33
New/Recent results about POSSIBLE contribution of low latitude electrodynamics to mid-latitude electron density changes John Bosco Habarulema and Many Contributors South African National Space Agency (SANSA), Hermanus, South Africa Department of Physics and Electronics, Rhodes University, Grahamstown 6140, South Africa 08 September 2016 John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

John Bosco Habarulema and Many Contributors South …...Department of Physics and Electronics, Rhodes University, Grahamstown 6140, South Africa 08 September 2016 John Bosco Habarulema,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • New/Recent results about POSSIBLE contribution of low latitudeelectrodynamics to mid-latitude electron density changes

    John Bosco Habarulema and Many ContributorsSouth African National Space Agency (SANSA), Hermanus, South AfricaDepartment of Physics and Electronics, Rhodes University, Grahamstown

    6140, South Africa

    08 September 2016

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Introduction

    How and when?Under what conditions do low latitude changes cause significantvariability in mid-latitude ionospheric dynamics?

    Most obvious answer would be ...During storm conditions and through the expansion of equatorialionisation anomaly towards mid-latitudes

    Requires..Modification of low latitude electrodynamicsEnhancement of eastward electric fields

    This is too simplistic and results discussed in this talk show thatwe do not FULLY understand all the details of what is happeningin low/equatorial latitudes

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Introduction

    How and when?Under what conditions do low latitude changes cause significantvariability in mid-latitude ionospheric dynamics?

    Most obvious answer would be ...During storm conditions and through the expansion of equatorialionisation anomaly towards mid-latitudes

    Requires..Modification of low latitude electrodynamicsEnhancement of eastward electric fields

    This is too simplistic and results discussed in this talk show thatwe do not FULLY understand all the details of what is happeningin low/equatorial latitudes

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Introduction

    How and when?Under what conditions do low latitude changes cause significantvariability in mid-latitude ionospheric dynamics?

    Most obvious answer would be ...During storm conditions and through the expansion of equatorialionisation anomaly towards mid-latitudes

    Requires..Modification of low latitude electrodynamicsEnhancement of eastward electric fields

    This is too simplistic and results discussed in this talk show thatwe do not FULLY understand all the details of what is happeningin low/equatorial latitudes

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Introduction

    How and when?Under what conditions do low latitude changes cause significantvariability in mid-latitude ionospheric dynamics?

    Most obvious answer would be ...During storm conditions and through the expansion of equatorialionisation anomaly towards mid-latitudes

    Requires..Modification of low latitude electrodynamicsEnhancement of eastward electric fields

    This is too simplistic and results discussed in this talk show thatwe do not FULLY understand all the details of what is happeningin low/equatorial latitudes

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Role of transequatorial winds

    ���������������������������������������������������������������������������������

    �������������������������������������������������������������������������������

    ���������������� ���!"#�

    Similar storm-time study is complicated as the ionosphere and thermosphereare under the influence of both internal and external dynamical andelectrodynamical sources e.g. magnetospheric and disturbance dynamo electricfield contributions as well as global changes in thermospheric neutral wind

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Storm-time large scale TIDs

    Mostly equatorward from either hemisphereFrequently observed with primary source being the auroral/high latitude regionsin both hemispheres

    �������������

    ����������������������������

    ������������������������������������������� ����!���"�����#����$��������

    �%$������������������������$�����������&��$����� '�������(�����"

    )�$���&*������(� ���+"������������������������������������$����&��������������

    ����&���,������"������������������$������$��%$���������������&����&����������

    ���������&������-�$�����������$��$�������$����������$���(

    Equatorward TIDs have been extensively reported using different data sources.John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Storm-time wave structures of equatorial origin?

    Different observationsPart of this talk will show recent results about possible waveactivity in low/equatorial latitudes. Generated waves seem topropagate in poleward directions (in both hemispheres)

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Gravity wave generation during storm conditionsDuring storms, significant amount of energy is deposited intoauroral regions

    Auroral regionsGravity waves are generated through

    Direct heating of the atmosphere (Joule/particle-particleheating)Force J× Bo which is transfered from the ionized componentto the neutrals through collisions (Lorentz coupling).Geomagnetic field is almost vertical and Lorentz coupling justtransfers momentum horizontally to the neutral gas

    Equatorial regionsJoule coupling: Direct heating of the atmosphere(Joule/particle-particle heating).Lorentz force J× Bo at the geomagnetic equator is vertical

