t r o d u c t o r y remarks

A l t h o u g h t h e p r e s e n t book i s assumed t o be c o n c e r n e d m a i n l y w i t h w h i t e - s u g a r

f a c t o r i e s , i t seems r e a s o n a b l e t o g i v e , i n t h i s S e c t i o n , a summary o f s t e p - b y -

s t e p improvements i n t r o d u c e d on an advanced e n e r g y sys tem i n a r a w - s u g a r

f a c t o r y . P u t t i n g a s i d e t h e p r o c e s s - s p e c i f i c a s p e c t s o f t h i s p a r t i c u l a r c a s e , i t

may be i n t e r e s t i n g t o see how much e n e r g y can be s a v e d , and how i m p o r t a n t t h e

power b a l a n c e becomes i n a modern f a c t o r y u t i l i z i n g e n e r g y v e r y e f f i c i e n t l y .

The i n f o r m a t i o n p r e s e n t e d be low i s e x t r a c t e d p a r t l y f rom p u b l i c a t i o n s ( r e f s .

18,19) and p a r t l y f rom the m a t e r i a l o b t a i n e d d i r e c t l y f rom P f e i f e r & L a n g e n

Company, C o l o g n e , FRG ( r e f . 1 9 , 2 0 ) .

The A p p e l d o r n f a c t o r y was e r e c t e d i n t he p e r i o d 1975-77. I t s main p r o d u c t i s

raw s u g a r d e s t i n e d f o r f u r t h e r p r o c e s s i n g i n a r e f i n e r y owned by t h e same

company.

The i n i t i a l p r o c e s s i n g c a p a b i l i t y was 4500 t / d . Howeve r , t h e equ ipment was

d imens ioned t o make i t p o s s i b l e t o i n c r e a s e t he p r o c e s s i n g c a p a b i l i t y w i t h o u t

f u r t h e r heavy i n v e s t m e n t . The l a y o u t o f t he p r o c e s s s t a t i o n s and t h e main

Page 334: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

323

f a c t o r y b u i l d i n g were a l s o d e s i g n e d t o f a c i l i t a t e f u t u r e e x t e n s i o n s . F o l l o w i n g

t h e e v o l u t i o n o f f u e l and power p r i c e s i n FRG, advan tage was taken o f t h e s e

s p e c i a l f e a t u r e s o f t he A p p e l d o r n f a c t o r y , and a number o f improvements were

i n t r o d u c e d a im ing t o improve t h e o v e r a l l economic r e s u l t s a n d , i n p a r t i c u l a r , t o

r e d u c e t he e n e r g y c o s t s .

A t t h e i n i t i a l steam consumpt ion l e v e l o f abou t 27 kg/100 kg b, t h e f a c t o r y

c o u l d i n p r i n c i p l e be c o n s i d e r e d as r a t h e r e n e r g y - e f f i c i e n t . W i th c a r e f u l l y

d e s i g n e d p r o c e s s and therma l sys tem schemes as w e l l as modern equ ipment and

a u t o m a t i c c o n t r o l s , i t was p o s s i b l e t o p r e v e n t u n n e c e s s a r y e n e r g y was te and t o

keep t h e e n e r g y c o n v e r s i o n , d i s t r i b u t i o n and u t i l i z a t i o n p r o c e s s e s w e l l under

c o n t r o l . T h e r e f o r e , when d e s i g n i n g and imp lemen t ing t h e improvemen ts , a t t e n t i o n

was t u r n e d t o two g r o u p s o f r a t i o n a l i z a t i o n m e a s u r e s :

- r e d u c i n g t h e t o t a l e n e r g y demand o f t h e s u g a r m a n u f a c t u r i n g p r o c e s s ;

- i m p r o v i n g t he c a p a b i l i t i e s o f t he e n e r g y s y s t e m .

8 .4 .2 E v o l u t i o n o f t h e s u g a r m a n u f a c t u r i n g p r o c e s s

The f a c t o r y i s e q u i p p e d w i t h a t o w e r e x t r a c t o r , c l a s s i c a l j u i c e p u r i f i c a t i o n

s t a t i o n , m u l t i p l e - s t a g e e v a p o r a t o r s t a t i o n and b a t c h - t y p e c r y s t a l l i z a t i o n

equ ipmen t . I n i t i a l l y , a j u i c e d r a f t abou t 125 kg/100 kg b was m a i n t a i n e d . The

e v a p o r a t o r s - f o u r R o b e r t - t y p e and two f a l l i n g - f i l m u n i t s , w i t h h e a t i n g s u r f a c e 2

a r e a s o f 2000 m each - were a r r a n g e d i n a q u i n t u p l e - e f f e c t s t a t i o n . A t a t h i n -

j u i c e c o n c e n t r a t i o n abou t 14% DS, a t h i c k - j u i c e c o n c e n t r a t i o n o f 66% DS was

m a i n t a i n e d .

The i n i t i a l v e r s i o n o f t h e s u g a r house was based on a s i n g l e - b o i l i n g

c r y s t a l l i z a t i o n p r o c e s s , w i t h raw s u g a r and s y r u p as t h e f i n a l p r o d u c t s . I n

o r d e r t o p roduce mo lasses needed i n t h e p u l p - d r y i n g p l a n t , a l o w - g r a d e p r o d u c t

s t a g e was added t o t h e c r y s t a l l i z a t i o n scheme. I n 1978, t h e c a p a c i t y o f t he l o w -

g rade s t a t i o n was s u f f i c i e n t t o p r o c e s s abou t h a l f o f t h e s y r u p f l o w . A t 66% DS

t h i c k - j u i c e c o n c e n t r a t i o n , t h e t h e o r e t i c a l w a t e r e v a p o r a t i o n i n t h e s u g a r house

was 8.7 kg/100 kg b.

F o l l o w i n g a d j u s t m e n t s o f t h e f a c t o r y e q u i p m e n t , t h e p r o c e s s i n g c a p a b i l i t y

a t t a i n e d 5000 t / d a l r e a d y i n 1979. I n o r d e r t o r e d u c e t he e n e r g y demand, t h e

w a t e r i n t a k e t o t h e p r o c e s s was r e d u c e d by g r a d u a l l y d e c r e a s i n g t h e j u i c e d r a f t

t o 117%. I n 1981, t h e e v a p o r a t i o n p r o c e s s was m o d i f i e d by a t t a c h i n g a v a p o u r

compress i on c i r c u i t t o t h e e v a p o r a t o r s t a t i o n and r e a r r a n g i n g v a p o u r and

condensa te d i s t r i b u t i o n t o t h e hea t r e c e i v e r s . As t h i s made i t p o s s i b l e t o

i n c r e a s e t h i c k - j u i c e c o n c e n t r a t i o n t o 68% DS, t h e hea t demand o f t h e s u g a r house

was r e d u c e d . Howeve r , a Q u e n t i n s t a t i o n was i n s t a l l e d i n t h e s u g a r house and t h e

c a p a c i t y o f t he l o w - g r a d e s t a t i o n was e x t e n d e d t o p r o c e s s t h e e n t i r e s y r u p f l o w ,

t h i s i n c r e a s i n g t h e hea t demand.

Page 335: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

324

I n 1986, t he p r o c e s s i n g c a p a b i l i t y was r a i s e d t o 6200 t / d . Owing t o e x t e n s i o n

o f t h e e x t r a c t o r ( t h e a v e r a g e e x t r a c t i o n t ime was changed f rom 87 t o 120 m i n ) ,

t he j u i c e d r a f t a t t a i n e d a v e r y low v a l u e o f 109%. A new f a l l i n g - f i l m u n i t w i t h 2

a h e a t i n g s u r f a c e a r e a o f 2500 m was i n s t a l l e d as t h e f i f t h e v a p o r a t o r e f f e c t ,

and t h e t h i c k - j u i c e c o n c e n t r a t i o n was i n c r e a s e d t o 72-73% DS. Even t hough t h e

c r y s t a l l i z a t i o n scheme was t r a n s f o r m e d t o i n c o r p o r a t e " t w o - a n d - a - h a l f - b o i l i n g "

( r aw s u g a r s I and I I , and a l o w - g r a d e p r o d u c t ) , h i g h t h i c k - j u i c e c o n c e n t r a t i o n

and t he i n t r o d u c t i o n o f c r y s t a l f o o t i n g r e s u l t e d i n t h e t h e o r e t i c a l w a t e r

e v a p o r a t i o n i n t h e s u g a r house be ing r e d u c e d t o 8.2 kg/100 kg b.

8 .4 .3 E v o l u t i o n o f t h e therma l sys tem

The 1978 v e r s i o n o f t h e therma l sys tem i s shown s c h e m a t i c a l l y i n F i g . 8 .13 ,

t o g e t h e r w i t h t he da ta on mass and hea t b a l a n c e s . The e v a p o r a t o r consumed

26.8 kg steam pe r 100 kg b. Owing t o a r a t h e r low hea t demand o f t he s u g a r

h o u s e , i t was i m p o s s i b l e t o u t i l i z e t he e n t i r e amount o f v a p o u r s , and a

r e l a t i v e l y l a r g e f l o w o f l a s t - e f f e c t v a p o u r t o the c o n d e n s e r had t o be a c c e p t e d .

The condensa te e n e r g y was n o t f u l l y u t i l i z e d . I n t h e power h o u s e , one t u r b o

g e n e r a t o r d r i v e n by a b a c k - p r e s s u r e t u r b i n e s u p p l i e d w i t h l i v e steam a t 58 bar

and 500°C was enough t o c o v e r t he power demand o f t h e f a c t o r y . Howeve r , a p a r t

o f t h e h e a t i n g - s t e a m f l o w had t o be s u p p l i e d v i a t h e t h r o t t l i n g - d e s u p e r h e a t i n g

s t a t i o n .

F o l l o w i n g t he e x t e n s i o n s o f t he f a c t o r y and t he r e s u l t i n g i n c r e a s e i n power

demand, a second t u r b o - g e n e r a t o r was i n s t a l l e d i n t he power h o u s e . A t h e o r e t i c a l

p o s s i b i l i t y a r o s e t o s e l l t h e power s u r p l u s t o t h e e x t e r n a l g r i d ; h o w e v e r , t h e

f a c t o r y was o f f e r e d a power p r i c e w h i c h t u r n e d o u t t o be t o o low t o c o v e r t h e

c o s t . T h i s s t i m u l a t e d a t h o r o u g h a n a l y s i s and r e - o r i e n t a t i o n o f t h e e n e r g y

p o l i c y t owa rds f a r - r e a c h i n g power and hea t s a v i n g s .

I t was d e c i d e d t o m o d i f y t h e the rma l sys tem by i n t r o d u c i n g t he c o m p r e s s i o n o f

f i r s t - e f f e c t v a p o u r i n an e l e c t r i c a l l y - d r i v e n mechan ica l c o m p r e s s o r . I n o r d e r t o

change t h e mass and h e a t b a l a n c e s o f t h e e v a p o r a t o r , r a w - j u i c e h e a t i n g w i t h

vacuum-pan v a p o u r s and p r e - 1 i m e d - j u i c e h e a t i n g w i t h condensa te were imp lemen ted .

T h i s made i t p o s s i b l e t o r e c i r c u l a t e 27.3 kg f i r s t - e f f e c t v a p o u r p e r 100 kg b e e t

i n t he v a p o u r - c o m p r e s s i o n c i r c u i t , and t o d e c r e a s e t h e h e a t i n g - s t e a m consumpt i on

i n t h e e v a p o r a t o r t o 23.6 kg/100 kg b. The 1981 v e r s i o n o f t h e the rma l sys tem i s

shown s c h e m a t i c a l l y i n F i g . 8 .14 .

Among t h e m o d i f i c a t i o n s i n t r o d u c e d a f t e r 1981, e x t e n s i o n o f t he e v a p o r a t o r

s t a t i o n p l a y e d t he main r o l e . F o l l o w i n g t he i n s t a l l a t i o n o f a f a l l i n g - f i l m 2

e v a p o r a t o r w i t h a h e a t i n g s u r f a c e a r e a o f 2500 m i n t h e l a s t e f f e c t , t h e t o t a l 2

h e a t i n g s u r f a c e a r e a o f t h e e v a p o r a t o r r e a c h e d 14500 m . T h i s made i t p o s s i b l e

t o m a i n t a i n 73% DS t h i c k - j u i c e c o n c e n t r a t i o n a t r e d u c e d t e m p e r a t u r e d i f f e r e n c e s

i n t h e i n d i v i d u a l e f f e c t s . I t t h u s became p o s s i b l e t o d e c r e a s e t he t e m p e r a t u r e

Page 336: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

325

Fig.

8

.14

. S

imp

lifi

ed

sche

me

of

the

ther

mal

sy

stem

of

the

App

eldo

rn

fact

ory

, 19

81

vers

ion

(aft

er

ref.

18

).

Fig.

8

.13

. S

imp

lifi

ed

sche

me

of

the

ther

mal

sy

stem

of

the

App

eldo

rn

fact

ory

, 19

78 v

ersi

on

(aft

er

ref.

18

).

Stea

m a

nd

vapo

ur

flow

s ar

e gi

ven

in

kg/lO

O

kg b

.

Page 337: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

326

Fig.

8.

16.

Sim

pli

fied

sch

eme

of t

he

ther

mal

sy

stem

of

the

App

eldo

rn

fact

ory

, 19

86 v

ersi

on

(aft

er

ref.

18).

Fig. 8.15.

Scheme o

f the

util

izat

ion

of c

ondensate

in t

he A

ppel

dorn f

actory (after

ref. 18).

Page 338: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

327

(and t h e c o r r e s p o n d i n g s a t u r a t i o n p r e s s u r e ) o f t h e h e a t i n g s team, t h i s r e s u l t i n g

i n an i n c r e a s e d i s e n t r o p i c e n t h a l p y d r o p i n t h e t u r b i n e and an i n c r e a s e o f t h e

power g e n e r a t e d . Owing t o l o w e r j u i c e t e m p e r a t u r e s i n t h e i n d i v i d u a l e v a p o r a t o r

e f f e c t s , s u c r o s e decay was a l s o r e d u c e d , w i t h a c o n s i d e r a b l e r e d u c t i o n o f t h i c k -

j u i c e c o l o u r as a r e s u l t ( r e f . 1 7 , 1 8 ) .

V e r y i n t e n s i v e u t i l i z a t i o n o f t h e c o n d e n s a t e e n e r g y was a l s o implemented

( F i g . 8 . 1 5 ) . I n a s e r i e s o f hea t e x c h a n g e r s c o n n e c t e d t o t h e room h e a t i n g

s y s t e m , 1 i m e d - j u i c e and r a w - j u i c e h e a t i n g , f u e l - o i l h e a t i n g and w a s t e - w a t e r

t r e a t m e n t s y s t e m , t he t e m p e r a t u r e o f t he c o n d e n s a t e f a l l s f rom i t s i n i t i a l

v a l u e o f 92°C t o as low as 37°C. I n a d d i t i o n , depend ing on t h e t e m p e r a t u r e

l e v e l , p a r t s o f t he condensa te s t ream a re u t i l i z e d a s :

- wash w a t e r i n t h e c e n t r i f u g a l s ;

- s w e e t e n i n g - o f f w a t e r i n t he s l u d g e p r e s s e s ;

- f r e s h w a t e r i n t h e e x t r a c t o r .

The scheme o f t h e thermal s y s t e m , w i t h t h e da ta on mass and hea t b a l a n c e s

c h a r a c t e r i s t i c o f t he 1986 s e a s o n , a r e shown i n F i g . 8 .16 . As can be s e e n , t h e

h e a t i n g - s t e a m consumpt ion i n t h e e v a p o r a t o r was r e d u c e d t o 18.5 kg/100 kg b.

8 .4 .4 E v o l u t i o n o f t h e power b a l a n c e

When d e s i g n i n g t h e A p p e l d o r n s u g a r f a c t o r y , much e f f o r t was s p e n t on e n s u r i n g

a low power demand. F o r examp le , j u i c e pumps i n t h e e x t r a c t i o n and j u i c e

p u r i f i c a t i o n s t a t i o n s were e q u i p p e d w i t h t h y r i s t o r - c o n t r o l l e d d . c . d r i v e s ,

making i t p o s s i b l e t o a p p l y v a r i a b l e speed c o n t r o l . As a r e s u l t , power

consumpt ion as low as 2.54 kWh/100 kg b was a c h i e v e d i n t h e f i r s t s e a s o n .

The i n s t a l l a t i o n o f an e l e c t r i c a l l y - d r i v e n v a p o u r compresso r caused t h e power

demand o f t h e f a c t o r y t o i n c r e a s e by 13%. I n o r d e r t o r e s t o r e t h e r e l a t i o n

between power g e n e r a t e d and power consumed, a number o f r a t i o n a l i z a t i o n measures

were t a k e n :

- an e x t e n s i o n o f t he p r o c e s s i n g c a p a b i l i t y o f t h e f a c t o r y t ook p l a c e w i t h o u t

any e x t e n s i o n o f t h e b e e t s t o r a g e y a r d s ;

- t he e x i s t i n g w a s t e - w a t e r t r e a t m e n t p l a n t was r e p l a c e d by an a n a e r o b i c p l a n t

c h a r a c t e r i z e d by a l o w e r e n e r g y demand;

- o n l y a p a r t o f t he p r e s s e d p u l p was d i r e c t e d t o t he d r y i n g p l a n t (50% i n 1986) .

A r e v i e w was a l s o u n d e r t a k e n o f t h e e l e c t r i c d r i v e s and e l e c t r i c a l l y - d r i v e n

machines i n t h e e n t i r e f a c t o r y . F o r examp le , a l l t he t r o u g h c o n v e y o r s were

i n v e s t i g a t e d t o i d e n t i f y t h o s e t h a t c o u l d be r e p l a c e d by more e n e r g y - e f f i c i e n t

b e l t c o n v e y o r s . Howeve r , p a r t i c u l a r a t t e n t i o n was p a i d t o t h e f l o w m a c h i n e r y

and t h e p o s s i b i l i t i e s o f r e p l a c i n g t h r o t t l i n g c o n t r o l by v a r i a b l e speed c o n t r o l ,

o r i n t r o d u c i n g i n t e r m i t t e n t i n s t e a d o f c o n t i n u o u s o p e r a t i o n . T a k i n g advan tage o f

f a l l i n g p r i c e s o f f r e q u e n c y - c o n t r o l l e d a . c . d r i v e s , v a r i a b l e - s p e e d d r i v e s were

implemented i n b e e t pumps and k i l n - g a s c o m p r e s s o r s , as w e l l as i n p u l p p r e s s e s .

Page 339: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

328

TABL

E 8.

12

Powe

r co

nsum

ed a

nd p

ower

su

pplie

d to

th

e A

ppel

dorn

su

gar

fact

ory

, in

kW

h/10

0 kg

b

(aft

er

ref.

18).

1977

19

78

1979

19

80

1981

19

82

1983

19

84

1985

19

86

Bee

t st

orag

e ya

rds

0.27

2 0.

261

0.27

6 0.

294

0.26

4 0.

290

0.23

3 0.

164

0.14

0 0.

160

Bee

t ho

use

0.87

0 0.

860

0.85

6 0.

843

1.01

8 0.

980

0.96

3 0.

945

0.92

2 0.

830

Suga

r ho

use

0.61

4 0.

610

0.61

2 0.

633

0.60

9 0.

584

0.55

4 0.

642

0.63

0 0.

670

Pul

p-dr

ying

p

lan

t 0.

338

0.33

4 0.

350

0.34

3 0.

330

0.33

4 0.

271

0.26

0 0.

210

0.28

0 Po

wer

hous

e 0.

155

0.15

7 0.

160

0.15

4 0.

142

0.15

4 0.

159

0.15

8 0.

160

0.17

3 W

ater

ci

rcu

its

and

com

pres

sed-

air

supp

ly

0.15

5 0.

157

0.17

6 0.

156

0.16

2 0.

149

0.16

0 0.

157

0.13

0 0.

140

Was

te-w

ater

tre

atm

ent

0.13

3 0.

201

0.22

8 0.

260

0.25

1 0.

263

0.17

8 0.

200

0.11

0 0.

110

Vapo

ur

com

pres

sor

0.39

0 0.

410

0.38

0 0.

290

0.24

0 0.

330

Powe

r ge

nera

ted

2.47

3 2.

506

2.61

2 2.

642

3.02

2 3.

012

2.75

2 2.

640

2.41

4 2.

534

Powe

r pu

rcha

sed

0.06

4 0.

074

0.04

6 0.

041

0.14

4 0.

152

0.14

6 0.

176

0.12

8 0.

159

Tota

l po

wer

su

pplie

d 2.

537

2.58

0 2.

658

2.68

3 3.

166

3.16

4 2.

898

2.81

6 2.

542

2.69

3

TABL

E 8.

13

Powe

r co

nsum

ed a

nd p

ower

su

pplie

d to

th

e A

ppel

dorn

su

gar

fact

ory

, in

kW

h/t

suga

r (a

fter

re

f. 18

).

1977

19

78

1979

19

80

1981

19

82

1983

19

84

1985

19

86"

Bee

t st

orag

e ya

rds

20.8

9 18

.63

19.2

8 21

.73

18.8

0 20

.94

16.5

4 11

.63

9.49

10

.70

Bee

t ho

use

66.7

9 61

.49

59.8

4 62

.23

73.3

4 71

.94

69.8

8 67

.76

65.4

8 53

.30

Suga

r ho

use

47.1

4 43

.62

42.8

0 46

.71

43.3

0 42

.16

39.4

7 45

.57

43.7

0 42

.90

Pulp

-dry

ing

pla

nt

25.9

4 23

.85

24.4

7 25

.34

23.4

8 24

.08

19.3

1 18

.30

14.8

1 18

.20

Powe

r ho

use

11.9

0 11

.19

11.2

0 11

.41

10.0

7 11

.10

11.3

0 11

.24

10.9

4 11

.20

Wat

er

circ

uit

s an

d co

mpr

esse

d-ai

r su

pply

11

.90

11.1

9 12

.07

11.5

2 11

.49

10.7

6 11

.40

11.1

5 9.

27

8.80

W

aste

-wat

er

trea

tmen

t 10

.18

14.1

7 15

.95

19.2

1 17

.52

19.0

3 12

.70

14.2

5 7.

70

8.70

Va

pour

co

mpr

esso

r 26

.60

28.4

0 25

.80

19.8

0 16

.20

20.5

0 Po

wer

ge

nera

ted

189.

82

179.

12

182.

42

195.

14

214.

39

217.

42

195.

96

187.

30

168.

65

164.

00

Powe

r pu

rcha

sed

4.92

5.

32

3.19

3.

01

10.2

1 10

.99

10.4

4 12

.40

8.94

10

.30

Tota

l po

wer

su

pplie

d 19

4.74

18

4.44

18

5.61

19

8.15

22

4.60

22

8.41

20

6.40

19

9.70

17

7.59

17

4.30

Page 340: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

329

As a r e s u l t , t h e t o t a l i n s t a l l e d power o f t h e d . c . d r i v e s r e a c h e d a l e v e l o f

3200 kW, and t h a t o f t he f r e q u e n c y - c o n t r o l l e d a . c . d r i v e s 1900 kW, w i t h t h e

v a r i a b l e speed d r i v e s d o m i n a t i n g i n t h e b e e t house and i n t h e s u g a r h o u s e . As

r e g a r d s t h e equ ipment i n s t a l l e d i n t he power house and i n t h e p u l p - d r y i n g

p l a n t , i t t u r n e d o u t t h a t t h e p o t e n t i a l e n e r g y s a v i n g s a r e t o o smal l t o j u s t i f y

t he i n v e s t m e n t c o s t s o f v a r i a b l e - s p e e d d r i v e s t h e r e .

The e v o l u t i o n o f t h e power consumpt ion i n s e v e n s e c t i o n s o f t h e f a c t o r y (and

t he v a p o u r c o m p r e s s o r ) i s i l l u s t r a t e d i n T a b l e s 8.12 and 8 .13 . As can be s e e n ,

t h e power consumpt ion o f t he v a p o u r compresso r has been o f f - s e t by t h e power

s a v i n g s a t t a i n e d i n t he b e e t s t o r a g e y a r d s , b e e t h o u s e , p u l p - d r y i n g p l a n t , w a t e r

s u p p l y sys tem and w a s t e - w a t e r t r e a t m e n t p l a n t . I t i s a l s o i n t e r e s t i n g t o see

t h a t i n t he s u g a r h o u s e , w h i l e t he power consumpt ion p e r 100 kg b e e t has

i n c r e a s e d due t o t he e x t e n s i o n s o f t he c r y s t a l l i z a t i o n scheme, a r e d u c t i o n o f

t he power consumpt ion p e r 1 t s u g a r was a c h i e v e d .

