208
June 1999 NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin- Madison www.stat.wisc.edu/~yandell NCSU Statistical Genetics June 1999

June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

Embed Size (px)

Citation preview

Page 1: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

1

Bayesian Inference for QTLs in Inbred Lines II

Brian S YandellUniversity of Wisconsin-Madisonwww.stat.wisc.edu/~yandell

NCSU Statistical GeneticsJune 1999

Page 2: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

2

Many Thanks

Michael NewtonDaniel SorensenDaniel GianolaJaya SatagopanPatrick GaffneyFei Zou

Tom OsbornDavid ButruilleMarcio FerreraJosh UdahlPablo Quijada

USDA Hatch Grants

Page 3: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

3

Overview II

• quick review of trait model– single & multiple QTL– details of Gibbs sampler full conditionals– vector notation

• reversible jump MCMC– multiple regression– number of QTLs

• deconstructing Bayesian LODs

Page 4: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

4

Quick Review of trait Model

• single QTL details of Gibbs sampler– normal priors & likelihoods

• mean, additive effects

– inverse gamma prior for variance• or inverse chi-square

– vague priors lead to usual estimates as posterior means

• multiple QTL trait model– model with vector notation

Page 5: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

5

Single QTL trait Model• trait = mean + additive + error• trait = effect_of_geno + error• prob( trait | geno, effects )

**

2**

**

),,;|(

jj

jj

jjj

xby

bxy

exby

10 12 14

x=-1x=0

x=1

Page 6: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

6

Gibbs Sampler updates

variancemean

traits

additive

genos

Page 7: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

7

Full Conditional for mean

nnbV

n

xby

n

xby

bE

xbyb

n

jjj

n

jjj

n

j

jj

222**

1

**

1

**

2**

1

**2**

2

2

2

2

2

2

),;,|(

)()(

),;,|(

),;,|(

xy

xy

xy• normal prior

with large variance

• leads to normal posterior

• posterior mean

• posterior variance

2

Page 8: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

8

Full Conditional for additive Effect

n

jj

n

jj

n

jj

n

jjj

n

jj

n

jjj

n

j

jj

xxbV

x

yx

x

yx

bE

xbybb

1

2*

2

1

2*

22**

1

2*

1

*

1

2*

1

*

2**

1

***2**

)()(),;,|(

)(

)(

)(

)(

),;,|(

),;,|(

2

2

2

2

xy

xy

xy• normal prior with large variance

• leads to normal posterior

• posterior mean

• posterior variance

2

Page 9: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

9

Full Conditional for variance

n

xby

a

vbE

vaInvb

evaInv

n

jjj

n

n

nn

va

1

2**

2

2

22**2

222

**2

/)1(22

)(

ˆ1

ˆ),;,|(

ˆ,~,;,|

)(),(~2

xy

xy

• inverse gamma prior with large v/a

• posterior distribution

• posterior mean

Page 10: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

10

MCMC run for variance

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

11

1

11

1

1

1

1

1

11

1

1

1

11

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

1

11

1

1

1

1

1

111

1

1

11

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

11

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

11

1

111

1

1

1

1

11

1

1

111

1

1

1

1

1

1

1

1

11

1

1

1

1

11

11

1

1

11

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

11

1

1

1

1

1

11

1

1

11

1

1

11

1

1

1

1

1

1

1

11

1

1

11

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111

111

1

1

1

1

1

1

111

1

1

1

1

1

1

1

1

1

11

1

1

11

1

1

1

1

1

1

1

11

11

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

11

11

1

11

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

11

11

11

1

1

1

1

1

1111

1

1

11

1

1

1

11

1

1

1

1

11

1

1

1

11

1

1

1

1

1

1

1

1

11

1

111

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

11

11

1

11

1

1

1

1

11

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

11

1

1

111

1

1

11

111

1

1

11

11

1

1

1

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

11

1

1

11

11

1

1

1

1

11

1

11

11

1

11

11

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

11

1

1

1

1

11

11

1

1

1

1

1

1

11

1

11

1

1

11

1

11

1

1

1

1

1

1

1

1

1

111

1

111

111

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

11

1

1

1

11

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

11

1

1

11

1

1

1

1

1

1

1

11

11

1

1

1

1

1

1

1

1

111

1

1

1

11

1

1

1

1

1

1

1

1

1

11

1

1

1

111

1

11

1

1

1

1

1

1

11

1

1

1

1

1

11

1

1

1

11

1

1

1

1

11

1

1

1

1

11

1

1

1

1

1

1

1

111

1

1

1

11

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

11

1

1

11

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

0 200 400 600 800 1000

1.0

1.2

1.4

1.6

1.8

2.0

MCMC run

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40

varia

nce

frequency

Page 11: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

11

Alternative for Variance:use Inverse Chi-square

nd

xbyvd

ndInvb

vdvdvdInv

n

jjj

dd

1

2**

2**2

222

22

)(

,~,;,|

~or ,),(~

xy

• inverse chi-square prior with large d,v

• posterior distribution

Page 12: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

12

Multiple QTL model

• trait = mean + add1 + add2 + error• trait = effect_of_genos + error• prob( trait | genos, effects )

j

m

rjrrj

jjjj

exby

exbxby

1

**

*2

*2

*1

*1

Page 13: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

13

Vector Notation for QTLs• inner product for sum• condense notation

**1

*

*

*1

*

*

*1

*

**

1

**

,,,,

,

n

jm

j

j

m

j

m

rjrr

x

x

b

b

xb

xxXxb

xb

Page 14: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

14

Multiple loci• vector of loci across linkage map• careful bookkeeping during update

– identifiability & bump hunting– possibility of two loci in one marker interval

• ordered loci are sufficient

n

jrjrrr

m

m

rr

x1

**

11

**

)|()()|(

),,(,)|()|(

X

XX

Page 15: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

15

Posterior: Multiple QTLs• posterior = likelihood * prior / constant• posterior( paramaters | data )

prob( genos, effects, loci | traits, map )

is proportional to

)|;,,;( 2** yX b

m

r

n

jrjrrr

n

jjj

xb

y

1 1

**2

1

2**

)|()()()()(

),,;|(

bx

Page 16: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

16

MCMC for Multiple QTLs• construct Markov chain around posterior• update one (or several) components at a time

– update effects given genotypes & traits– update loci given genotypes & traits– update genotypes give loci & effects

• update all terms for each locus at one time?– open questions of efficient mixing

N

21

2**2** )|;,,;(~);,,;( ybXbX

Page 17: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

17

MCMC Updates

effectsloci

traits

genos

Page 18: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

18

MCMC Conditions• construct Markov chain with stable distribution• ergodic Markov chain

– reversibile (detailed balance)– irreducible (can get from any value to any other)– aperiodic (no fixed pattern)– positive recurrent (chance to visit all possible values)

z

N

zzzz

zzzzzz

zzzz

all22

212121

10

)|()()(0

1)|()()|()(0

)(~,,,

Page 19: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

19

Reversible Jump MCMC

• basic idea of Green(1995)• model selection in regression• how many QTLs?

– number of QTL is random– estimate the number m

• RJ-MCMC vs. Bayes factors• other similar ideas

Page 20: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

20

Jumping the Number of QTL • model changes with number of QTL

– almost analogous to stepwise regression– use reversible jump MCMC to change number

• book keeping helps in comparing models• change of variables between models

• prior on number of QTL– uniform over some range– Poisson with prior mean

!)|(

m

em

m

Page 21: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

21

Posterior: Number of QTL• posterior = likelihood * prior / constant• posterior( paramaters | data )

prob( genos, effects, loci, m | traits, map )

is proportional to

)|,;,,;( 2** yX mb

m

r

n

jrjrrr

n

jjj

xbm

my

1 1

**2

1

2**

)|()()()()()(

);,,;|(

bx

Page 22: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

22

Reversible Jump Choicesaction step: draw one of three choices• update step with probability 1-b(m+1)-d(m)

– update current model– loci, effects, genotypes as before

• add a locus with probability b(m+1)– propose a new locus– innovate effect and genotypes at new locus– decide whether to accept the “birth” of new locus

• drop a locus with probability d(m)– pick one of existing loci to drop– decide whether to accept the “death” of locus

Page 23: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

23

Markov chain for number m

• add a new locus• drop a locus• update current model

0 1 mm-1 m+1...

m

Page 24: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

24

Jumping QTL number & loci

111111111111111111111111

1

11111

111111

11111

1111

111

1111

11111

11111

11111111

111111111

11

111111111

1111111

111

22222222222222222222222

2 22222222222 22

2222 22222

22222222

222222222 222222222

22 22

23333

333333333333 333

3

0 20 40 60 80 100

20

40

60

80

dist

ance

(cM

)

MCMC run

0 20 40 60 80 1000

1

2

3

num

ber

of Q

TL

Page 25: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

25

RJ-MCMC Updates

effectsloci

traits

genos

addlocus

drop locus

b(m+1)

d(m)

1-b(m+1)-d(m)

Page 26: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

26

Propose to Add a locus• propose a new locus

– similar proposal to ordinary update• uniform chance over genome• easier to avoid interval with another QTL

– need genotypes at locus & model effect

• innovate effect & genotypes at new locus– draw genotypes based on recombination (prior)

• no dependence on trait model yet

– draw effect as in Green’s reversible jump• adjust for collinearity• modify other parameters accordingly

• check acceptance ...

Dqb /1)(

Page 27: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

27

Propose to Drop a locus

• choose an existing locus– equal weight for all loci ?– more weight to loci with small effects?

• “drop” effect & genotypes at old locus– adjust effects at other loci for collinearity– this is reverse jump of Green (1995)

• check acceptance …– do not drop locus, effects & genotypes– until move is accepted

mmrqd /1);(

Page 28: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

28

Acceptance of Reversible Jump

• accept birth of new locus with probabilitymin(1,A)

• accept death of old locus with probabilitymin(1,1/A)

m

Jmrq

q

mb

md

m

mA

m

d

mb

m

m

,;,,;

1

)1;(

)(

)(

)1(

)|,(

)|1,(

2**

11

bX

yy

Page 29: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

29

Acceptance of Reversible Jump

• move probabilities

• birth & death proposals

• Jacobian between models–fudge factor–see stepwise regression example

nsJ

mrq

q

mb

md

othersr

d

mb

|

1

)1;(

)(

)(

)1(

m m+1

Page 30: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

30

RJ-MCMC: Number of QTL

MCMC run0 200 400 600 800

01

23

45

6

MCMC run/10

num

ber

of Q

TL

0 200 400 600 800

01

23

45

6

MCMC run/1000 200 400 600 800

01

23

45

6

MCMC run/1000

num

ber

of Q

TL

0 200 400 600 800

01

23

45

6

Page 31: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

31

Posterior # QTL for 8-week Data

0 1 2 3 4 5 6

0.0

0.2

0.4

98% credible region for m: (1,3)based on 1 million steps

with prior mean of 3

Page 32: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

32

How Good is RJ-MCMC?

• simulations with 0, 1 or 2 QTL– strong effects (additive = 2, variance = 1)– linked loci 36cM apart

• differences with number of QTL– clear differences by actual number– works well with 100,000, better with 1M

• effect of Poisson prior mean– larger prior mean shifts posterior up– but prior does not take over

Page 33: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

33

Posterior for Simulated Data

• 0,1 or 2 large QTL• prior Poisson mean of 2• 100,000 RJ-MCMC runs

0 1 2 3 4 5

0.0

0.4

0.8

no QTL present0 1 2 3 4 5

0.0

0.4

1 QTL present0 1 2 3 4 5

0.0

0.4

0.8

2 QTL present

Page 34: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

34

Effect of Prior Mean

0 1 2 3 4 5

0.0

0.4

0.8

prio

r m

ean

= 2

priorpost.

0 QTL present0 1 2 3 4 5

0.0

0.4

1 QTL present0 1 2 3 4 5

0.0

0.4

0.8

2 QTL present

0 1 2 3 4 5

0.0

0.2

0.4

prio

r m

ean

= 4

0 QTL present0 1 2 3 4 5

0.0

0.2

0.4

0.6

1 QTL present0 1 2 3 4 5

0.0

0.2

0.4

2 QTL present

Page 35: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

35

# QTL in Brassica Data

• 4-week & 8-week vernalization– log( days to flower)– 105 lines, 10 markers– modest effects– evidence of 1 or 2 QTL using Bayes factors

• histograms of posterior number of QTL– depends somewhat on prior– mode is 1 or 2 QTL

• 90% credible sets– all include 2 QTL– include 1 QTL if prior not huge

Page 36: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

36

#QTL for Brassica 8-week

0 1 2 3 4 5 6 7 8

0.0

0.4

0.8

priorpost.

prior mean = 10 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

prior mean = 20 1 2 3 4 5 6 7 8

0.0

0.2

0.4

prior mean = 3

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

prior mean = 40 1 2 3 4 5 6 7 8

0.0

0.2

prior mean = 60 1 2 3 4 5 6 7 8

0.0

0.15

0.30

prior mean = 10

Page 37: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

37

Brassica #QTL 90% Credible Sets

prior lo hi level lo hi level

1 1 2 0.98 1 2 0.99

2 1 2 0.95 1 2 0.94

3 1 3 0.98 1 3 0.98

4 1 3 0.95 1 3 0.93

6 1 4 0.96 1 4 0.94

10 2 5 0.90 2 6 0.97

8-week 4-week

Page 38: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

38

Brassica #QTL Comparison

0 1 2 3 4 5 6

0.0

0.4

0.8

4-w

eek

data

prior mean = 10 1 2 3 4 5 6

0.0

0.2

0.4

prior mean = 20 1 2 3 4 5 6

0.0

0.2

0.4

prior mean = 3

0 1 2 3 4 5 6

0.0

0.4

0.8

8-w

eek

data

prior mean = 10 1 2 3 4 5 6

0.0

0.2

0.4

0.6

prior mean = 20 1 2 3 4 5 6

0.0

0.2

0.4

prior mean = 3

Page 39: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

39

Reversible Jump II

• reversible jump MCMC details– can update model with m QTL– have basic idea of jumping models– now: careful bookkeeping between models

• RJ-MCMC & Bayes factors– Bayes factors from RJ-MCMC chain– components of Bayes factors

Page 40: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

40

RJ-MCMC Updates

effectsloci

traits

genos

addlocus

drop locus

b(m+1)

d(m)

1-b(m+1)-d(m)

Page 41: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

41

Reversible Jump Idea• expand idea of MCMC to compare models• adjust for parameters in different models

– augment smaller model with innovations– constraints on larger model

• calculus “change of variables” is key– add or drop parameter(s)– carefully compute the Jacobian

• consider stepwise regression– Mallick (1995) & Green (1995)– efficient calculation with Hausholder decomposition

Page 42: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

42

Model Selection in Regression

• known regressors (e.g. markers)– models with 1 or 2 regressors

• jump between models– centering regressors simplifies calculations

jjjj

jjj

exxbxxbym

exxbym

)()(:2

)(:1

222111

11

Page 43: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

43

Slope Estimate for 1 Regressor

recall least squares estimate of slopenote relation of slope to correlation

n

jjy

n

jj

y

n

jjj

yyy

nyysnxxs

ss

nyyxx

rs

srb

1

22

1

211

21

1

111

11

1

/)(,/)(

/))((

Page 44: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

44

2 Correlated Regressors

slopes adjusted for other regressors

2

11222

1

2122121

2

2

1

21211

)(ˆ

,ˆ)(ˆ

s

srrrb

s

srcc

s

srb

s

srrrb

yyy

yyyyy

Page 45: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

45

Gibbs Sampler for Model 1

• mean

• slope

• variance

n

jjj

n

n

jjj

xxbyvaInv

nsns

yxx

b

nn

yn

1

2112

12

2

21

2

21

111

2

)(,~

,

))((

~

,~

2

2

2

2

2

2

2

2

2

2

Page 46: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

46

Gibbs Sampler for Model 2

• mean

• slopes

• variance

n

j kkjkkj

n

n

jjj

n

jjjj

xxbyvaInv

nxxcxxs

nsns

xxbyxx

b

nn

yn

1

22

121

22

1

2112122

21|2

21|2

2

21|2

111122

2

2

)(,~

/))((

,

))()((

~

,~

2

2

2

2

2

2

2

2

2

2

Page 47: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

47

Updates from 2->1

• drop 2nd regressor• adjust other regressor

02

2121

b

cbbb

Page 48: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

48

Updates from 1->2• add 2nd slope, adjusting for collinearity• adjust other slope & variance

212212121

212

111122

222

12

ˆ

)(ˆˆ)(ˆ,ˆ

),1,0(~

cbJczbcbbb

ns

xxbyxx

bJzbb

nsJz

n

jjjj

Page 49: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

49

Model Selection in Regression

• known regressors (e.g. markers)– models with 1 or 2 regressors

• jump between models– augment with new innovation z

0),,,(12

ˆ,1)0(~);,,(21

2121221

2121

222

z

cbbbbb

cbbb

Jzbbzzb

tionstransformasinnovationparametersm

Page 50: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

50

Change of Variables• change variables from model 1 to model 2• calculus issues for integration

– need to formally account for change of variables– infinitessimal steps in integration (db)– involves partial derivatives (next page)

Jdbdzzbdbdbbb

zbg

b

z

b

J

cJc

b

b

),,|;(),,|,(

),,|;(ˆ10

1

21212121

21

2

2121

2

1

xxyxxy

xxy

Page 51: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

51

Jdbdzdbdbzb

zbgdbdb

JJcJJ

Jc

J

Jc

zb

zbgbbzbg

21

2

21

2121

2121

);,,(det

)(010

1det

0

1);(),,();(

Jacobian & the Calculus

• Jacobian sorts out change of variables– careful: easy to mess up here!