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Case study: 09 March 2012

    400

    500

    600

    700

    800

    900V

    sw (

    km/s

    )(a) Solar wind velocity, Vsw (km/s) and IMF Bz (nT) for 08−10 March 2012

    Vsw (km/s)

    IMF Bz (nT)

    storm main phase onsetshock

    08 March 2012 09 March 2012 10 March 201200 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00

    −20

    −10

    0

    10

    20

    30

    IMF

    Bz

    (nT

    )

    00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21−20

    −15

    −10

    −5

    0

    5

    10

    15

    IEF

    (m

    V/m

    )

    (b) Interplanetary electric field, IEF (mV/m) and SYM−H (nT)

    IEF (mV/m)

    SYM−H (nT)

    08 March 2012 09 March 2012 10 March 2012Time (UT)

    −150

    −120

    −90

    −60

    −30

    0

    30

    60

    SY

    M−

    H (

    nT)

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • On a global scale

    Study based on GNSS TEC data derivedfrom over 2700 GNSS receiver stations,at 30 second temporal resolution,

    dt ∝ TECf 2 TEC =∫ s

    soNeds (1)

    Ne is the electron concentration, dt is the time delayexperienced by the signal, TEC is the total electron contentand f is the frequency of propagationat ionospheric pierce points RATHER than over receiverstations,and considering elevation threshold of 20 degrees

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Back ground and ∆TEC changes{

    vT f (t)i ,j = at4i ,j + bt3i ,j + ct2i ,j + dti ,j + ε, for j = 1, 2, ..., 31∆TEC(t)i ,j = TEC(t)i ,j − vT f (t)i ,j , ∀i , j

    where i = 1, 2, ..., 2500+ is the number of considered receiver stations, j = 1, 2, ..., 31 is the number ofsatellites, vT f (t) and TEC(t) represent fitted and actual vertical TEC at time t; and the coefficients a, b, c, d areobtained through the least-squares method, ε is the residual error of the fitting process.

    14 16 18 20 220

    10

    20

    30

    40

    TE

    C (

    TE

    CU

    )

    ADIS (9.04°S, 38.77°E)

    PRN 3Ethiopia

    VTEC

    Fitted VTEC

    14 15 16 17 18 19 20 21 22−5−4−3−2−1

    012345

    Time (UT)

    ∆ T

    EC

    (T

    EC

    U)

    14 16 18 20 220

    10

    20

    30

    40

    TE

    C (

    TE

    CU

    )

    TDOU (23.08°S, 30.38°E)

    PRN 4South Africa

    14 16 18 20 22−2

    −1

    0

    1

    2

    Time (UT)

    ∆ T

    EC

    (T

    EC

    U)

    Geographic longitude (degrees)

    Geo

    grap

    hic

    latit

    ude

    (deg

    rees

    )

    09 March 2012: 0710 UT

    −180

    −150

    −120 −9

    0−6

    0−3

    0 0 30 60 90 120

    150

    180

    −90

    −75

    −60

    −45

    −30

    −15

    0

    15

    30

    45

    60

    75

    90

    ∆ T

    EC

    (T

    EC

    U)

    −5

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    4

    5

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • ∆TEC animation: 10 min, 0600-1200 UT

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Different sectors

    Time (UT)

    Geo

    grap

    hic

    latit

    ude

    (a). American sector: 60°S − 30°N LAT and 40°W − 70°W LON

    2 4 6 8 10 12 14 16 18 20 22 24−60

    −50

    −40

    −30

    −20

    −10

    0

    10

    20

    30

    ∆ T

    EC

    (T

    EC

    U)

    −5

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    4

    5

    Time (UT)

    Geo

    grap

    hic

    latit

    ude

    (b). African sector: 40°S − 45°N LAT and 10° − 40°E LON

    2 4 6 8 10 12 14 16 18 20 22 24−40

    −30

    −20

    −10

    0

    10

    20

    30

    40

    ∆ T

    EC

    (T

    EC

    U)

    −5

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    4

    5

    Time (UT)

    Geo

    grap

    hic

    latit

    ude

    (c). Asian sector: 15°S − 30°N LAT and 80°E − 110°E LON

    2 4 6 8 10 12 14 16 18 20 22 24−15

    −10

    −5

    0

    5

    10

    15

    20

    25

    30

    ∆ T

    EC

    (T

    EC

    U)

    −5

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    4

    5

    −5

    −2.5

    0

    2.5

    5American sector 5°N 10°S 20°S

    (d). ∆TEC (TECU) for selected latitudes

    −5

    −2.5

    0

    2.5

    5African sector 13°N 5°N 5°S

    ∆ T

    EC

    (T

    EC

    U)