I n T a b l e s 8.12 and 8 . 1 3 , d a t a a r e a l s o g i v e n on t h e power s u p p l i e d t o t h e

f a c t o r y . I t can be c o n c l u d e d f rom t h e s t e e p i n c r e a s e s o f power g e n e r a t e d and

p u r c h a s e d w h i c h took p l a c e i n 1981 t h a t t h e hea t s a v i n g men t ioned i n t he

p r e c e d i n g S e c t i o n was a t t a i n e d a t t h e expense o f i n c r e a s e d power c o n s u m p t i o n .

I t can a l s o be seen t h a t t he measures t aken t o a d j u s t t h e power g e n e r a t i o n t o

chang ing power demand were q u i t e e f f e c t i v e , as a t p r e s e n t , t h e power p u r c h a s e d

does n o t e x c e e d 5-6% o f t he t o t a l power s u p p l i e d .

REFERENCES

1 L. S z y d l o , W. Lekawski and K. U r b a n i e c , M o d e r n i z a c j a g o s p o d a r k i c i e p l n e j Cukrown i K l e c i n a , G a z . C u k r o w . , 9 3 ( 7 - 8 ) (1985) 134.

2 N .K . P o l i s h c h u k , I s p o l z o v a n i e e n e r g o r e s u r s o v na E rken -Shakharskom sakharnom z a v o d e , Sakh . P r o m . , ( 6 ) (1986) 39-40.

3 K. U r b a n i e c , Ocena p r a k t y c z n y c h m o z l i w o s c i o s z c z e d z a n i a p a l i w a w g o s p o d a r c e e n e r g e t y c z n e j c u k r o w n i , G a z . C u k r o w . , 8 9 ( 4 ) (1981) 80-81.

4 Y u . D . G o l o v n y a k and L . G . B e l o s t o t s k i i , S h i r o k o v n e d r y a t nauchnye r a z r a b o t k i d l y a s n i z h e n i y a raskhoda t o p l i v a , Sakh . P r o m . , ( 8 ) (1981) 21-24.

5 K. U r b a n i e c , R a c j o n a l i z a c j a g o s p o d a r k i c i e p l n e j w c u k r o w n i a c h , G a z . C u k r o w . , 92 (2 ) (1984) 27-28.

6 C . H . I v e r s o n , W i t h e r g o e s t t h o u , oh BTU ? , Sugar J . , 45 (11) (1983) 17-22. 7 J . B o z e c , E v o l u t i o n de l a consommation t h e r m i q u e dans 1 ' i n d u s t r i e s u c r i e r e ,

I n d . A l i m . A g r i e , 100(7 -8 ) (1983) 477-480. 8 Anonymous, E n e r g y p rogram a t I m p e r i a l S u g a r , Sugar J . , 4 7 ( 1 ) (1984) 20. 9 B. K a r r e n , E x p e r i e n c e o f e n e r g y s a v i n g i n t he Canad ian s u g a r i n d u s t r y , i n :

F . O . L i c h t s Gu ide t o t h e Sugar F a c t o r y Mach ine I n d u s t r y , F . O . L i c h t GmbH, R a t z e b u r g , 1984, p p . A75-A88.

10 L . L . N e v i l l e , H o l l y Sugar C o r p o r a t i o n ' s c a p i t a l improvement p r o g r a m , Sugar y A z ú c a r , 80 (2 ) (1985) 49 ,52 .

11 G . K o w a l s k a , Po rzadkowan ie g o s p o d a r k i c i e p l n e j na p r z y k l a d z i e cuk rown i w i e l k o p o l s k i c h , G a z . C u k r o w . , 94 (4 ) (1986) 52-53.

12 W. L e k a w s k i , M o d e r n i z a c j a G o s p o d a r k i C i e p l n e j C u k r o w n i , S T C , Warszawa, 1986. 13 E . V . M l o d z y a n o w s k i i , V . S . B e r e z y u k and K . N . S a v c h u k , Ekonomnoe i s p o l z o v a n y e

e n e r g o r e s u r s o v , Sakh . P r o m . , ( 7 ) (1981) 22-27 . 14 E. Krupka and J . S z a d k o w s k i , Gospodarka c i e p l n a w Cukrown i G o s l a w i c e ,

G a z . C u k r o w . , 89 (1 ) (1981) 2 -5 .

Page 341: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

330

15 A . I . Khomenko, Ekonomya t o p i i v n o - e n e r g e t i c h e s k i k h r e s u r s o v - i t o g i i z a d a c h i , Sakh . P r o m . , (2) (1983) 35-39.

16 L . P . I g n a t e v ( e t a l . ) , O p y t r a b o t y po s n i z h e n i y u raskhoda t o p i i v n o -e n e r g e t i c h e s k i k h r e s u r s o v na A l e k s a n d r i i s k o m sakharnom z a v o d e , Sakh . P r o m . , (10) (1985) 32-34.

17 G. F e l t b o r g , p e r s o n a l commun ica t i on . 18 H. W e i d n e r , D i e B rüdenkompress ion i n e i n e r R o h z u c k e r f a b r i k , Z u c k e r i n d . ,

108(8) (1983) 736-742. 19 υ . C u r d t s , E i n Weg z u r V e r b e s s e r u n g d e r W ä r m e w i r t s c h a f t e i n e r R o h z u c k e r

f a b r i k - am B e i s p i e l d e r Z u c k e r f a b r i k A p p e l d o r n , Paper p r e s e n t e d a t t h e I n t e r n a t i o n a l C o n f e r e n c e " Improvement o f Bee t Sugar P r o d u c t i o n " , Warszawa, May 1987.

20 A . Co l sman , p e r s o n a l commun ica t i on .

Page 342: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

331

C h a p t e r 9

DESIGN OF MODERNIZED OR NEW ENERGY SYSTEMS

9.1 THE MODERNIZATION OF ENERGY SYSTEMS

C o n t r a r y t o the s t e p - b y - s t e p a p p r o a c h c o n s i d e r e d i n t h e p r e c e d i n g C h a p t e r ,

m o d e r n i z a t i o n o f a s u g a r f a c t o r y i n v o l v e s e x t e n s i v e changes t h a t a r e i n t r o d u c e d

e i t h e r a l l a t once o r i n a few s t e p s pe r f o rmed d u r i n g c o n s e c u t i v e o f f - s e a s o n

p e r i o d s . T y p i c a l l y , t h i s i s a s e r i o u s and c o s t l y u n d e r t a k i n g , v e r y se ldom aimed

s o l e l y a t e n e r g y s a v i n g s . Most o f t e n t h e r e a r e s e v e r a l t e c h n o l o g i c a l o b j e c t i v e s ,

among w h i c h an e x t e n s i o n o f t h e p r o c e s s i n g c a p a b i l i t y has a l e a d i n g r o l e and

the o t h e r s s e r v e the pu rpose o f c u t t i n g down m a n u f a c t u r i n g c o s t s . As t h e

u n d e r t a k i n g has t o be comp le ted w i t h i n a d e f i n i t e c o s t / t i m e f r amework , i t may be

d i f f i c u l t t o a r r i v e a t an i n i t i a l p rob lem f o r m u l a t i o n , and even more so t o f i n d

t he s o u g h t - a f t e r s o l u t i o n . T h e r e f o r e , m o d e r n i z a t i o n u s u a l l y r e q u i r e s t he

e x p e r t i s e o f s p e c i a l i z e d e n g i n e e r i n g compan ies .

P u b l i c a t i o n s r e l a t e d t o t h e m e t h o d o l o g i c a l p rob lems o f m o d e r n i z a t i o n o f s u g a r

f a c t o r i e s a r e r a t h e r s c a r c e , as t h i s s u b j e c t i s r e g a r d e d as a p a r t o f t h e know-

how o f t h e companies i n v o l v e d . A book and a few a r t i c l e s can be f ound r e v i e w i n g

t h e g e n e r a l d e s i g n p r o c e d u r e s , as w e l l as t h e s p e c i a l i z e d q u e s t i o n s o f e n e r g y

economy improvements ( r e f s . 1 - 3 ) .

The i n v e s t i g a t i o n o f m o d e r n i z a t i o n r e q u i r e m e n t s b e g i n s w i t h d r a w i n g up an

i n v e n t o r y o f e x i s t i n g f a c t o r y s u b s y s t e m s . The number o f subsys tems t y p i c a l l y

d e f i n e d i s 25-30. F o r e v e r y s u b s y s t e m , c r u c i a l d a t a on p r o c e s s a p p a r a t u s and

machines a r e r e g i s t e r e d , as w e l l as on a s s o c i a t e d e l e c t r i c a l e q u i p m e n t , c o n t r o l

c i r c u i t r y and measur ing i n s t r u m e n t s . D raw ings a r e s i m u l t a n e o u s l y p r e p a r e d o f

e s s e n t i a l f a c t o r y b u i l d i n g s , t o g e t h e r w i t h a s i t e p l a n . The i n f o r m a t i o n t h u s

a c q u i r e d makes i t p o s s i b l e t o e v a l u a t e t h e f a c t o r y ' s t e c h n o l o g i c a l base and t h e

s t a t e o f t h e b u i l d i n g s .

The n e x t s t e p u s u a l l y c o n s i s t s o f d i s c u s s i n g t h e da ta w h i c h a r e p a r t i c u l a r l y

i m p o r t a n t t o d e t e r m i n a t i o n o f t h e o b j e c t i v e s and i d e n t i f i c a t i o n o f t h e c o s t - and

t i m e - r e l a t e d c o n s t r a i n t s o f t h e m o d e r n i z a t i o n . The da ta o f c r u c i a l i m p o r t a n c e

a r e as f o l l o w s :

- b e e t p o l a r i z a t i o n ;

- s u g a r l o s s e s i n t h e m a n u f a c t u r i n g p r o c e s s , i n c l u d i n g t h e i r d i s t r i b u t i o n

between e x t r a c t i o n , c a r b o n a t a t i o n s l u d g e , mo lasses and u n d e f i n e d l o s s ;

- p u r i t i e s o f raw j u i c e , t h i c k j u i c e and m o l a s s e s ;

- t he main f e a t u r e s o f t h e j u i c e p u r i f i c a t i o n scheme, i n c l u d i n g t e m p e r a t u r e s o f

e s s e n t i a l p r o c e s s s t e p s ;

- CaO r a t e s and main f e a t u r e s o f t h e l i m e - s l a k i n g p r o c e s s ;

Page 343: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

332

- t he main f e a t u r e s o f t he p u l p - p r e s s i n g and p u l p - d r y i n g p r o c e s s e s ;

- t he main f e a t u r e s o f t he s u g a r c r y s t a l l i z a t i o n scheme and s u g a r b o i l i n g

p r o c e s s ;

- au toma t i on r e q u i r e m e n t s ;

- e n v i r o n m e n t a l p r o t e c t i o n r e q u i r e m e n t s ;

- the f u e l t y p e and the e x p e c t e d l e v e l o f f u e l demand i n t h e power house and i n

the p u l p - d r y i n g p l a n t ;

- power consumpt ion r e q u i r e m e n t s .

Hav ing a c q u i r e d n e c e s s a r y knowledge o f t h e c o n d i t i o n o f t h e f a c t o r y and t he

p r i o r i t i e s o f t he m o d e r n i z a t i o n o b j e c t i v e s , t he d e s i g n e n g i n e e r s s h o u l d be a b l e

t o c a l c u l a t e and p r e p a r e s k e t c h e s o f r e c o n s t r u c t i o n p r o p o s a l s f o r t h e most

i m p o r t a n t f a c t o r y s e c t i o n s . Depending on s p e c i f i c c o n d i t i o n s , t he f o l l o w i n g

m a t e r i a l may be r e q u i r e d :

- scheme o f b e e t r e c e p t i o n , u n l o a d i n g , t r a n s p o r t and s t o r a g e ;

- mass b a l a n c e s o f e x t r a c t i o n , j u i c e p u r i f i c a t i o n , e v a p o r a t i o n and s u g a r

c r y s t a l l i z a t i o n ;

- h e a t b a l a n c e o f t he therma l s y s t e m ;

- h e a t b a l a n c e o f t he p u l p - d r y i n g p l a n t ;

- v e r i f i c a t i o n o f r a t i n g o f t h e e x i s t i n g equ ipment and recommendat ions on t he

s e l e c t i o n o f new equ ipment u n i t s ;

- e n e r g y ( h e a t and power ) b a l a n c e o f t h e power h o u s e .

C o m p l e t i o n o f t h i s s t e p makes i t p o s s i b l e t o d e t e r m i n e t h e scope o f

equ ipment p u r c h a s e s and c o n s t r u c t i o n w o r k , as w e l l as t o p l a n d i s m a n t l i n g o f

t he e x i s t i n g e q u i p m e n t , c o n s t r u c t i o n w o r k , a s s e m b l i n g o f new equ ipment and

p i p i n g , i n s t a l l a t i o n o f e l e c t r i c a l equ ipment and c o n t r o l c i r c u i t r y , e t c .

The s o l u t i o n s a r e u s u a l l y p r e p a r e d i n a number o f v e r s i o n s and d e s c r i b e d i n a

r e p o r t on p o s s i b l e and recommended c o u r s e s o f a c t i o n , c o s t p r o j e c t i o n s and

p r e l i m i n a r y t i m e - s c h e d u l e s . T h i s c o n s t i t u t e s a b a s i s f o r d e c i s i o n - m a k i n g on

d e t a i l e d m o d e r n i z a t i o n d e s i g n s .

The d e c i s i o n s t e p d e s e r v e s most a t t e n t i o n as i t d e t e r m i n e s , t o a g r e a t

e x t e n t , the economic r e s u l t s o f t h e e n t i r e u n d e r t a k i n g . The c o s t s t r u c t u r e o f

a t y p i c a l m o d e r n i z a t i o n case i s c h a r a c t e r i z e d by a p p r o x i m a t e l y equa l

c o n t r i b u t i o n s o f t he f o l l o w i n g c o s t componen ts :

- t he c o s t o f t he c o n s t r u c t i o n w o r k ;

- t he c o s t o f p u r c h a s i n g and a s s e m b l i n g t he main e q u i p m e n t ;

- t he c o s t o f p i p i n g , e l e c t r i c a l e q u i p m e n t , c o n t r o l and i n s t r u m e n t a t i o n

c i r c u i t r y , e n g i n e e r i n g s e r v i c e s , e t c .

P r i o r t o making t h e d e c i s i o n s , one can a l s o c o n s i d e r t h e m o d e r n i z a t i o n c o s t s as

a sum o f two componen ts :

( i ) t he c o s t o f t h e i n c r e a s e o f p r o c e s s i n g c a p a b i l i t y ;

Page 344: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

333

( i i ) the c o s t o f t he o p t i m i z a t i o n o f d e t a i l e d s o l u t i o n s .

I t can be e s t i m a t e d t h a t component ( i i ) i s t y p i c a l l y o f t he o r d e r o f 15-20% o f

t he t o t a l c o s t . By o p t i m i z i n g t he s o l u t i o n s , h o w e v e r , one may i n f l u e n c e t h e

economic r e s u l t s o f t he m o d e r n i z a t i o n t o a d e g r e e comparab le w i t h t h a t

a s s o c i a t e d w i t h t he p r o c e s s i n g - c a p a b i l i t y i n c r e a s e . A c t u a l l y , t h i s i s where t h e

impo r t ance o f improvements o f t h e e n e r g y economy l i e s . I t i s n o t unusua l t h a t

t h e s e improvements a r e d e c i s i v e i n o p t i m i z i n g t h e m o d e r n i z a t i o n s o l u t i o n s .

O p t i m i z a t i o n o f t h e e n e r g y economy o f a m o d e r n i z e d s u g a r f a c t o r y i s a

d e c i s i o n p rob lem unde r many c o n s t r a i n t s . W i t h i n t h e f i e l d o f f e a s i b l e s o l u t i o n s ,

each e n e r g y - s a v i n g t e c h n i q u e o f t h o s e c o n s i d e r e d i n C h a p t e r s 3 t o 7 and

s y s t e m a t i z e d i n S e c t i o n 8.1 can be c o n s i d e r e d f o r a p p l i c a t i o n . The s e t o f

t e c h n i q u e s s a t i s f y i n g t he c o n s t r a i n t s and p r o m i s i n g t h e b e s t economic r e s u l t s

c o n s t i t u t e s t h e d e s i r e d s o l u t i o n ( s e e a l s o S e c t i o n 9 . 4 ) .

I t can be c o n c l u d e d f rom t h e above i n t r o d u c t i o n t h a t i t i s d i f f i c u l t t o

r e p o r t a m o d e r n i z a t i o n example i n g r e a t d e t a i l . As a r u l e , t h e p r e s e n t a t i o n s

p u b l i s h e d a r e v e r y c o n c i s e and f e w , i f a n y , t e c h n i c a l d e t a i l s a r e g i v e n

( r e f s . 4 - 7 ) . T r y i n g t o change t h i s s i t u a t i o n a l i t t l e w i t h o u t e x c e e d i n g t h e

space a v a i l a b l e i n t h e p r e s e n t b o o k , summaries a r e p r e s e n t e d i n S e c t i o n s 9.2

and 9.3 o f two r e a l - l i f e c a s e s : one f a c t o r y c h a r a c t e r i z e d b y r a t h e r p o o r

i n i t i a l e n e r g y u t i l i z a t i o n and a n o t h e r i n w h i c h t h e e n e r g y economy was q u i t e

d e c e n t . Bo th m o d e r n i z a t i o n s were u l t i m a t e l y aimed a t e x t e n s i o n s o f t h e

p r o c e s s i n g c a p a b i l i t y , t h i s b e i n g v e r y much dependen t on improvements o f t h e

e n e r g y economy. Pu lp d r y i n g was n o t t aken i n t o c o n s i d e r a t i o n .

The p r e s e n t a t i o n s c o n c e n t r a t e on t h e most r e l e v a n t p a r t s o f t h e m o d e r n i z a t i o n

c o n c e p t s , namely t h o s e c o n c e r n e d w i t h p o s s i b l e v e r s i o n s o f t h e r e c o n s t r u c t e d

thermal sys tems and t h e i r h e a t b a l a n c e s . I t i s n o t e w o r t h y , h o w e v e r , t h a t t h e

impo r tance o f t h e power b a l a n c e s has a l s o come i n t o f o c u s . I n t h e f i r s t e x a m p l e ,

p r e s e n t e d i n S e c t i o n 9 . 2 , owing t o a r e l a t i v e l y l a r g e n e t h e a t demand, t h e

f a c t o r y i s g e n e r a l l y a b l e t o s e l l a power s u r p l u s t o t h e e x t e r n a l g r i d . I t i s

o n l y t he most e n e r g y - e f f i c i e n t v e r s i o n o f t h e the rma l sys tem w h i c h r e d u c e s t h e

steam f l o w t h r o u g h t h e t u r b i n e t o a v a l u e l e s s t h a n t h a t r e q u i r e d f o r e l e c t r i c a l

s e l f - s u f f i c i e n c y . The second example p r e s e n t e d i n S e c t i o n 9.3 i s c o n c e r n e d w i t h

an e n e r g y sys tem i n w h i c h p o s s i b l e s i g n i f i c a n t h e a t s a v i n g s a r e accompanied by

a w i d e n i n g power d e f i c i t . I n t h i s s i t u a t i o n , measures t o r e d u c e t h e power

demand become an i m p o r t a n t p a r t o f t h e m o d e r n i z a t i o n , and t h e magn i t ude o f

complementary power p u r c h a s e s f rom t h e e x t e r n a l g r i d t akes a p l a c e i n t h e

e v a l u a t i o n o f m o d e r n i z a t i o n v e r s i o n s .

C o n c l u d i n g t h i s C h a p t e r and t h e e n t i r e b o o k , a summary i s g i v e n i n S e c t i o n

9.4 o f p r i n c i p l e s o f e n e r g y - s y s t e m d e s i g n u s i n g o p t i m i z a t i o n me thods .

Page 345: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

334

9.2 FACTORY CHARACTERIZED BY POOR I N I T I A L ENERGY U T I L I Z A T I O N

9.2.1 I n t r o d u c t o r y remarks

The f a c t o r y was e r e c t e d a t t h e b e g i n n i n g o f t h i s c e n t u r y . I n t h e 1930s and

1940s s a t e l l i t e p r o d u c t i o n f a c i l i t i e s were b u i l t , i n c l u d i n g an a l c o h o l

d i s t i l l e r y , a c a r b o n d i o x i d e p l a n t and a m a c h i n e - s h o p . A f t e r numerous

e x t e n s i o n s and m o d e r n i z a t i o n s o f t h e s u g a r f a c t o r y , a p r o c e s s i n g c a p a b i l i t y o f

3000 t / d was a t t a i n e d i n the 1960s. By comb in ing t h e s t e p - b y - s t e p app roach w i t h

two l i m i t e d - s c a l e m o d e r n i z a t i o n s d u r i n g a p e r i o d o f s e v e r a l y e a r s e n d i n g l a t e

i n t he 1970s, t he b u l k o f t he o l d p r o c e s s equ ipment was r e p l a c e d by new

m a c h i n e r y . The p r o c e s s i n g c a p a b i l i t y was t hen i n c r e a s e d t o 3900 t o n s p e r d a y ,

w i t h t h e maximum t h r o u g h p u t o f t he e x t r a c t i o n s t a t i o n e s t i m a t e d a t a b o u t

5000 t / d .

As t h e r e were o n l y min imal i n v e s t m e n t s i n t he the rma l sys tem d u r i n g t he most

r e c e n t p e r i o d o f f a c t o r y improvemen ts , symptoms o f i n a d e q u a t e i n s t a l l e d b o i l e r

c a p a c i t y became v i s i b l e a t t h i s p r o c e s s i n g c a p a b i l i t y . The managing s t a f f was

aware o f t he o u t d a t e d h e a t economy and t h e f a c t t h a t no f u r t h e r f a c t o r y

e x t e n s i o n s can be p l anned u n l e s s t h e the rma l sys tem i s t h o r o u g h l y m o d e r n i z e d .

As a m a t t e r o f f a c t , t h i s s i t u a t i o n was n o t u n e x p e c t e d . I t was d e l i b e r a t e l y

a l l o w e d t o c o i n c i d e w i t h t h e n e c e s s a r y i n s t a l l a t i o n o f r e p l a c e m e n t s f o r two o l d

e v a p o r a t o r b o d i e s i n the 2nd e f f e c t , t h e i r c e r t i f i c a t e s o f p r e s s u r e - v e s s e l

o p e r a t i o n above 2 b a r b e i n g due t o e x p i r e . C o n s e q u e n t l y , an e n g i n e e r i n g company

was h i r e d t o d e s i g n the n e c e s s a r y r e c o n s t r u c t i o n o f t h e therma l s y s t e m .

A number o f c o n s t r a i n t s and assump t i ons were f o r m u l a t e d i n advance by t h e

managing s t a f f o f t he f a c t o r y :

- the e n e r g y s a v i n g s s h o u l d make i t p o s s i b l e t o i n c r e a s e t h e p r o c e s s i n g

c a p a b i l i t y t o 5000 t / d , b u t t he n e s e s s a r y e x t e n s i o n s o f t h e p r o c e s s equ ipment

w i l l be c o n s i d e r e d a t a l a t e r d a t e ;

- no i n v e s t m e n t f unds a r e a v a i l a b l e f o r m o d e r n i z a t i o n o f t h e power house

e q u i p m e n t ;

- t he f a c t o r y has t o be s e l f - s u f f i c i e n t i n power , as t h e e x t e r n a l g r i d i s n o t

r e l i a b l e enough d u r i n g t h e w i n t e r p e r i o d o f peak l o a d s ;

- steam consumpt ion i n t he p r o d u c t i o n f a c i l i t i e s o u t s i d e t h e s u g a r f a c t o r y i s

w e l l under c o n t r o l and need n o t be a n a l y s e d ;

- i n t he s u g a r f a c t o r y , t he j u i c e d r a f t s h o u l d be i n c r e a s e d and t he c r y s t a l l i z

a t i o n scheme s h o u l d be a d j u s t e d t o i n c r e a s e t h e s u g a r o u t p u t ;

- due t o the c h a r a c t e r i s t i c s o f t h e e x i s t i n g t h i c k - j u i c e f i l t r a t i o n e q u i p m e n t ,

t h i c k - j u i c e c o n c e n t r a t i o n s h o u l d n o t exceed 65% DS.

Under such c i r c u m s t a n c e s , t h e t a s k o f t h e d e s i g n e r s was l e s s c o m p l i c a t e d

than i n a t y p i c a l case o f f a c t o r y m o d e r n i z a t i o n . I t was p o s s i b l e t o l i m i t t he

Page 346: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

335

e x t e n t o f t he i n v e n t o r y o f t he e x i s t i n g f a c t o r y subsys tems t o t he c o l l e c t i o n o f

e s s e n t i a l d a t a r e q u i r e d f o r c a l c u l a t i o n s o f t h e mass and h e a t b a l a n c e s o f t h e

therma l s y s t e m . O n l y f o r t he case o f t h e e v a p o r a t o r s t a t i o n and h e a t e r s

( t o g e t h e r w i t h t h e a s s o c i a t e d p i p i n g and a u x i l i a r y equ ipmen t ) were d e t a i l e d

schemes and l a y o u t d r a w i n g s p r e p a r e d . An i n v e n t o r y o f t h e r e l e v a n t s u p p o r t i n g

s t r u c t u r e s was a l s o drawn u p , and a s e p a r a t e e x a m i n a t i o n o f t he measur ing

i n s t r u m e n t s and c o n t r o l c i r c u i t s was u n d e r t a k e n .