Page 52: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

52

Geometry of Reversible Jump

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

b1

b2

c21 = 0.7

Move Between Models

m=1

m=2

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

b1

b2

Reversible Jump Sequence

Page 53: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

53

QT additive Reversible Jump

0.05 0.10 0.15

0.0

0.05

0.10

0.15

b1

b2

a short sequence

-0.3 -0.1 0.1

0.0

0.1

0.2

0.3

0.4

first 1000 with m<3

b1

b2

-0.2 0.0 0.2

Page 54: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

54

Credible Set for additive

-0.1 0.0 0.1 0.2

-0.1

0.0

0.1

0.2

0.3

b1

b2

90% & 95% setsbased on normal

regression linecorresponds toslope of updates

Page 55: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

55

Efficient Updating of additive

• more computations when m > 2• want to avoid matrix inverses

– decompose matrix instead– solve linear system of equations

• use linear algebra– Hausholder (QR) decomposition– LAPACK User’s Guide (1995, 2nd ed)

Anderson et al., SIAM.

Page 56: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

56

Hausholder (QR) Decomposition

• decomposition– G is upper triangular– F is orthogonal

• orthogonality

• design matrix 0XF

0FF0,FF

IFF,IFF

IFFFF

FFFFFF

GF0

GFFFGX

T

TT

mnT

mT

nTT

TTT

2

1221

2211

2212

2111

111

21 ]:[

Page 57: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

57

QR & Regression

• model

• error piece

• model piece

• estimators 1

11

11

1

11

11111

22

2222

)(ˆr

sr

SS

SS

yyT-T-T

MODELTT

TTTT

ERRORTT

TTTT

yFGyXXXb

yFFy

eFbGeFXbFyF

yFFy

eFeFXbFyF

eXby

Page 58: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

58

Absorbing Old Model

• old model– m regressors– QR decomposition

• new model– m+1 regressor– use QR to absorb

old model

eFxFyF

exXby

GFFGX

eXby

Tmm

TT

mmold

old

b

b

21122

11

11

Page 59: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

59

Adjusted Slope Estimators• old slopes

– note m=1 case

• added slope– note sum of squares

• variance– note Jacobian

• new slopes 1111

1

1111

1

221

21|21221

2

1122221

11

1

11

11

ˆˆˆ

)ˆ(ˆ

/)ˆ(

)(ˆ

ˆ

mmT-

oldnew

mmT-

new

m

mTT

m

yyyTTmm

yyT-old

b

b

JVbV

nsV

s

srrrVb

s

sr

xFGbb

xyFGb

xFFx

yFFx

yFGb

Page 60: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

60

How To Infer loci?

• if m is known, use fixed MCMC– histogram of loci– issue of bump hunting

• combining loci estimates in RJ-MCMC– some steps are from wrong model

• too few loci (bias)• too many loci (variance/identifiability)

– condition on number of loci• subsets of Markov chain

Page 61: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

61

Brassica 8-week Data locus MCMC with m=2

11

1

1

1

1

1111

1111

111

1

11

11

11

1

1

1

11

111

1

1

1

11

111

1

11

1

111

1

1

1

1

11

11111

1

1

1

1

111

1

1

1

1

1

111

1

1

1

11

1

11

1

1

111

1

1

1

1

1

11

1

1

1111

111

1

1

1

111

1

11

1111

11

111

1

1

1

11

11

11

1

11

1

11

1

1

1

1111

11

1

1

1

11

1

11

11

1

1

1

1

11

11

111

11

1

11

11

1

1

1

1

11

11

1

1

11

11

1

1

1

111

1

1

111111111

11

1

11

11

1

11

1

1

11

1

1

11

11

11

1

11

111

1

1

1

1

1

11

11

111

1

1

11

1

1

1

111

1

11

111

111

1

11

1

111

1

111

11

1

1

1

1

1111

11

1

1

111111

1

1111

111

11

1

1

1

1

1

1

1

1

11

1

1

111

111

1

1

1

1

1

11111

11

11

1

1

11

11

1

1

1111

1

1

1

11

1

1

11

11

1

1

1

11

1

1

11

11111

1

1

1

1

1

1

1

111

1

11

1

1

1

1

1

1

1

1

1

1

11

1

1

11

1

111

11

11

1

1

1

1

111111

11

1

111

1

11

1

1

1

11

1

1

11

1

1

111

11

1

1

1

1

1

1

1

11

1

1

1

1

1

1111

1

11

11

11

1

11

1

1

1

11

1

1

1111

1

1

1

1

11

1

1

1

1

11

1

1

1

11

11

1

1

1

1

1111

11

1111

111

1

1

11

1

1

1

11

11

1

11

1

1

11

1111

1

111

1

11

11

1

1

1

1

1

1

11

111

11

1

1

11

1

11

1

1

111

11

1

1

1

1

1

1

11

11

11

11

1

1

111

1

1

111111

1

1

1

1

11

11

1

1

1

1

1

111

1

1

1

1

1

1

11

11

111

1111

1

1

111

1

11

111

1

1

1

1

11

1

1

1

11

11

11111

1

11111

1

111

1

1111

1

11

1

1

1

1

1

1

11

1

1

111

1

1

1

1

11

1

11

111111

1111

1111

1

1

1

111

1

1

1

11

1

1

1

1

1

1111

11

1

11

1

1

1

11

1

1

1

1

11111

1

1

1111

11

111

11

11

1

1

1

1

1

1

111

1

11

1

11

11

1

11

11

1

1

1

11

111

11

111

11

1

1

1

111

1

1

1

1

1

1

1

1

1

1

111

11111

1

11

1

11

111

11

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

11

1

1

11

1

1

1111

1

1

1

1

1

11

1

1

1

1

111

111

1

1

1

1

1

1

1

1

111

1

1

11

1

111

111

11

111

11

1

1111

1

1

1

1

1

1

1

1

1

1

11

111

1

1

111111

1

111

11

11

11

11

1

11

11

111

111

11111

111

1

1

1

11

11

1

1

1

1

11

1

1

2

2

22222

22222

22222

22

2

2

222222

2222222222222222

2

2222222

2

2

222

22

22

2

2

22

222222222222222

222222222222

222

2222

2

22

22222

2

2

222

222222

2

2222

2

222222222222

2

2222222222222

2222

2

2

2

2

2

22

2

2222222

2

222222

2

22222

2222

22

2222

2

222

22

222222

2

2222

2222

22

22222222

22

2

222

22

222222

222

2

22222222

2

22222

222222

222222222222

2

2222222

22

2222222222222

2

22222

22222222

22222

2

2

2

2222222222

22222

2

2

222222

222222

2

2222

2

2

22

22222222

2

222

22

22222

222222222222

2

22222

2222

222

2

2

2

2222222

222222

222222

2

222

2

222

22

22222222222

22222

222

222222222

222

22

2222222

2222

2

2

222

22222

2

22222222222

2

222222

2222

222

2

222222222222

2

22

2

222

2

22222222

2

22222222222

22222222

222

2

2222

2

2222222

2222222222222

2

2222

222222222

2

22222

2

22222222

22222222222222

222222

2

22222

222222222222222

222222222

2

222222

2

2222

2222222222222222222222

222

2

222222

22222222222

22222

22222222222

222222

2222

2

2222222222222222

2222

22222

2

22222222

222

2

22

2222222

2

2

2

22222

2

222222

2

2222222

222222

2222

22

222

2

22

2222222

22

2

22

22

22222222

22222222222

2222222222

2

22

2

2222222222

222

22222222222222222222222222222

222

2222

2

222222

22

22222222

2222

2

22

222222

2

22

2222

22222222

222

22222222222

222

0 200 400 600 800 1000

20

40

60

80

MCMC run

20

40

60

80

0 50 100 150 200 250 300

dist

ance

(cM

)

frequency

Page 62: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

62

Jumping QTL number & loci

111111111111111111111111

1

11111

111111

11111

1111

111

1111

11111

11111

11111111

111111111

11

111111111

1111111

111

22222222222222222222222

2 22222222222 22

2222 22222

22222222

222222222 222222222

22 22

23333

333333333333 333

3

0 20 40 60 80 100

20

40

60

80

dist

ance

(cM

)