    0 2 4 6 8 10 12 14 16 18 20 22 24−5

    −2.5

    0

    2.5

    5Asian sector 15°N 5°N 5°S

    Time (UT)

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Such waves can reach midlatitudes (South Africa)

    0

    0.5

    1

    1.5

    2

    2.5 a

    ∼ 26o longitude, South African data

    RT

    EC

    GRHM, 33.3o S

    ANTH, 30.7o S

    MFKG, 25.8o S

    00 06 12 18 00 06 12 18 00 06 12 18 00

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    Rfo

    F2

    bGrahamstown (GR13L) ionosonde data

    08 March 2012 09 March 2012 10 March 2012Time (UT)

    Shows approximate shift in peak occurrence in the poleward direction

    Positive storm phase over MFKG and ANTH. Time shift in peakoccurrence (10:15 UT and 10:18 UT for MFKG and ANTHrespectively). Similar peak over GRHM at 10:24 UT? Computedvelocity for MFKG-ANTH path is about 500 m/s.

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • NmF2 changes from ionosonde

    00 06 12 18 00 06 12 18 00 06 12 18 00200

    250

    300

    350

    400hm

    F2

    (km

    )

    GR13L

    08 March 2012 09 March 2012 10 March 2012

    log1

    0 N

    mF

    2 (c

    m−3)

    11

    11.5

    12

    00 06 12 18 00 06 12 18 00 06 12 18 00200

    250

    300

    350

    400

    hmF

    2 (k

    m)

    MU12K

    08 March 2012 09 March 2012 10 March 2012

    Time (UT, hr)

    log1

    0 N

    mF

    2 (c

    m−3)

    11

    11.5

    12

    Both storm effects seen in the “same mid-latitude” region. See GR13L(33.3◦S) and MU12K (24.4◦S)

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • What is the possible driver of poleward waves?

    Solar quiet wind dynamo current system (combination of neutralwinds, diurnal and semi-diurnal atmospheric tides); sq is caused bywinds as a result of differential heating of the atmosphereLeads to the eastward electrostatic electric field from dawn to dusksectorsEast ward electric field perpendicular to B creates current (Hallcurrent or cowling conductivity).Hall current is carried by upward moving electrons causingpolarisation electric field (perpendicular to B).

    Low latitude electrodynamicsThis E⊥B is the one responsible for generating the eastwardelectrojet (EEJ) which flows within ±2◦ from the geomagneticequator.The EEJ causes strong enhancements in magnetometerobservations (H) within ±5◦ from the geomagnetic equator.

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • What is the possible driver of poleward waves?

    Solar quiet wind dynamo current system (combination of neutralwinds, diurnal and semi-diurnal atmospheric tides); sq is caused bywinds as a result of differential heating of the atmosphereLeads to the eastward electrostatic electric field from dawn to dusksectorsEast ward electric field perpendicular to B creates current (Hallcurrent or cowling conductivity).Hall current is carried by upward moving electrons causingpolarisation electric field (perpendicular to B).

    Low latitude electrodynamicsThis E⊥B is the one responsible for generating the eastwardelectrojet (EEJ) which flows within ±2◦ from the geomagneticequator.The EEJ causes strong enhancements in magnetometerobservations (H) within ±5◦ from the geomagnetic equator.

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • What is the possible driver of poleward waves?

    Solar quiet wind dynamo current system (combination of neutralwinds, diurnal and semi-diurnal atmospheric tides); sq is caused bywinds as a result of differential heating of the atmosphereLeads to the eastward electrostatic electric field from dawn to dusksectorsEast ward electric field perpendicular to B creates current (Hallcurrent or cowling conductivity).Hall current is carried by upward moving electrons causingpolarisation electric field (perpendicular to B).

    Low latitude electrodynamicsThis E⊥B is the one responsible for generating the eastwardelectrojet (EEJ) which flows within ±2◦ from the geomagneticequator.The EEJ causes strong enhancements in magnetometerobservations (H) within ±5◦ from the geomagnetic equator.

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • What is the possible driver of poleward waves?

    Solar quiet wind dynamo current system (combination of neutralwinds, diurnal and semi-diurnal atmospheric tides); sq is caused bywinds as a result of differential heating of the atmosphereLeads to the eastward electrostatic electric field from dawn to dusksectorsEast ward electric field perpendicular to B creates current (Hallcurrent or cowling conductivity).Hall current is carried by upward moving electrons causingpolarisation electric field (perpendicular to B).

