21
JouleThomson(Kelvin) :ガスの液化に使う T 1 ,V 1 ,P 1 T 2 ,V 2 ,P 2 P 1 >P 2 断熱壁 before after 細孔 定圧 定圧

Joule Thomson(Kelvin) :ガスの液化に使う coefficients for various gases at atmospheric pressure. 理想気体では JT過程で 温度は変化しないが 実在気体では下がる

Embed Size (px)

Citation preview

Joule−Thomson(Kelvin) :ガスの液化に使う

T1, V1, P1

T2, V2, P2 P1 > P2

断熱壁

before

after

細孔定圧

定圧

Joule−Thomson(Kelvin) :ガスの液化に使う

T1, V1, P1

T2, V2, P2 P1 > P2

断熱壁

before

after

細孔定圧

定圧

Joule−Thomson(Kelvin) :ガスの液化に使う

T1, V1, P1

T2, V2, P2 P1 > P2

断熱壁

before

after

細孔定圧

定圧

Joule−Thomson(Kelvin) :ガスの液化に使う

T1, V1, P1

T2, V2, P2 P1 > P2

断熱壁

before

after

細孔定圧

定圧

等エンタルピー過程

left: 0 U1

right: U2 0total : U2 - U1

after before

dQ = 0

internal energy

workleft: +P1V1

right: -P2V2

total: +P1V1 -P2V2

U2 - U1 = +P1V1 -P2V2U1 + P1V1 = U2 + P2V2

H1 = H2

気体は仕事をされた気体は仕事をした

:断熱過程

等エンタルピー過程

left: 0 U1

right: U2 0total : U2 - U1

after before

dQ = 0

internal energy

workleft: +P1V1

right: -P2V2

total: +P1V1 -P2V2

U2 - U1 = +P1V1 -P2V2U1 + P1V1 = U2 + P2V2

H1 = H2

気体は仕事をされた気体は仕事をした

:断熱過程

等エンタルピー過程

left: 0 U1

right: U2 0total : U2 - U1

after before

dQ = 0

internal energy

workleft: +P1V1

right: -P2V2

total: +P1V1 -P2V2

U2 - U1 = +P1V1 -P2V2U1 + P1V1 = U2 + P2V2

H1 = H2

気体は仕事をされた気体は仕事をした

:断熱過程

何の変数で全微分形を書いてよい!が,UP THAS VGで書く変数を使うのがBEST!

H = H(S, P )H = H(T, P ) →教科書 µJT

dH = TdS + V dP

↑SがS(T,P)であればOK

理想気体のSは,以下のように書かれる

S(T, V ) = CV lnT

T ∗ + nR lnV

V ∗

∗ : a reference statePV = nRT, P ∗V ∗ = nRT ∗

S(T, P ) = CV lnT

T ∗ + nR ln�

nRT

P

P ∗

nRT ∗

= (CV + nR) lnT

T ∗ + nR lnP ∗

P

= CP lnT

T ∗ − nR lnP

P ∗

P⼀一定でTを変化するのとP⼀一定でSを変化は同じ

教科書H(P, T ) :

dH =�

∂H

∂P

T

dP +�

∂H

∂T

P

dT = 0�

∂T

∂P

H

= −�

∂H

∂P

T

/

�∂H

∂T

P� �� �=CP

dH = TdS + V dP�

∂H

∂P

T

= T

�∂S

∂P

T

+ V

dG = V dP − SdT →�

∂S

∂P

T

= −�

∂V

∂T

P�∂H

∂P

T

= −T

�∂V

∂T

P

+ V = −TnR

P+ V = 0

µJT ≡

教科書H(P, T ) :

dH =�

∂H

∂P

T

dP +�

∂H

∂T

P

dT = 0�

∂T

∂P

H

= −�

∂H

∂P

T

/

�∂H

∂T

P� �� �=CP

dH = TdS + V dP�

∂H

∂P

T

= T

�∂S

∂P

T

+ V

dG = V dP − SdT →�

∂S

∂P

T

= −�

∂V

∂T

P�∂H

∂P

T

= −T

�∂V

∂T

P

+ V = −TnR

P+ V = 0

µJT ≡

教科書H(P, T ) :

dH =�

∂H

∂P

T

dP +�

∂H

∂T

P

dT = 0�

∂T

∂P

H

= −�

∂H

∂P

T

/

�∂H

∂T

P� �� �=CP

dH = TdS + V dP�

∂H

∂P

T

= T

�∂S

∂P

T

+ V

dG = V dP − SdT →�

∂S

∂P

T

= −�

∂V

∂T

P�∂H

∂P

T

= −T

�∂V

∂T

P

+ V = −TnR

P+ V = 0

µJT ≡

教科書H(P, T ) :