9 .2 .2 B a s i c f a c t o r y d a t a

P r o c e s s i n g c a p a b i l i t y : 3900 t / d .

P o l a r i z a t i o n o f c o s s e t t e s : 14.0-14.5%.

E x t r a c t i o n s t a t i o n : two t r o u g h - t y p e e x t r a c t o r s .

J u i c e d r a f t : 108%.

R a w - j u i c e c o n c e n t r a t i o n and p u r i t y : 15.29% DS, 88.5%.

Pu lp p r e s s e d t o : 10.5% DS and 15.0% DS ( 4 / 5 and 1/5 o f t h e w e t - p u l p f l o w ,

r e s p e c t i v e l y ; t he f o r m e r p a r t i s s o l d t o f a r m e r s and t h e l a t t e r d i r e c t e d t o

a d r y e r ) .

K i l n g a s : 26.8% CO2 v o l .

J u i c e p u r i f i c a t i o n a c c o r d i n g t o t h e c l a s s i c a l scheme, c o m p r i s i n g :

- h o t p r e - l i m i n g a t 50°C, CaO r a t e 0.22 kg/100 kg b ;

- main l i m i n g a t 8 6 ^ C , CaO r a t e 1.30 kg/100 kg b ;

- 1 s t c a r b o n a t a t i o n a t 82°C;

- d e c a n t i n g and f i l t r a t i o n ;

- 2nd c a r b o n a t a t i o n a t 94°C, CaO r a t e 0.10 kg/100 kg b ;

- d o u b l e - s t a g e 2nd f i l t r a t i o n .

T h i n - j u i c e c o n c e n t r a t i o n and p u r i t y : 13.42% D S , 92.40%.

E v a p o r a t o r : q u a d r u p l e - e f f e c t , R o b e r t - t y p e b o d i e s .

T h i c k - j u i c e c o n c e n t r a t i o n : 60-62.5% DS.

Sugar h o u s e :

- s t a n d a r d - l i q u o r based t h r e e - b o i l i n g scheme w i t h t h e a f f i n a t i o n o f C s u g a r ;

- Β s u g a r and a f f i n e d C s u g a r m e l t e d i n t h i n j u i c e ;

- s t a n d a r d l i q u o r p r e p a r e d f rom t h i c k j u i c e and r e m e l t .

Sugar o u t p u t : 10.89 kg/100 kg b.

Power h o u s e :

- c o a l - f i r e d b o i l e r s , two u n i t s r a t e d 30 t / h and t h r e e u n i t s r a t e d 20 t / h ,

a v e r a g e e f f i c i e n c y abou t 60%;

- l i v e steam paramete rs 22 b a r , 320°C;

- two b a c k - p r e s s u r e t u r b i n e s r a t e d 3.3 MW e a c h , steam r a t e s a b o u t 11 kg /kWh;

- b a c k - p r e s s u r e 3.2 b a r .

The f a c t o r y s e l l s a power s u r p l u s t o t he e x t e r n a l g r i d .

Page 347: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

336

I cocí VC

I 3

Fig.

9.

1.

Sche

me

of t

he t

herm

al

syst

em a

nd m

ass

and

heat

bal

ance

d

ata,

fo

r fa

cto

ry

befo

re m

oder

niza

tion

(t

hic

k-ju

ice

conc

entr

atio

n 60

% D

S).

C

onde

nsat

es o

btai

ned

from

vap

our

stre

ams

mar

ked

* ar

e di

scha

rged

to

th

e se

wer

sy

stem

.

Page 348: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

337

Steam s u p p l y t o t he s u g a r m a n u f a c t u r i n g p r o c e s s :

- l i v e steam t h r o t t l e d t o 6 b a r t o t he c e n t r i f u g a l s and vacuum-pan s t e a m i n g ;

- h e a t i n g steam 3.2 b a r ( e x h a u s t steam and t h r o t t l e d l i v e s team) t o t h e

r e m a i n i n g r e c e i v e r s .

Steam consumpt ion a c c o r d i n g t o measurements : 44 .5 -48 .6 kg/100 kg b .

Power c o n s u m p t i o n : e s t i m a t e d a t abou t 2.5 kWh/100 kg b.

Normal f u e l c o n s u m p t i o n : 6 .20-7 .00 kg/100 kg b.

I t s h o u l d be n o t e d t h a t i n p a r a l l e l t o s u p p l y i n g e n e r g y t o t h e s u g a r f a c t o r y ,

t he power house s u p p l i e s power and steam t o t h e f o l l o w i n g p r o d u c t i o n f a c i l i t i e s :

- a l c o h o l d i s t i l l e r y ;

- c a r b o n - d i o x i d e p l a n t ;

- m a c h i n e - s h o p .

The combined power demand o f t h e s e f a c i l i t i e s does n o t e x c e e d 0.8 MW, and t h e

h e a t i n g steam demand i s o f t h e o r d e r o f 6 t / h . The demand on 6 b a r steam i s

n e g l i g i b l y s m a l l .

The scheme o f v a p o u r and c o n d e n s a t e d i s t r i b u t i o n , and t h e main r e s u l t s o f t h e

mass and h e a t b a l a n c e c a l c u l a t i o n s o f t h e the rma l sys tem o f t h e s u g a r f a c t o r y

b e f o r e m o d e r n i z a t i o n , a r e shown i n F i g . 9 .1 . I t can i m m e d i a t e l y be r e c o g n i z e d

t h a t t h e r e a r e a few q u e s t i o n a b l e d e t a i l s t h a t s h o u l d be e l i m i n a t e d :

- the q u a d r u p l e - e f f e c t e v a p o r a t o r i s e s s e n t i a l l y o p e r a t e d as a t r i p l e - e f f e c t one

because t h e r e i s no h e a t i n g w i t h l a s t - s t a g e v a p o u r ;

- the 1 s t - and 2 n d - e f f e c t c o n d e n s a t e s a r e f l a s h e d t o t h e a t m o s p h e r e ;

- a s i g n i f i c a n t p a r t o f t h e c o n d e n s a t e s i s w a s t e d ;

- the f l o w o f c o n d e n s a t e r e t u r n e d t o t h e power house i s t o o sma l l t o e n s u r e an

adequate f e e d - w a t e r s u p p l y .

A c t u a l l y , vacuum-pan s teaming w i t h 6 b a r steam - as men t ioned e a r l i e r - a l s o

b e l o n g s t o t h i s l i s t .

A n o t h e r o b s e r v a t i o n i s t h a t t h e c a l c u l a t e d demand on h e a t i n g steam i s l o w e r

than the consumpt ion found i n t he measurements . Two main r e a s o n s f o r t h i s

d i s c r e p a n c y can be i d e n t i f i e d :

- v a p o u r l e a k s t h r o u g h f l o a t - t y p e steam t r a p s i n t he c o n d e n s a t e d r a i n a g e l i n e s

i n the e v a p o r a t o r a r e a ;

- f r e q u e n t pa ramete r i n s t a b i l i t i e s , caused by i n a d e q u a t e t h r o u g h p u t and u n s t a b l e

c o n t r o l s o f t he t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n d e l i v e r i n g 3.2 b a r s team.

I t s h o u l d be added t h a t t he f o l l o w i n g q u e s t i o n a b l e d e t a i l s , n o t shown i n

F i g . 9 . 1 , were a l s o f ound i n the v a p o u r d i s t r i b u t i o n scheme:

- e x t r a c t o r h e a t i n g by I s t - e f f e c t v a p o u r o n l y ; t h i s was m o t i v a t e d by t h e f a c t

t h a t i t h e l p e d t o p r o v i d e a h i g h t e m p e r a t u r e o f t h e e x t r a c t i o n m i x t u r e , t hus

making i t p o s s i b l e t o m a i n t a i n a v e r y low j u i c e d r a f t ;

- m u l t i p l e - s t a g e h e a t i n g o f p r e - l i m e d j u i c e and t h i n j u i c e where v a p o u r s a t

Page 349: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

338

the t e m p e r a t u r e s r e q u i r e d i n t he f i n a l s t a g e s were a l s o used i n t he p r e c e d i n g

s t a g e s ; t h i s c o n t r i b u t e d t o i n a d e q u a t e u t i l i z a t i o n o f l o w - t e m p e r a t u r e v a p o u r s .

9 .2 .3 F i e l d o f s o l u t i o n s

The e n g i n e e r i n g team p r o p o s e d t h e f o l l o w i n g s t r a t e g y o f m o d e r n i z a t i o n , t o be

implemented i n two s t e p s .

( i ) W h i l e i n s t a l l i n g the n e c e s s a r y r e p l a c e m e n t s o f t h e e v a p o r a t o r b o d i e s i n t h e

2nd e f f e c t , the rma l sys tem c o r r e c t i o n s can be i n t r o d u c e d t o r e d u c e t h e n e t h e a t

demand and make i t p o s s i b l e t o o p e r a t e t h e f a c t o r y a t a h i g h e r j u i c e d r a f t and

i n c r e a s e d s u g a r o u t p u t .

( i i ) The e v a p o r a t o r and t h e v a p o u r d i s t r i b u t i o n scheme can be r e c o n s t r u c t e d t o

improve the e f f e c t i v e n e s s r a t i o o f t h e the rma l sys tem and t hus r e d u c e t h e n e t

h e a t demand even f u r t h e r .

When a n a l y s i n g t he o p e r a t i o n o f t h e e x t r a c t i o n s t a t i o n a t a h i g h e r j u i c e

d r a f t , i t was c o n c l u d e d t h a t bo th t h e f l o w o f e x t r a c t i o n f e e d - w a t e r and t he f l o w

o f p r e s s w a t e r can be i n c r e a s e d . The d r y s u b s t a n c e c o n t e n t o f t h e p r e s s e d p u l p

can be i n c r e a s e d t o 11.2% DS and 15.6% DS ( 4 / 5 and 1/5 o f t h e w e t - p u l p f l o w ,

r e s p e c t i v e l y ) , t h i s b e i n g w e l l w i t h i n the o p e r a t i n g range o f t h e e x i s t i n g p u l p

p r e s s e s . I n t h i s w a y , more p r e s s w a t e r i s o b t a i n e d and a d d i t i o n a l e n e r g y

s a v i n g s i n p u l p d r y i n g become p o s s i b l e . C o n c e r n i n g t h e c r y s t a l l i z a t i o n scheme,

i t t u r n e d o u t t h a t an i n c r e a s e d s u g a r o u t p u t r e q u i r e s a l a r g e r m a s s e c u i t e

c i r c u l a t i o n , t h i s making an i n c r e a s e d h e a t demand o f t h e s u g a r b o i l i n g p r o c e s s

u n a v o i d a b l e even a t t h i c k - j u i c e c o n c e n t r a t i o n o f 65% DS (as compared t o 60% DS

p r i o r t o t he m o d e r n i z a t i o n ) .

Two therma l sys tem v e r s i o n s were p r o p o s e d f o r s t e p ( i ) and t h r e e v e r s i o n s f o r

s t e p ( i i ) . I n t h e f o l l o w i n g , t h e s e v e r s i o n s a r e d e n o t e d A l , A2 and 81, 82 , 83.

Each o f them assumes t h a t t he f o l l o w i n g changes a r e i n t r o d u c e d t o t he the rma l

s y s t e m :

- vacuum-pan s teaming i s pe r f o rmed u s i n g 2 n d - e f f e c t v a p o u r ;

- c o n d e n s a t e s f rom a l l i m p o r t a n t v a p o u r r e c e i v e r s a r e r e t u r n e d t o the c o n d e n s a t e

tanks ( t h i s r e q u i r e s i n s t a l l i n g new t a n k s , as t h e vo lumes o f t h e e x i s t i n g ones

a r e t o o sma l l t o accommodate i n c r e a s e d c o n d e n s a t e f l o w s ) ;

- cascade f l a s h i n g o f c o n d e n s a t e s i s a p p l i e d ;

- e x t r a c t o r s a r e hea ted by 1 s t - and 3 r d - e f f e c t v a p o u r ;

- m u l t i p l e - s t a g e j u i c e h e a t i n g i s pe r fo rmed u s i n g v a p o u r s o f d i f f e r e n t

t e m p e r a t u r e s , s t a r t i n g f rom t h e l o w e s t p o s s i b l e t e m p e r a t u r e ( i n some v e r s i o n s ,

t h i s may r e q u i r e i n s t a l l i n g new h e a t e r s , as t h e h e a t i n g s u r f a c e a r e a s o f t h e

e x i s t i n g ones may be t o o sma l l when u t i l i z e d a t r e d u c e d t e m p e r a t u r e

d i f f e r e n c e s ) ;

- l e v e l - c o n t r o l l e d h y d r a u l i c s e a l s a r e a p p l i e d i n t h e c o n d e n s a t e d r a i n a g e l i n e s

c o n n e c t e d t o e v a p o r a t o r b o d i e s l a and l b ;

Page 350: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

339

No. E x i s t i n g A l A2 Bl B2 B3

l a 1500 1500 1500 1500 1500 1500 l b 1500 1500^ 1500^ 1500^ 1500^ 1500^ 2a 1460 1800^ 1800? 1800^ 1800f 1800^ 2b 1460 1800^ 1800^ 1800^ 1800^ 1800^ 3a 1320 1320 1460 1320 1460 1460 3b - 1460 1460 1460 1460 1460 4 900 900 1320 900 1320 1320 5 - - - - 900 900

' new b o d i e s

A2. Q u a d r u p l e - e f f e c t e v a p o r a t o r w i t h i n c r e a s e d h e a t i n g s u r f a c e a r e a s i n the 2 n d ,

3 rd and 4 th e f f e c t s ; and the f o l l o w i n g a d j u s t m e n t s o f t h e the rma l s y s t e m :

- 4 t h - e f f e c t v a p o u r i s u t i l i z e d i n r a w - j u i c e and 1 i m e d - j u i c e h e a t i n g ;

- o t h e r d e t a i l s a r e e s s e n t i a l l y i d e n t i c a l t o t h o s e o f v e r s i o n A l .

F o r more i n f o r m a t i o n , see F i g . 9 . 3 . I t i s n e c e s s a r y t o i n s t a l l f o u r new

c o n d e n s a t e tanks i n t h i s v e r s i o n .

- a new t h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n t o s u p p l y 3.2 b a r steam i s i n s t a l l e d

and e q u i p p e d w i t h an a u t o m a t i c c o n t r o l c i r c u i t s t a b i l i z i n g e x h a u s t - s t e a m

p r e s s u r e .

The c o n f i g u r a t i o n s o f t he e v a p o r a t o r s t a t i o n employed i n t h e d i f f e r e n t

v e r s i o n s a re p r e s e n t e d i n T a b l e 9 .1 . The main f e a t u r e s o f t h e i n d i v i d u a l

v e r s i o n s a r e r e v i e w e d b e l o w .

A l . Q u a d r u p l e - e f f e c t e v a p o r a t o r w i t h i n c r e a s e d h e a t i n g s u r f a c e a r e a s i n t he 2nd

and 3 rd e f f e c t s , and t he f o l l o w i n g a d j u s t m e n t s o f t h e therma l s y s t e m :

- 4 t h - e f f e c t v a p o u r i s u t i l i z e d i n r a w - j u i c e h e a t i n g and i n d i r e c t h e a t i n g o f

e x t r a c t i o n f e e d - w a t e r i n a p r e c o n d e n s e r ;

- an a d d i t i o n a l c o n d e n s a t e tank i s i n s t a l l e d t o c o l l e c t t h e c o n d e n s a t e d r a i n e d

f rom the 3 rd e v a p o r a t o r e f f e c t ;

- a u t o m a t i c l e v e l c o n t r o l l e r s a r e i n s t a l l e d i n 2nd - and 3 r d - e f f e c t c o n d e n s a t e

tanks t o e n s u r e e f f e c t i v e h y d r a u l i c s e a l s i n r e s p e c t i v e c o n d e n s a t e d r a i n a g e

l i n e s .

The d i s t r i b u t i o n o f v a p o u r s and c o n d e n s a t e s , and t h e r e s u l t s o f mass and h e a t

b a l a n c e c a l c u l a t i o n s , a r e shown i n F i g . 9 . 2 . I n a d d i t i o n t o two new e v a p o r a t o r

b o d i e s ( w h i c h a r e a l s o i n c l u d e d i n o t h e r m o d e r n i z a t i o n v e r s i o n s ) , t h i s v e r s i o n

r e q u i r e s i n s t a l l i n g f o u r new c o n d e n s a t e t a n k s .

TABLE 9.1

E v a p o r a t o r c o n f i g u r a t i o n s i n d i f f e r e n t m o d e r n i z a t i o n v e r s i o n s .

2 Body H e a t i n g s u r f a c e a r e a (m )

Page 351: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

340

> ß

!Ν3

O o CO

O'Z

6-U

8V8

5 ĆÉ'!

en

TI ^ 1

-e 1000

Fig

. 9

.2.

Sch

eme

of

the

m

od

ern

ize

d th

erm

al

syst

em

, v

ers

ion

A

l.

Page 352: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

341

1 i2

1 1 i2

1 en en

CO

. 1 Ă —

L. I

ε'9 17

]^ I'll •

r _ . _

. tí <£>

- 5 h ~¡Mm ®

L mi

¿o

1 . ^

é ir?"

Lr2j

L J S I I

—j

LA — Č -

IDOO

Fig

. 9

.3.

Sch

eme

of

the

m

od

ern

ize

d th

erm

al

syst

em

, v

ers

ion A

2.

Page 353: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

342

B l . Q u a d r u p l e - e f f e c t e v a p o r a t o r w i th vapour c o m p r e s s i o n , a n d :

- a h e a t i n g scheme s i m i l a r to t ha t o f v e r s i o n A l ;

- vacuum-pan vapour i s u t i l i z e d in r a w - j u i c e h e a t i n g ;

- i n a d d i t i o n to the b a s i c condensa te subsys tem i d e n t i c a l to t ha t o f v e r s i o n A l ,

an au tomat ic l e v e l c o n t r o l l e r i s i n s t a l l e d i n the 4 t h - e f f e c t condensa te tank and

a condensa te tank f l a s h e d to 4 t h - e f f e c t vapour i s i n s t a l l e d as a f i n a l l i n k i n

the condensa te tank c h a i n ;

- compress ion o f I s t - e f f e c t vapour i s performed u s i n g j e t - t y p e c o m p r e s s o r s ;

- compressed vapour i s d i r e c t e d to the h e a t i n g chamber o f body l a ;

- exhaus t steam i s d i r e c t e d to the h e a t i n g chamber o f body l b ;

- i n o rde r to reduce compress ion work , a temperature d i f f e r e n c e o f 6 Κ i s

ma in ta ined a c r o s s the h e a t i n g s u r f a c e i n body l a , w h i l e the c o r r e s p o n d i n g

f i g u r e in body lb i s 10 K;

- s e p a r a t e condensa te tanks a re i n s t a l l e d to c o l l e c t condensa tes from b o d i e s l a

and l b .

The d i s t r i b u t i o n scheme f o r vapou rs and condensa tes and e x c e r p t s from the mass

and heat ba lance data a re shown i n F i g . 9 . 4 . T h i s v e r s i o n r e q u i r e s i n s t a l l i n g

s i x new condensa te t anks and one new h e a t e r .

B 2 . Q u i n t u p l e - e f f e c t e v a p o r a t o r , a n d :

- condensa te tank c o l l e c t i n g 5 t h - e f f e c t condensa te i s no t connected to the

condensa te tank c h a i n ;

- condensa te i s u t i l i z e d in h e a t i n g p r e - l i m e d j u i c e , p r e h e a t i n g a i r be fo re the

s u g a r d r y e r , k i l n - g a s h e a t i n g and h u m i d i f i c a t i o n be fo re the c a r b o n a t a t i o n t a n k s ,

and room h e a t i n g ;

- vacuum-pan v a p o u r s a re u t i l i z e d in r a w - j u i c e h e a t i n g ;

- vacuum pans A are heated by 2 n d - e f f e c t v a p o u r , but vacuum pans Β and C by 3 r d -

e f f e c t vapour ( the h e a t i n g s u r f a c e a r e a s i n vacuum pans A tu rned out to be too

s m a l l , p r e c l u d i n g the use o f vapour a t a lower t e m p e r a t u r e ) ;

- t h i n - j u i c e h e a t i n g i n the f i n a l s t a g e i s per formed u s i n g exhaus t s team.

For more i n f o r m a t i o n , see F i g . 9 . 5 . I t i s n e c e s s a r y to i n s t a l l f i v e new

condensa te tanks and th ree new h e a t e r s i n t h i s v e r s i o n .

B 3 . Q u i n t u p l e - e f f e c t e v a p o r a t o r w i th vapour c o m p r e s s i o n , a n d :

- a h e a t i n g scheme e s s e n t i a l l y the same as i n v e r s i o n B 2 ;

- a c o n t i n u o u s c h a i n o f condensa te tanks a p p l i e d between the 2nd and 5 th

e v a p o r a t o r e f f e c t s ;

- t h i c k j u i c e a f t e r the 4 th e f f e c t i s d i r e c t e d to the s u g a r house where

s t a n d a r d l i q u o r i s p r e p a r e d ;

- s t a n d a r d l i q u o r i s re tu rned to the 5 th e f f e c t and t h i ckened to 11% D S ;

- compress ion o f I s t - e f f e c t vapour i s per formed u s i n g an e l e c t r i c a l l y - d r i v e n

mechanica l c o m p r e s s o r ;

Page 354: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

343

Fig

. 9

.4.

Sch

eme

of

the

m

od

ern

ize

d th

erm

al

syst

em

, ve

rsio

n

Bl.

Not

sho

wn

: ra

w-j

uic

e

he

ati

ng

usin

g

vacu

um-p

an

vap

ou

r.

Page 355: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

344

> o

o

o ů

§ Ol Ł Ć) 3 O

in

ι χ:

c o Q.

Ĺ D S

CO

S IT)

o tν CO

ö

3

09 61

9-91 ευ

CM ? ^ CM

t ε·ιε

. t í 5

o "

¿O ..Él

1 SJ

ir>! F

ig.

9.5

. S

chem

e o

f th

e

mo

de

rniz

ed

the

rma

l sy

ste

m,

ve

rsio

n

B2

. N

ot

sho

wn

: ra

w-j

uic

e

he

ati

ng

usin

g

vacu

um-p

an

vap

ou

r.

Page 356: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

345

cn

O

CD c o,

C O

t — . z - f

. IΝ σ T—4

Ă - . - , in!

Fig

. 9

.6.

Sch

eme

of

the

m

od

ern

ize

d th

erm

al

syst

em

, v

ers

ion

B3

. N

ot

show

n:

raw

-ju

ice

he

ati

ng

usin

g

vacu

um-p

an

vap

ou

r.

Page 357: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

346

- compressed vapour i s d i r e c t e d to the h e a t i n g chamber o f body l a ;

- exhaus t steam i s d i r e c t e d to the h e a t i n g chamber o f body l b ;

- i n o r d e r to reduce compressor power demand, a temperature d i f f e r e n c e o f 6 Κ

i s ma in ta ined between the h e a t i n g chamber and vapour chamber i n body l a , w h i l e

the c o r r e s p o n d i n g f i g u r e i n body l b i s 10 K;

- s e p a r a t e condensa te tanks are i n s t a l l e d to c o l l e c t condensa tes from b o d i e s l a

and l b .

The d i s t r i b u t i o n scheme f o r vapou rs and c o n d e n s a t e s , and s e l e c t e d r e s u l t s o f

mass and heat ba lance c a l c u l a t i o n s , a re shown i n F i g . 9 . 6 . T h i s v e r s i o n r e q u i r e s

i n s t a l l i n g s i x new condensa te t anks and f i v e new h e a t e r s .

9 . 2 . 4 Compar ison o f s o l u t i o n s

When a n a l y s i n g the m o d e r n i z a t i o n s t r a t e g y o u t l i n e d i n the p reced ing S e c t i o n s ,

each v e r s i o n o f the modern ized f a c t o r y can be c h a r a c t e r i z e d by a v e c t o r o f

a t t r i b u t e s c o m p r i s i n g inves tment c o s t , fue l s a v i n g and power demand i n c r e a s e .