    Low latitude electrodynamicsThis E⊥B is the one responsible for generating the eastwardelectrojet (EEJ) which flows within ±2◦ from the geomagneticequator.The EEJ causes strong enhancements in magnetometerobservations (H) within ±5◦ from the geomagnetic equator.

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • What is the possible driver of poleward waves?

    Solar quiet wind dynamo current system (combination of neutralwinds, diurnal and semi-diurnal atmospheric tides); sq is caused bywinds as a result of differential heating of the atmosphereLeads to the eastward electrostatic electric field from dawn to dusksectorsEast ward electric field perpendicular to B creates current (Hallcurrent or cowling conductivity).Hall current is carried by upward moving electrons causingpolarisation electric field (perpendicular to B).

    Low latitude electrodynamicsThis E⊥B is the one responsible for generating the eastwardelectrojet (EEJ) which flows within ±2◦ from the geomagneticequator.The EEJ causes strong enhancements in magnetometerobservations (H) within ±5◦ from the geomagnetic equator.

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • What is the possible driver of poleward waves?

    Solar quiet wind dynamo current system (combination of neutralwinds, diurnal and semi-diurnal atmospheric tides); sq is caused bywinds as a result of differential heating of the atmosphereLeads to the eastward electrostatic electric field from dawn to dusksectorsEast ward electric field perpendicular to B creates current (Hallcurrent or cowling conductivity).Hall current is carried by upward moving electrons causingpolarisation electric field (perpendicular to B).

    Low latitude electrodynamicsThis E⊥B is the one responsible for generating the eastwardelectrojet (EEJ) which flows within ±2◦ from the geomagneticequator.The EEJ causes strong enhancements in magnetometerobservations (H) within ±5◦ from the geomagnetic equator.

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Vertical drifts measurements

    Differential magnetometer approachUsed magnetometer data in sectors without direct E× Binformation

    A station away from the equator ±6◦ − 9◦ will have anear-zero EEJ response, but have an identical response to ringand sq currents as the equatorial station.Direct subtraction of H therefore gives the EEJ contribution.Day-time EEJ∝ E× B

    EEJ summary∆H ⇔ East ward electrostatic E ⇔ Polarised E ⇔ EEJ ⇔ E× B

    For a charged particle, mdVdt = q(E + V× B)︸ ︷︷ ︸Lorentz Force

    + Fnon EM︸ ︷︷ ︸Gravity

    ;

    For E⊥B, V = E×BB2 (drift velocity)John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Link between ∆H and Ne, solar activity

    ∆H ∝ EEJ ∝ E× B

    EEJ is related to ionospheric conductivity

    EEJ ∝ σE

    In the E-region, conductivity is directly related to peak electrondensity of the day-time

    σ ∝ NmE

    NmE is directly related to the ionising radiation

    σ ∝ F 10.7/SSN

    Direct relationship between ∆H and NmE showed that NmEincrease of 10% directly led to 10% increase in ∆H (Richmond,1973: Equatorial electrojet: I. Development of a model includingwinds and instabilities, JASTP)

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Physical mechanisms

    00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00−60

    −40

    −20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    ∆H (

    nT)

    (a) American sector: JIC, LT=UT−5

    09 March 2012

    25 March 2012

    00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00−60

    −40

    −20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    ∆H (

    nT)

    (b) African sector: AAE, LT=UT+3

    09 March 2012

    25 March 2012

    00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 00−60

    −40

    −20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    Time (UT)

    ∆H (

    nT)

    (c) Indian sector: TIR, LT=UT+5.5

    09 March 2012

    25 March 2012

    Time (UT)

    Geo

    grap

    hic

    latit

    ude

    (a). American sector: 60°S − 30°N LAT and 40°W − 70°W LON

    2 4 6 8 10 12 14 16 18 20 22 24−60

    −50

    −40

    −30

    −20

    −10

    0

    10

    20

    30

    ∆ T

    EC

    (T

    EC

    U)

    −5

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    4

    5

    0

    5

    10

    15

    20

    25

    30

    JU

    LIA

    E×B

    (m

    /s)

    Time (UT)

    Peaks in JULIA drifts at 1552 UT and 1818 UT

    correspond to existance of TID signatures

    in TEC over the South American sector

    (b). JULIA E×B (m/s) and ∆H (nT) over JIC

    00 02 04 06 08 10 12 14 16 18 20 22 00−80

    −40

    0

    40

    80

    120

    160

    JIC

    ∆H

    (nT

    )