MCMC run

0 20 40 60 80 1000

1

2

3

num

ber

of Q

TL

Page 63: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

63

RJ-MCMC loci chain

111111111111111111111111

1

11111

111111

11111

11

11

111

1111

11111

11111

11111111

111111111

11

111111111

11

11111

1111111

111111111111111

11

111

1

11111111

11111

1

1111111

111111111111111111

1111111111

11111111111

111

11111

11111

11

11111111111

11111

11111111111111111111

1111111111111111

1

1

111111

1

111111111111

1

11111

11111111111111111111

111111

11111111111111

1111111111

11111111111

1111

1111111

1

11111111111111

1111111111111111

1111

11111111111111

1111111111

11111111111111111111

111

111111111

1111111111111

111111111111111111111111111

111111111111111111

111111111111

111111111111

11111111111111111111111

1

1

11111111111

111111111

1

1111

11

1

11111

111

111111111

111

111111

111111111111111111111111111111111111111111111111111111

11

11111111111

1111

11111111111111111111

111111

11111

11111111111111111111111111

111111111

1111111

1

11111111111111

11

111111111111

111

111111111111111

1

1111111111111111111111111111111111

111111

1

1111

11

1111

111111111111111

1111111111111111111

111111

1111111111111111

111111

1111

1111111111111111111111111111111111

1

111111111111111111111111111111

11111111

111

111111111

1

122222222222222222222222

2222222

2222222

222222222

22222222

222222222222222

2222222

22222

222222

2

22222222

22

22222222222222222222222222222222222

22222

22

2222222222222222

222222222

2

22222222

22222

22

222222222

2

2

2

2

2222

22222

222222222

2

2222222222

22222222222222222222222222

2

2222222222222222222

2222

22222222222222222222

2222222222222

222222

22222222

22222222222222222222222222222222222222222222222

22222222222

222222222

222

2

22222

222

222222222

222

22

22222222

22222222

2222

22222222

22222222222

2222222222222

22

222222

2

22222

22

2222222

22222

2222222222

2222222222222222222222

222222222

2222222222222222

22222

22

2222222222222222222222222

2

222222

222222222222222222

22222

22222

222222222222222222222222222222222

2222

22

22222222

22222222

2

2222

2222222222222222222222222222222

2

2

2222222222222222222

22222222222

22

222222

222

22

22222

22

2

23333

3333

3333333333333333333

333333

33

3

3333333333333333

333333333

33 33333

3333333333333

3

333333

3

33333

3333

33333333333

333

333333

33333333

33333333333

333

333333

3333

3333333333333333

3333333333333333

33

333333333333333

333333333333333

3333333

33333

3 3

333

33

3333

3333

3333333333

3

3

33333333333333333333333333333

3333333

333

33333

4

4

4444444

444

44444444

4444444 4444444444

444444

44

44444

4444444

4444

4 4

4444444

444444444444

444444444444455

5

55

555555 555555 5555

55555555555555

5555566 6666666

MCMC run0 400 800

0

20

40

60

80

111

11111

1

1

1

1

1

1

11

1

1

1

1

11

1

1

1

1

1111

1

1

1

11

11

1

1

1

1

11

1

1

1111

1

11

1

11

1

1

1

1

1111

11

1

11

1

1

11

1

111

111

1

111111

1

1

1

1111

1

1

1

1

1

1

1

1111

1

1

1

1

1

1

1

111

1

11

111

1

11

1

11

1

1

1

1

1

1

1

1

11

11111

1

1

1

1111

1

11

11

1

11

1

11

1

1

111

11

111

111

1

1

1111

11

11

1

1

11

1111

1

1

1

111

1

11111

11

1

11

1

11

1

1

11

111

11

1

111

11

11111

11

1

1111

1

1

111

1

1

111

1

1

11111

1

1

1

1

11

111

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

11

11

111

1

1

1

1

1

111

1

1

1

111

111

1

1

1

1

1

1

1

1

1

1

1

11

1

111

11

11

11

1

1

11

1111

1

1

1

1

11

1

11

1

11

1

1

11

1

11

1

11

1

1

1

11

1

1

1

111

1

111

1

1

1

1

11

1

1

11

1

1

1

11

111

111

1

1111

1

1

1

1

1

1

11

1

1

1

1

111

1

1

11

11

1

1

1

11

11

1

11111

1

11

1

111

1

1

11

111

1

1

111

11

1

11

1

1

1111

11

1

1

1

111

1111

1

1

11

11

11

1

1

1

1

1

1

111

1

1

1

1

1

11

1111

11

1

1

1

1

1

11

11

1

1

11111

11

1

111

111

111

1

1

1

1

1

1

1

1

11

1

1

1

1

111111

1

111111

111

11

1

1

111

1

11

1

1

11

11

1

1111

1

11

111

1

1

11

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

111

111

1

1

1

1

1

11

1

1

1

111

1

111

1

1

1

1

11

11

1

1

111

1

1

111

111

11

11

1

11111

1

1

11

1

1

1

1

11

1

11

1

11

1

11

1

1

11

1

1

1

1

1

1

1

11

11

111

111

1

11

1

1

111

1

1

1111

1

1

11

111

111

1

11

11

1

1

1

1

1

1

1

11

1111

1

11

1

1

11

1

111

11

11

11

1

11

11

11

1

1

1

1

1

1

111

1

1

1

11

1

11111

11

1

1

11

11

11

1

111

11

1

1

111111

1

1

1

11

1

1

111

1

1

11

1

1

1

1

1

11

1

1

11

1

111

11

1

11

1

11

1

11

1

1

111111

1

1

1

1

1

1

11

111

111

1

11111111

111111

1

11

11

11

11111

111

11

11111

1

1

111

11

1111

1

11

1111

1

11

111

1

1

1

1

1

111

1

1

111111111

111

11

11

1

1

11

1

11

111

1

1

1

11

11

111

1

1

1

1

1

11

1

111

1

1

22

2

2

2

2

2

22

222

2222

2

2

2

22

22

222

2

22

2

2

222

2

2222

2

2

22

2

2

22

2

2

2

22222222

22

2

2

2

2

2

2

2

2

2

2

2222

2222

2

2

22222222

2

222222

222

22

22

2222

2

2

222222

22

2

2

2

222

2

222

2

2

22

22222

2

22

2

2

2

2222

22

22

2

222

2

222

2

2

22

2

22

2

2

2

222

2

2

2

2

2

2

2

2

2

22

2

2

22

222

2

22

2

22

22

22

2

222

2

2

2

2

2

2

2

2

2

22

2222

22

22

2

2

222

2

222222

2

22

2

222

2

22

2

2

222

2

2

2

22

22

2

2

2

2

2222

222

22

22

222222

22

2

2

2

22

2

2222

22

2

22

22

222222

2

2

22

2

22

2

2222222

2222

22

222

2

22

2

2

2

222

2

2

2

22

2

2

22

222

2

222

2

2222

22

2

2

22

2

2

2

2

22222

2222

2

2

2

222

2

2

22

22

2

22

2

2

2

2

2

2

2

22

2

22

2

22

22

2

2222

2

2

2

2

2

2

22

22

2222222222

2

22

22

222

22

2

2

22

2

2222

22

2

22222

2

222

222

2

2

22

222

2

2

2

222

2

222

2

2

2

222

222222

222

2

222

22

22

222

2

2222

2

222

2

2

2

2

2

222

2

2

22222

222

2

22

22

22

2

2

2

222

22

222

2

22

22

2

2

2

22

2

2

2

22

2

22222

2

22

2

222

222

2

22

22

22

2

2

2

2

2

222

2

2

222222

2

2

2222

2

2

2

22

2

2

2

22

2222

2222

2222

2

2

22

22

22

222

22

2

222

2

22

22

2

222

2

2

2

2

2

2

2

2

22

2222

222222

22

2222

2

2222222

22

2

2

22222

22

2

2222222

2

333333

33

3

3

3

33333

3

333

3

333

33

3

3

33

333

3

3

33

3

3

333

3

3

333

33333

3

3

33333333333

3

3

3

33333

3

3

3

3

333

33

33

33

33333

3

33

33

3

33

333

33333

33

3

333

333

3

33

33

3

3

3

33333

3

3

3

3

33

33

33

33

3

3

3

3

3

33

3

3

3

33

333

3

3333

3333

3

3

3

333333333

3

3

3

3

3

3

3

3

3

3

3

3333

3

3

3

3

3

33333333

3

33

3

33

3

3

333

3

33

3

3

3

3333

3

3

3333

333

33

333

3333

33

3

3

33

333333

4

4

44

4

444

4

4

4 444 4

4

4 4 44

4

44

4

4

44

4

4

44

4444

4

444

444

444

4

4444

5 555 5 5

55 55 55

5

5

5

MCMC run/10

num

ber

of Q

TL

0 400 8000

20

40

60

80

11

1

11

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

111

1

11

1

1

11

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

111

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

11

1

1

11

1

1

1

111

1

1

1

1

11

1

1

1

11

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

11

1

1

1

1

1

1

1

1

1

11

1

11

1

1

1

1

11

1

11

1

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

11

111

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

11

1

1

11

11

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

11

1

1

11

1

1

11

1

1

1

11

11

1

1

11

1

1

11

1

1

1

1

1

1

1

11

1

1

1

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

11

1

11

1

1

1

1

1

1

1

1

1

1

11

11

1

1

1

1

1

11

1

1

1

1

1

1

111

1

1

1

1

111

1

111111

1

1

1

11

1

11

1

1

11

1

1

11

11

11

1

1

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1

11

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

11

1

1

1

1

1

1

1

1

1

11

1

1

11

11

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

111

1

1

1

111

1

1

11

1

1

11

1

1

11

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

1

1

1

1

1

1

1

1

1

1

11

1

1

11

1

1

1

1

1

1

111

1

1

1

1

1

1

1

1

1

1

11

1

1

11

1

11

1

1

1

1

1

1

1

1

1

1

1

111

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

111

1

1

1

11

1

1

1

1

1

1

11

11

1

1

1

1

1

11

1

1

1

1

1

1

11

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

11

1

1

1

1

1

1

1

1

1111

1

1

1

1

1

1

111

11

1

1

11

1

11

1

1

11

1

1111

1

1

1

11

1

1

1

1

1

1

1

1

11

1

1

1

11

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

11

111

1

1

11

11

1

11

1

1

1

111

11

11

11

1

1

11

1

1

11

11

1

11

1

1111

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

11

11

1

11

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

11

1

1

1

1

1

1

11

11

1

1

11

1

11

1

11

1

1

1

1

1

1

11

11

1

1

1

111

1

11

2

22

2

222

2

2

2

2

2

2

22

2

2

22

2

2

2

2

2

2

2

2

2

2

2

222

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2222

2

2

2

2

2222

2

2

2

22

222

22

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

22

2

2

2

22

22

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2222

2

2

2

22

2

2

2

2

2

2

2

222

2

222

2

2

2

2

2

2

2

22

2

22

22

2

2

222

2

2

2

2

2

22

22

2

222

2

22

2

2

2

2

2

2

2

22

2

22

22

2

22

22

2

2

2

22

2

2

2

2

22

2

22

2

2

2

2

2

2

2

2222

2

22

22

22

2

22

2

22

22

2

2

2

2

2

2

2

22

2

22

22

2

22

2222

2

22

2

2

2

22

2

2

2

2

2

2

2

2

22

22

2

2

2

2

2

2

2

2

22

2

2

2

2

22

2

2

2

2

2

22

2

22

2

2

2

2

2

2

22

22

2

2

2

2

22

2

2

22

22

2

2

2

2

2

22

2

22

2

222

2

2

222

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

222

2

2

222

2

2

2

2

2

2

2

2

2

2

22

22

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

222

22

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

2

22

2

2

2

2

22

2

22

2

22

22

22

2

2

22

2

22

2

22

2

2

2

2

2

2

2

2

2

22

2

2

22

2

2

2

22

2

22222

2

2

2

2

2

22

22

2

22

2

2

22222

2

2

2

2

2

2

22

22

2

2

2

22

22

2

2

2

2

22

2

2

2

2

22

2

2

2

2

222

2

2

222

2

2

2

2

2

2

2

2

2

2

2

222

22

2

2

2

2

2

22

2

22

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

22

222

2

222

2

22

2

2

2

22

22

22

2

2

2

2

2

2

22

2

2

2

22

2

2

2

22

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

22

222

2

2

2

2

2

222

2

22

222

2

222

2

2

22

2

2

2

2

2

22

2

22

22

2

2

3

3

3

3

33

3

333

33

33

333

3

3

3

3

3

3

33

3

33333

33

33

3

33

3

3

3333

3

3

33

3

3

333

33

3

3

3

3

33

3

3

3

33333

3

333

3

3

3

3

3

3

3

3

33

333

3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3333

3

33

33

3

333

3333

33

3

3

3

3

3

3

33

33

3

333

3

33

3

3

33

3

3

3

333333

3

3

33

3

3

3

3

3

33

3

33

3

33333

33

333

3

3

3

333

3

33

3

3

3

3

33

3

33

3

3

3

33

33

3

33333

3

33

333

3

3

3

33

3

33

333

3

33

3

3

3

333333

33

33

3

3

3

33

3

33

3

3

3

3

3

3

3

3

3

33

44

444444

4

4

4

4

444

4

4

4

4444

444

4

44

4

4

4

44

4

4 44444

4

4

4

444

4444

4

4

4

444

5 5

5

55

55

6

MCMC run/1000 400 800

0

20

40

60

80

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

11

1

11

1

1

111

1

1

11

1

1

11

1

11

1

1

1

1

11

1

1

11

1

1

1

1

1

1

1

1

11111

1

11

1

1

1

1

1

1

11

1

11

1

11

1

1

1

1

1

1

11

11

1

11

1

1

1

1

1

11

1

1

111

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

11

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

11

1

111

1

1

11

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

11

1

1

111

1

1

1

1

1

1

1

11

1

1

11

1

1

1

11

1

1

11

1

1

11

1

1

1

1

1

1

1

1

1

11

1

111

1

1

11

11

1

11

11

1

1

1

11

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

11

11

1

1

1

1

1

1

111

1

1

1

1

1

1

1

11

1

1

1

1

1

1

11

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1

111

1

11

1

1

11

11

1

1

1

1

1

1

1

11

1

1111

1

1

1

1

11

1

1

111

11

1

1

1

11

11

1

1

1

1

1

1

1

1

1

1

1

11111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11111

1

1

1

11

1

1

111

11

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

11

1

1

1

1

1

1

11

11

1

1

1

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

11

1

1

1

1

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

11

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

11

111

1

1

11

1

111

1

1

1

1

11

1

11

1

1

1

1

11111

1

111

1

1

1

1

1

1

1

1

1

1

1

11

1

1

11

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

11

1

1

1

1

1

11

1

1

1

11111

1

11

1

1

1

11

1

11111

1

1

1

1

1

1

1

1

1

11

11

1

11

1

1

1

1

1

1

1

1

1

1

1

11

1

1111

1

1

11

1

11

1111

11

1

1

1111

1

1

1

1

11

11

11

1

11

1

1

1

1

11

1

1

11

1

11

1

1

1

111

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

11111

1

1

1

1

1

11

1

1

11

1

11

1

1111

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1111

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

11

1

1

1

1

1

1111

11

1

1

1

1

111

1

2

2

2

2

2

2

22

22

2

22

2

2

2

22

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

222

2

2

2

2

2

22222

222

22

2

222

2

2

2

22

2

222

22

2

2

2

22

2

2

222

2

2

22

2

22

22

2

2

2

22

2

2

2

2

2222

22

2

22

2

2

2

2

22

2

2

2

2

222

2

2

2

2

2

2

22

2

22

2

2

2

22

2

222

2

222

2

2

2

2

22

2

2

2

2

22

2

2

2

2

2

22

2

2

2

22

2

2

2

2

2

2

2

2

2

22

2

2

22

2

2

2

2

2

22

22

2

2

22

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

2

222

222

2

2

2

2

2

2

2

2

2

2

22

22

2

2

2

2

2

22

22

22

2

2

2

2

2222

2

2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

22

2

2222

2

2222

22

2

2222

2

222

2

2

2

2

2

2

22

2

2

222

2

2

22

2

222

2

2

2

22

2

22

222

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

22

2

2

2

2

2

2

22

2222

2

22

22

222

2

222

2

22

2

2

22222

2

2

222

2

22

2

2

2

2

222

2

222

2

2

2

22

22

2

2

22

2

2

2

22

2

2

2

22

22

2

2

22

2

2

2

2

2

2

22

2

22

2

22

2

2

222

2

2

2

222

2

2

2

2

2

2

2

2

22

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2

2

22

2

2

22

22222

2

22

2

2

2

2222

2

2

2

2

22

22

2

2

2

222

2

2

2

2

2

2

2222

22

2

2

2

2

2

2

2

222

2

2

2

2

22

222

2

2

2

2

22

2

2

2

2

2

2

2

2

2

22

2

2222

2

2

2

2

2

2

223

3

333

3

33

3

3

3

3

3

33

3

3333

3

3

333333

3

33

3

33

333

33

3

333

3

3

3

3

3

3

3

3

3333

3

3

3

33

3

3

3

3

3

3

33

3

33

3

3

3

3

3

3333333

3

3

333

3

3

33

3

33

33

3

3333333

3

3

33

3

33

3

3

3

333

333

33

3

33

3

33333

3

33

3

3

3

3

33

3

3

3

3

3

33

33

33

33

3

3

3

3333

3

334

4

44

4

44 444 4 44

4 44 4

4

4

MCMC run/1000

num

ber

of Q

TL

0 400 8000

20

40

60

80

Page 64: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

64

Raw Histogram of loci

0 20 40 60 80

0.0

0.01

0.02

0.03

0.04

distance (cM)

Page 65: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

65

Conditional Histograms

20 40 60 80

0.0

0.02

0.05

distance (cM)

m =

1

0 20 40 60 80

0.0

0.02

0.04

distance (cM)

m =

2

0 20 40 60 80

0.0

0.02

0.04

distance (cM)

m =

3

0 20 40 60 80

0.0

0.02

0.04

distance (cM)

m >

3

Page 66: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

66

Bayes Factors•ratio of posterior odds to prior odds

– RJ-MCMC gives posterior on number of QTL– prior is Poisson

BF(1:2) 2log(BF) evidence for 1st

< 1 < 0 negative

1 to 3 0 to 2 negligible

3 to 12 2 to 5 positive

12 to 150 5 to 10 strong

> 150 > 10 very strong

)|(

)|(

)(/)(

)|(/)|(

2

1

21

2112 model

model model model model model

yyyy

B

Page 67: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

67

#QTL for Brassica 8-week

0 1 2 3 4 5 6 7 8

0.0

0.4

0.8

priorpost.

prior mean = 10 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

prior mean = 20 1 2 3 4 5 6 7 8

0.0

0.2

0.4

prior mean = 3

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

prior mean = 40 1 2 3 4 5 6 7 8

0.0

0.2

prior mean = 60 1 2 3 4 5 6 7 8

0.0

0.15

0.30

prior mean = 10

Page 68: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

68

RJ-Bayes Factors(8-week Brassica data)

prior mean

ratio

1 2 3 4 6 10

1:2 2.87 1.91 1.51 1.45 1.12 0.85

1:3 27.62 9.10 5.06 4.22 2.28 1.28

1:4 1743.29 81.30 28.85 18.51 7.17 2.51

2:3 9.63 4.76 3.35 2.91 2.04 1.5

2:4 608.00 42.51 19.09 12.75 6.41 2.95

3:4 63.13 8.93 5.70 4.39 3.15 1.96

Page 69: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

69

Simulation Study of Prior Effect

• how dramatic is the effect of prior?• simulations of 0, 1 or 2 QTL

– QTL have large effect • additive = 2, variance = 1

– 2 QTL spaced 36cM apart– sample sized of 105

• RJ-MCMC runs of 100,000

Page 70: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

70

Effect of Prior Mean

0 1 2 3 4 5

0.0

0.4

0.8

prio

r m

ean

= 2

priorpost.

0 QTL present0 1 2 3 4 5

0.0

0.4

1 QTL present0 1 2 3 4 5

0.0

0.4

0.8

2 QTL present

0 1 2 3 4 5

0.0

0.2

0.4

prio

r m

ean

= 4

0 QTL present0 1 2 3 4 5

0.0

0.2

0.4

0.6

1 QTL present0 1 2 3 4 5

0.0

0.2

0.4

2 QTL present

Page 71: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

71

Bayes Factor

m

ratio

0 1 2

0:1 3.85 0 0

0:2 50.93 0 0

0:3 569.11 0.03 0

1:2 13.22 1.87 0

1:3 147.75 30.09 0

2:3 11.17 16.05 2.38

m

ratio

0 1 2

0:1 0.97 0 0

0:2 3.02 0 0

0:3 15.07 0 0

1:2 3.12 1.32 0

1:3 15.54 3.04 0

2:3 4.99 2.58 0.75

prior of 2 prior of 4

Page 72: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

72

Computing Bayes Factors• arithmetic mean

– using samples from prior– mean across Monte Carlo or MCMC runs– can be inefficient if prior differs from posterior

• harmonic mean– using samples from posterior– more efficient but less stable– careful choice of weight h() close to posterior

1

1 )()(

)()|(ˆ

G

g kkkk

kk

hG

model |model ;|model

yy

kkkkkk d )()|()|( model |model ;model yy

Page 73: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

73

Stable Bayes Factors• Satagopan, Raftery & Newton (1999)

– weighted harmonic mean

– absorb variance (normal to t dist) replace

);,,|( *2* Xby by

);,|( ** Xby

Page 74: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

74

Bayes Factors & LODs

• others have tried arithmetic & harmonic mean• why not geometric mean?• terms that are averaged are log likelihoods...

runsMCMCGg

G

G

gkk

k

,,1

)(log

exp)|(ˆ 1

model ;|

model

y

y

Page 75: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

75

Bayesian LOD• Bayesian “LOD” computed at each step

– based on LR given sampled genotypes and effects– can be larger or smaller than profile LOD– informal diagnostic of fit– combine to for geometric estimates of Bayes factors

n

j j

jj

n

j j

xj

by

bxyeBLOD

by

xbxy

eLOD

12*

2**

10

12*

1,0,1

2*

10

),0,|(

),,;|(ln)(log

)ˆ̂,0,ˆ|(

)|()ˆ,ˆ,ˆ;|(

ln)(log)(

Page 76: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

76

Compare LODs• scatter plot of loci and Bayesian LODs

– same BLOD for all loci of step– overlay LOD from interval mapping (red)– overlay LOD from CIM (green)– vertical lines at true or inferred loci (blue)

• steps with higher BLOD– may have more likely genotypes– basis for MCMC step

• always up to higher likelihood• sometimes down to lower likelihood

Page 77: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

77

BLODs with no QTL• LOD profile roughly zero• most BLOD values should be negative

– no pattern across linkage group

• distribution similar to rescaled chi-square with 1 df– -2log(LR) approximately chi-square– assignment of genotypes “irrelevant”

• RJ-MCMC skewed with inferred QTL– numbers indicate #QTL

Page 78: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

78

Simulated Data with No QTL

78

91

011

12

78

91

011

12

0 2 4 6

Page 79: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

79

BLOD: no QTL-3

-2-1

0

distance (cM)0 10 20 30 40 50 60 70 80

-3-2

-10

0.0 0.2 0.4 0.6 0.8 1.0 1.2

LOD

frequency

Page 80: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

80

RJ-MCMC BLOD: no QTL-3

-2-1

01

2

distance (cM)0 10 20 30 40 50 60 70 80

1

11

1

2

1

21

1

3

1

2

1

1

1

2

11

1

11

1

2

1

1 1

1

1

1

1

1

1

2

1

1

11

2

1

1

12

1

1

2

1

1

1

1

2

11

2

2

11

1 1

1

1

1

3

2

11

2

1

1

11

12

1

21

1

11

1

1

1

2

1

1

1

1

1

2

2

1

1

11

1

1

11

2

1

1

1

1

1

2

1

1

1

1

1

1

1

111

112

1

1

2 111

1

1

12

11

2

1

1

1

11

113

1

1

1

1

1

1

11

11

1

3

1

11

1

11

1

1

1

1

1

1

11

1

1

1 1

11

2

11

2

2

11

1

1

1

1

1

1

2

1

1

1

1

2

1

3

4

2

2 1

11

1

2 1

12

1

1

2

2

1

1

1

1

1

2

1

1

2

2

1 2

1

1

21

2

12

1

1

2

1

11

1

2

2

1

1

1

11 1

1

1 21

1

2

1

1

2

2

1

2

2

1

1

1

2

11

12

1

2

1

11 1

111

11

3

12

1

1

2

1

1

2

1

21

1

211

1 1

2

2

1

1

111

1

3

1

11

11

2

2 1

1

1

1

1

1

1 111

12

2

21

1

1

1

2

1

1

1

12

1

1

11

11

1

11

1

1

1

2

11

1

1

1

1

2

1

1 1

1

2

1

1

11

1

2

12

111

12

1

1

2

11

2

1

1

3

1

1

1

2

11

2

2

1

1

1

3

1

1

12

1

1

1

1

1

1

1

1

1

1

1

1

1

12

1

1

1 11

1 1

2

1

1

1

1

1

1

111

1 1

2

1

1

11

1

12

12 11 1

11

1

1

1

1

1

1 1

1

11

1

1

11

1

11 1

1

11 21

2

11

1

11

1

1

11

1

2

1

1

2

2

1

12

2

1

11

11

1

1

1 1

2

11

11

2

1

11

11

1 1

1

1

1 1

11

1

1

1

1

11

1

111

1

211

11

11

2

11

1

1

1

111

1

1

1

1

1

1

1

2

11

1

1 2

2

32

2

2

2

2

2

22

2

2

3

2

222

2

2

2

2

2

22

22

3

3

2

2

2

2

2

3

4

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

22

2

22

2

2

32

2

2

2

2 22

2

2

2

2

2

2

22

3

2

2

23 2

2

2

222

2

2

2

2

22

2

2

2

2

2

2

3

3

3

3

3

4

3

3

3

3

4

-3-2

-10

12

0.0 0.2 0.4 0.6 0.8 1.0 1.2

LOD

frequency

Page 81: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

81

BLODs with 1 QTL• LOD peaks at correct locus• most BLOD values near locus

– some considerably larger than LOD– inferred genotype vs EM average

• non-central distribution of BLOD– rescaled non-central chi-square?