U s i n g the ac tua l p r i c e s o f fue l and power, the consequences o f m o d e r n i z a t i o n

can thus be e x p r e s s e d i n economic t e rms . The economic data can a l s o be combined

i n t o some s y n t h e t i c i n d e x , l i k e the p e r i o d o f r e t u r n on i nves tmen t . T h i s makes

i t p o s s i b l e to compare the s o l u t i o n s and to s e l e c t the most f e a s i b l e one o f

v e r s i o n s B l , B2 and B 3 .

The Inves tmen t c o s t was c a l c u l a t e d on the b a s i s o f p r i c e s quoted by the

s u p p l i e r s o f the main equipment ( e v a p o r a t o r b o d i e s , j u i c e h e a t e r s , condensa te

t a n k s , pumps and vapour c o m p r e s s o r s ) . To the equipment p r i c e s , the f o l l o w i n g

es t ima ted c o s t components were added :

- p i p i n g and a u x i l i a r y equ ipment ;

- measur ing d e v i c e s and con t r o l c i r c u i t s ;

- thermal i n s u l a t i o n ;

- d e s i g n documen ta t i on ;

- c o n s t r u c t i o n work ;

- a s s e m b l i n g o f equ ipment , p i p i n g and i n s t r u m e n t a t i o n .

Es t ima ted v a l u e s o f the a t t r i b u t e s o f the m o d e r n i z a t i o n v e r s i o n s were taken

from r e s u l t s o f the d e s i g n a n a l y s i s summarized i n the p r e v i o u s S e c t i o n .

I t was agreed w i th the f a c t o r y managers t h a t no d e t a i l e d economic a n a l y s i s i s

r e q u i r e d , because the impor tance o f the r e c o n s t r u c t i o n o f the thermal sys tem

l i e s ma in l y i n making i t p o s s i b l e to ex tend the p r o c e s s i n g c a p a b i l i t y ; however ,

t h i s w i l l be d e s i g n e d and a n a l y s e d a t a l a t e r d a t e . In o rde r to reduce the

comp lex i t y o f the compar ison o f the v a r i o u s v e r s i o n s , approx imate v a l u e s

( n e g l e c t i n g the i n f l u e n c e o f c a p i t a l c o s t ) o f the p e r i o d o f r e t u r n on

i n v e s t m e n t , i n y e a r s , were c a l c u l a t e d a c c o r d i n g to the fo rmu la

τ = I / A ( 9 . 1 )

where I i s the inves tment c o s t and A i s the annual s a v i n g .

Page 358: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

347

The r e s u l t s o f the compara t i ve a n a l y s i s a re summarized i n Tab le 9 . 2 . Due to

f l u c t u a t i o n s o f p r i c e s and c u r r e n c y exchange r a t e s i n the i n t e r n a t i o n a l marke t ,

i t would make l i t t l e sense to quote the a b s o l u t e l e v e l o f the economic e s t i m a t e s

i n the o r i g i n a l c u r r e n c y . A t the moment o f p u b l i c a t i o n o f the p r e s e n t b o o k ,

a coup le o f y e a r s a f t e r the a n a l y s i s was comp le ted , these data would be o f

h i s t o r i c a l v a l u e o n l y . T h e r e f o r e , the c o s t s and s a v i n g s a re g i v e n r e l a t i v e to

the inves tmen t c o s t a s s o c i a t e d w i th the m o d e r n i z a t i o n v e r s i o n Al ( t h i s c o s t i s

taken as ^00%),

TABLE 9 . 2

Compar ison o f main t e c h n i c a l and economic parameters o f d i f f e r e n t m o d e r n i z a t i o n v e r s i o n s .

Thermal sys tem v e r s i o n E x i s t i n g Al A2 Bl B2 B3

H e a t i n g - s t e a m demand ( k g / 1 0 0 kg b) 4 2 . 4 4 1 . 2 4 0 . 3 3 7 . 7 3 6 . 8 3 1 . 9 6 bar steam demand ( k g / 1 0 0 kg b) 2 . 5 1.0 1.0 1.0 1.0 1.0 Norma l - fue l demand ( k g / 1 0 0 kg b) 6 . 0 0 5 . 6 2 5 . 5 0 5 . 1 2 4 . 6 0 3 . 0 7 L i v e - s t e a m demand i n vapour compress ion ( k g / 1 0 0 kg b) - - - 6 . 1 0 - -Power demand i n vapour compress ion (kWh/100 kg b) - - - - - 0 . 3 2 Condensate f low to the b o i l e r house

( k g / 1 0 0 kg b) 4 0 . 5 4 6 . 5 4 5 . 2 4 7 . 0 4 1 . 5 3 5 . 7 Tota l h e a t i n g s u r f a c e a rea i n the^ e v a p o r a t o r (m ) 8140 10280 10420 10280 11740 11740 R e l a t i v e inves tmen t c o s t (%) - 100 111 116 148 234 Va lue o f coa l saved per s e a s o n {7o) - 58 70 107 157 205 Approx imate p e r i o d o f r e t u r n on inves tmen t ( y e a r s ) - 1 .73 1 .59 1 .08 0 . 9 4 1 .14

As can be seen i n Tab le 9 . 2 , v e r s i o n s B l , B2 and B3 are e c o n o m i c a l l y more

a t t r a c t i v e than Al and A 2 . T h i s i n d i c a t e s t h a t a f t e r the f i r s t m o d e r n i z a t i o n

s t e p has been comp le ted , the second s t e p s h o u l d be taken as soon as p o s s i b l e .

Among the Β v e r s i o n s , i t i s Bl t ha t i s c h a r a c t e r i z e d by the l owes t i nves tmen t

c o s t ; B3 o f f e r s the l a r g e s t fue l s a v i n g , and B2 seems to p r o v i d e a t r a d e - o f f

between inves tmen t c o s t and fue l s a v i n g .

From the data g i v e n i n S e c t i o n 9 . 2 . 2 , the t o t a l power demand (vapour

compress ion exc luded ) o f the s u g a r f a c t o r y a t the p r o c e s s i n g c a p a b i l i t y o f

5000 t / d , p l u s o the r p r o d u c t i o n f a c i l i t i e s , can be es t ima ted a t 6 . 0 MW. Add ing

a 10% s a f e t y m a r g i n , the power demand w i l l equal the r a t i n g o f the t u r b i n e s .

To genera te 6 . 6 MW in the t u r b o - g e n e r a t o r s , a steam f low o f about 73 t / h i s

r e q u i r e d . S u b t r a c t i n g 6 t / h consumed o u t s i d e the s u g a r f a c t o r y , a minimum

h e a t i n g - s t e a m demand o f 67 t / h , o r 3 2 . 2 k g / 1 0 0 kg b , i s o b t a i n e d . Look ing now a t

the c h a r a c t e r i s t i c s o f v e r s i o n B 3 , i t can be seen t ha t the t o t a l power demand,

vapour compress ion i n c l u d e d , amounts to 6 . 7 MW and the h e a t i n g - s t e a m demand i s

Page 359: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

348

a l i t t l e l e s s than the minimum v a l u e . T h i s e x c l u d e s the p o s s i b i l i t y o f

implement ing v e r s i o n B3 w i thou t p u r c h a s i n g power from the ex te rna l g r i d , o r

mode rn i z i ng the power h o u s e . T h e r e f o r e , v e r s i o n B3 does no t s a t i s f y the

c o n s t r a i n t s l i s t e d i n S e c t i o n 9 . 2 . 1 .

9 . 3 FACTORY CHARACTERIZED BY GOOD I N I T I A L ENERGY U T I L I Z A T I O N

9 . 3 . 1 I n t r o d u c t o r y remarks

The f a c t o r y was b u i l t in the e a r l y 1970s w i th an i n i t i a l p r o c e s s i n g

c a p a b i l i t y o f 4000 t ons per day . The i n i t i a l f ue l consumpt ion was about 5 . 3 kg

normal fue l per 100 kg bee t . Du r i ng a p e r i o d o f about ten y e a r s , r e l y i n g m o s t l y

on the s t e p - b y - s t e p a p p r o a c h , the p r o c e s s i n g c a p a b i l i t y was i n c r e a s e d to

5900 t / d . T h i s was accompanied by the o p t i m i z a t i o n o f the s u g a r manu fac tu r i ng

p r o c e s s w i th r e s p e c t to the fue l demand, and numerous improvements o f the

thermal s y s t e m . Among o t h e r s , the u t i l i z a t i o n o f vacuum-pan vapou rs i n two

t u b u l a r r a w - j u i c e h e a t e r s was i n t r o d u c e d , a l ong w i th improvements o f the

u t i l i z a t i o n o f low- tempera tu re p r imary vapours and c o n d e n s a t e . As a r e s u l t ,

n o r m a l - f u e l consumpt ion dec reased to 3 . 5 - 3 . 7 k g / 1 0 0 kg b.

When a p r o c e s s i n g c a p a b i l i t y o f 5900 t / d was a t t a i n e d , d i f f i c u l t i e s a r o s e i n

m a i n t a i n i n g p roper v a l u e s o f c r u c i a l p r o c e s s pa rame te rs . The tempera tu res o f

e x t r a c t i o n and main l i m i n g tended to be too l ow , and the c o n c e n t r a t i o n o f t h i c k

j u i c e d e c r e a s e d . T h i s was accompanied by vacuum- leve l i n s t a b i l i t i e s d i s t u r b i n g

the s u g a r b o i l i n g p r o c e s s . An e v a l u a t i o n o f the mass and heat b a l a n c e s o f the

e v a p o r a t o r i n d i c a t e d a l s o a l a r g e f low o f l a s t - e f f e c t vapour t o the c o n d e n s e r .

A f t e r the r e s u l t s o f the s e a s o n had been r e v i e w e d , i t was conc luded t h a t the

o p e r a t i o n a l d i f f i c u l t i e s caused too h i g h s u g a r l o s s e s . I t a l s o became c l e a r t ha t

no f u r t h e r r e d u c t i o n o f the energy consumpt ion i s p o s s i b l e u n l e s s the e x i s t i n g

p r o c e s s equipment and thermal sys tem a re mode rn i zed . C o n s e q u e n t l y , an

e n g i n e e r i n g team was c a l l e d i n to a n a l y s e the s i t u a t i o n and to d e s i g n the

n e c e s s a r y m o d i f i c a t i o n s .

A d e t a i l e d i n v e n t o r y o f 12 f a c t o r y subsys tems i n the s u g a r m a n u f a c t u r i n g l i n e

was p r e p a r e d , s t a r t i n g from the beet wash ing s t a t i o n and end ing a t the C

m a s s e c u i t e s t a t i o n . A rev iew o f impor tan t parameters o f 15 o t h e r s u b s y s t e m s was

a l s o c a r r i e d o u t . Wh i le most o f the data needed to i n i t i a t e a m o d e r n i z a t i o n

s t u d y i n the heat economy area were o b t a i n e d , i t was found t h a t the data on the

f a c t o r y ' s power ba lance were no t s u f f i c i e n t l y d e t a i l e d . Tak i ng i n t o accoun t t ha t

the modern ized f a c t o r y cannot be s e l f - s u f f i c i e n t i n power, i t became c l e a r t h a t

ways to reduce the power demand i n a l l r e l e v a n t f a c t o r y s u b s y s t e m s s h o u l d be

s t u d i e d and p roper measures s h o u l d be t a k e n . I t was t h e r e f o r e recommended t h a t :

- measurements be made o f the power consumpt ion i n major power r e c e i v e r s d u r i n g

the nex t s e a s o n , to a n a l y s e the r a t i n g o f motors and t r a n s f o r m e r s ;

- a d e t a i l e d s t udy be under taken o f the w a t e r - s u p p l y and was te -wa te r t rea tment

Page 360: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

349

Subsystems, with the aim o f reducing the power demand;

- a d e t a i l e d s t udy be under taken o f f low c o n t r o l r equ i remen ts i n the s u g a r

manu fac tu r i ng p r o c e s s , w i th the aim o f m o d e r n i z i n g the c o n t r o l sys tems f o r

be t t e r ene rgy u t i l i z a t i o n .

9 . 3 . 2 B a s i c f a c t o r y data and heat ba lance

P r o c e s s i n g c a p a b i l i t y : 5900 t / d .

P o l a r i z a t i o n o f c o s s e t t e s : 15 .7%.

E x t r a c t i o n s t a t i o n : two t h r o u g h - t y p e e x t r a c t o r s .

J u i c e d r a f t : 115%.

Raw- ju i ce c o n c e n t r a t i o n and p u r i t y : 15.0% DS and 8 8 . 4 % .

Pu lp p r e s s e d t o : 27 .6% D S .

K i l n g a s : 35% CO^ v o l .

J u i c e p u r i f i c a t i o n a c c o r d i n g to the c l a s s i c a l scheme, c o m p r i s i n g :

- ho t p r e - l i m i n g a t 4 5 - 5 0 ° C ;

- main l i m i n g a t 79 -80°C ( r e q u i r e d tempera tu re : 8 2 - 8 5 ° C ) ;

- 1 s t c a r b o n a t a t i o n a t 77°C ( r e q u i r e d tempera tu re : 8 0 - 8 2 ° C ) ;

- d o u b l e - s t a g e 1 s t f i l t r a t i o n ;

- 2nd c a r b o n a t a t i o n a t 9 6 ° C ;

- d o u b l e - s t a g e 2nd f i l t r a t i o n .

D e c a l c i f i c a t i o n o f t h i n j u i c e by ion exchange .

T h i n - j u i c e c o n c e n t r a t i o n and p u r i t y : 15.4% DS and 9 1 . 8 % .

E v a p o r a t o r : q u a d r u p l e - e f f e c t , R o b e r t - t y p e b o d i e s ; N i e s s n e r columns a p p l i e d i n

the condensa te d r a i n a g e s u b s y s t e m .

T h i c k - j u i c e c o n c e n t r a t i o n : 61 .9% DS ( r e q u i r e d v a l u e : 65% D S ) .

S u g a r h o u s e :

- t h r e e - b o i l i n g scheme w i th the a f f i n a t i o n o f C s u g a r ;

- 60% o f Β s y r u p p r o c e s s e d i n a Quent in u n i t .

Power h o u s e :

- o i l - f i r e d b o i l e r s , ave rage e f f i c i e n c y 92%;

- l i v e steam parameters 40 b a r , 4 3 0 ^ 0 ;

- b a c k - p r e s s u r e 2 . 9 b a r ;

- f eed -wa te r pump d r i v e n by a steam t u r b i n e .

Steam s u p p l y to the s u g a r manu fac tu r i ng p r o c e s s :

- l i v e steam t h r o t t l e d to 8 bar to the c e n t r i f u g a l s ;

- h e a t i n g steam 2 . 9 bar ( exhaus t steam and t h r o t t l e d l i v e steam) to the

rema in ing r e c e i v e r s .

Hea t ing steam c o n s u m p t i o n : 3 5 . 5 k g / 1 0 0 kg b.

Power c o n s u m p t i o n : 2 . 8 5 kWh/100 kg b.

Normal fue l c o n s u m p t i o n : 3 . 6 8 k g / 1 0 0 kg b.

The s i m p l i f i e d scheme o f vapour and condensa te d i s t r i b u t i o n , and the r e s u l t s

Page 361: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

350

ó) irS ů Q;

O - C

t o

ů CjD. c ^-^

o Q .

Ĺ 3 Ü o

tn

o 3 Ü o ů

o

s X

ů s

ç CO ¿•0

O o O CN LO CM CÑJ W l _ r

6·9ε CO

I cnjI

o o o " CM

CNJ CO

Ν'ΝZ

1!0 ÉČĐ^ Fig

. 9

.7.

Sch

eme

of

the

th

erm

al

syst

em

a

nd

m

ass

an

d

he

at

ba

lan

ce

da

ta,

for

facto

ry

be

fore

m

od

ern

iza

tio

n.

Page 362: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

351

O CO o . «;í- CO C\J CM

O (Ô> O .

CO CM CO

O »— O . 00 oo I— ^

o r -O . CM é— LO

O ·

I—

O O O .

>

c

ů

(T3 O CO O . ^ CO CM CM

O σ> o · CO

CM CO

o Éď · CO CO I— ^

O 1— O . CM Ă— LO

O o . I— KO

o o o . o <

4-> c ö

ů

o o . LT)

o CO o . ^ CO CM CM

o CT» o . ^ CO CM CO

O r - o r -o . o . 00 00 CM I— ^ I— LO

o o · ^ LO I— LO

o o o · o ^

o S-Q .

c o

ίο CL

> O)

c o

«5

ů o S- -Éďß 4->

<Ό ů í. o +J <o c :

O) í. u 13 C CO o

o c +J

•I- 0) +-> I— (ő 23 đ: o

ta o o o · ^ I— CM CM

ta o Éď . 'd- o CM CM

«3 o Éď . o CM CM

o o · ^ CO CM CO

o CO o · CM CM

o CO o . »d- CT» CM CM

O f — Ď ß ď , o . 00 00 CM 1^ Ă— ^ I— LO

o o . 00 o r— ^

o ^ o . CM 00 <—

o 1^ o ^ o . o · 00 o CM 00

o o . «d- LO r - LO

o o o . ^ o f— LO

Đ3 o o o . ^ o I— LO

o o o · o ^

to o o o . o o I—

Đ3 o o o · o o I— r-

cu o

T3

to

o Éď . 00 o

o CO o . ^ CT> CM CM

o o · 00 o

o ^ o · CM 00 I— ^

o o o · ^ o t— LO

o o o . o o

to

O)

c o

CO o

CT> to Lü o —I Q . OQ to «t >

o 00 o · 00 .—

CM

o CM o . 00 r -

O LO o . ^ LO CM CO

o o o . ^ LO CM CO

o o o . 00 CT» ·— ^

o LO o . 00 00 r - ^

o o o . CM LO .— LO

o CT» o · CM Ă é— LO

' fa

llin

g-f

ilm

ty

pe

, te

mp

ora

rily

un

used

Page 363: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

352

o f mass and heat ba lance c a l c u l a t i o n s o f the thermal sys tem be fo re m o d e r n i z a t i o n

a re shown in F i g . 9 . 7 . No d e t a i l s o f the vapour and condensa te c o n n e c t i o n s i n

the p r o c e s s h e a t i n g a rea a re g i v e n , as t h e s e were found e n t i r e l y c o r r e c t .

9 . 3 . 3 F i e l d o f s o l u t i o n s

The e n g i n e e r i n g team proposed the f o l l o w i n g s t r a t e g y o f m o d e r n i z a t i o n , to be

implemented in f o u r s t e p s .

( i ) I n t r oduce equipment m o d i f i c a t i o n s and minor thermal sys tem c o r r e c t i o n s ,

aimed a t s e c u r i n g p roper p r o c e s s parameters and e l i m i n a t i n g u n n e c e s s a r y energy

l o s s e s .

( i i ) Conver t the e x i s t i n g e v a p o r a t o r i n t o a q u i n t u p l e - e f f e c t o n e , i n o r d e r to

a t t a i n a h i g h c o n c e n t r a t i o n o f t h i c k j u i c e and to i n c r e a s e the e f f e c t i v e n e s s

r a t i o o f the thermal s y s t e m .

( i i i ) I n c r e a s e the h e a t i n g s u r f a c e a rea i n the f i r s t e f f e c t (two a l t e r n a t i v e 2

s o l u t i o n s can be c o n s i d e r e d : the e x i s t i n g R o b e r t - t y p e body w i t h 1800 m

h e a t i n g - s u r f a c e a rea can be e i t h e r removed from the f a c t o r y , o r o n l y t e m p o r a r i l y

d i s c o n n e c t e d ) .

( i v ) I n t r o d u c e a vapour compress ion c i r c u i t and a d d i t i o n a l l y i n c r e a s e the

e f f e c t i v e n e s s r a t i o o f the thermal sys tem th rough improved u t i l i z a t i o n o f low-

temperature vapours (each s o l u t i o n c o n s i d e r e d i n the p reced ing s t e p g e n e r a t e s

two p o s s i b l e v e r s i o n s ) .

The p roposa l can be c o n v e n i e n t l y rev iewed by summar iz ing the main f e a t u r e s

o f two i n te rmed ia te s o l u t i o n s t ha t may r e s u l t from the comp le t ion o f s t e p s ( i )

and ( i i ) , as wel l a s f o u r p o s s i b l e v e r s i o n s among which a c h o i c e must be made

when e x e c u t i n g s t e p s ( i i i ) and ( i v ) . Tab le 9 . 3 shows c o n f i g u r a t i o n s o f the

e v a p o r a t o r s t a t i o n f o r a l l v e r s i o n s , t oge the r w i th data on the j u i c e

c o n c e n t r a t i o n s .

A l . An i n te rmed ia te s o l u t i o n r e s u l t i n g from s t e p ( i ) :

- steam j a c k e t s o f the e x t r a c t o r s a re heated by 2 n d - and 3 r d - e f f e c t v a p o u r s , and

2 n d - e f f e c t vapour i s a d d i t i o n a l l y i n j e c t e d i n t o the e x t r a c t i o n m i x t u r e , but no te

tha t vapour i n j e c t i o n may a d v e r s e l y a f f e c t the e f f e c t i v e n e s s r a t i o , be ing

p r i m a r i l y aimed a t s e c u r i n g a c o r r e c t temperature d i s t r i b u t i o n i n the e x t r a c t i o n

p r o c e s s ;

- the b u f f e r tank between p r e - l i m i n g and hot main l i m i n g i s conve r ted to a l ime r

i n which c o l d main l i m i n g can be pe r fo rmed ;

- one o f the h e a t e r s used h i t h e r t o f o r r a w - j u i c e h e a t i n g w i th vacuum-pan vapour

i s conve r ted to l i m e d - j u i c e h e a t i n g ( p r i o r to hot main l i m i n g ) w i th l a s t - e f f e c t

v a p o u r , a change which does not a f f e c t the e f f e c t i v e n e s s r a t i o ( the f low o f

l a s t - e f f e c t vapour to the condenser was anyway too l a r g e ) but s e c u r e s a c o r r e c t

temperature i n the hot main l i m i n g ;

- k i l n - g a s hea t i ng and h u m i d i f i c a t i o n a p p a r a t u s i s i n s t a l l e d be fo re the 1 s t

Page 364: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

353

c a r b o n a t a t i o n ;

- a new b u f f e r tank i s i n s t a l l e d a f t e r the 2nd c a r b o n a t a t i o n to s e c u r e an

adequate j u i c e r e t e n t i o n t ime needed to s t a b i l i z e CaCO^ c r y s t a l s ;

- improved steam t r a p s are i n s t a l l e d i n condensa te d r a i n a g e l i n e s o f vacuum pans

A , and au tomat ic l e v e l con t r o l i s a t t ached to the condensa te tank c o l l e c t i n g

condensa tes from the h e a t i n g chambers o f the vacuum p a n s ;

- improved v e n t i n g o f the h e a t i n g chambers o f the vacuum pans i s implemented;

- improved v e n t i n g o f the h e a t i n g chambers o f the 2nd e v a p o r a t o r e f f e c t and o f

the j u i c e hea te r s heated w i th 1 s t - and 2 n d - e f f e c t vapours i s implemented;

- p i p e s o f i n c r e a s e d d iameters are i n s t a l l e d i n the c o n n e c t i o n s between the

vacuum pans and the c o n d e n s e r , as we l l as between the l a s t e v a p o r a t o r e f f e c t and

the c o n d e n s e r ;

- the C m a s s e c u i t e s t a t i o n i s extended by i n s t a l l i n g two v e r t i c a l - t y p e

c r y s t a l 1 i z e r s w i th a c a p a c i t y o f 150 m^ e a c h .

In s p i t e o f a number o f improvements i n t r o d u c e d to the thermal s y s t e m , the

measures l i s t e d above cannot be expec ted to reduce the fue l c o n s u m p t i o n .

A c t u a l l y , when b r i n g i n g p r o c e s s h e a t i n g back to n o r m a l , the t o t a l heat demand i s

i n c r e a s e d . Heat s a v i n g s can o n l y be o b t a i n e d by t a k i n g the next m o d e r n i z a t i o n

s t e p .

Conce rn ing the power demand, two minor improvements were p r o p o s e d :

- a t h y r i s t o r - c o n t r o l l e d d . c . d r i v e i n s t a l l e d i n the o u t l e t s e c t i o n o f the beet

washer ( to make bee t - f l ow con t r o l p o s s i b l e , and to save p o w e r ) ;

- a t h y r i s t o r - c o n t r o l l e d d . c . d r i v e a p p l i e d i n the j u i c e pump a f t e r 1 s t

c a r b o n a t a t i o n ( to min imize the i n f l u e n c e o f pumping on the s t r u c t u r e o f d e p o s i t s

to be f i l t e r e d , and to save power ) . I t s h o u l d be o b s e r v e d , however , t h a t an

i n c r e a s e o f the t o ta l power demand can be expec ted f o l l o w i n g the i n s t a l l a t i o n o f

a s t i r r e d c o l d main l imer and two C m a s s e c u i t e c r y s t a l 1 i z e r s .