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Low Latitude Physics

    Increase in E× B lifts ionospheric plasma to higher altitudes(stays there longer because recombination rate is slower)Pressure gradients and gravitational forces move plasma alongthe geomagnetic field lines on both sides of the equator

    Vd =1

    neq∇P× B

    B2 Electron diamagnetic drift velocity

    Vg =me

    g × BB2 Gravitational drift velocity

    ClaimTID related waves (density/pressure imbalance) move with plasmaalong the geomagnetic field lines. Since E× B is responsible forthe formation of the EIA, then it could also act as a modulator ofthe generated TIDs

    Details in Habarulema, J. B., Z. T. Katamzi, E. Yizengaw, Y. Yamazaki, and G. Seemala (2016), Simultaneous

    storm time equatorward and poleward large-scale TIDs on a global scale, Geophys. Res. Lett., 43, 6678-6686

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Suggested and numerically shown by Chimonas, (1969)

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • What next? Use RO data for vertical studies

    Alti

    tude

    (km

    )

    (a)

    Ne over MU12K (22.4°S, 30.9°E) for 10/03/2012

    0 3 6 9 12 15 18 21 24100

    200

    300

    400

    500

    600

    700

    Ne

    (cm

    −3 )

    5

    10

    15

    x 105

    0 3 6 9 12 15 18 21 240

    5

    10

    15

    20

    25

    Ne,

    cm

    −3

    (× 1

    05) (b) Ionosonde N

    e at 250 km, 300 km, 350 km

    00 03 06 09 12 15 18 21 000

    5

    10

    15

    20

    25

    Ne,

    cm

    −3

    (× 1

    05) (c) COSMIC Ne at 250 km, 300 km, 350 km

    9 9.5 10 10.5 11 11.5 1212

    13

    14

    15

    16

    17

    Ne,

    cm

    −3

    (× 1

    05)

    Time (UT)

    (d) MU12K Ne at 250 km, 300 km, 350 km

    Alti

    tude

    (km

    )

    (e)

    Ne over LV12P (28.5°S, 21.2°E) for 01/10/2012

    0 3 6 9 12 15 18 21 24100

    200

    300

    400

    500

    600

    700

    Ne

    (cm

    −3 )

    5

    10

    15

    x 105

    0 3 6 9 12 15 18 21 240

    5

    10

    15

    20

    25

    Ne,

    cm

    −3

    (× 1

    05) (f) Ionosonde N

    e at 250 km, 300 km, 350 km

    00 03 06 09 12 15 18 21 000

    5

    10

    15

    20

    25

    Ne,

    cm

    −3

    (× 1

    05) (g) COSMIC N

    e at 250 km, 300 km, 350 km

    4.5 5 5.5 6 6.5 72

    4

    6

    8

    Time (UT)

    Ne,

    cm

    −3

    (× 1

    05)

    (h) LV12P Ne at 250 km, 300 km, 350 km

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • How reliable is RO data? Midlatitude results

    2003 2004 2005 2007 2008 2009 2011 2012 2014 2015 2016100

    150

    200

    250

    300

    350

    400

    450

    Time (Years)

    hmF

    2 (k

    m)

    a

    CHAMP Ionosonde COSMIC

    180 200 220 240 260 280 300 320 340 360 380 400100

    150

    200

    250

    300

    350

    400

    450

    Ionosonde hmF2 (km)

    CH

    AM

    P/C

    OS

    MIC

    hm

    F2

    (km

    )

    No=217, r=0.7652

    hmF2RO

    =0.731hmF2iono

    +84.69

    b

    2003 2004 2005 2007 2008 2009 2011 2012 2014 2015 20160

    0.5

    1

    1.5

    2x 10

    12

    Time (Years)

    Nm

    F2

    (m−

    3 )

    c CHAMPIonosondeCOSMIC

    0 0.5 1 1.5 2

    x 1012

    0

    0.5

    1

    1.5

    2x 10

    12

    CH

    AM

    P/C

    OS

    MIC

    Nm

    F2

    (m−

    3 )

    Ionosonde NmF2 (m−3)

    dN

    o=217, r=0.9646

    NmF2RO

    =1.064NmF2iono

    −5×109

    Storm-time long term comparison over Grahamstown, GR13L(33.3◦S). An important requirement is to manually check and scaleionograms where necessary. Habarulema and Carelse, GRL (2016)

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Errors associated with RO NmF2 and hmF2 data