dH =�

∂H

∂P

T

dP +�

∂H

∂T

P

dT = 0�

∂T

∂P

H

= −�

∂H

∂P

T

/

�∂H

∂T

P� �� �=CP

dH = TdS + V dP�

∂H

∂P

T

= T

�∂S

∂P

T

+ V

dG = V dP − SdT →�

∂S

∂P

T

= −�

∂V

∂T

P�∂H

∂P

T

= −T

�∂V

∂T

P

+ V = −TnR

P+ V = 0

µJT ≡

dH = TdS + V dP

S = S(T, P )

dS =�

∂S

∂T

P

dT +�

∂S

∂P

T

dP

dH = T

�∂S

∂T

P

dT +�T

�∂S

∂P

T

+ V

�dP

TdS = dQ, T

�∂S

∂T

P

= CP dT

dG = −SdT + V dP →�

∂S

∂P

T

= −�

∂V

∂T

P

dH = CP dT +�−T

�∂V

∂T

P

+ V

�dP

µJT =�

∂T

∂P

H

=�−T

�∂V

∂T

P

+ V

�/CP

V =nRT

P, −T

nR

P+ V = −V + V = 0

別解

If the gas temperature is      then μJT is   since     is   thus   must be  so the gas

below the inversion temperature   positive    always negative    negative     cools

above the inversion temperature   negative    always negative    positive     warms

∂P ∂T

For an ideal gas, μJT is always equal to zero: ideal gases neither warm nor cool upon being expanded at constant enthalpy.

Joule-Thomson coefficients for various gases at atmospheric pressure.

理想気体ではJT過程で

温度は変化しないが実在気体では下がるガスの液化に使われている

P1 > P2

https://en.wikipedia.org/wiki/Joule%E2%80%93Thomson_effect

If the gas temperature is      then μJT is   since     is   thus   must be  so the gas

below the inversion temperature   positive    always negative    negative     cools

above the inversion temperature   negative    always negative    positive     warms

∂P ∂T

For an ideal gas, μJT is always equal to zero: ideal gases neither warm nor cool upon being expanded at constant enthalpy.

Joule-Thomson coefficients for various gases at atmospheric pressure.

理想気体ではJT過程で

温度は変化しないが実在気体では下がるガスの液化に使われている

P1 > P2

https://en.wikipedia.org/wiki/Joule%E2%80%93Thomson_effect

If the gas temperature is      then μJT is   since     is   thus   must be  so the gas

below the inversion temperature   positive    always negative    negative     cools

above the inversion temperature   negative    always negative    positive     warms

∂P ∂T

For an ideal gas, μJT is always equal to zero: ideal gases neither warm nor cool upon being expanded at constant enthalpy.

Joule-Thomson coefficients for various gases at atmospheric pressure.

理想気体ではJT過程で

温度は変化しないが実在気体では下がるガスの液化に使われている

P1 > P2

https://en.wikipedia.org/wiki/Joule%E2%80%93Thomson_effect

If the gas temperature is      then μJT is   since     is   thus   must be  so the gas

below the inversion temperature   positive    always negative    negative     cools

above the inversion temperature   negative    always negative    positive     warms

∂P ∂T

For an ideal gas, μJT is always equal to zero: ideal gases neither warm nor cool upon being expanded at constant enthalpy.

Joule-Thomson coefficients for various gases at atmospheric pressure.

理想気体ではJT過程で

温度は変化しないが実在気体では下がるガスの液化に使われている

P1 > P2

https://en.wikipedia.org/wiki/Joule%E2%80%93Thomson_effect

potential energy↑

kinetic energy↓temperature ↓

LNG : Liquid Natural gas (CH4, C2H6,C3H8, C4H10)エタンのJT係数 > 0

Experimental results for heat capacity and Joule-Thomson coefficient of ethane at zero pressureKonrad Bier, Joachim Kunze, Gerd Maurer, Holger Sand J. Chem. Eng. Data, 1976, 21 (1), pp 5–7 DOI: 10.1021/je60068a033

天然ガス液化の原理は、気体が膨張して密度が減少するときに、希薄な密度を維持するために内部エネルギーの一部が使用されて温度が低下するという、ジュール・トムソン効果を利用するものである

http://oilgas-info.jogmec.go.jp/pdf/0/598/200503_001a.pdf