A 2 . Another i n te rmed ia te s o l u t i o n , r e s u l t i n g f rom s t e p ( i i ) :

- the e v a p o r a t o r s t a t i o n i s extended by i n s t a l l i n g two f a l l i n g - f i l m b o d i e s w i t h

h e a t i n g s u r f a c e a r e a s o f 1400 m and 1000 m , to be used as the 4 th and 5th

e f f e c t s , r e s p e c t i v e l y ;

- no changes a re i n t r o d u c e d to the 1 s t and 2nd e v a p o r a t o r e f f e c t s , but the 3 rd

e f f e c t i s extended by add ing a R o b e r t - t y p e body p r e v i o u s l y used i n the 4 th

e f f e c t ;

- the condensa te d r a i n a g e subsys tem i s ex tended by i n s t a l l i n g two condensa te

t anks a t t ached to new e v a p o r a t o r b o d i e s ;

- a t h i c k - j u i c e c o n d i t i o n e r o f the vacuum type i s i n s t a l l e d a t the e v a p o r a t o r

o u t l e t to s t a b i l i z e the f i n a l c o n c e n t r a t i o n o f the t h i c k j u i c e , by means o f

s e l f - e v a p o r a t i o n o r t h i n - j u i c e i n t a k e , a t a l e v e l o f 70% D S .

The d i s t r i b u t i o n o f vapours and condensa tes and the r e s u l t s o f mass and heat

Page 365: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

354

r l , ^! gl •Ľ Q

ç (NJ'

o

1 o

o

tν tν

Ă'"

ΐ'οε ö

- £ - ñ οε

ĂĆ7 9*1 J i

0ε·3 1!0 Éâç^ Fig

. 9

.8.

Sche

me

of

the

m

od

ern

ize

d th

erm

al

syst

em,

ve

rsio

n IK

Z.

Page 366: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

355

C D ,

liJ 00 1-

ů

9 6 Ί 1!0 Ιθπ^ Fig

. 9

.9.

Sch

eme

of

the

m

od

ern

ize

d th

erm

al

syst

em

, ve

rsio

n

Bl.

Page 367: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

356

9 6 Ί 1!0 Ιθπ^ body

?

a!°

;esp

1ctive

ΝyK

' m

od

ern

ize

d th

erm

al

syst

em

, ve

rsio

ns

B2

and C

I (f

all

ing

-fil

m or

Ro

be

rt-t

yp

e u

nit

insta

lle

d a

s

Page 368: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

357

ba lance c a l c u l a t i o n s o f the modern ized thermal sys tem a re shown i n F i g . 9 . 8 .

I n o r d e r to s t a b i l i z e the e x t r a c t i o n parameters and t h i c k - j u i c e c o n c e n t r a t i o n ,

as we l l as to m in im ize heat l o s s e s caused by the v e n t i n g o f n o n c o n d e n s a b l e s , i t

was a l s o p roposed to i n s t a l l some a d d i t i o n a l c o n t r o l equ ipment :

- au tomat i c c o n t r o l o f the temperature d i f f e r e n c e between raw j u i c e and incoming

c o s s e t t e s , by means o f a v a r i a b l e f l ow o f vapour i n j e c t e d i n t o the e x t r a c t i o n

m i x t u r e ;

- au tomat i c c o n t r o l o f the t h i c k - j u i c e c o n c e n t r a t i o n a t the o u t l e t o f the t h i c k

j u i c e c o n d i t i o n e r ;

- au tomat i c c o n t r o l o f the v e n t i n g o f the vacuum p a n s ;

- au tomat i c c o n t r o l o f the v e n t i n g o f the c l e a r - j u i c e hea te r (heated by 2 n d -

e f f e c t v a p o u r ) .

B l . Compress ion o f 2 n d - e f f e c t v a p o u r .

I n a d d i t i o n to the changes d e s c r i b e d a b o v e , a f a l l i n g - f i l m body w i t h a 2

h e a t i n g s u r f a c e a rea o f 2400 m i s i n s t a l l e d as the 1 s t e v a p o r a t o r e f f e c t

( r e p l a c i n g the o l d R o b e r t - t y p e b o d y ) . I n the vapour c o m p r e s s i o n c i r c u i t , 2 n d -

e f f e c t vapour i s r e c y c l e d to the h e a t i n g chamber o f the I s t - e f f e c t u s i n g an

e l e c t r i c a l l y - d r i v e n mechanica l c o m p r e s s o r . Other changes a re as f o l l o w s :

- t h i c k - j u i c e c o n c e n t r a t i o n 74% D S ;

- r a w - j u i c e h e a t i n g i n a s p i r a l hea te r u s i n g ho t water f rom a "ho t c o n d e n s e r " i n

which vacuum-pan vapours a re c o n d e n s e d ;

- p r e - l i m e d j u i c e h e a t i n g w i t h l a s t - e f f e c t vapour i n two t u b u l a r heat e x c h a n g e r s

p r e v i o u s l y used as raw j u i c e h e a t e r s ;

- t h i n - j u i c e h e a t i n g i n f o u r s t a g e s ;

- the s t e a m - t u r b i n e d r i v e n feed -wa te r pump r e p l a c e d by an e l e c t r i c a l l y - d r i v e n

o n e .

The d i s t r i b u t i o n o f vapou rs and condensa tes and the r e s u l t s o f mass and heat

ba lance c a l c u l a t i o n s o f t h i s v e r s i o n a re shown i n F i g . 9 . 9 . I t can be f u r t h e r

es t ima ted t ha t the combined power demand o f the vapour compresso r and the f e e d -

water pump i s about 920 kW. Owing to reduced heat demand, the power demand o f

the c o m b u s t i o n - a i r f a n s and the b a r o m e t r i c - w a t e r pumps can s i m u l t a n e o u s l y be

reduced by about 300 kW.

B 2 . Compress ion o f I s t - e f f e c t vapour to a f a l l i n g - f i l m body .

Two f a l l i n g - f i l m b o d i e s , 1500 m^ ( l a ) and 2400 m^ ( l b ) , a re i n s t a l l e d i n the

1 s t e v a p o r a t o r e f f e c t and I s t - e f f e c t vapour i s r e c y c l e d to the h e a t i n g chamber

o f body l a u s i n g an e l e c t r i c a l l y - d r i v e n mechan ica l c o m p r e s s o r . A new tank i s

i n s t a l l e d to c o l l e c t the condensa te d r a i n e d f rom body l a . Other d e t a i l s remain

the same as i n the p reced ing v e r s i o n , excep t t h a t the e x h a u s t - s t e a m tempera ture

i s 3 Κ l owe r , r e s u l t i n g i n a lower b a c k - p r e s s u r e and thus more power genera ted

i n the t u r b o - g e n e r a t o r . Fo r data on mass and heat b a l a n c e s , see F i g . 9 . 1 0 .

Page 369: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

358

The combined power demand o f the vapour compressor and the f eed -wa te r pump i s

about 660 kW. The power demand r e d u c t i o n r e s u l t i n g f rom reduced heat demand i s

the same as i n v e r s i o n B l .

C I . Compress ion o f I s t - e f f e c t vapour to a R o b e r t - t y p e body.

A f a l l i n g - f i l m body , 2400 m^, i s added to the e x i s t i n g R o b e r t - t y p e body i n

the 1 s t e v a p o r a t o r e f f e c t . The vapour compress ion c i r c u i t remains i d e n t i c a l to

t ha t o f the p reced ing v e r s i o n , but the compressed vapour i s r e c y c l e d to the

h e a t i n g chamber o f body l b . As the h e a t i n g s u r f a c e a rea o f the R o b e r t - t y p e body

i s l a r g e r than t ha t o f the f a l l i n g - f i l m body , the temperature d i f f e r e n c e between

h e a t i n g - s t e a m and vapour can be r e d u c e d , r e s u l t i n g i n a reduced power demand by

the compresso r . The mass and heat b a l a n c e s a re n e a r l y the same as i n the

p reced ing v e r s i o n . The combined power demand o f the compressor and the f e e d -

water pump i s about 600 kW. The power-demand r e d u c t i o n i n the rema in ing

equipment i s i d e n t i c a l to t h a t i n v e r s i o n s Bl and B 2 .

C 2 . Thermocompress ion o f I s t - e f f e c t v a p o u r .

The e v a p o r a t o r s t a t i o n i s i d e n t i c a l to t ha t o f the p r e c e d i n g v e r s i o n but the

I s t - e f f e c t vapour i s compressed u s i n g j e t - t y p e c o m p r e s s o r s . Wh i le the mass and

heat b a l a n c e s o f the thermal sys tem i n the p r o c e s s - h e a t i n g a rea remain i d e n t i c a l

to t hose o f v e r s i o n s B2 and C I , the mass and energy b a l a n c e s o f the power house

and the 1 s t e v a p o r a t o r e f f e c t a re changed as shown i n F i g . 9 . 1 1 . The power

demand o f the feed -wa te r pump i s app rox ima te l y equal to the power-demand

r e d u c t i o n r e s u l t i n g from reduced heat demand, so the t o t a l power demand i s equal

to t ha t o f v e r s i o n s A l , A2 and B l .

l osses 0.5

F i g . 9 . 1 1 . E x c e r p t s from mass and heat b a l a n c e s o f the modern ized thermal s y s t e m , v e r s i o n C 2 .

Page 370: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

359

9 . 3 . 4 Compar ison o f s o l u t i o n s

An approx imate economic a n a l y s i s o f the m o d e r n i z a t i o n p r o p o s a l was p r e p a r e d ,

to compare the s o l u t i o n s ( B l , B 2 , CI and C2) and to s e l e c t the most f e a s i b l e

v e r s i o n . The gene ra l approach adopted was s i m i l a r to t h a t p r e s e n t e d i n S e c t i o n

9 . 2 . 4 , w i th the f o l l o w i n g e x t e n s i o n s :

- the v e c t o r o f a t t r i b u t e s i n c l u d e s a d d i t i o n a l s u g a r p r o d u c t i o n ;

- when a n a l y s i n g the inves tmen t c o s t , i t s h o u l d be taken i n t o accoun t t ha t i f a

c e r t a i n equipment u n i t i s removed from the f a c t o r y i n q u e s t i o n , i t can be

c o n s i d e r e d f o r a p p l i c a t i o n i n o t h e r s u g a r f a c t o r i e s o f the same company;

- the p o s s i b i l i t y o f f u t u r e changes i n fue l and power p r i c e s s h o u l d be a l l owed

f o r ;

- when c a l c u l a t i n g the p e r i o d o f r e t u r n on i n v e s t m e n t , c a p i t a l c o s t and

i n c r e a s e d main tenance c o s t s h o u l d be accoun ted f o r .

In v e r s i o n s Bl and B 2 , removal o f the e x i s t i n g R o b e r t - t y p e body from the 1 s t

e v a p o r a t o r e f f e c t was assumed. As i t can be a p p l i e d i n ano the r s u g a r f a c t o r y ,

the va lue o f t h i s equipment u n i t was deducted f rom the i nves tmen t c o s t s o f t h e s e

v e r s i o n s .

The es t ima ted r e s u l t s o f the m o d e r n i z a t i o n , t h a t i s , the fue l s a v i n g , power

demand i n c r e a s e and a d d i t i o n a l s u g a r p r o d u c t i o n , were taken f rom the d e s i g n

a n a l y s i s p resen ted i n the p r e v i o u s S e c t i o n . Two economic e s t i m a t e s were

determined f o r fue l s a v i n g s and power demand i n c r e a s e s :

1 . u s i n g the ac tua l p r i c e s o f fue l o i l and power ;

2 . u s i n g the f o r e c a s t ave rage p r i c e s f o r the i n i t i a l s e a s o n s w i t h the modern ized

f a c t o r y ; e . g . f o r a p e r i o d o f t h ree y e a r s , a f ue l o i l p r i c e i n c r e a s e d by 50% and

power p r i c e by 35%.

The c a p i t a l c o s t and i n c r e a s e d main tenance c o s t were j o i n t l y e s t i m a t e d , u s i n g

an e q u i v a l e n t i n t e r e s t r a te o f 0 . 1 3 . As a f i r s t a p p r o x i m a t i o n , the p e r i o d o f

r e t u r n on i n v e s t m e n t , i n y e a r s , was c a l c u l a t e d u s i n g the fo rmu la

τ = I / ( A - r l ) ( 9 . 2 )

where I i s the i nves tmen t c o s t , A i s the annual s a v i n g , and r i s the e q u i v a l e n t

i n t e r e s t r a t e .

The r e s u l t s o f the compara t i ve a n a l y s i s a re shown i n Tab le 9 . 4 . As i n Tab le

9 . 2 i n S e c t i o n 9 . 2 . 4 , the c o s t s a re g i v e n r e l a t i v e to the i nves tmen t c o s t o f

a s e l e c t e d v e r s i o n . I t has been assumed t ha t the i nves tmen t c o s t a s s o c i a t e d w i th

mode r n i za t i on s t e p ( i ) i s 100%.

The con ten t s o f Tab le 9 . 4 can be summarized as f o l l o w s :

- the i n te rmed ia te s o l u t i o n s a re e c o n o m i c a l l y h i g h l y a t t r a c t i v e ;

- the economic r e s u l t s o f f u r t h e r i nves tmen ts i n the ene rgy economy a re

dependent on developments i n the fue l ma rke t ;

Page 371: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

360

TAB

LE 9

.4

Com

pari

son

of

mai

n te

ch

nic

al

an

d

econ

omic

p

ara

me

ters

o

f d

iffe

ren

t m

od

ern

iza

tio

n v

ers

ion

s.

Ve

rsio

n E

xis

tin

g

Al

A2

Β

C

Bl B

2 C

I C

2

Pro

cess

ing

ca

pa

bilit

y

5900

60

00

6000

60

00

6000

60

00

6000

60

00

6000

Fu

el-

oil

de

man

d (k

g/1

00

kg

b)

2.6

8

2.7

5

2.3

0

2.3

0

2.3

0

1.9

5

1.9

5

1.9

5

2.0

9

Fu

el-

oil

s

av

ing

rela

tive

to

e

arl

ier

ve

rsio

n

(kg

/10

0

kg

b)

- -0

.07

0.3

8

0.3

8

0.3

8

0.3

5

0.3

5

0.3

5

0.2

1

Pow

er

dem

and

(kW

h/1

00

kg

b)

2.8

5

2.8

5

2.8

5

2.8

5

2.8

5

3.0

3

2.9

5

2.9

4

2.8

5

Pow

er-d

eman

d in

cre

ase

(kW

) -

- -

- -

62

0

36

0

300

Su

ga

r-o

utp

ut

incre

ase

(k

g/1

00

kg

b

- 0

.42

--

--

--

-T

ota

l e

va

po

rato

r h

ea

tin

g

su

rfa

ce

a

rea

(m2

72

00

7200

96

00

1020

0 10

200

1020

0 1

17

00

12

000

1200

0

Inve

stm

ent

co

st

(%)

- T

OO

4

2

69

^ 7

6^

32 5

7 3

9

22

Va

lue

of

fue

l o

il sa

ved

per

sea

son

(%)

- a

t a

ctu

al

pri

ce

-

-5.3

34 3

4 3

4 2

6 2

6 2

6

16

- a

t fo

reca

st

pri

ce

-

- 38

45

45

42

42

42

25

Co

st

of

ad

dit

ion

al

pow

er

purc

hase

d per

sea

son

{%)

- a

t a

ctu

al

pri

ce

-

- 10

6

5-

- a

t fo

reca

st

pri

ce

-

- -

- -

14

8

7

-V

alu

e o

f a

dd

itio

na

l su

ga

r p

rod

uce

d per

seas

on

W

- 199

-

Pe

rio

d

of

retu

rn

on

in

vest

me

nt

(ye

ars

) -

at

actu

al

pri

ce

s -

0.5

4

1.5

2

.8

3.1

2

.7

4.4

2

.4

1.7

-

at

fore

ca

st

pri

ce

s -

- 1

.3

1.9

2

.2

1.3

2

.1

1.3

1

.0

^/

inclu

din

g

the

co

st

of

ve

rsio

n

A2

Page 372: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

361

- among the v e r s i o n s c o n s i d e r e d , CI and C2 a re c h a r a c t e r i z e d by the s h o r t e s t

p e r i o d s o f r e t u r n on i n v e s t m e n t .

9 . 4 OPTIMIZATION OF ENERGY SYSTEMS

9 . 4 . 1 P r a c t i c a l meaning o f d e s i g n o p t i m i z a t i o n

With the t r a d i t i o n a l d e s i g n me thods , improvements a re i n t r o d u c e d to ene rgy

sys tems u s i n g the l e a r n i n g - b y - e x p e r i e n c e a p p r o a c h . When e v a l u a t i n g the r e s u l t s

o b t a i n e d from s u g a r f a c t o r y o p a r a t i o n , the o p e r a t o r s and d e s i g n e r s l e a r n f rom

t h e i r m i s t a k e s . As a new f a c t o r y i s e r e c t e d o r an e x i s t i n g one i s m o d e r n i z e d ,

a t tempts a re made to improve the energy economy i n r e l a t i o n to e a r l i e r

s o l u t i o n s . The r e s u l t s a re ve ry much dependent on the e n g i n e e r ' s i n t u i t i o n and

e x p e r i e n c e , and i t may be i m p o s s i b l e to determine j u s t how c l o s e a d e s i g n i s to

the rea l minimum energy demand. On the o t h e r h a n d , i t i s i n c r e a s i n g l y o f t e n

r e q u i r e d t ha t e n e r g y - c o s t s a v i n g s s h o u l d be ba lanced a g a i n s t c a p i t a l i n ves tmen ts

and economic and o p e r a t i n g c o n s t r a i n t s to i d e n t i f y the most c o s t - e f f e c t i v e

d e s i g n i n any g i v e n s i t u a t i o n . I n o r d e r to make i t p o s s i b l e f o r e n g i n e e r s to use

t h i s a p p r o a c h , new compute r -a ided methods have been p roposed f o r e n e r g y - s y s t e m

d e s i g n .

In the f o l l o w i n g , s h o r t rev iews a re g i v e n o f the u n d e r l y i n g p r i n c i p l e s o f

sys tem s y n t h e s i s by mathemat ical programming and the p r o c e s s i n t e g r a t i o n

t e c h n i q u e . Both methods o r i g i n a t e d f rom the needs o f gene ra l p r o c e s s e n g i n e e r i n g ,

and p a r t i c u l a r l y from the n e c e s s i t y to shape ene rgy sys tems o f complex and o f t e n

e n t i r e l y new chemical p r o c e s s e s r a t i o n a l l y , where i t may be i m p o s s i b l e to use

the e v o l u t i o n a r y a p p r o a c h . I n the s u g a r i n d u s t r y , the s i t u a t i o n i s d i f f e r e n t

because the p r o c e s s has changed r e l a t i v e l y l i t t l e o v e r many d e c a d e s . When

a p p l i e d to an e x i s t i n g s u g a r f a c t o r y , the new methods migh t j u s t i n d i c a t e t h a t

the p r o c e s s i s o p e r a t i n g c l o s e to minimum ene rgy demand and any improvement can

be ach ieved o n l y by i n t r o d u c i n g new u n i t o p e r a t i o n s and equ ipment . When new

s o l u t i o n s are c o n s i d e r e d , however , the new methods may prove u s e f u l i n s t u d y i n g

t h e i r e n e r g y - s a v i n g p o t e n t i a l and max im iz ing p o s s i b l e p r o f i t s .

9 . 4 . 2 E n e r g y - s y s t e m s y n t h e s i s u s i n g mathemat ica l programming methods

"Mathemat ica l programming" i s the common name o f s e v e r a l mathemat ica l

t echn iques t ha t at tempt to s o l v e prob lems by m i n i m i z i n g o r max im iz i ng a f u n c t i o n

( c a l l e d the o b j e c t i v e f u n c t i o n ) o f s e v e r a l independent v a r i a b l e s . T y p i c a l

i n d u s t r i a l a p p l i c a t i o n s i n c l u d e de te rm in i ng the optimum a l l o c a t i o n o f r e s o u r c e s

( i . e . , c a p i t a l , raw m a t e r i a l s , manpower, e t c . ) to o b t a i n maximum p r o f i t o r

minimum c o s t f o r the p r o j e c t , c h o o s i n g the optimum v a l u e s o f d e s i g n v a r i a b l e s to

o b t a i n minimum c o s t o r maximum th roughpu t o f the equipment u n i t , e t c . Opt imal

a l l o c a t i o n o f r e s o u r c e s o r opt imal v a l u e s o f d e s i g n v a r i a b l e s must be determined

under c o n d i t i o n s where the re a re a l t e r n a t i v e u s e s o f r e s o u r c e s o r a l t e r n a t i v e

Page 373: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

362

d e s i g n s , and where p h y s i c a l , economic and o t h e r c o n s t r a i n t s must be met. The

c o n s t r a i n t s take the form o f e q u a t i o n s o r i n e q u a l i t i e s c o n t a i n i n g the same

problem v a r i a b l e s as appear i n the o b j e c t i v e f u n c t i o n .

R e s t r i c t i n g our a t t e n t i o n to the energy economy o f s u g a r f a c t o r i e s , we can

s t a t e tha t f o r a g i v e n scheme and known parameters o f the s u g a r m a n u f a c t u r i n g

p r o c e s s , a l t e r n a t i v e e n e r g y - s y s t e m d e s i g n s can be c o n s i d e r e d . Each d e s i g n i s

d e f i n e d by :

- a sys tem s t r u c t u r e ( i . e . a s e t o f components and t h e i r c o n n e c t i o n s ) ;

- parameters o f the energy c o n v e r s i o n , d i s t r i b u t i o n and u t i l i z a t i o n p r o c e s s e s

( f l ows o f e n e r g y - c a r r y i n g med ia , t e m p e r a t u r e s , e t c . ) .

Le t us assume t h a t the s e t o f p o s s i b l e sys tem s t r u c t u r e s i s l i m i t e d to a few

v e r s i o n s and the problem c o n s i s t s o f de te rm in ing the v a l u e s o f η unknown

v a r i a b l e s ×2, . . , x^ c h a r a c t e r i z i n g the components and the ene rgy p r o c e s s e s

o f each v e r s i o n . The c o n s t r a i n t s e t t h a t d e s c r i b e s a t y p i c a l ene rgy sys tem

c o n s i s t s l a r g e l y o f the f o l l o w i n g r e l a t i o n s h i p s .

( i ) E q u a t i o n s f o r the mass and energy b a l a n c e s f o r p r o c e s s u n i t s and equipment

i tems c o n s i d e r e d , i n c l u d i n g m u l t i p l e - e f f e c t e v a p o r a t o r , j u i c e h e a t e r s , e x t r a c t o r ,

t u r b i n e , e t c .

( i i ) E q u a t i o n s f o r heat and power demand.

( i i i ) Upper and lower bounds f o r the independent v a r i a b l e s .

( i v ) E q u a t i o n s and i n e q u a l i t i e s t ha t a re f a c t o r y - d e p e n d e n t .

U s i n g the n o t a t i o n χ = (X ] ,X2> . . fXp )5 we may w r i t e down the gene ra l form o f the

c o n s t r a i n t s e t as

fT(x) = 0 i = 1 , 2 , . . , ρ ( 9 . 3 )

^ j ( x ) < 0 j = 1 , 2 , . . , q ( 9 . 3 )

The o b j e c t i v e f u n c t i o n f o r an ene rgy sys tem can range from ve ry s i m p l e to

q u i t e complex. The s i m p l e s t c o n s i s t o f a s i n g l e v a r i a b l e r e p r e s e n t i n g , f o r

example , the l i v e steam demand, o r the t o t a l fue l demand. I n e i t h e r c a s e , the

o b j e c t i v e f u n c t i o n i s m i n i m i z e d .

A comprehens ive o b j e c t i v e can be d e f i n e d as the sum o f o p e r a t i n g expenses

( i n c l u d i n g f u e l , e l e c t r i c power, f eed -wa te r make-up f o r the b o i l e r , e t c . ) and

the c o s t ^ f c a p i t a l r e c o v e r y , p l u s a r e t u r n on inves tmen t f o r major equ ipment .

F o r a new energy sys tem ( i n a modern ized o r an e n t i r e l y new f a c t o r y ) a t the

d e s i g n s t a g e , t h i s o b j e c t i v e f u n c t i o n r e p r e s e n t s the t o t a l v a r i a b l e c o s t o f the

sys tem and i s a l s o m i n i m i z e d .

Between the two t ypes o f o b j e c t i v e f u n c t i o n ment ioned a b o v e , f u n c t i o n s o f

i n te rmed ia te comp lex i t y can be i m a g i n e d . S e l e c t i o n o f a p a r t i c u l a r o b j e c t i v e

f u n c t i o n , to r e f l e c t the w i s h e s and e x p e c t a t i o n s o f the d e c i s i o n - m a k e r s , i s

o f t en t r e a t e d as a pa r t o f the d e s i g n s t u d y . I n a p r e l i m i n a r y d e s i g n , i t may be

s u f f i c i e n t to m in im ize the t o t a l steam o r fue l demand. I n a d e t a i l e d d e s i g n , the

Page 374: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

363

o b j e c t i v e f u n c t i o n s h o u l d i n c l u d e a l l the e s s e n t i a l f a c t o r s t h a t a f f e c t the

economic r e s u l t s o f f a c t o r y o p e r a t i o n .