• RJ-MCMC dispersed from peak– locus proposal has local dispersion

Page 82: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

82

LOD for 1 QTL 5

10

15

20

25

30

35

distance (cM)0 10 20 30 40 50 60 70 80

51

01

52

02

53

03

5

0.0 0.1 0.2 0.3 0.4 0.5 0.6

LOD

frequency

Page 83: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

83

RJ-MCMC BLOD: 1 QTL5

10

15

20

25

30

35

distance (cM)0 10 20 30 40 50 60 70 80

1

2

1

1

32

2

11

11

1

2

2 1

1

1

1

2

2

2

1

11

2

1

2

2

2

3

1

11

1

2

2

1

2

11

2

1

111

1

11

211

11

3

1

11

21

2

3

1

12

2

3

2

2

1

3 11

1

3

1

1

2

1

3

111

2

1112

2

2

3

11

1

2

2

1

1

11

4

1

11

1

21

2

1

1

1

3

12 1

31

12

11

1

12

2

1

111

1221

2 111

1

11

1

1

2

11

1

1 1

12

1

13

2

11

1

21

1

1

1

2

221

2

21

2 1

1

1

3

1

121

11

2

1

22

1

1

1

1

1

2

2

2

1

1

112

2

1

1

1

3

21

11

1

1

2

12

1

1

11

222

2

2

112

1

1

1

1

2

2 21

1

1

3

2

1

1

12

1

12

1

1

13

2

2

2

2

3

1

1

12

2

1

2 11

1

1 1

1

1

1

21

1

1

1

11

2

112

111

1

2 11

11

2

1

1

2

2

2

3211

1

2

2

11

1

112

12

1

2

2

1

1

1

3

111

1

1

3

112 2 1

1

11

1

1112

22

2

111

211

1

2

2

2

1

1

111 11

1

1

21

12

1

1

1

22

11

1

2

1

2

1

1

2

1

1

1

2

1

1

2

3

2121

111

22

1

1

1

2

1

1

1

1

1

2

2

1

1

1

1

2

1

2

1

3

2

2

1

1

3

1

2

11

111

1

2

12 1

3

1

4

2

1

2

2 2

2

1

1

2

2 1121

2

2

1

11

1

2

1

2

2

111

112

1

21

11

1

2

2 21

2

1

2

2

1

2

111

221

1

111

1

1

1

1

1

2

2

2

2

1

2

11

1

2

21

1

2

1

2

2

111 2

1

1

112

1

1

1

1

1

4

1

1

1

2

2 1

2

1

11

3

1

1

2

2

1

1

1

1

2

1

212

1

3

1

24

1

1

1

1

11

11

2

1

21

1

1

1

1

11

2

11

2

1112

1

1

2

31

1

1

1

1

2

1

1

2

1

3

2

2

2

1

1

11

1

11

1

1

3

2

2

1

12 111

1

1

12

1

11

2 11

11

1

12

1

3

2

2

1

1112 2

1

1

1

2

1

1

1

1121

1

2

1

11

2

2

1111

2

2 1

11

1

1

1

1

1

1

1

11

23

1

2

1

14

12

4

1

11

21

11

1232

3

2

1

2

2 111

2

3

2

1

1

1

1

112

1

2

12

1

1

3

11

2

1

3

2

1

1

1

1

2

2

2

32 1

2

3

2

1

1

2

11

1

1

1

1

2

1

2

13

2

12 2

111

2

1

2

11

2

1

1

211

1

2

1

21

22

3

1

3

1

1

2

1

1

11212 11

1

13

2

1

1

1

11

1

21

31

1

2

1

11

2

11

2

2

1

1

1

2

1

1

2

1

32

2

2

11

2

1

2

1

1

11

3

1

1

1

2

1

11

1

2

111

1

11111

1

2

1

1

2

1

3

1

1

111121

2

111

1

1

2 211

2 1

2

123

1

11

1

2

1

2

1

1

3

2

1

3

3

1

1

2

1

1111

2

1 111

1

1

2

21

1

2

1

11

11

1

1

1

2

2

1

11

1

14

1

1

2

21

2

3

112

11

2

2

1

1

1

1

2

1

1

1

3

121

2

1211

3

1

1

1

2

1

2 2

1

1

12

2

1

1

1

2

1

2

1

1

2 12

122

32

2

2

22

2

2

22

2

2

3

2

2

22

2

3

2

2

3

2

2

3

2

23

3

2

3

2

2

2

2

3

2

2

4

22

3

2

3

2

2

22 22

2

23

2

2

2

22

2

22

3

2

2

22

2

2

2

2

23

2

2

22

22

2

2

2

2

2 2

3

2

2

2

32

2

2

2

3

2

2

2

2

2

22

2

2

2

2

322

2

2

2

2

2

3

3

222

22

2

22

2

2

2

2

22

2

2

2

2

2

3

2222

2

2

2

2

2

3

2

23

2

2

2

3

4

2

2

2 2

2

2

22

2

2

2

2

2

22

2

2 2

2

2

2

2 2 2

2

2

2

2

2

2

2

2

2

2

2

2

4

2

2

2

3

2

2

2

2

2

3

24

2

2

2

2

22

3

2

2

3

2

2

2

3

2

2

2

2

22

3

2

2

2 22 2

2

2

2

2

2

23

2

4

2

4

2 232

3

2

2

2

2

3

22 2

2

3

23

2

2

2

2

32

2

3

2

22

2

32

2 2

2

2

2

2

2

2

22

3

3

2

22

32 23

2

2

2

2

2

2

32

2

2

22

3

22

2

2

3

2

2

2 22

2

232

2

3

2

3

3

2

22

2

2

2

2

4

2

2

2

3

2

2

2

2

3

2

2

2

3

2

2 2

2

2

2

2

222

3

3

3

3

3

3

3

33

4

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

3 3

4

33

3

3

3

4

4

3

3

3

3

3

3

33

3

3

33

3

3

3

3

3

3

34 3

33

4

4

4

4

4

4

4

51

01

52

02

53

03

5

0.0 0.05 0.10 0.15 0.20 0.25

LOD

frequency

Page 84: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

84

BLODs with 2 QTL• incorrect fit of 1 QTL model

– LOD peaks at ghost locus– BLOD values near LOD peaks

• correct 2-QTL model– IM misses, CIM gets loci– BLOD at loci– BLOD approx. 2x LOD

• simultaneous fit of both loci

• RJ-MCMC dispersed from peak– need to look conditional on m=2

Page 85: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

85

LOD for 2 QTL with 1 Fit5

10

15

20

25

30

35

distance (cM)0 10 20 30 40 50 60 70 80

51

01

52

02

53

03

5

0.0 0.1 0.2 0.3 0.4

LOD

frequency

Page 86: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

86

LOD for 2 QTL with 2 Fit1

02

03

04

05

06

0

distance (cM)0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

0.0 0.1 0.2 0.3

LOD

frequency

Page 87: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

87

RJ-MCMC BLOD: 2 QTL0

10

20

30

40

50

60

distance (cM)0 10 20 30 40 50 60 70 80

22

333

2

232

3

23

42 3

22

2

423

4

2

2

3

2223

2

2

2

22

22

3

222

23 2

23

2

3

22

333

4

22

322

2

2

3

2

2

2

3

222

22332

232 2

2

3 2

2

42 2

222

33

333223 3

2

2

3 3354

2

3 2

3

4

32

2

3

3

32

2

3

2

2

3

3

2

3

233

33

2

3

3222

24

5

3

2 2323

2

3

32

2

4

3

2

3

522

2

22

2

2

2

22

22

43 43

2

3

2

2

42

2

32

22

2

222

3 4 2

3

3 3

35

2

3 2333

2

2

2

3

3

2

2

2

3

22

2

3

4

3

2322

2

3

2

3

32

22

2

2

2

2 22

33

32

2

2

3

333

2

2

2

23

2 2

22 22

4

23

4

333

3

2

3

2

2223

3

2

33

2

4

43

3 2

2

23222

33

3

2

2

2

22 322

2

2222

2

232

2

2

243

2 33

3 2

2

22

332 232

2

33

3

322

3

23

3323

22

3

3

22

3 24 2

2

3

3

2

2

22

3

2

32

2

2

233

3

3

3

2

2

3244 22

22

3

2

3

2

4

2

4

42

2

2334

33

2

2

2

232233 22

3

5

2

3

23

3

33

3223

2

4

22

3

2

2

22

2

2

32

23

2

2

3

22

2

23 22

3

2

3

3233

3

2222

32

22

2

2

3

3

23

223

2

3

2323

3

2

3

2

3

4 3

3

23

422

2323

24

222

3

33

223

2

3

4

4

222

3

3

2

3 2

232

3

322

2

3 233

33 2

33

22323

243

23

3

3

3

3

2

2

4

2

22

22

3

22

2

2

2

32

3

2

3

2

2324

3

3

3

5

322

24

2

3

22

325

23

3

3

2

222

433

2

2

2

2

33

2

22

3

3

2

4

3

222

3

33

32

3

33

2

4 22

3

223

23

3

33

222

332332

323

3

2

33

2

2 222

22

2

2

3

4

3

33

33

2223

223 2

3 3

3

3

2

3

2

2

22

3

32

3

32

2

23

3

3

3

3

22222

3

23

3

33

22222222

222

43

3

2

25332

3 222

3

23

2

222

2

2

2

2

322

2

3

22

3

3

2

3

2

3 22

33

3

3

3

34

232

3

2

2

2

3

333

33

33

22

2

24

2

32

22

3

22

2

32

4

3

23 2

2

2

2

2

3

33

332 2

2

332

4

2

2

222

4

3

2

3

23

2

22

2

224 2

3

3

3

2

2222

3

2

2

2

4

22233

334

3 33

2

2322

3

23

34

3 2

3

2224

3

2

22

2

2

4

33222

3 32

2

2

3

3

3

323

4

2

2

32 2

222

3

3

3

2

2

2

2

2

223

3

3

4

3

322223

22

32

2

3

3

223

3

32223

2

4 2

2

222

2

2

2

3 23

332

232

3

223

23

3

3

22

23

2

3

3

3

23

3

2

3

3

2

3222

2

22

222 2 2

333

2

232

3

23

423

22

2

423

4

2

2

3

2 22

3

2

2

2

22

22

3

222

23 2

23

2

3

22

33 3

4

22

3 222

2

3

2

2

2

3

222223

32

23 22

2

3 2

2

422

22 2

33

333

223 3

2

2

3 3 354

2

3 2

3

4

3 2

2

3

3

3 2

2

3

2

2

3

3

2

3

23

3

33

2

3

322 2

24

5

3

223 23

2

3

32

2

4

3

2

3

52 2

2

22

2

2

2

22

2 2

434 3

2

3

2

2

42

2

32

22

2

2 22

34 2

3

3 3

35

2

3 2333

2

2

2

3

3

2

2

2

3

2 2

2

3

4

3

23 22

2

3

2

3

3 2

22

2

2

2

222

33

3 2

2

2

3

333

2

2

2

23

22

2222

4

23

4

333

3

2

3

2

22 23

3

2

3 3

2

4

433 2

2

23 2

22

33

3

2

2

2

223 22

2

22

22

2

23 2

2

2

24 3

233

3 2

2

22

33 2 23 22

33

3

3 22

3

23

33

23

22

3

3

22

3 24 2

2

3

3

2

2

22

3

2

322

2

233

3

3

3

2

2

3244 2222

3

2

3

2

4

2

4

42

2

2334

33

2

2

2

23

2 23

3 22

3

5

2

3

23

3

33

3 223

2

4

22

3

2

2

22

2

2

32

23

2

2

3

22

2

23 22

3

2

3

3 23 3

3

222

2

32222

2

3

3

23

223

2

3

232

3

3

2

3

2

3

4 3

3

23

422

23 23

24

22 2

3

33

223

2

3

4

4

22

23

3

2

3 2

23

2

3

3 22

2

3 23

3

3 3 2

33

223 23

243

23

3

3

3

3

2

2

4

2

22

22

3

22

2

2

2

32

3

2

3

2

23

24

3

3

3

5

322

24

2

3

22

3 25

23

3

3

2

222

43

3

2

2

2

2

33

2

22

3

3

2

4

3

222

3

33

32

3

33

2

4 22

3

223

23

3

33

222

3 3 233

2

323

3

2

33

2

222 2

22

2

2

3

4

3

3 3

33

22

23

223 2

33

3

3

2

3

2

2

22

3

32

3

322

23

3

3

3

3

22222

3

233

33

222

2 22222

2 243

3

2

253

32

3 222

3

23

2

222

2

2

2

2

3 22

2

3

22

3

3

2

3

2

3 22

33

3

3

3

34

23 2

3

2

2

2

3

333

33

33

22

2

24

2

3 2

22

3

22

2

32

4

3

23 2

2

2

2

2

3

33

3 322

2

33 2

4

2

2

222

4

3

2

3

23

2

22

2

224 2

3

3

3

2

222

2

3

2

2

2

4

2223

33

343 33

2

2322

3

23

34

3 2

3

222

4

3

2

22

2

2

4

33 22

23 3 2

2

2

3

3

3

3 23

4

2

2

3222

22

3

3

3

2

2

2

2

2

223

3

3

4

3

3 22 223

22

32

2

3

3

22

3

3

3 2223

2

4 2

2

22

2

2

2

2

3 23

332

232

3

223

23

3

3

22

23

2

3

3

3

23

3

2

3

3

2

3 2 222

2 2

222

3333

3

34

3

43

4

3

3

333

3 333

4 3

3

3333 3

4

33

33

333 3335

43

3

4

33

3

33

3

3

3

33

33

3

34

5

3

33

3

3

4

3

3

54

34 3

3

4

334

3

33

35

3333

3

33

3

4

33 3

3

3

33

3

3

333 3

43

4

333

3

3 3

3

3 3

4

433

3

33

3

33

4 3

33

33

33333

3

3

3

33

3

3

3

34

3

33

333

3

3

3

344

3

3

4

4

4 334

333 3

3

3

5

3

3

3

33

33

43

33

33

33

333

3

33

3

33

3

33

3

3

3

4 3

3

34 3

3

4 3

33

33

4

4

3

333

3

33

33

33

33

33

43

3

3

3

3

3

43

3

3

3

34

3

3

3

5

34

3

35 3

3

343

3

33

3

3

4

3

3

33

3

3

334 3

33

3

33

33 33

33

33

33

4

3

33

33

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

333

334 3

3

53

33

3

3

33

3

3

3

333

3

3

3

34

3

3

3

333

33

33

4 3

3

3

4

3

3

3

33

333

3

4

4

3

3

343

3

3

3

4

33

334

33 33

3

3

34

3

34

3

4

33

333

3

3

33

4

33

3

3

3

3

3

4

3

33

33

3

3

3

33

4

33333

33

3

3

3

33

3

3

3

33

3

34

4

4

4454

4

4

5

4

54

44

4

5

44

44

44444

4

4

445

4

44

4

4

4

44

454

5 4

4

44 45

4

4

44

4

4

4

4

4

44

4

4455

555

555

01

02

03

04

05

06

0

0.0 0.05 0.10 0.15 0.20

LOD

frequency

Page 88: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

88

Brassica BLODs• 4-week clearer than 8-week

– ghost QTL or smear for 8-week?

