32
Employing a RGB-D Sensor for Real-Time Tracking of Humans Across Multiple Re-Entries in a Smart Environment Jungong Han, Eric J. Pauwels, Paul M. de Zeeuw, and Peter H.N. de With, Fellow, IEEE IEEE Transactions on Consumer Electronics, 2012 1

Jungong Han, Eric J. Pauwels , Paul M. de Zeeuw , and Peter H.N. de With, Fellow, IEEE

  • Upload
    ghita

  • View
    39

  • Download
    0

Embed Size (px)

DESCRIPTION

Employing a RGB-D Sensor for Real-Time Tracking of Humans Across Multiple Re-Entries in a Smart Environment. Jungong Han, Eric J. Pauwels , Paul M. de Zeeuw , and Peter H.N. de With, Fellow, IEEE IEEE Transactions on Consumer Electronics , 2012. Outline. Introduction Related Works - PowerPoint PPT Presentation

Citation preview

Page 1: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

1

Employing a RGB-D Sensor for Real-Time Tracking of Humans Across

Multiple Re-Entries in a Smart Environment

Jungong Han, Eric J. Pauwels, Paul M. de Zeeuw, and Peter H.N. de With, Fellow, IEEE

IEEE Transactions on Consumer Electronics, 2012

Page 2: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

2

Outline

Introduction Related Works Proposed Method Experimental Results Conclusion

Page 3: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

3

Introduction

Page 4: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

4

Introduction Smart environment

Location Identity

especially for elderly or disabled people.

Page 5: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

5

Introduction

Smart environment Location Identity

Goal: Detect and track humans in a home-used system Using a low-cost consumer-level RGB-D camera. Combine the advantages of color and depth characteristics .

especially for elderly or disabled people.

Page 6: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

6

Introduction

Requirements of home-used human tracking system Track multiple persons Be robust against changes in the environment Could re-identifying persons Real-time performance Low-cost camera sensors

Page 7: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

7

Related Works

Page 8: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

8

Related Works

Human segmentation RGB camera: background modeling

 Median filter[3] and Gaussian Mixture Model[4]

Depth camera[10]

Motion and depth[11]

Graph cut[12]

Page 9: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

9

Related Works

Human tracking RGB camera:  appearance modeling

Mean shift tracker[5]:  real-time non-parametric technique Particle-filter[6]: a random search

Depth camera Expectation Maximization algorithm[12]

Page 10: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

10

Related Works

RGB camera Intuitive and easy Depend on color/intensity =>unreliable

Depth camera Illumination suitable Can’t handle occlusion and identification

Both camera [13,14,15]

Proposed method

Page 11: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

11

Reference[3] R. Culter, and L. Davis, “View-based detection,” Proc. ICPR, 1998.

[4] Z. Zivkovic, “Improved adaptive Gaussian Mixture Model for background subtraction,” Proc. ICPR, pp. 28-31, Aug. 2004.

[5] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 564-577, 2003.

[6] K. Nummiaro, E. Koller-Meier and L. Van Gool “An adaptive color-based particle filter” Image Vis. Comp, 2003

[10] A. Bevilacqua, L. Di and S. Azzari, “People tracking using a Time-of-Flight depth sensor”Proc. IEEE Int. Conf. Video and Signal based Surveillance, 2006

[11] D. Hansen, M. Hansen, M. Kirschmeyer, R. Larsen and D. Silvestre “Cluster tracking with Time-of-Flight cameras” Proc. CVPR workshop on TOF-CV, June, 2008

[12] O. Arif, W. Daley, P. Vela, J. Teizer and J. Stewart “Visual tracking and segmentation using Time-of-Flight sensor” Proc. ICIP, pp. 2241-2244, Sept. 2010

[13] R. Crabb, C. Tracey, A. Puranik and J. Davis “Real-time foreground segmentation via range and color imaging” Proc. CVPR Workshop on TOF-CV, June 2008

[14] S. Gould, P. Baumstarck, P. Quigley, M. Ng and A. Koller “Integrating visual and range data for robotic object detection” Proc. ECCV Workshop on Multi-camera and Multimodal Sensor Fusion, June 2008

[15] L. Sabeti, E. Parvizi and Q. Wu “Visual tracking using color cameras and Time-of-Flight range imaging sensors” Journal of multimedia, vol. 3, no. 2, pp. 28-36, June, 2008

Page 12: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

12

Proposed Method

Page 13: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

13

Proposed Method

1.