Hav ing s p e c i f i e d the o b j e c t i v e f u n c t i o n F(x^) , we can fo rmu la te the

mathemat ica l programming problem which i s an a b s t r a c t r e p r e s e n t a t i o n o f the

problem o f opt imal s y n t h e s i s o f the ene rgy s y s t e m . Among a l l the p o s s i b l e x ' s we

a re s e e k i n g such an xP ( i . e . , x°,X2>.. »2< ) t h a t the o b j e c t i v e f u n c t i o n a t t a i n s

i t s minimum

F ( x ° ) = mjn F ( x ) ( 9 . 5 )

Of c o u r s e , x ° can be accepted o n l y i f i t s a t i s f i e s the c o n s t r a i n t s ( 9 . 3 ) and

( 9 . 4 ) .

From the mathemat ical p o i n t o f v iew the p rob lem, c o n s i s t i n g o f c o n d i t i o n s

( 9 . 3 ) - ( 9 . 5 ) , can be e i t h e r l i n e a r o r n o n l i n e a r . I n the former c a s e , the

f u n c t i o n s F , f , and f . must be l i n e a r , t h a t i s , i t s h o u l d be p o s s i b l e to e x p r e s s ' J η

each o f them i n the form ^E^aj^Xj^, where a p a2» . . j a re known c o n s t a n t s . I f

a t l e a s t one o f the f u n c t i o n s i n v o l v e d i s n o n l i n e a r , then the e n t i r e problem i s

s a i d to be n o n l i n e a r . Depending on the prob lem t y p e , d i f f e r e n t mathemat ica l

p rocedures must be a p p l i e d to f i n d a s o l u t i o n .

I t i s an i n h e r e n t p r o p e r t y o f the problems o f e n e r g y - s y s t e m o p t i m i z a t i o n t ha t

some o f the r e l a t i o n s h i p s ment ioned under ( i ) , ( i i ) and ( i v ) a re n o n l i n e a r . I n

p r i n c i p l e , i t may be p o s s i b l e to t r a n s f o r m such r e l a t i o n s h i p s i n t o l i n e a r ones

and to app l y wel l p r o v e n , r e l i a b l e l i n e a r programming methods to f i n d a s o l u t i o n

( r e f . 8 ) . I t has a l s o been demons t ra ted , however , t h a t n o n l i n e a r prob lems can be

e f f e c t i v e l y s o l v e d u s i n g a p p r o p r i a t e numer ica l methods ( r e f s . 9 , 1 0 ) . Fo r

example , opt imal s y n t h e s i s o f a thermal sys tem f e a t u r i n g a q u a d r u p l e - e f f e c t

e v a p o r a t o r has been fo rmu la ted and s o l v e d as a n o n l i n e a r programming prob lem

w i th 2 4 - 2 6 v a r i a b l e s and 19 -24 c o n s t r a i n t s , the e x a c t number o f v a r i a b l e s and

c o n s t r a i n t s depending on the sys tem s t r u c t u r e c o n s i d e r e d ( r e f . 1 1 ) .

I t i s worth n o t i n g t ha t the f i r s t s u c c e s s f u l a t tempts to i n t r o d u c e the

methods o f opt imal sys tem s y n t h e s i s to the s u g a r i n d u s t r y took p l ace a t the

b e g i n n i n g o f the 1 9 7 0 s , when t h i s approach was r e l a t i v e l y new. I t can be seen i n

the l i t e r a t u r e , however , t ha t a w ide r i n t e r e s t i n the a p p l i c a t i o n o f

o p t i m i z a t i o n methods to the food i n d u s t r i e s began some ten y e a r s l a t e r ( r e f s .

1 2 , 1 3 ) . T a k i n g advantage o f the development o f mathemat ica l t e c h n i q u e s , i t i s

now p o s s i b l e to o p t i m i z e the sys tem s t r u c t u r e a l o n g w i t h the parameters o f the

components and p r o c e s s e s .

9 . 4 . 3 E n e r g y - s y s t e m d e s i g n u s i n g the techn ique o f p r o c e s s i n t e g r a t i o n

A d i s a d v a n t a g e o f the opt imal s y n t h e s i s approach d i s c u s s e d i n the p r e c e d i n g

S e c t i o n i s t h a t the t r a n s l a t i o n o f r e a l - l i f e d e s i g n problems to a b s t r a c t

mathemat ical fo rmulae i s both d i f f i c u l t and t i m e - c o n s u m i n g . Even w i th computer

Page 375: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

364

programs tha t automate the min imum-seek ing c o m p u t a t i o n s , a l o t o f e f f o r t must be

spen t on the i d e n t i f i c a t i o n o f c o n s t r a i n t s and t h e i r mathemat ica l f o r m u l a t i o n ,

p r e p a r a t i o n o f i n p u t data i n accordance w i th the mathemat ica l c o n v e n t i o n a s s u m e d ,

e t c . Once the o p t i m i z a t i o n r e s u l t s have been o b t a i n e d , however , the d e s i g n e r s

tend to t r e a t the f i g u r e s w i th some s u s p i c i o n because they a re u s u a l l y unab le to

con t r o l i n t u i t i v e l y the p r o c e s s o f a r r i v i n g a t a s o l u t i o n . A b e t t e r i n s i g h t can

o n l y be g a i n e d i n an i n d i r e c t manner , by r e p e a t i n g the o p t i m i z a t i o n compu ta t i ons

f o r m u l t i p l e s e t s o f i n p u t data and a n a l y s i n g the s o l u t i o n ' s s e n s i t i v i t y to

changes o f impor tan t i n p u t parameters ( l i k e the p r i c e s o f f ue l and power , c a p i t a l

c o s t r a t e , e t c . ) . Owing to the a s s o c i a t e d work load and the p s y c h o l o g i c a l b a r r i e r ,

t h i s approach may be d i f f i c u l t to adopt as a p a r t o f the e n g i n e e r i n g a c t i v i t i e s .

P r o c e s s i n t e g r a t i o n i s a t echn ique to f a c i l i t a t e s y s t e m a t i c thermodynamic

a n a l y s i s o f comp l i ca ted energy s y s t e m s . O r i g i n a t i n g from the work on mathemat ica l

t o o l s to s y n t h e s i z e e n e r g y - o p t i m a l heat exchanger networks ( r e f s . 1 4 , 1 5 ) , i t can

he lp the u s e r to unde rs tand how and where a v a i l a b l e energy can b e s t be s u p p l i e d

and r e - u s e d w i t h i n the p r o c e s s , and a t what temperature i t s h o u l d be r e j e c t e d

from the p r o c e s s ( r e f s . 1 6 , 1 7 ) .

An i n t r o d u c t i o n to the r e a s o n i n g c h a r a c t e r i s t i c o f p r o c e s s i n t e g r a t i o n can be

g i v e n by u s i n g the s o - c a l l e d compos i te c u r v e s i n a g raph showing cumu la t i ve heat

l o a d s as f u n c t i o n s o f tempera tu re . The g raph can be c o n s t r u c t e d f rom mass and

heat ba lance data c o n s i s t i n g o f the mass f l o w , en tha lpy o r s p e c i f i c h e a t , s u p p l y

temperature and r e q u i r e d ( t a r g e t ) temperature f o r each p r o c e s s s t r e a m .

The hot compos i te r e p r e s e n t s the amount o f heat a v a i l a b l e a t v a r i o u s

tempera tures o f the hot p r o c e s s media (exhaus t s t e a m , h e a t i n g v a p o u r s , condensa te

c o n d e n s a t e , e t c . ) . T h i s heat must be removed to dec rease the e n t h a l p i e s o f the

ho t med ia , i n accordance w i t h the assumed methods o f t h e i r u t i l i z a t i o n . The c o l d

compos i te r e p r e s e n t s the amount o f heat r e q u i r e d a t v a r i o u s tempera tu res o f the

c o l d p r o c e s s media ( c o s s e t t e s , p r e s s w a t e r , j u i c e i n v a r i o u s s t a g e s o f the

p r o c e s s , s y r u p s , e t c . ) . T h i s heat must be s u p p l i e d to i n c r e a s e the tempera tu res

o f the c o l d media to t h e i r r e q u i r e d v a l u e s , as d e f i n e d by the p r o c e s s n e e d s .

Assuming a h y p o t h e t i c a l s i t u a t i o n t ha t the re i s no heat r e c o v e r y i n the ene rgy

s y s t e m , i t would be n e c e s s a r y to s u p p l y the e n t i r e heat amount r e p r e s e n t e d by

the c o l d compos i te i n the b o i l e r f u e l . S i m u l t a n e o u s l y , the heat amount a v a i l a b l e

i n the hot media would need to be removed from the p r o c e s s u s i n g c o o l i n g wa te r .

U s i n g heat r e c o v e r y , t ha t i s , a l l o w i n g f o r some o f the heat a v a i l a b l e i n the ho t

s t reams to cove r the heat demand o f the c o l d s t r e a m s , i t becomes p o s s i b l e to

reduce the fue l demand. T h i s can be done i n a v a r i e t y o f w a y s , and e x p e r i e n c e

p roves t ha t some o f the h e a t - r e c o v e r y s o l u t i o n s may be p r e f e r a b l e to o t h e r s .

The p o t e n t i a l f o r heat r e c o v e r y by heat exchange between hot and c o l d p r o c e s s

media can be i n v e s t i g a t e d by f i x i n g the r e l a t i v e p o s i t i o n s o f the hot and c o l d

Page 376: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

365

100 150 200

Heat load (MW)

150

Heat load (MW)

F i g . 9 . 1 2 . Examples o f cumu la t i ve heat l o a d s as f u n c t i o n s o f t empera tu re . 1 -hot c o m p o s i t e , 2 - c o l d c o m p o s i t e , 3 - p i n c h p o i n t , 4 - minimum heat s u p p l y , 5 - minimum heat r e j e c t i o n .

compos i te c u r v e s , as shown i n F i g . 9 . 1 2 . The d i s t a n c e between them i n the

d i r e c t i o n o f the temperature a x i s must be g r e a t e r t h a n , o r equal t o , the minimum

accep tab le temperature d i f f e r e n c e c h a r a c t e r i s t i c o f the hea t -exchange equipment

a v a i l a b l e ( i n a way, t h i s temperature d i f f e r e n c e r e f l e c t s the a t t a i n a b l e o v e r a l l

heat t r a n s f e r c o e f f i c i e n t , see S e c t i o n 3 . 3 . 2 ) . Once the minimum temperature

d i f f e r e n c e has been d e f i n e d , the r e l a t i v e p o s i t i o n s o f both c u r v e s become f i x e d

and the amounts o f heat to be s u p p l i e d , exchanged and r e j e c t e d can be de te rm ined .

I t a l s o becomes p o s s i b l e to i d e n t i f y the p i n c h p o i n t , t ha t i s , the p o i n t on the

graph where the compos i te c u r v e s a re s e p a r a t e d by the minimum temperature

d i f f e r e n c e .

The p inch p o i n t s e p a r a t e s two d i s t i n c t r e g i o n s o f the p r o c e s s . A t

tempera tures above the p i n c h - p o i n t t empe ra tu re , a l l the heat a v a i l a b l e i n the

hot media can be t r a n s f e r r e d to the c o l d m e d i a , and the heat d e f i c i t must be

ba lanced by s u p p l y i n g f u e l . Below the p i n c h - p o i n t t empe ra tu re , a l l the h e a t i n g

needs o f the c o l d media can be s a t i s f i e d u s i n g the heat a v a i l a b l e i n the hot

med ia , and the s u r p l u s heat must f i n a l l y be r e j e c t e d . I t can thus be conc luded

t ha t the re s h o u l d be no heat t r a n s f e r a c r o s s the p i n c h , as any heat amount

t r a n s f e r r e d w i l l i n c r e a s e the d e f i c i t i n the upper r e g i o n ; t h i s w i l l l ead to

i n c r e a s e d fue l demand, and more i n s t a l l e d h e a t i n g s u r f a c e a rea than r e a l l y

needed. Heat t r a n s f e r a c r o s s the p i nch s h o u l d t h e r e f o r e be a v o i d e d i n a new

d e s i g n . When i n v e s t i g a t i n g p o s s i b l e improvements i n an e x i s t i n g f a c t o r y , the

Page 377: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

366

p i n c h - p o i n t temperature s h o u l d be determined and the c a s e s o f i n c o r r e c t h e a t i n g

s h o u l d be i d e n t i f i e d .

I t s h o u l d be p o i n t e d ou t t h a t the above c o n c l u s i o n s r e l a t i n g to the e n e r g y

t a r g e t s and heat t r a n s f e r a r rangements can be drawn be fo re i n i t i a t i n g d e s i g n

work , and the i n f o r m a t i o n thus a c q u i r e d can be t r ea ted as a d e s i g n g u i d e l i n e .

A c t u a l l y , i f the p i n c h - p o i n t temperature i s known, then a d d i t i o n a l i n f o r m a t i o n

can be ob ta i ned r e g a r d i n g o t h e r energy p r o c e s s e s t o o . Fo r examp le , i t s h o u l d be

c l e a r t ha t a vapour compress ion c i r c u i t can save energy o n l y i f i t t akes the

heat from below the p inch and s u p p l i e s i t to a temperature l e v e l above the p i nch

p o i n t where t he re i s a heat d e f i c i t . T h i s i s an unambiguous c r i t e r i o n making i t

p o s s i b l e to i d e n t i f y economic a p p l i c a t i o n s o f vapour c o m p r e s s i o n .

As can be seen i n F i g . 9 . 1 2 , w h i l e the minimum accep tab le temperature

d i f f e r e n c e a f f e c t s the r e l a t i v e p o s i t i o n s o f the compos i te c u r v e s , i t a l s o

de termines the w id th o f the r e g i o n o f o v e r l a p r e p r e s e n t i n g p o s s i b l e heat

e x c h a n g e , and the w id th o f the r e g i o n r e p r e s e n t i n g n e c e s s a r y heat s u p p l y . T a k i n g

i n t o accoun t the c o s t s o f h e a t - e x c h a n g e r s u r f a c e s and energy and a p p l y i n g

compute r -a ided o p t i m i z a t i o n methods , i t becomes p o s s i b l e to f i n d the most

economic v a l u e o f the minimum temperature d i f f e r e n c e . The r e s u l t i n g d e s i g n

g u i d e l i n e s can then be t r e a t e d as opt imal w i th r e s p e c t to o v e r a l l f a c t o r y

economy. U s i n g t hese g u i d e l i n e s , the most economic e n e r g y - s y s t e m o p t i o n s to be

c o n s i d e r e d i n the d e t a i l e d d e s i g n a re e a s i l y i d e n t i f i e d .

REFERENCES

1 N . P . Romensk i i ( E d . ) , R e k o n s t r u k t s i y a i Tekhn i cheskoe P e r e v o o r u z h e n i e Sakharnykh Zavodov , T e k h n i k a , K i e v , 1 9 8 5 .

2 H. Wunsch , E r k e n t n i s s e und E r f a h r u n g e n bei der P lanung von K a p a z i t δ t s e rwe i te rungen i n Z u c k e r f a b r i k e n , Z u c k e r i n d . , 1 0 7 ( 1 0 ) ( 1982 ) 9 3 2 - 9 3 4 .

3 W. Lekawski and K. U r b a n i e c , M o d e r n i s i e r u n g der Wδrmewi r tscha f t i n Z u c k e r f a b r i k e n , Z u c k e r i n d . , 1 0 8 ( 4 ) (1983) 3 3 8 - 3 4 3 .

4 R. M i c h e l , P h . Ternynck and P h . B o n n e n f a n t , R e a l i s a t i o n du pos te d ' e v a p o r a t i o n dans une u s i n e de 12000 t / j de b e t t e r a v e s s t o c k a n t 60% du s i r o p p r o d u i t en campagne, I n d . A l i m . A g r i e , 9 4 ( 7 - 8 ) (1977 ) 7 0 1 - 7 0 5 . Η. C y r k l a f f (e t a l . ) , M o d e r n i z a c j a g o s p o d a r k i c i e p l n e j cukrowni Che lmza , Gaz . C u k r o w . , 9 2 ( 7 - 8 H . R . B runner (e t a l .

(1984) 1 5 6 - 1 5 7 . , D ie Ve rdamp fs ta t i on der Z u c k e r f a b r i k + R a f f i n e r i e

Aa rbe rg AG und das M u l t i - E n e r g i e - S c h e m a , Z u c k e r i n d . , 1 1 0 ( 5 ) (1985 ) 3 9 3 - 3 9 8 . / P . Hof fman, Optimal i z a c e e n e r g e t i c k e h o h o s p o d a r s t v i c u k r o v a r u L o v o s i c e ,

L i s t y C u k r . , 1 0 2 ( 7 ) (1986 ) 1 5 5 - 1 6 1 . 8 J . K . C l a r k and N . E . He im i ck , How to op t im i ze the d e s i g n o f s team s y s t e m s ,

i n : R. Greene ( E d . ) , P r o c e s s Energy C o n s e r v a t i o n , M c G r a w - H i l l , New Y o r k , 1 9 8 2 , pp . 1 5 3 - 1 6 4 .

9 A . Kubas iew icz (e t a l . ) , Op tyma l i zac ja g o s p o d a r k i c i e p l n e j cukrowni za pomoca maszyny matematyczne j , Gaz . C u k r o w . , 8 3 ( 7 ) (1975 ) 1 6 5 - 1 6 7 .

10 A . Kubas iew icz (e t a l . ) . Optimum d e s i g n o f thermal sys tems o f s u g a r p l a n t s . Paper p resen ted a t V I I I I n t e r n a t i o n a l Confe rence on I n d u s t r i a l E n e r g e t i c s , Gdansk , September 1 9 7 5 .

11 A . Kubas iew icz (e t a l . ) . Some a s p e c t s o f computer ized d e s i g n o f thermal sys tems o f beet s u g a r p l a n t s , i n : P r o c . Symp. Computers i n the D e s i g n and E r e c t i o n o f Chemical P l a n t s , K a r l o v y V a r y , September 1 9 7 5 , pp . 5 9 9 - 6 0 7 .

Page 378: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

367

12 I . S a g u y , O p t i m i z a t i o n t h e o r y , t e c h n i q u e s , and t h e i r imp lementa t ion i n the food i n d u s t r y : i n t r o d u c t i o n . Food T e c h n . , ( 1982 ) ( 7 ) 8 7 .

13 D. Depeyre and P h . L u c a s , S y n t h e s e de p rocedes e t a m e l i o r a t i o n e n e r g e t i q u e du procede s u c r i e r , I n d . A l i m . A g r i e , 1 0 2 ( 7 - 8 ) ( 1985 ) 7 4 3 - 7 4 8 .

14 Β . L i n n h o f f and J . R . F l o w e r , S y n t h e s i s o f heat exchanger n e t w o r k s , A I C h E J . , 2 4 ( 4 ) (1978 ) 6 3 3 - 6 5 4 .

15 D. Bo land and B. L i n n h o f f , The p r e l i m i n a r y d e s i g n o f ne tworks f o r heat exchange by s y s t e m a t i c methods , Chem. E n g i n e e r , (1979 ) (4 ) 2 2 2 - 2 2 8 .

16 B. Goublomme, Comment abo rde r le probleme de l a r e d u c t i o n des c o u t s e n e r g e t i q u e s dans l e s s u c r e r i e s , S u c r . B e i g e , 103 (1985 ) 2 7 - 3 0 .

17 N . R . T w a i t e , H . J . Davenpor t and E . K . M a c d o n a l d , Energy r e d u c t i o n and p r o c e s s i n t e g r a t i o n . I n t . S u g a r J . , 88 ( 1 9 8 6 ) , P a r t I : ( 1055 ) 2 1 7 - 2 1 9 , P a r t I I : ( 1056 ) 2 3 0 - 2 3 6 .

Page 379: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

368

Appendix 1

NUMERICAL APPROXIMATIONS OF THERMODYNAMIC PROPERTIES OF WATER AND STEAM

Data on the thermodynamic p r o p e r t i e s o f water and steam are i n d i s p e n s a b l e

to e n g i n e e r i n g c a l c u l a t i o n s r e l a t e d to the energy economy o f s u g a r f a c t o r i e s .

Most o f ten used are data on the p r o p e r t i e s o f s a t u r a t e d water and d ry s a t u r a t e d

s team, as wel l as superhea ted s team. They can be found i n genera l t a b l e s o f

the p r o p e r t i e s o f water and steam ( r e f . 1 ) , o r i n s p e c i a l i z e d t a b l e s , d iag rams

and nomographs where the ranges o f the parameters are adapted to the needs o f

the s u g a r i n d u s t r y ( r e f . 2 ) .

In computer ized c a l c u l a t i o n s , o r when u s i n g h a n d - h e l d programmable

c a l c u l a t o r s to automate p a r t s o f the c a l c u l a t i o n p r o c e d u r e s , t a b l e s o r d iag rams

o f thermodynamic p r o p e r t i e s s h o u l d p r e f e r a b l y be r ep l aced by s u i t a b l e f u n c t i o n a l

r e l a t i o n s h i p s . T h i s requ i rement i s nowadays r e c o g n i z e d by the p u b l i s h e r s o f

i n t e r n a t i o n a l l y known t a b l e s o f thermodynamic p r o p e r t i e s o f water and s t e a m ,

where mathemat ical formulae are a l s o g i v e n f o r most thermodynamic f u n c t i o n s

( r e f . 1 ) . These formulae are i n t e n d e d , however , to combine thermodynamic

c o n s i s t e n c y w i th h i g h accu racy over broad ranges o f parameter v a l u e s . To s a t i s f y

t h i s c o n d i t i o n , the mathemat ical e x p r e s s i o n s c o n s i s t o f many terms and the

c o e f f i c i e n t s are g i v e n w i th s e v e r a l - d i g i t a c c u r a c y . Such fo rmulae may be

i n c o n v e n i e n t to u s e , e s p e c i a l l y when r e l y i n g on smal l -memory comput ing hardware .

However, i f the parameter ranges are narrow and the accu racy c o n d i t i o n s a re no t

ve ry s t r i n g e n t , then the l eng thy e x p r e s s i o n s can be rep laced by more c o n c i s e

o n e s . Numerous s imp le fo rmulae d e s i g n e d f o r use w i t h i n d e f i n i t e i n t e r v a l s o f

parameter v a l u e s can be found in the l i t e r a t u r e , and some o f them have been

e l abo r a ted to s a t i s f y the needs o f the s u g a r i n d u s t r y .

The most impor tan t app rox ima t i on fo rmulae a re g i v e n i n Tab le A l . U n l e s s

o the rw i se s t a t e d , t h e i r ranges o f v a l i d i t y s h o u l d be unde rs tood to c o i n c i d e w i th

the ranges o f parameters no rma l l y encounte red i n the s u g a r i n d u s t r y . The maximum

r e l a t i v e d i f f e r e n c e between the t a b u l a t e d data and the a p p r o x i m a t i o n s does no t

exceed 0 .3% and the ave rage e r r o r i s t y p i c a l l y l e s s than 0 . 1 % .

REFERENCES

1 U. G r i g u l l ( E d . ) , P r o p e r t i e s o f Water and Steam i n S l - u n i t s , 2nd e d n . , S p r i n g e r - V e r l a g , B e r l i n - H e i d e l b e r g - N e w Y o r k , 1979 .

2 T. B a l o h , Wδrmeat las f ٧ r d ie Z u c k e r i n d u s t r i e , Schaper V e r l a g , Hannove r , 1 9 7 5 . 3 A . I l l y e s , Anwendung von N δ h e r u n g s g l e i c h u n g e n i n der Wδrmetechn ik ,

Ζ . Z u c k e r i n d . , 2 6 ( 1 2 ) (1976) 7 6 3 - 7 6 5 . 4 . G, Ba to r and Κ. U r b a n i e c , P r o j e k t i e r u n g von Verdampfan lagen i n Z u c k e r f a b r i k e n

mi t H i l f e von Computern, Z u c k e r i n d . , 103 (12 ) (1978) 1 0 3 5 - 1 0 4 2 . 5 W. Reed , The smal l programmable c a l c u l a t o r i n a s u g a r r e f i n e r y . S u g a r J . ,

P a r t I : January 1 9 7 9 , 1 3 - 2 0 , P a r t I I : Feb rua ry 1 9 7 9 , 1 3 - 2 0 .