• MCMC with m=2 fairly clear• RJ-MCMC dispersed

– conditioning on m=2 similar to MCMC• not shown

– mixing models together– local proposal moves hamper mixing

Page 89: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

89

Brassica 4-week BLOD Map0

51

01

52

02

5

distance (cM)0 10 20 30 40 50 60 70 80

05

10

15

20

25

0.0 0.05 0.10 0.15 0.20 0.25 0.30

LOD

frequency

Page 90: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

90

Brassica 8-week BLOD Map0

24

68

10

distance (cM)0 10 20 30 40 50 60 70 80

02

46

81

0

0.0 0.05 0.10 0.15 0.20 0.25 0.30

LOD

frequency

Page 91: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

91

4-week RJ-MCMC BLOD0

51

01

52

02

5

distance (cM)0 10 20 30 40 50 60 70 80

2 2

23

1

3

11

2

12

1

11

212

1

2

2 2

1

11

3

2

2

2

2

2

2

1 11

2

1

1

2

2

2

21

111

1

1

22

1

1

112

2

11

1

1 1

3

1

2

222

1

11

11

1

1

2

1

2

2

12

2

1

2

1

2

122

2

1

1

2

222

2

2

2

2

2

1

2

12

31

1

1

1111

22

21

21

3 1

2

21

1

1

2111

2

3

21

2

12

11

112 1

1

2 11

1

2

1

21

22

1

2

1

2

2

2

2

2 1

1

12 2 1

2

12

2

2

22

1

2

1

1

312 1

2

1

22 1 12

1121

2

112 11

3

1

2

3

2

11

11

1

1 111

1

22

2

12

2

121211

22

1

2

1

1

2

22

2

11 1

2

1

3

2

12

1 2

2

241

1

1

1

2

1

2

1

3

11

1

1

2

1

2

2

11

2

1

2

1121

12

1

12

11

2

1

11

2

2

2

12

221

2

22

1

11

21

12

2

1

11

11

2

1

2

11

1

4

1

2

3

1

1

3

2

11

2

121

2

12

2

1

1

2

1

21

13 12111

22

2

1111

1

3

1

2

22

2

1

2

2

2

1

22

2

1

2

11

2

2

1

3

12

1

1

112

121

21

1

11212

2

11111

2

1

2

22

11

2

1 21

21

11

2

1

2

3

11

2

1

21

1

111

222

2

4

2

2

2

11

3

1

1111

2

1

11

11

1

121

2

2

11

1

2

1

1

1

2

12

1111

2

1

1

2

1

3

2

2 2

1

1

11

2

11

221

2 1

1

1

11

21 1

2

2

11

12

1

1

1

22111212 1

2

22

1

3 1

2

1212

2

1

1

11

2

1

2

1

1

1 21

2

1

1

2

2

11

1

12

11

1

1

21

11

3

22

1

22

11

1

2

3

11

22

21

11

2

2

1

2 1

11

211

2

1

2

1

1

3

2

1

1

1

3

1

2 2

1

11

23

1

212

12

2

1

2

1

1

111

32

2

122

11

21

2

21

21

1

2

2

2

3

2

1

1

21

2

2

2

2

11

2

12

1

2111

2

22

2 1

2

1

2

1

2

1

12

1

2

1

3

2

1

2

11

12

12

121 1

2

2

1

1

2

112

122

2

113 1

2

12

1

1

1

22

11

121

21

2

1

1

2

11

11

1

2

2

2

11

1

11

2

1

21

1

1

2

1

1

12

2

2

1

1

1

2

121

1

2

11 1

1

1

3

11 2

1

1

12

11

2

2 1

1

12

1

22

1

2

111

2

221

11

2121

11

2

11 1 1

2

3

2

1

1 111

2

1

1

21

2

2

1

1

2

1

2

11

2

1

1

1

2

3

111111 2

2 1

2

1

1

112

2

1

21

2

2

111

2

2

2

111 1

2

2

2

1

11

2

3

2

2

2

23

2

2122

2

1

22

1

1

11

32 2

1

2

3

1

22

112

2

11

2

22

2

1

1

11

2

222

12

1

111

11

1

11

2

1

21

2

1

121

11

2111211

2

3

1

1112

12

2

1

1

2

21

1

222

11

2

111

1

1

2

2

1

21

1

2

1

2

3 12

2

1

12

1

2 1122

23 3

2

222

2

2 23

2

2

2

2

2

22

2

2

2

2 222

2

3

2

22

22

2

2

2

2

2

2

22

22

2 2 2

2

2

2

2

2

2

23

22

2

2

3

2

2

2

2

3

2

2

2

22

22

22

2

2

2

2

2

2

222

2

2

2

22

2

3

2

2

222 2

2

23

2

3

2

22

2

2

2

2 2

2 22

2

22

2

2

3

2

2

2

2

24

2

2

3

2 2

22

2

22

2

2

2

2

2

22 2

2

22

2

22

22

4

2

33

2

2

2

22

22

2

32

22

2

3

2

22

2

2

2

2

22

2

2

2

2

3

2

2

2

2

2 2

2

2

2

222

22

2

2

3

2

2

2 22

2

4

2

2

23

2

22

2

2

2

2

2

2

3

2

22

2

2222

2

2

2 2222

2

22

3

2

22

2

2

2

2

2

2

2

22

3

22

222

3

22

22

2

2

2

2

2

3

2

3

2 22

3

222

22

32

222

2

2

222

2

2

3

2

22

2

2

22

2 22

22

2

2 22

22

3

2

2

22

2

2

2

22

22

2

3

2

2

22

22

2

2

2

2

22

2

2

2

2

2

2

2

23

22

2

22

22

22

222

2

2

2

3

2

2

2

2

22

22

2

3

2

2

2

2

2 2

2

22

2

22

2

2

2

3

2

2

2

23

2

222

22

23

22

2

32 2

2

2

2

222

2

222

2

2

2

2

2

22

2

32

2

2

2

2

222

2

2

2

22

2

32

2

22

3333

33

3

3 33

3

4

34 33

33

3

3

4

3

3

33

3

3

3 3

3

3

33

3

3

3

3

333

3

3 4

4 4

05

10

15

20

25

0.0 0.05 0.10 0.15 0.20 0.25

LOD

frequency

Page 92: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

92

8-week RJ-MCMC BLOD0

51

0

distance (cM)0 10 20 30 40 50 60 70 80

12

1

1

1

1

2

1

12 2 1

1

1

11

2

2

1

1

1

2

1

2

2

11

11

1 1

1

2

1

1

11

3

22

1

1

21 11

2 11

11

1

1

11

2 2

1

21

2

1

1

22

2

1

1

1

2 1213

2

11

2

11

1

1

2

11

1

2

211

2

1

1

1

1

1

121

1

1

1

11

11

11

1

2

1

2

11 12

1

21

1

1

2

1

1

1

1

12 121

1 11

1

2

1

2

1

2

12

1

1 21

1

1

22

12

1

3

1

1

1

2

3

2

1

3

1

2

11

3

1

13

1

1

21

1 11

1

2

32

2

1

1

21

2

11

1

1

1

21

2

3

11

1

11

1

1

1

1 1

222

11

1112

21

3

1

22

1

1

1

12

12

2

1

2

1

2

1

2

1

2

2

2

1

1

1

1

1

2

1

1

1

2

1

1

1

31

222

11

33

1

2

2

21

2

2

1

2

1

111

212 1

2

1

1

1

2

1

1

1

2

11

3

1

1

1

1

1

2

1

1

1

1 1

1

2

2

1

2

1

2

11

2

1

2

1

2 11

12 1 1

1

12 1

1

1

11

11

1

2

3

11

1

2

32

1

12

2 1

2

1

11

2

1

1

1

1

2

2

1

1

1

11

11

12

21

2

21

2

23

1

11 1

2

1

2

1

1

1

2

2

1

2

32

2

1

11 1

1

1

1

14

1

1

2

13

1

2

12

2 1

2

1

1

2

11

2

11

2

22 1

2 2

1

1

1

12

21

1

1

1

1

1

1

112

2

1

1

1

1

2

111

2

12

1

2

22

1

21

22

11

1

11

22

1

12

2

2

12

1

1 1

3

11

3

11

1

1 11

12

2

1

2

2

1

1

3 1

11

1

22

31

1

2

1

2

2

1

1

1

21

122

2

1

1

11

12

12

1

3 1

11 1

2

1

1

1 1

2

1

21

1

21

1

2

1

1

3

1

1

1

11

2

1

1

2

1

22

1

1 1

1

1 1

2

12

2

1

11

1

2

2

1

2

11

1

1

2 1 11

1

2

11

11

1

1

2 1

1

11

2

1

3

2

1

1

1

3

2 1

12 1

111

1

1

2

1

1

12

1 1

11

1

1

1

1

1

1

2

2

1

1

1

1

11

3

1

1

1

1

2

1 1

2

1

1

1

2

1

2

2 2

2

112 2

2

1

1

11

2

1

1 1 11

11

21

2

1

1

1

1

1

22

2

3 12

11

1

2

2

2

121

11

1

2

11

1

2

1

21

2

1

311

12 1

23

3

2

1

1

11

11

21

2

1

2

3

2

22

1

1

31

11

11

2

1

1

2

1

1

123

1

2

122

1

1

1

1

1

2

1

2

21

1

22

1

2

1

2

1

112

1

2

122

2

31

1

1

1

1

1

2

1

11

1

1

2

11

1

2

21

2

12

1

2

2

11

1

2

1

3 2

2

1

2

3

22 2

2

2

2

1

1

111

122

23

21

32

2

1

1

2 1

1

1

21

1

1

1

2

1

1

22

1

1 11

1

1

22

21

2

1

2

112

1

1

2 1

1

1

1

21

2

1

1

2

1

2

4

2

1

12 1

23

1

1

1

1

2

12

111

113

1

1

121

1 11

1

12

1

1

1

1

1

11

3

1

2

1

1 1

2

3 1

2

1

12

1

21

1

212

2

3

1

2

1

2

2

1

1

12

1

11

2

3

2

2

21

11

2

3

2

1

11

1

11 1

12

1

2

2

2

1

32

2

22

2

22

2

2

2

3

22

2

2

222

2

22

22232

2

2

2

2

22

2

2

2

2

22 2

2 2

2

2 2

22

2

32

3

2

3

2

3

32

2

32

2

2

2

2

2

32

222

2

3

22

2

22

2

22

2

2

2

2

2

3

222

33 2

2

2

2

2

2

2

22

2

2

3

2

2

2

2

2

2

2

2

22

2

3

2

32

2

2

2 22

2

2

22

2

2

23

2

2

2

2

2

3 2

2

4

2

3

2

2

2

2

2

2

2

22

22

2

2

2

2

22

2

2

22 2

22

22

2

2

2

2

33

2

2

2

2

32

2

3

2

2

2

2

22

2

2

23

2

2

2

2

2

32

222

2

2

2

2

2

2

2

222

3

23

2

2

2

2

2

2

322

22

22

2

2 2

2

2

2

2

22

2

32

2

2

2

2

2

2

2

2

32

23

3

2

2

2

2

3

2

22

3

2

2

2 3

2

22

2

2

2

22

2

2

2

2

22

2

3 2

2

2

2

2

2

2

2

2

3 2

2

2

3

222

2

2

2 22

23

232

2

22

2

2 2

22

2

22

2

2

2

2

22

4

2

2

23

2

2

3

2

2

3

2

2

3

22

2

2

2

2

3

2 2

2

2

2

3

2

2

22

3

2

22

2

2

3

3

33

3

3

3

33

3 3

3

33

3

3

3

3

3

4

3

333

33

33

3

3

3

33

3

3

3

3

3

3

3

3

3

4

3 3

33

3

3

33

4

4

05

10

0.0 0.05 0.10 0.15 0.20 0.25

LOD

frequency

Page 93: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

93

The Art of MCMC• convergence issues

– burn-in period & when to stop

• proper mixing of the chain– smart proposals & smart updates

• frequentist approach– simulated annealing: reaching the peak– simulated tempering: heating & cooling the chain

• Bayesian approach– influence of priors on posterior– Rao-Blackwell smoothing

• bump-hunting for mixtures (e.g. QTL)

Page 94: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

94

RJ-MCMC Software• General MCMC software

– U Bristol links

• http://www.stats.bris.ac.uk/MCMC/pages/links.html– BUGS (Bayesian inference Using Gibbs Sampling)

• http://www.mrc-bsu.cam.ac.uk/bugs/

• Our MCMC software for QTLs– C code using LAPACK

• ftp://ftp.stat.wisc.edu/pub/yandell/revjump.tar.gz– coming soon:

• perl preprocessing (to/from QtlCart format)• Splus post processing• Bayes factor computation

Page 95: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

95

RJ-MCMC Software Details

• input files– marker.dist

– marker.mark

– trait.y

• output file– result.write– result.error

• distances between loci (cM)

• marker genotypes (-1,1)– one line per marker

• trait phenotypes

• results• errors if any

Page 96: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

96

trait.y file

missing value = -99.000000 8.097789 7.928476 12.538893 8.370929 8.347937 11.252023 10.687911 6.961958 12.318708 11.985510 11.841586 8.339165 9.347868 11.933833 7.593694 12.248663 13.183897 9.928043 8.326296 ...

Page 97: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

97

marker.dist file

8.8

11.8

6.8

6.8

8.7

10.7

10.5

5.1

14.7

Page 98: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

98

marker.mark file

one row per marker, one column per line-1 -1 -1 1 -1 1 1 ...

-1 -1 -1 1 -1 1 1 ...

-1 -1 1 1 -1 1 1 ...

-1 -1 1 1 -1 1 1 ...

-1 -1 1 -1 -1 1 1 ...

-1 -1 1 -1 -1 1 1 ...

-1 -1 1 -1 -1 1 1 ...

-1 -1 1 -1 -1 1 1 ...

-1 -1 1 -1 -1 1 -1 ...

-1 1 1 1 -1 1 -1 ...

Page 99: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

99

nval.dat file

1 # 1=revjump,0=no

105 10 # n=individuals markers

10000 10 # N=MCMC_runs skips

2 # m

0 0.5 # mu sigmasq

0 0 # initial b’s

3.5 7.5 # initial loci

0 10 1 1 # prior(mu)~N(0,10) prior(sigmasq)~IG(1,1)

0 10 # prior(b)~N(0,1)

4 # prior(m)~Poisson(4)

Page 100: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

100

result.write filem mu b(1)..b(m) sigmasq lambda(1)..lambda(m) move LOD2 3.0702 -0.0820 0.0975 0.2085 10.5301 83.7381 1 -0.39433 3.0512 0.0343 -0.1166 -0.0600 0.0853 18.4030 51.2329 76...2 3.0400 -0.0415 -0.0946 0.0619 28.6062 74.0904 3 6.1284...1 3.1045 -0.1412 0.0851 76.9420 3 6.13102 3.0669 -0.0434 -0.1576 0.1091 17.4566 80.7973 3 4.3184

propose acceptbirth 384474 100625death 227999 100625locus 387527 259705

m=0 m=1 m=2 m=3 m=4 m=5 ...1936 428306 425105 126871 16703 1047 32 0 0 0

Page 101: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

101

Bayes Factor References• MA Newton & AE Raftery (1994) “Approximate Bayesian

inference with the weighted likelihood bootstrap”, J Royal Statist Soc B 56: 3-48.

• RE Kass & AE Raftery (1995) “Bayes factors”, J Amer Statist Assoc 90: 773-795.

• JM Satagopan, MA Newton & AE Rafter (1999) ms in prep, mailto:[email protected].

Page 102: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

102

Reversible JumpMCMC References

• PJ Green (1995) “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination”, Biometrika 82: 711-732.

• S Richardson & PJ Green (1997) “On Bayesian analysis of mixture with an unknown of components”, J Royal Statist Soc B 59: 731-792.

• BK Mallick (1995) “Bayesian curve estimation by polynomials of random order”, TR 95-19, Math Dept, Imperial College London.

• L Kuo & B Mallick (1996) “Bayesian variable selection for regression models”, ASA Proc Section on Bayesian Statistical Science, 170-175.

Page 103: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

103

QTL Reversible JumpMCMC: Inbred Lines

• JM Satagopan & BS Yandell (1996) “Estimating the number of quantitative trait loci via Bayesian model determination”, Proc JSM Biometrics Section.

• DA Stephens & RD Fisch (1998) “Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo”, Biometrics 54: 1334-1347.

• MJ Sillanpaa & E Arjas (1998) “Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data”, Genetics 148: 1373-1388.

• R Waagepetersen & D Sorensen (1999) “Understanding reversible jump MCMC”, mailto:[email protected].

Page 104: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

104

QTL Reversible JumpMCMC: Pedigrees

• S Heath (1997) “Markov chain Monte Carlo segregation and linkage analysis for oligenic models”, Am J Hum Genet 61: 748-760.