2.3.

4.

Page 14: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

14

1. Object label

Motion detection using background subtraction B: depth of background

Depth clustering using depth information Seeds: Moving pixels detected in the previous step Check the depth continuity of neighboring pixels of the seeds Returns with several separated clusters as the objects

Page 15: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

15

2. Detecting Human Problem: depend on the posture Solution: defer computation until the person is standing Characteristic: a moving object can be promoted to be a human

only when it is stable with sufficient height. Stable: size changes are less than 10% in 5 successive frames Height: related with depth [16]

d: distance between the camera and the object

a1 and a2 : parameters in off-line calibration

[16] P. Remagnino, A. Shihab, and G. Jones, “Distributed intelligence for multi-camera visual surveillance,” Pattern Recognition, vol. 37, no. 4, pp. 675-689, April 2004.

Page 16: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

16

3. Human Re-Entry Identification

How? Track persons across successive appearances in the scene Tag persons with a persistent ID label

Technique: appearance-based matching Extend color histogram including color and texture Length ratio between different body parts is fixed Head / torso / leg

Page 17: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

17

3. Human Re-Entry Identification

Head Top 1/3 part of the entire body Detect the length in horizontal direction The neck width is less than others.

(local minimum)

Torso and leg: by ratio

Page 18: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

18

3. Human Re-Entry Identification Use color histogram and texture to describe the human appearance Probability of feature u:

: the pixel locations in the defined region : associates to the pixel at location Formula the index C: normalization constant the Kronecker delta function Texture intensity using canny detection

Page 19: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

19

3. Human Re-Entry Identification Compare two histogram as similarity

Page 20: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

20

4.Human ID Tracking

Depth continuity Gaussian distribution:

Appearance similarity Bhattacharyya distance:

The Probability Ti matching with Dj

Page 21: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

21

Proposed Method

1.

2.3.

4.

Page 22: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

22

Experimental Results

Page 23: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

23

Experimental Results

Device: Dual core 2.53 GHz, 4 GB RAM with a 64-bits operation system

Implemented by C++ with OpenNI and OpenCV library Evaluation

A. Object labeling B. Human detection and ID tracking C. System efficiency

Page 24: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

24

Experimental Results A. Object labeling in different situation

Stable lightDifferent color between foreground & background

Stable lightSimilar color between F & B

Page 25: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

25

Using depth data 

Using RGB data 

Page 26: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

26

Experimental Results B. Human region detection

96.1% accuracy in 2000 frames Only 78 frames failed

Page 27: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

27

Experimental Results B.

Identification Set the RGB-D sensor in a living room for 30 minutes, and

asked persons to leave and come back for 35 times.  The persons used 5 different coats. 

Results: only 8 occasions fail Coats with similar colors Posture difference

Page 28: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

28

Experimental Results B.

Accuracy in human tracking module(based on 5 videos ,in total 2600 frames) Proposed: 96.27% Particle filter[6]: 83.54% =>illumination Mean shift filter[5]: 71.23% =>occlusion

[5] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,”IEEE Trans. Pattern Anal. Mach. Intell., 2003.[6] K. Nummiaro, E. Koller-Meier and L. Van Gool “An adaptive color-based particle filter” Image Vis. Comp, 2003

Page 29: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

29

Experimental Results B.

0 01 1

0 1 1 0

Anonym

Anonym

Page 30: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

30

Experimental Results C.

System efficiency in 100 frames 1-person: 41.3 ms/frame 2-person: 73.8 ms/frame 3-person: 97.1 ms/frame

Overall about more than10 fps

Page 31: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

31

Conclusion

Page 32: Jungong  Han, Eric J.  Pauwels , Paul M. de  Zeeuw ,  and  Peter H.N. de With, Fellow, IEEE

32

Conclusion

Proposed a two-camera system based on a RGB-D sensor, which enables person detection, tracking and re-entry identification.

Proposed system can achieve real-time performance with sufficient accuracy 95% detection; 80% re-identification; 96% occlusion and illumination

Future Work Improve human detector to execute with a more general descriptor