Page 380: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

369 TA

BLE

Al

Ap

pro

xim

ati

on

form

ula

e fo

r th

erm

od

yna

mic

fu

ncti

on

s o

f w

ate

r an

d st

ea

m

(te

mp

era

ture

in

p

ressu

re

in

ba

r,

en

tha

lpy

in

kJ

/kg

, s

pe

cif

ic

volu

me

in

m^

/kg

).

Sp

ec

ific

ati

on

^^"^

^^^

R

efe

ren

ce

va

lid

ity

Sa

tura

tio

n

tem

pe

ratu

re a

s

0.2

5-6

.0 b

ar

t^^^ =

1

59

.52

ρ^·

""^^

^ -

59

.96

3

a fu

ncti

on

of

pre

ssu

re

t^^^

=

(58

5.4

3 +

2

02

.2

log

p

)/(4

.98

7

- lo

g

p)

- 1

7.7

8 5

^

Sa

tura

tio

n

pre

ssu

re a

s

65

-16

0°C

p

^^^

=

((t

+

59

.96

)/1

59

.52

)^'^

^^

3

a fu

ncti

on o

f te

mp

era

ture

p,,.

=

ex

p(2

.30

26

(11

.06

6 t

- 4

34

)/(1

.8

t +

3

96

) -

2.6

74

4)

5^

sa

t

afS

1S

L?io

roT

Sera

f"e

2

0-1

60

°C

h'

=

1.5

43

. 4

.12

20

t .

0.5

44

94

(t2

/10

00

) 4

En

tha

lpy

of

dry

sa

tura

ted

st

ea

m

20

-16

0°C

h

" =

2

50

0 +

1

.81

3 t

+

(0.4

71

t^

- 0

.01

10

4

t^)/

10

00

4

as a

fu

ncti

on o

f te

mp

era

ture

6

5-1

60

°C

h"

=

13

09

.1

+

54

6.3

5(t

+

5

9.9

6)°

·^^°^

3

Sp

ecif

ic

volu

me

of

sa

tura

ted

w

ate

r ^.^

^ o

^

^,

^

y^

^^

^^

_

^^

^^

^

_

0

00

35

3 ^2

^ 3

as

a

fun

cti

on

of

tem

pe

ratu

re

^

^

Sp

ec

ific

vo

lum

e o

f dry

sa

tura

ted

0

.25

-1.2

b

ar

v"

=

1/(

0.1

05

+

0.6

10

5 ρ

-

0.0

30

3 p

^)

3

ste

am

a

s

a

fun

cti

on

of

pre

ssu

re

1.2

-6.0

b

ar

v"

=

1/(

0.0

53 +

0

.54

62

ρ -

0.0

04

55

3 p

^)

3

En

tha

lpy

of

su

pe

rhe

ate

d

ste

am

a

s

h

=

10

77

.81

+

0.7

74

58

t +

0

.00

01

37

t^

- ^a

Srlssuie

"""

^^"^

P^^

^^^^

^ -

13

0.5

3(p

+

0

.68

9)(

log

ρ +

1

.16

15

)/(1

.8

t -

21

8)

' B

riti

sh

u

nit

s

use

d in

th

is

refe

ren

ce

Page 381: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

370

Appendix 2

NUMERICAL APPROXIMATIONS OF THERMODYNAMIC PROPERTIES OF SUGAR SOLUTIONS

Data on the thermodynamic p r o p e r t i e s o f s u g a r s o l u t i o n s can be found i n

the t a b l e s and d iag rams g i v e n i n r e f . 1 and o t h e r s o u r c e s . As i n the p r o p e r t i e s

o f water and s team, when c a l c u l a t i n g the energy b a l a n c e s , these da ta s h o u l d

p r e f e r a b l y be a v a i l a b l e i n the form o f f u n c t i o n a l r e l a t i o n s h i p s . Mos t p u b l i s h e d

r e l a t i o n s h i p s are based on data measured f o r pure s u c r o s e s o l u t i o n s and thus

y i e l d o n l y approx imate v a l u e s when used f o r t e c h n i c a l s u g a r s o l u t i o n s . However,

i n t y p i c a l e n g i n e e r i n g c a l c u l a t i o n s , t h e i r a c c u r a c y can be rega rded as

s u f f i c i e n t l y h i g h .

A few app rox ima t i on fo rmulae a re g i v e n i n Tab le A 2 . U n l e s s o the rw i se s t a t e d ,

the ranges o f v a l i d i t y s h o u l d be unde rs tood to c o i n c i d e w i th the ranges o f

parameters n o r m a l l y encounte red in the s u g a r i n d u s t r y . The maximum r e l a t i v e

d i f f e r e n c e between the t a b u l a t e d data and the a p p r o x i m a t i o n s does no t exceed

0.5% except f o r the second d e n s i t y f o r m u l a , the maximum e r r o r o f wh ich i s

about 2%.

REFERENCES

1 T. B a l o h , Wδrmeat las f ٧ r d i e Z u c k e r i n d u s t r i e , Schaper V e r l a g , Hannover , 1975 . 2 A . I l l y e s , Anwendung von N δ h e r u n g s g l e i c h u n g e n i n der Wδrmetechn ik ,

Ζ . Z u c k e r i n d . , 2 6 ( 1 2 ) (1976) 7 6 3 - 7 6 5 . 3 G. Ba to r and Κ. U r b a n i e c , P r o j e k t i e r u n g von Verdampfan lagen i n Z u c k e r f a b r i k e n

mi t H i l f e von Computern , Z u c k e r i n d . , 103 (12 ) (1978) 1 0 3 5 - 1 0 4 2 . 4 W. R e e d , The smal l programmable c a l c u l a t o r i n a s u g a r r e f i n e r y . S u g a r J . ,

Pa r t I : January 1 9 7 9 , 1 3 - 2 0 , P a r t I I : Feb rua ry 1 9 7 9 , 1 3 - 2 0 .

Page 382: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

371

TAB

LE A

2

Ap

pro

xim

ati

on

form

ula

e fo

r th

erm

od

yna

mic

fu

ncti

on

s

of

su

ga

r so

luti

on

s

(te

mp

era

ture

in

°C

, b

.p.e

. in

K

, co

nce

ntr

ati

on

in

%

DS

, p

uri

ty in

%

, e

nth

alp

y in

k

J/k

g,

sp

ec

ific

h

ea

t in

k

J/(

kg

K),

d

en

sit

y in

k

g/m

^).

Sp

ec

ific

ati

on

Sid

itν

R

efe

ren

ce

Bo

ilin

g-p

oin

t e

lev

ati

on

, a

s

20

-14

0°C

Δ

Τ =

f,

+

(t

/10

0)f

p +

(t

/10

0)^

f-.

3

a fu

ncti

on o

f co

nce

ntr

ati

on

10

-90%

D

S

^

and

wa

ter

sa

tura

tio

n

tem

pe

ratu

re

f-j

=

ex

p(-

1.5

25

4 +

0

.02

29

62

b +

0

.00

02

16

3 b

)

- 0

.2

f2

=

ex

p(-

3.2

02

1

+

0.0

06

67

43

b

- 0

.00

01

16

1 b

^)

- 0

.15

f3

=

ex

p(-

1.4

27

8 -

0.0

24

38

2 b

+

0

.00

06

04

7 b

^)

Sp

ec

ific

h

ea

t a

s

a

fun

cti

on

of

C

=

4.1

94 +

t(

t -

72

)/1

08

15

5 -

tem

pe

ratu

re,

co

nce

ntr

ati

on

an

d

_

(b/1

00

)(2

.72

2

- 0

.00

75

t .

0.0

04

6(1

00

- r)

) ^

Sp

ec

ific

h

ea

t a

s

a

fun

cti

on o

f

tem

pe

ratu

re

an

d

co

nce

ntr

ati

on

C =

4

.18

68 -

0.0

25

58

14

b +

0

.00

00

75

36

bt

(pu

rity

a

bo

ut

90%

) E

nth

alp

y a

s

a

fun

cti

on o

f ^n

, T/

inO

r o

te

mp

era

ture

a

nd

co

nce

ntr

ati

on

in

ano/

nc h

=

1

.5 +

(4

.12

2 -

0.0

25

12

b)t

+

(5

.5 +

0

.37

5 b

)(t/

10

0)'

^ 3

(p

uri

ty

ab

ou

t 9

0%

) '"

'^"/

^

Spi

ννtrr

/aνr

^coν

^nνν

atio

n ρ

=

^^

^-^

"

0-0

^38

3 t

- 0

.00

38

4

. (b

t)/(

0.2

46 t

- 0

.26

8)

2

De

nsity

as

a

fun

cti

on o

f co

nce

ntr

ati

on

(te

mp

era

ture

10

-70%

D

S ń

=

1

02

2.5

3 b

^'

^^-^

'^^^

exp

(0.0

05

55

3 b

) 70

-130

OC

)

Page 383: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

372

Appendix 3

CALCULATIONS OF HEAT TRANSFER PHENOMENA

I t was assumed th roughou t Chapter 2 and o the r r e l e v a n t p a r t s o f the p r e s e n t

book t h a t data on the thermal p r o p e r t i e s o f equipment a re a v a i l a b l e whenever

needed i n the c a l c u l a t i o n s o f ene rgy b a l a n c e s o f f a c t o r y s u b s y s t e m s . In p r a c t i c e ,

such data a re o f ten unknown f o r s p e c i f i c equipment u n i t s , and i n o rde r to make

the ba lance c a l c u l a t i o n s p o s s i b l e , c e r t a i n a s s u m p t i o n s may be r e q u i r e d . The aim

o f t h i s Appendix i s to s y n t h e s i z e i n f o r m a t i o n which can prove h e l p f u l i n making

r e a l i s t i c a s s u m p t i o n s about the c h a r a c t e r i s t i c s o f thermal equ ipment .

In the energy ba lance o f an equipment u n i t , heat l o s s e s to the env i ronment

are accounted f o r by m u l t i p l y i n g the heat e f f e c t i v e l y t r a n s f e r r e d w i t h i n the

u n i t by the heat l o s s c o e f f i c i e n t . I t s h o u l d be emphasized t ha t d i f f e r e n t

d e f i n i t i o n s o f such c o e f f i c i e n t s can be found i n the l i t e r a t u r e , and t h e i r

ac tua l v a l u e s may depend on equipment d e s i g n , the e f f i c i e n c y o f thermal

i n s u l a t i o n and l o c a l c o n d i t i o n s ( f o r example , ou tdoor l o c a t i o n o f a p a r t i c u l a r

u n i t ) . I n the fo rmulae g i v e n i n Chapter 2 , the f o l l o w i n g v a l u e s o f heat l o s s

c o e f f i c i e n t s can be u s e d :

- j u i c e h e a t e r s 0 . 0 3 - 0 . 0 5 ;

- e x t r a c t o r s 0 . 0 5 - 0 . 1 0 ;

- vacuum pans 0 . 0 3 - 0 . 1 2 ;

- s y r u p t anks 0 . 0 3 - 0 . 0 5 .

As r e g a r d s the e v a p o r a t o r s , exper imenta l work has been repo r ted on the

de te rm ina t i on o f heat l o s s c o e f f i c i e n t s . Zag rodzk i and S o k o l o w s k i ( r e f . 1) found

tha t the heat l o s s c o e f f i c i e n t o f a R o b e r t - t y p e e v a p o r a t o r body i n the second

e f f e c t o f a q u a d r u p l e - e f f e c t e v a p o r a t o r was 0 . 0 0 1 5 ; w i th an a d d i t i o n a l

i n s u l a t i o n l a y e r , the c o e f f i c i e n t was reduced to 0 . 0 0 0 9 . These r e s u l t s are in

good agreement w i th the va lue o f 0 . 0 0 1 1 measured by Hogg e t a l . ( r e f . 2 ) . Tak ing

i n t o accoun t heat d i s s i p a t i o n from j u i c e , vapour and condensa te p i p e l i n e s ,

a c o e f f i c i e n t va lue o f 0 . 0 0 2 5 was recommended by the l a t t e r a u t h o r s , w h i l e i n

o l d e r s o u r c e s , v a l u e s o f up to 0 . 0 3 can be found ( r e f . 3 ) .

I t seems t ha t f o r most e v a p o r a t o r s , a heat l o s s c o e f f i c i e n t between 0 . 0 0 2 5

and 0 . 0 1 can be assumed. When u s i n g the c a l c u l a t i o n a l g o r i t h m p resen ted i n

Chapter 2 , i d e n t i c a l v a l u e s can u s u a l l y be assumed f o r both the e v a p o r a t o r body

and the condensate tank .

The v a l u e s o f o v e r a l l heat t r a n s f e r c o e f f i c i e n t s used i n the d e s i g n

c a l c u l a t i o n s o f thermal sys tems are d e c i s i v e i n e n s u r i n g a p roper c h o i c e o f

the a r e a s o f h e a t i n g s u r f a c e s in equipment u n i t s . As the p r a c t i c a l v a l u e s o f

heat t r a n s f e r c o e f f i c i e n t s may v a r y w i th t i m e , depending on s c a l e b u i l d - u p .

Page 384: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

373

i t i s d i f f i c u l t to c o r r e l a t e d e s i g n data and r e a l i t y . A l t h o u g h the f i l m

c o e f f i c i e n t s o f heat t r a n s f e r c h a r a c t e r i z i n g c l e a n h e a t i n g s u r f a c e s can be

c a l c u l a t e d u s i n g d i m e n s i o n l e s s r e l a t i o n s h i p s known from the t heo ry o f heat

t r a n s f e r and w ide l y c i t e d in the l i t e r a t u r e , i t i s common to r e l y i n s t e a d on

p r a c t i c a l l y v e r i f i e d f i g u r e s . Care s h o u l d be t a k e n , however , o f the

c o m p a t i b i l i t y o f a l l da ta used i n the e q u a t i o n g o v e r n i n g heat t r a n s f e r a c r o s s

the h e a t i n g s u r f a c e

Q = k F At

where Q i s the heat t r a n s f e r r e d i n u n i t t i m e , k i s the o v e r a l l heat t r a n s f e r

c o e f f i c i e n t , F i s the h e a t i n g s u r f a c e a r e a , and At i s the mean temperature

d i f f e r e n c e .

In the j u i c e h e a t e r s , i t i s e s s e n t i a l t ha t the va lue o f k be determined u s i n g

the same d e f i n i t i o n o f the h e a t i n g s u r f a c e a rea as assumed i n the ac tua l

c a l c u l a t i o n . For t u b u l a r h e a t e r s , the i n n e r s u r f a c e a rea o f the tubes i s

t y p i c a l l y u s e d . Depending on the tube d iameter and wa l l t h i c k n e s s , i t may d i f f e r

by up to 12-15% from the ou te r s u r f a c e a rea o f the t u b e s .

For vapou r -hea ted t u b u l a r hea te r s ope ra ted a t c o r r e c t v a l u e s o f the j u i c e

f low v e l o c i t y , the o v e r a l l heat t r a n s f e r c o e f f i c i e n t s d e f i n e d a t the i n n e r

s u r f a c e area o f the tubes can u s u a l l y be assumed as f o l l o w s :

- raw j u i c e 6 0 0 - 8 0 0 W / ( m ^ K ) ;

- c l e a r j u i c e 700 -1000 W / ( m ^ K ) ;

- t h i n j u i c e 9 0 0 - 1 2 0 0 W / ( m ^ K ) ;

- t h i c k j u i c e and s y r u p s 4 0 0 - 6 0 0 W / ( m ^ K ) .

These v a l u e s can be t r ea ted as rough e s t i m a t e s o n l y ( c f . exper imenta l v a l u e s

c i t e d in Chapter 8 ) . As r e g a r d s p l a t e and s p i r a l h e a t e r s , the s c a t t e r o f

p r a c t i c a l v a l u e s o f heat t r a n s f e r c o e f f i c i e n t s i s so l a r g e t h a t one can o n l y

r e l y on the data s u p p l i e d by the equipment m a n u f a c t u r e r s .

In the case o f e v a p o r a t o r s , d e f i n i t i o n s o f both the h e a t i n g s u r f a c e a rea and

the e f f e c t i v e temperature d i f f e r e n c e are e s s e n t i a l . The temperature d i f f e r e n c e ,

a c c o r d i n g to the d e f i n i t i o n g i v e n i n Chapter 2 and most f r e q u e n t l y used i n the

l i t e r a t u r e , i s

At = t^ - ( t^ + ΔΤ)

where t^ i s the temperature o f the h e a t i n g steam (vapou r ) c o n d e n s i n g i n the

h e a t i n g chamber, t^ i s the temperature o f s a t u r a t e d vapour i n the vapour chamber

and AT i s the b o i l i n g p o i n t e l e v a t i o n . However, some a u t h o r s take the e f f e c t i v e

temperature d i f f e r e n c e as

At = t^ ^ t^

Adop t i ng t h i s d e f i n i t i o n , the v a l u e s o f the o v e r a l l heat t r a n s f e r c o e f f i c i e n t

c a l c u l a t e d f o r e v a p o r a t o r e f f e c t s opera ted a t h i g h e r j u i c e c o n c e n t r a t i o n s

(50-70% DS) may be up to 50-60% g r e a t e r than those c o r r e s p o n d i n g to the

Page 385: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

374

d e f i n i t i o n o f At adopted i n the p r e s e n t book .

For a p r o p e r l y d imens ioned and c o r r e c t l y ope ra ted R o b e r t - t y p e e v a p o r a t o r ,

the o v e r a l l heat t r a n s f e r c o e f f i c i e n t can be c a l c u l a t e d from B a l o h ' s fo rmu la

( r e f . 3)

k = 5 . 2 3 - 1 0 ^ ( b 2 ^ + b^^^ + 800) (W{mh)) where b^.^ and b^^^ are j u i c e c o n c e n t r a t i o n s ( i n % DS) a t i n l e t and o u t l e t ,

r e s p e c t i v e l y . T h i s fo rmu la i s known to g i v e somewhat too h i g h v a l u e s o f the heat

t r a n s f e r c o e f f i c i e n t a t the h i g h e s t j u i c e c o n c e n t r a t i o n s .

Approx imate v a l u e s o f the o v e r a l l heat t r a n s f e r c o e f f i c i e n t i n both R o b e r t -

type and f a l l i n g - f i l m e v a p o r a t o r s a re a l s o g i v e n , as f u n c t i o n s o f mean j u i c e

c o n c e n t r a t i o n , i n F i g . 5 . 5 .

REFERENCES

1 S . Zag rodzk i and A . S o k o l o w s k i , Pomiary s t r a t c i e p l n y c h w apa ra tach wypa rnych , Gaz. C u k r o w . , 8 1 ( 4 ) (1973 ) 8 1 - 8 5 .

2 J . S . Hogg (e t a l . ) . The r o l e o f the rmograph ic s u r v e y i n g in energy c o n s e r v a t i o n . I n t . S u g a r J . , 8 5 ( 1 0 1 1 ) (1983) 6 7 - 7 1 .

3 T. B a l o h , Wδrmeat las f ٧ r d ie Z u c k e r i n d u s t r i e , Schaper V e r l a g , Hannover , 1 9 7 5 .

Page 386: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

375

Appendix 4

and from g i v e n tj^ i n Κ

tp = 1.8(t,^ - 2 7 3 . 1 5 ) + 32 .

UNITS OF MEASUREMENT

The S I sys tem o f u n i t s used th roughou t t h i s book i s based on the f o l l o w i n g

u n i t s :

- mass i n k i l o g r a m s ( k g ) ;

- l eng th i n metres (m) ;

- t ime i n seconds ( s ) .

The temperature i s measured i n deg rees C e l s i u s ( ° C ) , and the a b s o l u t e

temperature i n K e l v i n s ( K ) . The temperature d i f f e r e n c e i s e x p r e s s e d i n K.

The met r i c sys tem o f u n i t s ( a l s o known as the t e c h n i c a l sys tem) i s based on

the f o l l o w i n g u n i t s :

- f o r ce in k i l o g r a m s f o r c e , o r k i l o p o n d s ( k g f o r k p ) ;

- l e n g t h i n m;

- t ime in s .

The mass i s measured i n k g . The temperature i s measured i n ^ C , and the a b s o l u t e

temperature i n deg rees K e l v i n ( ° K ) . The temperature d i f f e r e n c e can be e x p r e s s e d

i n °C o r \ .

The B r i t i s h sys tem o f u n i t s ( a l s o known as p o u n d - s e c o n d - f o o t sys tem) i s

based on the f o l l o w i n g u n i t s :

- mass i n pounds ( l b . ) ;

- l eng th i n f e e t ( f t . ) ;

- t ime in seconds (denoted s e c ) .

The f o r ce i s e x p r e s s e d i n pounds f o r c e ( I b f . ) . The temperature i s measured i n

degrees F a h r e n h e i t ( ^ F ) . The temperature d i f f e r e n c e i s a l s o e x p r e s s e d i n ^ F .

The c o n v e r s i o n from S I to me t r i c o r B r i t i s h u n i t s can be performed u s i n g

the c o n v e r s i o n f a c t o r s g i v e n in Tab le A 4 .

The c o n v e r s i o n fo rmu la f o r c a l c u l a t i o n o f the temperature i n °F from a g i v e n

temperature t^ i n °C i s

tp = 1.8 t(. + 32

Page 387: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

376

TAB

LE A

4

Co

nve

rsio

n ta

ble

-

SI

to m

etr

ic

and

Bri

tish

un

its.

Qu

an

tity

S

I u

nit

M

etr

ic

eq

uiv

ale

nt

Bri

tis

h e

qu

iva

len

t

Mas

s 1

kg

1

kg

2

.20

46

22

lb.

Le

ng

th

1

m

1

m =

10

0 cm

3

.28

02

84

ft.

=

39

.37

in.

Are

a 1

m

^

1

m^

=

10^

cm

^ 1

0.7

64

sq

.ft.

=

1550

sq

.in

.

Vol

ume

1

m^

1

m"^

3

5.3

14

7 c

u.f

t.

=

6102

4 c

u.i

n.

De

nsit

y 1

kg

/m^

1

kg/m

^ 0

.06

24

28

lb./

cu

.ft.

Fo

rce

1

kg

m

/s^

= 1

Ν

0.1

01

97

2 kg

f 0

.04

62

54

Ibf.

Pre

ssu

re

1

N/m

^ =

1

P

a

1.0

19

72

-10

"^

kgf/

cm^

0.02

0885

5 Ib

f./s

q.f

t.

=

1.4

50

38

-10

"^

p.s

.i.

1 b

ar

=

10^

P

a 1

.01

97

2 kg

f/cm

^ 2

08

8.5

5 Ib

f./s

q.f

t.

=

14

.50

38

p.s

.i.

Wo

rk,

energ

y 1

Ν

m =

1

J

0.1

01

97

2 kg

f m

0

.73

75

62

ft.-

Ibf.

1 kJ =

10^ J

1

01

.97

2 kg

f m

7

37

.56

2 ft

.-Ib

f

Hea

t 1

J

2.3

88

46

-10

"^

kca

l 9

.47

81

7-1

0"^

BT

U

1 kJ

0

.23

88

46

kca

l 0

.94

78

17

BT

U

Pow

er

1

J/s

=

1

W

0

.10

19

72

kg

f m

/s

0.7

37

56

2 ft

.-Ib

f./s

ec

.

1 kW

=

10^

W

1

01

.97

2 kg

f m

/s

73

7.5

62

ft.-

Ibf.

/se

c.

He

ati

ng

v

alu

e

1

kJ

/kg

0

.23

88

46

kc

al/

kg

0

.42

99

23

BT

U/l

b.