• I Hoeschele, P Uimari , FE Grignola, Q Zhang & KM Gage (1997) “Advances in statistical methods to map quantitative trait loci in outbred populations”, Genetics 147:1445-1457.

• P Uimari and I Hoeschele (1997) “Mapping linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms”, Genetics 146: 735-743.

• MJ Sillanpaa & E Arjas (1999) “Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data”, Genetics 151, 1605-1619.

Page 105: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

105

Page 106: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

106

MCMC run of loci for 2 QTL

111

1

1

1

11

1111111

1

1111

1111

1111

1

111

1111

1111

1

1

111

1

1111

11111

1

111

1

1111111111

111

1111

1111

1111111

1

1111

11

1

11

11111111

1

1

1

111111111

1111111111111111111111111

1

11

1

1

1

11111

1

11111111111111

11

111111111111

11

11111111111111

111111

11

1

1

1

1111

111

1111111

1

11111111111

11

1

1

1

1111111111111

11111111111

111

11

11111111

1

11111

1

11

1

1

1111111111

1

1

111111

11111

1111

1111

1

1

1111

1

1111

11111

111

1

1

1

1

1

1

111111111111

1

111

1

1

1

1

1

1111

11

1

1

1

1

1

111

1111

1

1

1

11

111111

1

1

11111111111111111

1

1

11111111

1

111111111111111

11

1111

1111

11111

111111

1111

11

111111

111

1

111

111111

111111

1111

1

111

11111

1111111

111111

111

111111

11

1

11111111111

1

1111

111

11

1

1

1111111

11

111111111111

1

111111

1

1111

11111111

1

111

1

1

1111111

1

11111

111111

1

1

11111

1

111

1

1

1

1

1

11111

11111111

111111111

111111

1

1111

1

11111

11

11

11

11111111111111

1111

1111

111

11111

11

11111

1111111111

1

1111

111

1

11111

1

1111111

111

111

111111

1

1111111

1111111111

1

111

1

11111

11111

1

111111111

1

11111

11

1111111111

1

1

1

1

1

1

1

1

1

11

111111111

1

1

1

1111

1

11

1111111

1

111111111

1

1

1

11

11

111111111

1

1111111

11111111111

11

11

111111111

11

1111

1111111111

111

1

11

111

1

1

111111

1

1

1

1

1

1

11

1

1

111

11111111

1

1

1

11

1

11111

1

11

111111

1

1

1

11

22

2

2

2

22

2

2

22

2

2

2

22

2

22

2

2

22

22

22

222

2

2

22

2

2

22

2

2

22222

2

2

22

2

22

2222222222

2

2

2

2222

22

2

2222

22

2

2222222

2

2

2

2

2

222222

222

2

2

2

2

2222

2

2

2222

2

2

2

22

222

2

2

2

2

2222

2

22

222

22

222222

22

222

2

2

2

222222222

22222

2

2

22

22

22

2

2

2

222

2

2

2

2

222222

2

2

222

222

2

2

2

2

22222

22

2

2

2

222

2

2

2222

2

222

2

22

2

22

2222

2

22

2

2222222

2

2

2

22

2

2

2

2

2

2

2222

2

2222

2222

22

2

2

22

2

22

2

22

222

2

222222

2

2

2

2

2

2

22222

22222

2

2

2

2

22

22

22

2

2

2

22222

2

2

22

22

222

2

2222

22

22

2

2

2

2

222

2

2

22

2

2

222

22222

2222

2

2

2

2222

2

2222

2

222

2

222

2

22

2

2

2222

22

2

2

2

22

2

2

222

222

2

2

22

2

222

2

2

22

222

2

2

2

22

222

222

2

2

22

22

2

2

22

222222222

2

22

222

2222222

22

22

2

22222222

22

2

2

2

2

2

2

2

222222222222

2

2

22

2222

2

2

2

222222

2

2

2

2

222222

2

222222222

22

2

22

22

222

22

2

2

2

2

2

22

22222222222

22

2

222

22

222222222

2

222222

2

2222

2

222

2

2

2

2222

222

2

2

2222

22

2222

2

22

22

22

22

2

2

2

2

22

2

2

2222

22

22

2

22222

2222

2

2

2

2

2

22

22

22

22

222222

22

222

2

2

2222222

22

2

22

22

22222

2

2

2

2222

2

22

22

2

2222

2

2

22222

2

2

2

2222

2

2

2222

2

2

2

22

2

2

2

2

2

2

2

2

22

222

222

2

2222

2

222

22222

2

22

22222

2

222

222

2

2

222

22

2

2

2

2222

2222

22

2

22

222222

22

22

2

2

2

2

222

2

2

2

2

22

2

2

2222

2

2

22

22

2

2

2

22

22

2

2

222222

2

2

2

2

2222

2

2

2

2

2

2

2

222

22

2

2

2

2

2

22

222222222222

22

22

2

2

2

222

2222

22

2

2

222

2

22

22

22

22

222

2

2

2

2

2

2

2

2

2

22

22

22222

22

2

2

2

2

22

2

22

2

2

2

2222222

2222

2

222

2

2

2

2

222222

0 200 400 600 800 1000

40

50

60

70

80

MCMC run

40

50

60

70

80

0 50 100 150 200 250 300

dist

ance

(cM

)

frequency

Page 107: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

107

Simulated Data effect Correlation

1.8 2.0 2.2 2.4 2.6

1.8

2.0

2.2

2.4

effect 1

effect

2

cor = -0.58

Page 108: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

108

Page 109: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

109

Page 110: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

110

Samples from MCMC• ergodic Markov chain

– sample averages agree tend to mean of stable dist– but samples are dependent

• ordinary sample summaries – means, quantiles, histograms– high probability density (HPD) regions

• sample chain for long run (100,000-1,000,000)• use time series methods to study chain

– standard error of estimates– Monte Carlo error

Page 111: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

111

QTL Bayesian Posterior• posterior = likelihood * prior / constant• posterior distribution is proportional to

– likelihood of traits & genos given effects & locus – prior distribution of effects & locus

• posterior distribution of genotypes, effects & locus given traits and linkage map

n

jjjj

n

jjj

bxyxb

bxybb

1

2***2*

1

2**2*2**

),,;|()|()()()()(

);,,|,();,,()|;,,;(

yx

Page 112: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

112

Brassica napus Experimental Results

• two QTLs inferred on LG9• corroborated by Butruille (1998)• now exploiting synteny with

Arabidopsis thaliana

Page 113: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

113

Brassica napus Experimental Design

• 3 vernalization treatments– none– 4 week– 8 week

• only consider 8 week Vernalization here• non-flowering lines for none, 4-week• skew suggests log transformation• data average over 3 blocks (EU = line)

Page 114: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

114

Scatter Plot of 2 loci Subset

0 20 40 60 80

02

04

06

08

0

Page 115: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

115

RJ-MCMC Changing loci

11111111111111111

1111111

1

1111

1

111111

11111

11

11

111

1

111

11111

11111

11111

111

11

1111111

11

11111

1111

11

11111

111

22222

222222222222222222

22222

22

2

222222

222222222

22222222

222222222

222222

222

22 22

2

3333

3333

33333333

333

3

0 20 40 60 80 100

20

40

60

80

RJ-MCMC run

QT

loci

Page 116: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

116

Page 117: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

117

Bayesian Inference for QTLs in Inbred Lines I

Brian S YandellUniversity of Wisconsin-Madisonwww.stat.wisc.edu/~yandell

NCSU Statistical GeneticsJune 1999

Page 118: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

118

Overview• Part I: Single QTL

– Modeling a trait with a QTL– Likelihoods, Frequentists & Bayesians– Profile LODs & Bayesian Posteriors – Graphical Summaries– Testing & Estimation

• Part II: Multiple QTLs – Sampling from a Markov Chain – Issues for Multiple QTLs– Bayes Factors & Model Selection– Brassica data analysis

Page 119: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

119

Part I: Single QTL• Modelling a trait with a QTL

– linear model for trait given genotype– recombination near loci for genotype

• Bayesian Posterior• Likelihoods

– EM & MCMC– Frequentists & Bayesians

• Review Interval Maps & Profile LODs• Case Study: Simulated Single QTL

Page 120: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

120

QTL Components• observed data on individual

– trait: field or lab measurement• log( days to flowering ) , yield, …

– markers: from wet lab (RFLPs, etc.)• linkage map of markers assumed known

• unobserved data on individual– geno: genotype (QQ=1/Qq=0/qq=-1)

• unknown model parameters– effects: mean, difference, variance– locus: quantitative trait locus (QTL)

Page 121: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

121

Single QTL trait Model• trait = mean + additive + error• trait = effect_of_geno + error• prob( trait | geno, effects )

**

2**

**

),,;|(

jj

jj

jjj

xby

bxy

exby

10 12 14

x=-1x=0

x=1

Page 122: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

122

Simulated Data with 1 QTL6

810

1214

x=-1 x=1

68

1012

14

0 2 4 6 8frequency

trai

t

Page 123: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

123

Recombination and Distance• no interference--easy approximation

– Haldane map function– no interference with recombination

• all computations consistent in approximation– rely on given map

• marker loci assumed known

– 1-to-1 relation of distance to recombination– all map functions are approximate

• assume marker positions along map are known

221 1 er

Page 124: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

124

*x

2r

1M 2M 3M 4M 5M 6M

5r4r3r1r

markers, QTL & recombination rates

distance along chromosome

?

?

Page 125: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

125

Interval Mapping of QT genotype

• can express probabilities in terms of distance– locus is distance along linkage map– flanking markers sufficient if no missing data– could consider more complicated relationship

prob( geno | locus, map )= prob( geno | locus, flanking markers )

),,|()|( 1,,**

kjkjjj MMxx

Page 126: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

126

Basic Idea of Likelihood Use

• build likelihood in steps– build from trait & genotypes at locus– likelihood for individual i– log likelihood over individuals

• maximum likelihood (interval mapping)– EM method (Lander & Botstein 1989)– MCMC method (Guo & Thompson 1994)

• posterior distribution (Bayesian)– analytical methods (e.g. Carlin & Louis 1998)– MCMC method (Satagopan et al 1996)

Page 127: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

127

Bayes Theorem• posteriors and priors

– prior: prob( parameters )– posterior: prob( parameters | data )

• posterior = likelihood * prior / constant• posterior distribution is proportional to

– likelihood of parameters given data– prior distribution of parameters

)()|()|(

)(

)()|(

)(

),()|(

paramparamdatadataparam

data

paramparamdata

data

dataparamdataparam

Page 128: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

128

Bayesian Prior• “prior” belief used to infer “posterior” estimates

– higher weight for more probable parameter values• based on prior knowledge

– use previous study to inform current study• weather prediction: tomorrow is much like today• previous QTL studies on related organisms

– historical criticism: can get “religious” about priors

• often want negligible effect of prior on posterior– pick non-informative priors

• all parameter values equally likely• large variance on priors

– always check sensitivity to prior

Page 129: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

129

How to Study Posterior?

• exact methods– exact if possible– can be difficult or

impossible to analyze

• approximate methods– importance sampling– numerical integration– Monte Carlo & other

• Monte Carlo methods– easy to implement– independent samples

• MCMC methods– handle hard problems– art to efficient use– correlated samples

Page 130: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

130

QTL Bayesian Inference

• study posterior distribution of locus & effects– sample joint distribution

• locus, effects & genotypes

– study marginal distribution of• locus• effects

– overall mean, genotype difference, variance

• locus & effects together

• estimates & confidence regions– histograms, boxplots & scatter plots– HPD regions

Page 131: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

131

Posterior for locus & effect

36 38 40 42

1.8

2.0

2.2

distance (cM)

36 38 40 42

0.0

0.1

0.2

0.3

distance (cM)

1.8

2.0

2.2

QTL 1

addi

tive

Page 132: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

132

QTL Marginal Posterior• posterior = likelihood * prior / constant

• posterior distribution is proportional to– likelihood of traits & genos given effects & locus – prior distribution of effects & locus

is proportional to

n

jjj bxyb

1

2*** ),,;|()(

)|( * yb

Page 133: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

133

Marginal Posterior Summary

• marginal posterior for locus & effects• highest probability density (HPD) region

– smallest region with highest probability– credible region for locus & effects

• HPD with 50,80,90,95%– range of credible levels can be useful– marginal bars and bounding boxes– joint regions (harder to draw)

Page 134: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

134

HPD Region for locus & effect

36 38 40 42

1.8

2.0

2.2

distance (cM)

addi

tive

Page 135: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

135

QTL Bayesian Posterior• posterior = likelihood * prior / constant• posterior( paramaters | data )

prob( genos, effects, loci | trait, map )

is proportional to

)|;,,;( 2** yx b

n

jj

n

jjj

xb

bxy

1

*2*

1

2**

)|()()()()(

),,;|(

Page 136: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

136

Frequentist or Bayesian?

• Frequentist approach– fixed parameters

• range of values

– maximize likelihood• ML estimates• find the peak

– confidence regions• random region• invert a test

– hypothesis testing• 2 nested models

• Bayesian approach– random parameters

• distribution

– posterior distribution• posterior mean• sample from dist

– credible sets• fixed region given data• HPD regions

– model selection/critique• Bayes factors

Page 137: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

137

Frequentist or Bayesian?

• Frequentist approach– maximize over mixture

of QT genotypes– locus profile likelihood

• max over effects

– HPD region for locus• natural for locus

– 1-2 LOD drop

• work to get effects– approximate shape

of likelihood peak

• Bayesian approach– joint distribution over

QT genotypes– sample distribution

• joint effects & loci

– HPD regions for• joint locus & effects• use density estimator

Page 138: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

138

Interval Mapping forQuantitative Trait Loci

• profile likelihood (LOD) across QTL– scan whole genome locus by locus

• use flanking markers for interval mapping

– maximize likelihood ratio (LOD) at locus• best estimates of effects for each locus• EM method (Lander & Botstein 1989)

n

j j

xj

by

xbxy

eLOD1

2*

1,0,1

2*

10)ˆ̂,0,ˆ|(

)|()ˆ,ˆ,ˆ;|(

ln)(log)(

Page 139: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

139

Profile LOD for 1 QTL0

51

01

52

02

5

distance (cM)

LOD

0 10 20 30 40 50 60 70 80 90

QTLIM

Page 140: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

140

Building trait Likelihood

• likelihood is mixture across possible genotypes• sum over all possible genotypes at locus

like( effects, locus | trait )

= sum of prob( trait, genos | effects, locus )

1,0,1

2*

2*2*

)|(),,;|(

);,,|()|,,,(

xj

jj

xbxy

byybL

Page 141: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

141

Likelihood over Individuals

• product of trait probabilities across individuals– product of sum across possible genotypes

like( effects, locus | traits, map )

= product of prob( trait | effects, locus, map )

n

j xj

n

jj

xbxy

bybL

1 1,0,1

2*

1

2*2*

)|(),,;|(

);,,|()|;,,(

y

Page 142: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

142

Interval Mapping Tests• profile LOD across possible loci in genome

– maximum likelihood estimates of effects at locus– LOD is rescaling of L(effects, locus|y)

• test for evidence of QTL at each locus– LOD score (LR test)– adjust (?) for multiple comparisons

Page 143: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

143

Interval Mapping Estimates

• confidence region for locus– based on inverting test of no QTL– 2 LODs down gives approximate CI for locus– based on chi-square approximation to LR

• confidence region for effects– approximate CI for effect based on normal– point estimate from profile LOD

)ˆ(96.1ˆ

2)()ˆ(|** bsebCIeffect

LODLODCIlocus

Page 144: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

144

IM Confidence Region

36 38 40 42

1.6

1.8

2.0

2.2

2.4

distance (cM)

addi

tive

Page 145: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

145

How to Proceed?

• figure out how to construct posterior– Markov chain Monte Carlo

• run Markov chain• summarize results• diagnostics

Page 146: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

146

MCMC Run for 1 locus Data

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

1

1

11

1

11

1

1

1

11

1

1

1

11

1

1

1

1

1

1

1

111

1

1

1

11

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

11

1

111

1

1

1

1

1

1

1

111

1

11

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

11

1

1

1

1

1

1

111

1

1

1

1

1

1

1

1

1

1

1

11

1

11

1

1

11

1

1

1

1

1

11

1

1

1

11

11

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

11

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

11

1

11

11

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

11

1

1

1

1

111

1

1

1

11

1

11

1

1

11

1

1

1

1

1

11

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

111

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

11

11

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

11

1

1

1

11

111

1

1

11

1

1

1

1

1

1

1

1

1

1

1

11

11

1

1

1

1

11

1

11

1

1

1

11

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

11

1

1

1

1

1

1

1

1

11

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

11

1

1

11

1

1

1

1

1

1

1

1

1

111

1

1

1

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1111

1

1

1

1

111

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1

11

1

1

11

1

1

11

1

1

1

1

1

1

1

11

1

11

1

1

1

1

1

1

1

11

1111

1

1

1

1

1

1

1

111

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1111

1

1

11

1

1

111

11

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

11

1

1

1

11

1

1

111

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

11

1

1

111

1

11

1

1

11

11

1

1

11

1

1

1

1

1

11

1

1

1

1

1

1

1

1

11

1

1

1

11

0 200 400 600 800 1000

36

38

40

42

MCMC run/100

36

38

40

42

0 20 40 60

dist

ance

(cM

)

frequency

Page 147: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

147

Part II: Multiple QTL• Sampling from the Posterior

– Markov chain Monte Carlo• Gibbs sampler for effects• Metropolis-Hastings for loci

• Issues for 2 QTL• Bayes factors & Model Selection• Simulated data for 0,1,2 QTL• Brassica data on days to flowering

Page 148: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

148

Posterior for effects

•start with joint distribution of effects– does not depend on locus given genotypes– standard linear model problem

n

jjj bxyb

1

2**2* ),,;|()()()(

),|,,( *2* xy b

is proportional to

Page 149: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

149

How to Study Posterior?

• exact methods– exact if possible– can be difficult or

impossible to analyze

• approximate methods– importance sampling– numerical integration– Monte Carlo & other

• Monte Carlo methods– easy to implement– independent samples

• MCMC methods– handle hard problems– art to efficient use– correlated samples

Page 150: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

150

Ordinary Monte Carlo• independent samples of joint distribution• chaining (or peeling) of effects• requires numerical integration

– possible analytically here– very messy in general

),|,,(),|(

),|();,|(),;,|(

),|,,(

*2*

),(

*

*****2

*2*

2* xyxy

xyxyxy

xy

bE

bb

b

b

Page 151: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

151

Gibbs Sampler for effects• set up Markov chain around posterior for effects• sample from posterior by sampling from full conditionals

– conditional posterior of each parameter given the other– update parameter by sampling full conditional

),,;|()(),;,|(

),,;|()(),;,|(

),,;|()(),;,|(

2**2**2

2***2**

2**2**

bb

bbb

bb

xyxy

xyxy

xyxy

update mean

update additive

update variance

Page 152: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

152

Markov chain updates

variancemean

traits

additive

genos

Page 153: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

153

Markov chain idea• future events given the present state are

independent of past events• update chain based on current value• can make chain arbitrarily complicated• chain converges to stable pattern

0 1 1-q

q

p

1-p

)/()1( qpp

Page 154: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

154

Markov chain Monte Carlo• can study arbitrarily complex models

– need only specify how parameters affect each other– can reduce to specifying full conditionals

• construct Markov chain with “right” model– update some parameters given data and others– can fudge on “right” (importance sampling)– next step depends only on current estimates

• nice Markov chains have nice properties– sample summaries make sense– consider almost as random sample from distribution

Page 155: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

155

MCMC run of mean & effect

1

1

111

1

1

111

1

11

1

1

111

1

1

1

1111

1

1

1

11

111

1

11

1

111

11

1

111

1

11

11

1

1

1

1

1

1

1

111

1

111111

1

111

1

11

1

1

1

1

1

11111

1

1111

1

111

1

1111

111

1

11111

1

1

11

1

111111

11

1

1111

1

1

1

1

11

1

1

111

1

11111

1111

1

11

111

111

11

1

1

11

111

1

11111111

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

111

1

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

1

1

11

11

1

1

1

1

1

11

1

11

1

1

1

1

11

11

11

111111

111

1

11111

1

1

1

1

111

11

111

1

111

11

1

1

111

1

11

11

1

1

1

111

1111

1

11

1

11

1

1

11

1

1111

1

11

1111

1

1

1111

11

111

11

1

1

1

1

1

1

1

111

1

11

11

11

11

1

111

1

1

11

111

1

11

1

1

11

1

111

1

111111

11

1

11

11

111

111

1

11111

111

11

11

1

1

1

1

111

1

111

1

11

1

1

1

1

111

1

1

1

11

1

1

1

1

1

1

1

1

111

1

1

1

11

1

1

111

11

1111

1

1

1111

11

1

11

1

1

1

1

1

1

1

11

11

1

1

1

1

1

1

1

11

11

111

1

1

1

1

111

1

111111

111

1

11

1

11

111

1

1

11

11

111111

1

1

11

1

1

111

1111

11

1

1

11

111

1

1

1

111

1

11

1

111

1

11

1

1

111

1

11

1

1

1111

11111

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

11

1

11

1

1

1

1

1

1

1

1

11

11

1

1

1

1

11

11

1

11

11

1

1

1

1

1

1

1

1

1

1111

1

11

11

1

1

1

11

1

11111

1

1

11

11111

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

11

1

1

1

111

11

1

1

1111

1

11

1

1

1

1

11

1

1

1

1

11

1

1

1

1

1

1

1

1

111

1

1

1

111

1

1

1

1

1

111

1

1

1

1

1

11

1

111

11

1

1

1

1

1

1

1

1

1

11111

1

11

1

1

1

1

1

1

1111

1

1

1

11

1

1

1

1

1

1

11

1

1

11

1

1

1

1

1

111

1

11

1

11

1

1

11111

1

1

1

1

1

1

1

1

111

1

1

11

1

11

111

1

11

1

1

1

1

1

111

111

1

1111111

11

1

11

1

1111

1

111

1

1

1

1

11

1111

1

1

1

11

1

1

1

1

11

1

1

1

1

11

111

1

11

1

11

11

11

1

1111

1

11

1

1

11

1

1

1

1

1

1

11

11

1

1

1

1

11

11

111

111

1111

1

111

111

1

1

1

1

11

1

1

11

11

1

1

11

1

1111

11

0 200 400 600 800 1000

9.6

9.8

10

.01

0.2

10

.4

MCMC run/100

9.6

9.8

10

.01

0.2

10

.4

0 20 40 60

mea

n

frequency

1

11

1111

1

11

111

1

1

111

111

1

1

111

11

1

1

1

1

11

1

11

11

1

111

1

1

1

1

1

1

1

11111

11

111

11

11

1

1

11

1

11

1

1

1

1

1

1

1

11

1

1

1

11

11

11

111

111

11

1

1

1

1

1

1

111

1

1

1

1111

1

1

111

1

1

11

1

11

1

1

1

11

1

111111

1

1

1

1

11

1

11

1

1

11

1

1

11

1

1

1

1

1

11

1

1

1

1

1

1

1

11

1

1

11

11

1

111

11

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

111

1

1

1

1

1

1

11

1

11

1

111

1

1

11

1

1

11

1

111

1

1

1

1

1

1

1111

1

1

1

11

1

1

1

1

11

1111

1

1

11

1

1

1

11

11

1

1

1

1

1

11

11

1

1

1

1

11

1

1

11

1

11

1

1

1

11

11

1

1

1

1

1

1

1

1

1

1

1

11111

1

1

1

1

111

1

1

1

11

11

1

1

1

1

11

1

11

1

111

1

1

11

1

1111

11

11

1

1

1

1

1

1

1

11111

1

11

1

1

111

1

1

1

1

1

1

11

1

1111

11

1

1

1

1

1

1

1

1

1

11

1

1

1

111

1

1111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

11

1

1

1

1

1

1

1

11

1

111

111

11

111

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

111111

11

11

111

1

1

1

1

1

1

11

1

1

1

11

1

11

1

1

1

1

1

1

1

1

11

1

111

1

1

11

11

1

1

1

1

111

1

1

1

1

1

1

11

1

111

111

1

111

111

11

1

111

1

1

1

1

111

1

11

1

1

1

1

1

11111

1

1

1

1

1

1

1

11

1

1

1

11

1

1

11

11

1

1

1

1

11

1

1

1

11

1

1

11

1

11

1

1

11111

111

1

1

11

1

1

1

11

1111

1

111

1

1

1

1

1

1111

1

1

1

1

1

1

1

1

1

11

1111

1

11

1

1

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1

111

1

11

11

1

11

1

11

11111

1

1

11

1

1

1

1

11

1

1

1

1

1

1

111

1

1

1

1

11

1

111

1

1

11

111

111111

111

111

1

1

1

1

1

1

1

111

1

1

11

1

111

1111

11

1111

1

1

1

1

1

1

1

1

111

11

11

1

1

1

1

1

11

11

111

1

1111

1

11

11

111

11

1

11

111

11

1

11

1

1

1

111

1

11

1

1

1

11

1

1

11

1111

1

1

1

11111

11

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

111

1

1

1

11111

11

11

1

1111

1

1

1

11

1

11

1

11

1

111

1

1

1

1

1

111

1

11

1

1

111

1111

1

1

1

11

1

11

11

1

1

1

1

1

1

1

11

1

1

1

1

1

111

1

1

1

111

1

1

11

11

1

1

1

1

1

1

11

1

1

1

1

0 200 400 600 800 1000

1.8

2.0

2.2

MCMC run/100

1.8

2.0

2.2

0 20 40 60

addi

tive

frequency

Page 156: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

156

Care & Use of MCMC• sample chain for long run (100,000-1,000,000)

– longer for more complicated likelihoods– use diagnostic plots to assess “mixing”

• standard error of estimates– use histogram of posterior– compute variance of posterior--just another

summary

• studying the Markov chain– Monte Carlo error of series (Geyer 1992)

• time series estimate based on lagged auto-covariances

– convergence diagnostics for “proper mixing”

Page 157: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

157

MCMC Idea for QTLs• construct Markov chain around posterior

– want posterior as stable distribution of Markov chain– in practice, the chain tends toward stable distribution

• initial values may have low posterior probability• burn-in period to get chain mixing well

• update one (or several) components at a time– update effects given genotypes & traits– update locus given genotypes & traits– update genotypes give locus & effects

N

bb

21

2**2** )|;,,;(~);,,;( yxx

Page 158: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

158

Markov chain updates

effectslocus

traits

genos

Page 159: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

159

Full Conditional for genos• full conditional for genotype depends on

– effects via trait model– locus via recombination model

• can explicitly decompose by individual j– binomial (or trinomial) probability

1,0,1

2*

*2**2**

*

)|(),,;|(

)|(),,;|();,,;|(

1,0,1

xj

jjjjj

j

xbxy

xbxybyx

orx

Page 160: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

160

Prior for locus• no prior information on

locus– uniform prior over genome– use framework map

•choose interval proportional to length

•then pick uniform position within interval

0 20 40 60 80

0.0

0.2

distance (cM)

• prior information from other studies

•concentrate on credible regions•use posterior of previous study as new prior

Page 161: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

161

Full Conditional for locus• cannot easily sample from locus full conditional• cannot explicitly determine full conditional

– difficult to normalize– need to consider all possible genotypes over entire map

• Gibbs sampler will not work – but can get something proportional ...

n

jjx

b

1

*

*2**

)|()(

)|(),,;,|(

xxy

Page 162: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

162

Metropolis-Hastings Step• pick new locus based upon current locus

– propose new locus from distribution q( )• pick value near current one?• pick uniformly across genome?

– accept new locus with probability a()

• Gibbs sampler is special case of M-H– always accept new proposal

• acceptance insures right stable distribution

),()|(

),()|(,1min),(

*

*

newoldold

oldnewnewnewold q

qa

xx

Page 163: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

163

MCMC run: 2 loci assuming only 1

111

1

1111

1

111111

1

11

111

1

1

11

1

1111

11111111

1

1

11

11111111

11

111

1

11

1

1

1

1

1

1111

11

11

1

1

1

1

11

1

111

1

1

1

1

1

1

11

1

1

1

1

111

11

1

1

1

1

11

1

1

1

111

11

111111

1

1

1

1

1

1

11

1

111

1

1111

1

1

1

1

1

1

1

111

111

11

11

1

1

11

1

1111111

1

1

1

11

1

11

11

11

1111

111111

1

1

11

11

1

11

1

1

1

111

1

1

1

11

1

1

11

1

1

1

1

1

1

111

1

1

1

11

1

1

11

1

1

1111

11

1

1

1

1

1

11

1

1

11

1

1

1

1

111

1111

1

11111111

1111

1

1

111111

1

111

1

1111

1

1111

1

111111

1

111

1

1

1

1

1

1

1

1

11

1

1111111111

1

1

1

1111

1

1111

1

111

1

111

1

1

1111

11

11

1

111

1

11

1

111

1

11

1

1

11

1

11

11

1111111111

11

1

1

1

11

1

1

11

11

1

1

1

1

1

1111

1

1

1

1

11

1

1

1

1

1

1

1

1

111

11

1

1

1

1

1

1

11

11

11111

1

1

1

111

1

1

11

111

1

1

1

1

1

1

1

111

1

1

1

11

1

11

1

1

1

111

1

1

111

1

1

1

1

111

1

1

1

1

1

11

1

1

1

1

1

11

1

1

111

1

111

1

1

1

1

1

1

1

1

111

1

1

1

1111

11

1

1

1

1

1

11

1

11

1

1

1

1

111

11

1

1

111

1

1

11

11

1

11

11

1

1

1

1

1

1

1

1

1

1

11111

1

11

1

1

111

1

1

1

1

11

11111111

1

1

1111

1

11

11

1

111

11

1

1

1

1

1

1

1

1

1

111111

1

1

1

1

1

1111111

1

111

1

1

11111

111

1

1

1

1

1

1

1111

111

1

1

1

11

11

11

1

111111

1

1

1

11

11

1

1

1

111

1

11

1

1

1

1

1

1

11

1

1

1

1

1

11

1

1

11

1

1

1

1

1

1

11

1

1

11

1

111

1

111

11

11

1

11

1

1

11

1

1

1

11111

1

1111

1

1

1

1

11

1

111

1

1

1

111

1

1

1

1

111

11

1

11

1

1

1

11

11

11

1

1

1

1

1

111

11

1

1

1

1

1

1

1

1

1

111

1

1

1111

1

1

1

111

1

1

11

11

1

1

1

1

1

11

11111

111

1

1

111

1

1

11

1

11

1

11

1

1

1

1111111

1

1

11111111111111

1

11

111

1111

1

1

1

111

1111111111

1111

1

1111

11

111

1

1

1

1

1

1111111

11

1

1

11

1

1

11

1

1

1

1111

111

11

1

11111111111111

0 200 400 600 800 1000

40

50

60

70

MCMC run/1000

40

50

60

70

0 50 100 150 200 250

dist

ance

(cM

)

frequency

Page 164: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

164

Multiple QTL model

• trait = mean + add1 + add2 + error• trait = effect_of_genos + error• prob( trait | genos, effects )

j

m

rjrrj

jjjj

exby

exbxby

1

**

*2

*2

*1

*1

Page 165: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

165

Simulated Data with 2 QTL4

68

1012

1416

-1,-1 -1,1 1,-1 1,1recombinants

46

810

1214

16

0 1 2 3 4 5 6frequency

trai

t

Page 166: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

166

Issues for Multiple QTL

• how many QTL influence a trait?– 1, several (oligogenic) or many (polygenic)?– how many are supported by the data?