Te

mp

era

ture

d

iffe

ren

ce I

K

1°C

1

.8°F

Sp

ec

ific

h

ea

t 1

k

J/(

kg

K)

0.2

38

84

6 k

ca

l/(k

g°C

) 0

.23

88

46

BT

U/(

lb.°

F)

The

rmal

co

nd

ucti

vit

y 1

W

/(m

K

) 0

.86

0 k

ca

l/(m

h

^C)

0.5

77

81

6 B

TU

/(ft

.h°F

)

Hea

t tr

an

sfe

r c

oe

ffic

ien

t 1

W

/(m

^K)

0.8

60

kca

l/(m

^h°C

) 0

.17

61

10

BT

U/(

sq

.ft.

h°F

)

Page 388: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

377

INDEX

A i r p r e h e a t i n g , 1 5 7 , 342 A l k a l i n i t y o f wa te r , 2 3 8 , 2 4 3 , 245 Apparen t power, 38 Appearance o f wa te r , 2 4 0 , 244 Ash con ten t o f c o a l , 247

Ba romet r i c c o n d e n s e r , see condenser Ba romet r i c wa te r , 2 , 1 0 , 1 6 , 2 2 , 6 5 , 2 7 7 , 357 Batch c e n t r i f u g a l , 3 3 , 2 0 6 , 228 Batch vacuum p a n , 7 4 , 1 1 0 , 1 2 2 , 1 2 5 , 1 4 7 , 1 6 7 , 2 0 1 , 2 2 5 , 2 2 8 , 2 3 5 , 2 7 1 , 2 7 7 , 280 B i o g a s p r o d u c t i o n , 175 B o i l e r blowdown, 2 4 1 , 2 4 3 , 2 5 5 , 313 B o i l e r check , 253 B o i l e r e f f i c i e n c y , 2 6 , 1 4 8 , 2 5 1 , 2 5 8 , 2 9 2 , 3 1 0 , 3 3 5 , 349 B o i l e r l o s s :

a s h , 255 ch imney, 254 incomplete c o m b u s t i o n , 255 r a d i a t i o n , 256

B o i l e r water q u a l i t y , 241 B o i l i n g p o i n t e l e v a t i o n , 7 8 , 1 2 3 , 2 6 5 , 3 7 0 , 373 Bomb c a l o r i m e t e r , 248 Boundary o f thermodynamic s y s t e m , 3 , 6 , 5 7 , 234 B . p . e . , see b o i l i n g p o i n t e l e v a t i o n

C a r b o n a t a t i o n , 5 , 2 9 , 6 1 , 6 3 , 6 6 , 154 , 1 5 9 , 2 9 6 , 2 9 8 , 3 0 2 , 3 0 9 , 3 1 1 , 318 C a r b o n a t a t i o n g a s , 2 , 9 , 1 5 , 2 2 , 5 3 , 6 5 , 1 5 5 , 1 5 7 , 178 C e n t r i f u g a l d r i v e , 3 9 , 4 1 , 2 0 7 , 209 Chemical c l e a n i n g o f t u b e s , 117 C l o s e d thermodynamic s y s t e m , 57 Co lou r b u i l d - u p , 3 4 , 1 6 3 , 166 Combined g e n e r a t i o n o f heat and e l e c t r i c i t y , 1 0 , 4 3 , 262 Combus t ib le ma t te r :

i n a s h , 2 5 2 , 255 in c o a l , 247

Composi te c u r v e , 364 Compress ion r a t i o , 1 8 , 140 , 150 Condensa te :

d r a i n a g e , 1 5 , 9 7 , 9 9 , 1 0 3 , 1 0 5 , 1 0 9 , 1 1 1 , 1 1 8 , 2 6 4 , 2 7 0 , 2 7 2 , 2 7 8 , 2 9 0 , 2 9 3 , 3 0 2 , 3 3 2 , 338

f l a s h i n g ( f l a s h - e v a p o r a t i o n ) , 1 5 , 7 6 , 7 9 , 8 2 , 119 p o l l u t i o n , 1 0 1 , 144 q u a l i t y , 100 , 117 , 2 3 9 , 290

Condensate t a n k , 2 , 7 , 3 1 , 7 6 , 7 9 , 8 1 , 1 0 0 , 1 0 8 , 1 1 0 , 1 1 2 , 1 1 8 , 1 2 0 , 1 4 4 , 2 3 9 , 2 7 3 , 2 9 4 , 3 0 5 , 3 3 8 , 3 4 2 , 3 4 6 , 353

Condense r , 3 , 7 , 1 0 , 1 4 , 1 7 , 3 1 , 4 6 , 4 8 , 6 5 , 7 7 , 7 9 , 8 3 , 9 7 , 1 0 2 , 1 0 4 , 1 1 3 , 1 2 1 , 1 2 6 , 1 2 8 , 1 3 0 , 134 , 2 2 3 , 2 7 7 , 2 8 7 , 3 4 8 , 352

C o n t i n u o u s c e n t r i f u g a l , 2 0 6 , 2 0 9 , 2 9 3 , 294 C o n t i n u o u s vacuum p a n , 1 2 5 , 1 4 7 , 1 4 9 , 1 6 6 , 203 Con t ro l s u r f a c e , 57 Con t ro l vo lume, 57 C o o l i n g - c r y s t a l l i z a t i o n tower , 165 C o s s e t t e s m i x e r , 189 C r y s t a l f o o t i n g , 3 6 , 166 , 2 0 4 , 324

Page 389: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

378

C r y s t a l 1 i z a t i o n : c o o l i n g , 1 6 3 , 167 e v a p o r a t i n g , 1 6 3 , 167 , 173 f r e e z e , 173 under vacuum, 165

C r y s t a l l i z a t i o n scheme: D a n i s h , 161 s i n g l e b o i l i n g , 323 t h r e e - b o i l i n g , 3 4 , 6 1 , 1 6 1 , 1 6 5 , 2 9 2 , 2 9 6 , 3 1 0 , 3 3 5 , 349 t w o - a n d - a - h a l f - b o i l i n g , 324 t w o - b o i l i n g , 166 w i th c r y s t a l f o o t i n g , 1 6 6 , 168 w i th two j u i c e c o n c e n t r a t i o n s , 36

C r y s t a l l i z a t i o n tower , 2 0 3 , 206

Decompos i t i on o f a s y s t e m , 3 , 10 D u l o n g ' s f o r m u l a , 249

E f f e c t i v e power, 38 E f f e c t i v e n e s s r a t i o , 9 , 2 3 , 9 5 , 1 2 1 , 1 8 7 , 2 1 3 , 2 9 1 , 3 1 0 , 3 3 8 , 352 E l e c t r i c a l c o n d u c t i v i t y o f wa te r , 243 E l e c t r i c a l d e s c a l e r , 118 Energy b a l a n c e , 5 , 8 , 5 7 , 6 0 , 6 5 , 8 4 , 8 7 , 9 6 , 1 0 3 , 1 5 5 , 2 3 4 , 2 5 3 , 2 5 7 , 2 6 1 , 2 6 9 ,

2 7 8 , 2 9 6 , 382 Energy s y s t e m , 5 , 1 7 4 , 1 8 1 , 1 8 3 , 2 9 0 , 2 9 5 , 3 2 2 , 3 3 3 , 3 6 2 , 364 E n t h a l p y b a l a n c e , 88 En t ra inment s e p a r a t o r , 1 0 1 , 1 3 0 , 194 E u l e r ' s e q u a t i o n , 219 E v a p o r a t i o n , 6 , 1 2 , 2 4 , 3 5 , 1 4 4 , 1 4 7 , 2 1 3 , 2 1 5 , 2 2 1 , 2 2 6 , 2 6 4 , 2 8 7 , 307 E v a p o r a t i o n c o e f f i c i e n t , 121 E v a p o r a t o r :

c l i m b i n g - f i l m , 222 d o u b l e - e f f e c t , 195 f a l l i n g - f i l m , 1 9 1 , 2 2 2 , 2 6 3 , 3 1 0 , 3 1 4 , 3 1 6 , 3 2 3 , 3 5 3 , 3 5 7 , 374 m u l t i p l e - e f f e c t , 8 , 1 2 , 1 5 , 3 4 , 7 6 , 8 3 , 1 2 1 , 1 9 0 , 2 2 1 , 2 6 3 , 3 2 3 , 349 q u a d r u p l e - e f f e c t , 17 , 1 2 0 , 1 2 6 , 2 9 6 , 3 3 5 , 3 3 9 , 342 q u i n t u p l e - e f f e c t , 1 4 , 8 3 , 1 2 6 , 1 3 5 , 2 9 2 , 3 1 0 , 3 2 3 , 342 R o b e r t - t y p e , 1 0 6 , 1 9 1 , 2 2 2 , 2 6 3 , 2 9 6 , 3 1 0 , 3 1 4 , 3 1 6 , 3 2 3 , 3 3 5 , 3 4 9 , 3 5 2 , 3 5 7 ,

3 5 9 , 3 7 2 , 374 s e x t u p l e - e f f e c t , 127 , 224 t r i p l e - e f f e c t , 1 2 6 , 2 9 7 , 337 t h i n - f i l m , 1 9 1 , 222

Evapo ra to r check , 2 6 4 , 266 E v a p o r a t o r - r e c e i v e r a p p r o a c h , 8 4 , 1 0 3 , 301 E x e r g y , 8 9 , 90 Ex te rna l energy b a l a n c e , 6 5 , 8 4 , 1 0 1 , 103 E x t r a c t o r :

b e l t t y p e , see mov ing-bed type drum t y p e , 1 8 8 , 2 2 0 , mov ing-bed t y p e , 1 8 8 , 220 s c r o l l t y p e , see t r ough type tower t y p e , 3 1 , 7 3 , 1 8 8 , 2 2 0 , 2 9 2 , 323 t r ough t y p e , 3 1 , 6 1 , 7 3 , 1 3 5 , 1 8 8 , 2 2 0 , 2 6 7 , 2 9 6 , 3 0 9 , 3 3 5 , 349

E x t r a c t o r check , 269

Feed-water q u a l i t y , 238 F i l m c o e f f i c i e n t o f heat t r a n s f e r , 1 6 , 1 1 3 , 1 1 6 , 373 F l o a t - t y p e steam t r a p , 1 0 6 , 1 1 1 , 2 9 7 , 337

Page 390: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

379

Flow c o n t r o l : by p o s i t i o n i n g o f i n l e t gu ide v a n e s , 219 by t h r o t t l i n g , 4 2 , 2 1 7 , 219 b y - p a s s , 4 2 , 1 5 5 , 2 1 7 , 219 v a r i a b l e s p e e d , 4 2 , 1 4 5 , 2 1 6 , 2 1 8 , 327

F r e q u e n c y - c o n v e r t e r ( - c o n t r o l l e d ) a . c . d r i v e , 2 0 8 , 3 2 7 , 329 Fuel s t o r a g e , 2 3 3 , 250

Gas t u r b i n e , 2 1 , 5 0 , 184 Grassmann d i a g r a m , 89

Hardness o f wa te r , 2 3 8 , 2 4 0 , 2 4 2 , 245 Heat b a l a n c e , 6 , 8 , 1 8 , 6 8 , 7 3 , 7 6 , 8 4 , 9 6 , 1 0 4 , 2 6 8 , 2 7 0 , 2 8 1 , 2 8 3 , 2 8 7 , 3 0 1 ,

3 0 6 , 3 0 9 , 3 1 4 , 3 2 0 , 3 2 4 , 3 2 7 , 3 3 2 , 3 3 6 , 3 3 9 , 3 4 2 , 3 4 6 , 3 4 9 , 352 Heat l o s s :

by d i s s i p a t i o n to the env i ronmen t , 2 4 , 2 6 , 1 0 0 , 1 0 3 , 1 5 5 , 2 8 4 , 2 9 1 , 301 by f r e e c o n v e c t i o n , 28 by r a d i a t i o n , 28

Heat l o s s c o e f f i c i e n t , 6 0 , 6 9 , 7 3 , 7 5 , 7 8 , 8 9 , 2 6 6 , 2 7 1 , 372 Heat o f c a r b o n a t a t i o n r e a c t i o n , 6 6 , 155 Heat o f combus t i on , 248 Heat o f c r y s t a l l i z a t i o n o f s u g a r , 5 9 , 6 6 , 7 5 , 236 Heat pump, 1 7 , 25 Hea te r , see j u i c e heater Hea t ing and hum id i f i c a t i o n o f k i l n g a s , 1 5 8 , 3 4 2 , 352 Hea t ing v a l u e o f f u e l , 1 4 8 , 2 4 6 , 2 5 2 , 257 Hot c o n d e n s e r , 134 , 357 Hydrogen i on c o n t e n t , see pH H y p e r f i l t r a t i o n , 171

J u i c e c a r r y o v e r , 1 0 1 , 1 4 4 , 194 J u i c e d r a f t , 2 4 , 3 0 , 6 1 , 6 6 , 9 8 , 1 8 7 , 2 1 9 , 2 2 1 , 2 6 8 , 2 9 2 , 2 9 6 , 3 0 9 , 3 2 3 , 3 3 4 ,

3 3 8 , 349 J u i c e h e a t e r :

c o n d e n s a t e - h e a t e d , 6 9 , 1 1 9 , 2 7 1 , 293 d i r e c t - c o n t a c t , 130 , 133 p l a t e , 1 9 8 , 2 9 3 , 3 1 4 , 3 1 7 , 373 segmented, 200 s p i r a l , 1 3 1 , 1 9 9 , 2 9 4 , 3 5 7 , 373 t u b u l a r , 1 0 6 , 1 3 1 , 1 9 9 , 2 9 3 , 373 v a p o u r - h e a t e d , 6 9 , 1 2 2 , 271

J u i c e heater check , 271 J u i c e p u r i f i c a t i o n , 2 , 2 3 , 2 9 , 4 1 , 6 1 , 1 1 6 , 1 3 5 , 1 5 3 , 1 6 3 , 1 6 9 , 1 7 1 , 2 1 3 , 2 1 6 ,

2 9 2 , 2 9 6 , 3 0 9 , 3 1 1 , 3 2 3 , 3 3 1 , 3 3 5 , 349 J u i c e s e p a r a t i o n , 169

K i l n g a s , 9 , 6 2 , 6 7 , 1 5 5 , 1 5 7 , 1 5 9 , 2 9 6 , 3 0 9 , 3 3 5 , 349

Law o f mass c o n s e r v a t i o n , 57 Law o f thermodynamics :

f i r s t , 5 7 , 8 8 , 2 3 4 , 261 s e c o n d , 88

L e v e l - c o n t r o l l e d h y d r a u l i c (water ) s e a l , 1 0 6 , 1 0 9 , 1 1 2 , 2 9 3 , 2 9 4 , 3 3 8 , 342 L i n e a r programming, 363

Mass b a l a n c e , 5 7 , 6 1 , 6 3 , 6 7 , 7 4 , 7 9 , 8 3 , 9 4 , 1 0 1 , 2 3 5 , 2 8 1 , 2 8 3 , 2 8 7 , 2 9 6 , 3 0 1 , 3 0 5 , 3 1 4 , 3 3 2 , 3 3 5 , 3 3 7 , 3 3 9 , 352

Mean l o g a r i t h m i c temperature d i f f e r e n c e , 69 Membrane f i l t r a t i o n , 171 Minimum temperature d i f f e r e n c e , 1 2 1 , 365 M o i s t u r e con ten t o f c o a l , 247 Motor s l i p , 207

Page 391: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

380

Net heat demand, 8 , 2 2 , 2 5 , 6 6 , 9 5 , 1 2 1 , 1 4 9 , 1 5 3 , 1 6 0 , 187 , 2 0 3 , 3 3 3 , 338 N i e s s n e r co lumn, 1 0 6 , 1 0 8 , 349 N o n c o n d e n s a b l e s , 9 7 , 1 1 2 , 1 1 5 , 1 2 8 , 130 , 2 6 4 , 2 7 0 , 2 8 0 , 2 9 0 , 3 0 0 , 3 0 2 , 3 0 9 , 314 N o n l i n e a r programming, 363 Normal f u e l , 4 3 , 53 Normal steam pa rame te r s , 43 N o z z l e - t y p e steam t r a p , 1 0 6 , 279 Number o f mass t r a n s f e r u n i t s , 189

O b j e c t i v e f u n c t i o n , 362 Open thermodynamic s y s t e m , 3 , 5 7 , 65 Optimal s y n t h e s i s , 363 O v e r a l l heat t r a n s f e r c o e f f i c i e n t , 6 0 , 6 9 , 8 1 , 1 0 6 , 1 1 6 , 1 2 1 , 1 2 4 , 1 4 4 , 1 9 3 ,

1 9 8 , 2 0 1 , 2 6 4 , 2 6 6 , 2 7 0 , 3 1 5 , 3 6 5 , 372 O v e r a l l t u r b o - g e n e r a t o r e f f i c i e n c y , 2 5 9 , 262 Oxygen consumpt ion o f wa te r , 2 3 9 , 2 4 2 , 245 Oxygen con ten t o f wa te r , 2 4 0 , 2 4 2 , 246

pH, 2 3 9 , 2 4 2 , 245 P e r i o d o f r e t u r n on i nves tmen t , 3 4 6 , 359 P inch p o i n t , 365 P o l e - c h a n g e a . c . motor , 207 Power c a p a c i t o r , 3 9 , 43 Power demand, 1 3 , 1 8 , 3 7 , 4 0 , 4 5 , 1 5 3 , 1 6 0 , 170 , 1 7 9 , 1 8 2 , 187 , 2 0 9 , 2 1 3 , 3 2 7 ,

3 3 2 , 3 3 4 , 3 3 7 , 3 4 6 , 3 5 3 , 357 Power f a c t o r , 3 8 , 4 3 , 2 0 8 , 290 Power h o u s e , 1 , 6 , 1 0 , 3 9 , 4 3 , 4 5 , 4 9 , 5 2 , 1 4 9 , 2 3 3 , 2 9 0 , 2 9 7 , 3 0 0 , 3 1 0 , 3 1 4 ,

3 2 4 , 3 3 2 , 3 3 5 , 3 3 7 , 348 Power ne twork , 37 P r e s s i n g a i d s , 177 Pu lp d e h y d r a t i o n , 1 9 , 1 5 3 , 174 Pu lp d r y e r :

drum t y p e , 2 1 , 8 9 , 2 2 9 , 2 8 1 , 285 f l u i d i z e d - b e d t y p e , 183 low- tempera tu re , 2 2 , 5 3 , 179 s team, 2 2 , 182 t r a v e l l i n g - s c r e e n t y p e , 1 7 9 , 182

Pu lp d rye r check , 282 Pu lp d rye r e f f i c i e n c y , 2 8 1 , 2 8 3 , 285 Pu lp d r y i n g :

h i g h - t e m p e r a t u r e , 2 2 , 179 low- tempera tu re , 1 6 , 2 2 , 1 7 6 , 178 medium-temperature, 2 2 , 178 s team, 2 2 , 181

Pu lp e n s i l a g e , 175 Pu lp f e r m e n t a t i o n , 175 Pu lp p r e s s i n g , 1 9 , 176 , 178

Quent in u n i t , 1 9 8 , 3 2 3 , 349

R e a c t i v e power, 3 8 , 43 Reverse o s m o s i s , see h y p e r f i l t r a t i o n

S a m p l i n g : f u e l , 246 j u i c e , 265 s team, 244 wa te r , 243

Sankey d i a g r a m , 8 , 4 4 , 5 0 , 8 8 , 9 0 , 1 5 8 , 283 S c a l e , 1 0 5 , 1 1 6 , 1 9 3 , 198 , 2 4 1 , 2 4 5 , 2 6 4 , 2 7 0 , 3 0 9 , 3 1 6 , 372 Secan t method, 8 0 , 82 Seed magma, 167 , 204 S i e g e r t ' s f o r m u l a , 254

Page 392: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

381

S i l i n ' s f o r m u l a , 221 S i m u l a t i o n , 6 1 , 91 S ludge s w e e t e n i n g - o f f , 3 2 , 302 S o l u b i l i t y o f s u c r o s e , 1 6 3 , 1 6 6 , 227 S t e a d y - s t a t e c o n d i t i o n s , 5 8 , 9 1 , 235 Steam demand, 1 6 , 4 3 , 4 6 , 1 3 5 , 1 3 9 , 1 4 2 , 1 4 9 , 3 0 1 , 3 3 7 , 3 4 7 , 362 Steam q u a l i t y , 2 3 7 , 243 Steam r a t e , 4 6 , 4 9 , 137 , 1 3 9 , 1 4 8 , 2 5 8 , 2 6 3 , 335 Steam t r a p , 6 , 5 9 , 1 0 3 , 1 0 6 , 1 1 1 , 2 7 8 , 2 9 3 , 3 0 0 , 353 Steam t u r b i n e :

b a c k - p r e s s u r e , 1 3 , 4 4 , 4 7 , 2 6 0 , 2 9 7 , 3 1 0 , 324 b a c k - p r e s s u r e / e x t r a c t i o n , 48 c o n d e n s i n g , 48 c o n d e n s i n g / e x t r a c t i o n , 46 t o p p i n g , 46

Sugar b o i l i n g : c o n t r o l , 3 3 , 2 0 3 , 2 2 6 , 293 p r o c e s s , 1 5 , 3 2 , 3 5 , 1 1 1 , 1 2 2 , 1 2 5 , 1 2 7 , 1 6 7 , 2 0 1 , 2 0 3 , 2 2 5 , 2 2 7 , 2 7 1 , 332

Sugar l o s s : i n exhaus ted c o s s e t t e s , 3 1 , 1 8 9 , 221 i n s l u d g e , 32

S u r r o u n d i n g s o f thermodynamic s y s t e m , 5 7 , 88

Temperature p i n c h , see minimum temperature d i f f e r e n c e Thermal decay o f s u c r o s e , 14 , 3 0 , 3 4 , 100 Thermal d e g r a d a t i o n o f e n e r g y , 88 Thermal i n s u l a t i o n , 2 5 , 2 7 , 7 8 , 9 9 , 1 0 3 , 2 7 9 , 2 9 3 , 3 0 1 , 3 0 5 , 3 4 4 , 372 Thermal s y s t e m , 6 , 1 0 , 1 6 , 2 3 , 6 0 , 6 5 , 6 8 , 8 4 , 8 8 , 9 0 , 9 4 , 1 0 0 , 1 0 3 , 1 2 1 , 1 2 7 ,

1 3 1 , 1 3 6 , 1 4 5 , 1 5 3 , 187 , 2 1 3 , 2 2 1 , 2 5 1 , 2 7 5 , 2 7 7 , 2 7 9 , 2 8 7 , 2 9 7 , 3 0 0 , 3 0 5 , 3 1 0 , 3 2 0 , 3 2 3 , 3 3 2 , 3 3 4 , 3 4 0 , 3 4 3 , 3 4 8 , 3 5 4 , 373

Thermodynamic f u n c t i o n s , 6 0 , 7 8 , 8 4 , 8 9 , 2 3 4 , 3 6 8 , 370 Thermodynamic s y s t e m , 3 , 6 , 5 7 , 6 0 , 6 7 , 8 8 , 2 3 4 , 235 Thermograph ic s u r v e y i n g , 100 T h r o t t l i n g - d e s u p e r h e a t i n g s t a t i o n , 4 7 , 9 7 , 1 3 8 , 1 4 2 , 1 4 5 , 1 4 9 , 2 5 7 , 2 7 5 , 324 T h y r i s t o r - c o n t r o l l e d d . c . d r i v e , 2 0 8 , 3 2 7 , 353 Tota l heat demand, 8 , 1 2 , 2 2 , 6 8 , 9 5 , 1 8 7 , 1 9 5 , 3 0 2 , 3 0 5 , 3 2 3 , 353 Tu rb ine e f f i c i e n c y :

i n t e r n a l , 262 m e c h a n i c a l , 262

T u r b o - g e n e r a t o r check , 258

T u r b o - g e n e r a t o r e f f i c i e n c y , see o v e r a l l t . - g . e .

U l t r a f i l t r a t i o n , 171

Vacuum-pan check , 272 Vacuum-pan s t e a m i n g - o u t , 3 3 , 2 0 3 , 2 7 5 , 3 0 8 , 3 1 9 , 337 Vacuum-pan s t i r r e r , 1 2 2 , 1 2 5 , 2 0 2 , 2 0 4 , 206 Vapour c o m p r e s s i o n , 1 1 , 1 6 , 1 2 6 , 1 3 4 , 1 3 7 , 1 4 0 , 1 4 2 , 1 4 4 , 1 4 7 , 1 4 9 , 1 8 4 , 1 9 5 ,

3 2 4 , 3 4 2 , 3 4 7 , 3 5 7 , 3 6 0 , 366 Vapour compresso r :

e l e c t r i c a l l y d r i v e n , 1 3 8 , 1 4 2 , 1 4 5 , 1 4 7 , 1 4 9 , 3 2 4 , 3 4 2 , 357 j e t t y p e , 1 8 , 1 4 0 , 1 4 2 , 1 4 5 , 1 4 9 , 3 2 4 , 3 4 2 , 358 m e c h a n i c a l , 1 8 , 1 3 8 , 1 4 2 , 1 4 5 , 147 , 1 4 9 , 3 2 7 , 3 4 2 , 357 t u r b i n e d r i v e n , 1 3 9 , 142

Ven t i ng (o f n o n c o n d e n s a b l e s ) , 1 1 2 , 1 1 5 , 2 6 4 , 2 7 0 , 2 7 2 , 2 8 0 , 2 9 0 , 3 0 0 , 3 0 3 , 3 1 4 , 3 5 3 , 357

Waste h e a t , 1 4 , 2 1 , 2 5 , 5 3 , 147 , 1 5 9 , 1 7 8 , 1 8 0 , 185

Page 393: K. Urbaniec (Eds.) Modern Energy Economy in Beet Sugar Factories 1989

382

Water i n t a k e : to j u i c e p u r i f i c a t i o n s t a t i o n , 32 to C m a s s e c u i t e c r y s t a l 1 i z e r s , 33 to p r o c e s s , 3 0 , 2 9 1 , 3 1 0 , 323 to s u g a r h o u s e , 3 2 , 3 4 , 2 9 1 , 3 0 2 , 305 to vacuum p a n s , 3 2 , 6 6 , 1 0 1 , 2 2 5 , 2 2 8 , 271