• searching for 2 or more QTL– conditional search (IM, CIM)– simultaneous search (MIM)

• epistasis (inter-loci interaction)– many more parameters to estimate– effects of ignored QTL

Page 167: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

167

LOD for 2 QTL0

51

01

52

02

53

0

distance (cM)

LOD

0 10 20 30 40 50 60 70 80 90

QTLIMCIM

Page 168: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

168

Interval Mapping Approach

• interval mapping (IM)– scan genome for 1 QTL

• composite interval mapping (CIM)– scan for 1 QTL while adjusting for others– use markers as surrogates for other QTL

• multiple interval mapping (MIM)– search for multiple QTL

Page 169: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

169

MCMC run with 2 loci

111

1

1

1

11

1111111

1

1111

1111

1111

1

1

11

1111

1111

1

1

111

1

1111

11111

1

111

1

1111111111

111

1111

1111

1111111

1

1111

11

1

11

11111111

1

1

1

111111111

1111111111111111111111111

1

11

1

1

1

11111

1

11111111111111

11

111111111111

11

11111111111111

111111

11

1

1

1

1111

1

11

1111111

1

11111111111

11

1

1

1

1111111111111

11111111111

111

11

11111111

1

11111

1

11

1

1

1111111111

1

1

111111

11111

1111

1111

1

1

1111

1

1111

11111

111

1

1

1

1

1

1

111111111111

1

111

1

1

1

1

1

1111

11

1

1

1

1

1

111

1111

1

1

1

11

111111

1

1

11111111111111111

1

1

11111111

1

111111111111111

11

1111

1111

11111

111111

1111

11

111111

111

1

111

111111

111111

1111

1

111

11111

1111111

111111

111

111111

11

1

11111111111

1

1111

111

11

1

1

1111111

11

111111111111

1

1

11111

1

1111

11111111

1

111

1

1

1

111111

1

11111

111111

1

1

11111

1

111

1

1

1

1

1

11111

11111111

111111111

111111

1

1111

1

11111

11

11

11

11111111111111

1111

1111

111

11111

11

11111

1111111111

1

1111

111

1

11111

1

1111111

111

111

111111

1

1111111

1111111111

1

111

1

11111

11111

1

111111111

1

11111

11

1111111111

1

1

1

1

1

1

1

1

1

11

111111111

1

1

1

1111

1

11

1111111

1

111111111

1

1

1

11

11

111111111

1

1111111

11111111111

11

11

111111111

11

1111

1111111111

111

1

11

111

1

1

111111

1

1

1

1

1

1

11

1

1

111

11111111

1

1

1

11

1

11111

1

11

111111

1

1

1

11

22

2

2

2

22

2

2

22

2

2

2

22

2

22

2

2

22

22

2

2

222

2

2

22

2

2

22

2

2

22222

2

2

22

2

22

2222222222

2

2

2

2222

22

2

2222

22

2

2222222

2

2

2

2

2

222222

222

2

2

2

2

2222

2

2

2222

2

2

2

22

222

2

2

2

2

2222

2

22

222

22

222222

22

222

2

2

2

222222222

22222

2

2

22

22

22

2

2

2

222

2

2

2

2

222222

2

2

222

222

2

2

2

2

22222

22

2

2

2

222

2

2

2222

2

222

2

22

2

22

2222

2

22

2

2222222

2

2

2

22

2

2

2

2

2

2

2222

2

2222

2222

22

2

2

22

2

22

2

22

222

2

222222

2

2

2

2

2

2

22222

22222

2

2

2

2

22

22

22

2

2

2

22222

2

2

22

22

222

2

2222

22

22

2

2

2

2

222

2

2

22

2

2

222

22222

2222

2

2

2

2222

2

2222

2

222

2

222

2

22

2

2

2222

2

2

2

2

2

22

2

2

222

222

2

2

22

2

222

2

2

22

222

2

2

2

22

222

222

2

2

22

22

2

2

22

222222222

2

22

222

2222222

22

22

2

22222222

22

2

2

2

2

2

2

2

2222222

22222

2

2

22

2222

2

2

2

222222

2

2

2

2

222222

2

222222

222

22

2

22

22

222

22

2

2

2

2

2

22

22222222222

22

2

222

22

222222222

2

222222

2

2222

2

222

2

2

2

2222

222

2

2

22

22

22

2222

2

22

22

22

22

2

2

2

2

22

2

2

2222

22

22

2

22222

2222

2

2

2

2

2

22

22

22

22

222222

22

222

2

2

2222222

22

2

22

22

22222

2

2

2

2222

2

22

22

2

2222

2

2

22222

2

2

2

2222

2

2

2222

2

2

2

22

2

2

2

2

2

2

2

2

22

222

222

2

2222

2

222

22222

2

22

22222

2

222

222

2

2

222

22

2

2

2

2222

2222

22

2

22

222222

22

22

2

2

2

2

222

2

2

2

2

22

2

2

2222

2

2

22

22

2

2

2

22

22

2

2

222222

2

2

2

2

2222

2

2

2

2

2

2

2

222

22

2

2

2

2

2

22

222222222222

22

22

2

2

2

222

2222

22

2

2

222

2

22

22

22

22

222

2

2

2

2

2

2

2

2

2

22

22

22222

22

2

2

2

2

22

2

22

2

2

2

2222222

2222

2

222

2

2

2

2

222222

0 200 400 600 800 1000

40

50

60

70

80

MCMC run/100

40

50

60

70

80

0 50 100 150 200 250 300

dist

ance

(cM

)

frequency

Page 170: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

170

Bayesian Approach

• simultaneous search for multiple QTL• use Bayesian paradigm

– easy to consider joint distributions– easy to modify later for other types of data

• counts, proportions, etc.

– employ MCMC to estimate posterior dist

• study estimates of loci & effects• use Bayes factors for model selection

– number of QTL

Page 171: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

171

Effects for 2 Simulated QTL

distance (cM)

effe

ct

40 50 60 70 80

1.8

2.0

2.2

2.4

2.6

40 50 60 70 80

0.0

0.0

50

.10

0.1

5

distance (cM)

1.8

2.0

2.2

2.4

2.6

effect 1 effect 2

Page 172: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

172

Brassica napus Data• 4-week & 8-week vernalization effect

– log(days to flower)

• genetic cross of– Stellar (annual canola)– Major (biennial rapeseed)

• 105 F1-derived double haploid (DH) lines– homozygous at every locus (QQ or qq)

• 10 molecular markers (RFLPs) on LG9– two QTLs inferred on LG9 (now chromosome N2)– corroborated by Butruille (1998)– exploiting synteny with Arabidopsis thaliana

Page 173: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

173

Brassica 4- & 8-week Data

2.5 3.0 3.5 4.0

2.5

3.0

3.5

4-week

8-w

eek

2.5

3.5

0 2 4 6 8 108-week vernalization

2.5 3.0 3.5 4.0

02

46

8

4-week vernalization

Page 174: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

174

Brassica Data LOD Maps0

24

68

distance (cM)

LOD

0 10 20 30 40 50 60 70 80 90

QTLIMCIM

8-w

eek

05

10

15

distance (cM)

LOD

0 10 20 30 40 50 60 70 80 90

QTLIMCIM

4-w

eek

Page 175: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

175

4-week vs 8-week vernalization

4-week vernalization• longer time to flower• larger LOD at 40cM• modest LOD at 80cM• loci well determined

cM add40 .3080 .16

8-week vernalization• shorter time to flower• larger LOD at 80cM• modest LOD at 40cM• loci poorly determined

cM add40 .0680 .13

Page 176: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

176

Brassica Credible Regions

20 40 60 80

-0.6

-0.4

-0.2

0.0

0.2

distance (cM)

addi

tive

4-week

20 40 60 80

-0.3

-0.2

-0.1

0.0

0.1

0.2

distance (cM)

addi

tive

8-week

Page 177: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

177

Collinearity of QTLs• multiple QT genotypes are correlated

– QTL linked on same chromosome– difficult to distinguish if close

• estimates of QT effects are correlated– poor identifiability of effects parameters– correlations give clue of how much to trust

• which QTL to go after in breeding?– largest effect?– may be biased by nearby QTL

Page 178: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

178

Brassica effect Correlations

-0.6 -0.4 -0.2 0.0 0.2

-0.6

-0.4

-0.2

0.0

additive 1

addi

tive

2

cor = -0.81

4-week

-0.2 -0.1 0.0 0.1 0.2

-0.3

-0.2

-0.1

0.0

additive 1

addi

tive

2

cor = -0.7

8-week

Page 179: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

179

Bayes FactorsWhich model (1 or 2 or 3 QTLs?) has higher probability of supporting the data?

– ratio of posterior odds to prior odds– ratio of model likelihoods– related to likelihood ratio test of simple hypotheses

)|(

)|(

)(/)(

)|(/)|(

2

112

21

2112

model model

model model model model

yy

yy

B

B

Page 180: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

180

Bayes Factors & LR

• equivalent to LR statistic when– comparing two nested models– simple hypotheses (e.g. 1 vs 2 QTL)

• Bayes Information Criteria (BIC) in general– Schwartz introduced for model selection– penalty for different number of parameters p

)log()()log(2)log(2 1212 nppLRB

Page 181: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

181

Model Determinationusing Bayes Factors

• pick most plausible model– histogram for range of models– posterior distribution of models– use Bayes theorem– often assume flat prior across models

• posterior distribution of number of QTLs

Page 182: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

182

Brassica Bayes Factors

i vs. j Bayes Factor -log(LR)

2 vs. 1 2.49 7.82

3 vs. 1 .005 7.41

3 vs. 2 .002 4.17

•compare models for 1, 2, 3 QTL•Bayes factor and -2log(LR)•large value favors first model•8-week vernalization only here

Page 183: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

183

Computing Bayes Factors• using samples from prior

– mean across Monte Carlo or MCMC runs– can be inefficient if prior differs from posterior

• using samples from posterior– weighted harmonic mean more efficient but unstable– care in choosing weight h() close to posterior– increase stability: absorb variance (normal to t dist)

1

1 )()(

)()|(ˆ

G

g kkkk

kk

hG

model |model ;|model

yy

kkkkkk d )()|()|( model |model ;model yy

Page 184: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

184

MCMC Software• General MCMC software

– U Bristol links

• http://www.stats.bris.ac.uk/MCMC/pages/links.html– BUGS (Bayesian inference Using Gibbs Sampling)

• http://www.mrc-bsu.cam.ac.uk/bugs/

• Our MCMC software for QTLs– C code using LAPACK

• ftp://ftp.stat.wisc.edu/pub/yandell/revjump.tar.gz– coming soon:

• perl preprocessing (to/from QtlCart format)• Splus post processing• Bayes factor computation

Page 185: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

185

Bayes & MCMC References• CJ Geyer (1992) “Practical Markov chain Monte Carlo”,

Statistical Science 7: 473-511• L Tierney (1994) “Markov Chains for exploring posterior

distributions”, The Annals of Statistics 22: 1701-1728 (with disc:1728-1762).

• A Gelman, J Carlin, H Stern & D Rubin (1995) Bayesian Data Analysis, CRC/Chapman & Hall.

• BP Carlin & TA Louis (1996) Bayes and Empirical Bayes Methods for Data Analysis, CRC/Chapman & Hall.

• WR Gilks, S Richardson, & DJ Spiegelhalter (Ed 1996) Markov Chain Monte Carlo in Practice, CRC/Chapman & Hall.

Page 186: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

186

QTL References• D Thomas & V Cortessis (1992) “A Gibbs sampling

approach to linkage analysis”, Hum. Hered. 42: 63-76.• I Hoeschele & P vanRanden (1993) “Bayesian analysis of

linkage between genetic markers and quantitative trait loci. I. Prior knowledge”, Theor. Appl. Genet. 85:953-960.

• I Hoeschele & P vanRanden (1993) “Bayesian analysis of linkage between genetic markers and quantitative trait loci. II. Combining prior knowledge with experimental evidence”, Theor. Appl. Genet. 85:946-952.

• SW Guo & EA Thompson (1994) “Monte Carlo estimation of mixed models for large complex pedigrees”, Biometrics 50: 417-432.

• JM Satagopan, BS Yandell, MA Newton & TC Osborn (1996) “A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo”, Genetics 144: 805-816.

Page 187: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

187

Brassica Data: 1 QTL

distance (cM)

effe

ct

20 30 40 50 60 70 80

-0.2

5-0

.15

-0.0

5

20 30 40 50 60 70 80

0.0

0.0

20

.04

0.0

6

distance (cM)

-0.2

5-0

.15

-0.0

5

effect 1

Page 188: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

188

Brassica 8-week Data: 2 QTL

20 40 60 80

-0.3

-0.1

0.1

0.2

distance (cM)

20 40 60 80

0.0

0.0

20

.04

0.0

60

.08

distance (cM)

-0.3

-0.1

0.1

0.2

QTL 1 QTL 2

addi

tive

Page 189: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

189

Brassica 8-week Data: 2 QTL

20 40 60 80

-0.6

-0.2

0.0

0.2

distance (cM)

20 40 60 80

0.0

0.0

20

.04

0.0

60

.08

distance (cM)

-0.6

-0.2

0.0

0.2

QTL 1 QTL 2

addi

tive

Page 190: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

190

Geometry of Reversible Jump

2/)(

12:

21:

21

2

1

bbb

m

zbb

zbb

m

0 b b+z

0b

b-z

b1

b2 b

1

2

Page 191: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

191

Simulation of Jumps

b1

b2 b

Page 192: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

192

Mean & Variance Estimates

n

jjjj

n

jjj

n

jj

nxxbxxbym

nxxbym

nyym

1

2

2221112

1

2

112

1

/)(ˆ)(ˆˆˆ̂:2

/)(ˆˆˆ:1

/ˆ:2,1

Page 193: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

193

Another Way to Jump

• many ways to parameterize models• can augment both models

bbzzbbbvzzbb

zzzzbbvzzzzb

tionstransformasinnovationparametersm

rr

rr

,2/)()(0,2~);,,,(12

,)(0,~,),;,,(21

212

21

2121212

Page 194: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

194

Simulated Data

• two loci, estimates from data• Bayes factors for model selection

2.78ˆ,26.ˆ

2.42ˆ,10.ˆ

08.0ˆ,78.2ˆ

2*2

1*1

2

b

b

Page 195: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

195

Posterior Number of loci (simulated after 8-week)

m 3 4 5 60 .05 .02 .00 .001 .44 .31 .26 .182 .38 .41 .44 .403 .12 .20 .23 .304 .02 .05 .06 .105 .00 .01 .01 .02

distribution across m by prior mean

Page 196: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

196

Bayes Factors(simulated after 8-week)

prior mean

models

3 4 5 6

1:2 1.74 1.51 1.48 1.35

1:3 5.50 4.13 4.71 3.60

1:4 24.75 16.53 22.57 16.20

2:3 3.17 2.73 3.19 2.67

2:4 14.25 10.93 15.28 12.00

3:4 4.50 4.00 4.79 4.50

Page 197: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

197

Sensitivity of Number to Prior

0 1 2 3 4 5 6 7 8

010

2030

4050

234610

4-week vernalization

0 1 2 3 4 5 6 7 8

010

2030

4050

60

234610

8-week vernalization

Page 198: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

198

Number of lociBrassica 8-week

m 3 4 5 61 .43 .28 .21 .122 .43 .44 .41 .343 .12 .22 .28 .344 .02 .05 .09 .165 .00 .00 .01 .046 .00 .00 .00 .005

distribution across m by prior mean

Page 199: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

199

Sensitivity of Prior: Simulations

0 1 2 3 4 5

020

4060

80012

Prior of 2

0 1 2 3 4 5 6

010

2030

4050

60

012

Prior of 4

Page 200: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

200

Profile LOD & LR• profile LOD related to LR test at a locus

– maximum likelihood estimates of effects– weighted average over all possible genotypes

n

j j

xj

by

xbxy

eLOD

bL

bLLRLReLOD

12*

1,0,1

2*

10

2*

2*

1021

)ˆ̂,0,ˆ|(

)|()ˆ,ˆ,ˆ;|(

ln)(log)(

)|;ˆ,ˆ,ˆ(

)|ˆ̂,0,ˆ(ln2)(),()(log)(

y

y

Page 201: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

201

Bayes FactorsWhich model (1 or 2 or 3 QTLs?) has higher probability of supporting the data?

– ratio of posterior odds to prior odds– ratio of model likelihoods– related to likelihood ratio test of simple hypotheses

)|(

)|(

)(/)(

)|(/)|(

2

112

21

2112

model model

model model model model

yy

yy

B

B

Page 202: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

202

Bayes Factors & LR

• equivalent to LR statistic when– comparing two nested models– simple hypotheses (e.g. 1 vs 2 QTL)

• Bayes Information Criteria (BIC) in general– Schwartz introduced for model selection– penalty for different number of parameters p

)log()()log(2)log(2 1212 nppLRB

Page 203: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

203

Model Determinationusing Bayes Factors

• pick most plausible model– histogram for range of models– posterior distribution of models– use Bayes theorem– often assume flat prior across models

• posterior distribution of number of QTLs

Page 204: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

204

Computing Bayes Factors• samples from prior distribution

– mean across Monte Carlo or MCMC runs– can be inefficient if prior differs from posterior

• samples from posterior distribution– weighted harmonic mean more efficient but unstable– care in choosing weight h() close to posterior– increase stability absorbing variance (normal to t dist)

1

1 )()(

)()|(ˆ

)()|()|(

G

g kkkk

kk

kkkkkk

hG

d

model |model ;|model

model |model ;model

yy

yy

Page 205: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

205

Brassica Bayes Factors

)17.4(

002.0

)41.7(

005.0)82.7(

49.2

QTLthree

QTLtwo

QTLtwoQTLone

• compare models for 1, 2, 3 QTL• Bayes factor (and -2log(LR)) • arrows point to favored model

Page 206: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

206

QTLs and Polygenesphenotype = design + QTLs + polygenes + error

QTLs: quantitative trait locipolygenes: many genes of small effect

spread throughout genome

distinction is arbitrary, depending on• sample size• magnitude of effects• design/cross/marker polymorphism

analogy to multiple regression

Page 207: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

207

Polygenes and Inbred Lines

• same (raw) genetic correlation across cohort:– 1/2 for DH– 2/3 for F2– 4/7 for F3– 1/2 for RI

• modified by specific information:– major & minor QTLs– marker surrogates for polygenes (CIM)

Page 208: June 1999NCSU QTL Workshop © Brian S. Yandell 1 Bayesian Inference for QTLs in Inbred Lines II Brian S Yandell University of Wisconsin-Madison yandell

June 1999 NCSU QTL Workshop © Brian S. Yandell

208

Composite QTL model

• trait = mean + add + dom + other + error• trait = effect_of_geno + other + error

• prob( trait | genos, effects, other )

• other ( ): other linked and unlinked QTLs, and polygenes

jjjjjXzdxay

j

m

rjrrj

jjjj

exby

exbxby

1

**

*

2

*

2

*

1

*

1

jX