    2003 2005 2008 2011 2014 2016−90

    −60

    −30

    0

    30

    60

    90

    ∆ hm

    F2

    (km

    )a

    −90 −60 −30 0 30 60 900

    10

    20

    30

    Fre

    quen

    cy (

    %)

    ∆ hmF2 (km)

    cmean=9.77 km

    σ=24.82 km

    2003 2005 2008 2011 2014 2016−4

    −2

    0

    2

    4

    6

    8x 10

    11

    ∆ N

    mF

    2 (m

    −3 )

    Time (Years)

    b

    −4 −2 0 2 4 6 8

    x 1011

    0

    10

    20

    30

    40

    50

    ∆ NmF2 (m−3)

    Fre

    quen

    cy (

    %)

    d mean=3.33×1010 m−3

    σ=1.24×1011 m−3

    78% of ∆hmF2 is within 30 km and statistically agrees with quiet timeand low solar activity studies (Chu et al., 2010; Krankowski et al., 2011)

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • How often does this happen? a look at equatorward TIDs

    Time (UT)

    Latit

    ude

    (°)

    (a) 9 March 2012

    0 2 4 6 8 10 12 14 16 18 20 22 24−40−38−36−34−32−30−28−26−24−22−20−18−16−14−12−10

    ∆TE

    C (

    TE

    CU

    )

    −3

    −2

    −1

    0

    1

    2

    3

    Time (UT)

    Latit

    ude

    (°)

    (d) 01 October 2012

    0 2 4 6 8 10 12 14 16 18 20 22 24−40−38−36−34−32−30−28−26−24−22−20−18−16−14−12−10

    ∆TE

    C (

    TE

    CU

    )

    −3

    −2

    −1

    0

    1

    2

    3

    Time (UT)

    Latit

    ude

    (°)

    (b) 24 April 2012

    0 2 4 6 8 10 12 14 16 18 20 22 24−40−38−36−34−32−30−28−26−24−22−20−18−16−14−12−10

    ∆TE

    C (

    TE

    CU

    )

    −3

    −2

    −1

    0

    1

    2

    3

    Time (UT)

    Latit

    ude

    (°)

    (e) 8 October 2012

    0 2 4 6 8 10 12 14 16 18 20 22 24−40−38−36−34−32−30−28−26−24−22−20−18−16−14−12−10

    ∆TE

    C (

    TE

    CU

    )

    −3

    −2

    −1

    0

    1

    2

    3

    Time (UT)

    Latit

    ude

    (°)

    (c) 15 July 2012

    0 2 4 6 8 10 12 14 16 18 20 22 24−40−38−36−34−32−30−28−26−24−22−20−18−16−14−12−10

    ∆TE

    C (

    TE

    CU

    )

    −3

    −2

    −1

    0

    1

    2

    3

    Time (UT)

    Latit

    ude

    (°)

    (f) 14 November 2012

    0 2 4 6 8 10 12 14 16 18 20 22 24−40−38−36−34−32−30−28−26−24−22−20−18−16−14−12−10

    ∆TE

    C (

    TE

    CU

    )

    −3

    −2

    −1

    0

    1

    2

    3

    10◦E-40◦E latitude;10◦S-40◦S longitudeEquatorward wavesalways present duringstrong storms.In (b), velocities are611± 37 m/s (5-6UT), 306± 18 m/s(9-10 UT) and244± 15 m/s (10-11UT)For (c), 306± 18 m/s(5-6 UT) and 367± 22m/s (10-11 UT)Period of at least 1hourNEED A STORM-TIMEANALYSIS FOR LOWLATITUDES

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • Conclusions

    Time (UT)

    Geo

    grap

    hic

    latit

    ude

    (a). American sector: 60°S − 30°N LAT and 40°W − 70°W LON

    2 4 6 8 10 12 14 16 18 20 22 24−60

    −50

    −40

    −30

    −20

    −10

    0

    10

    20

    30

    ∆ T

    EC

    (T

    EC

    U)

    −5

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    4

    5

    Time (UT)

    Geo

    grap

    hic

    latit

    ude

    (b). African sector: 40°S − 45°N LAT and 10° − 40°E LON

    2 4 6 8 10 12 14 16 18 20 22 24−40

    −30

    −20

    −10

    0

    10

    20

    30

    40

    ∆ T

    EC

    (T

    EC

    U)

    −5

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    4

    5

    Time (UT)

    Geo

    grap

    hic

    latit

    ude

    (c). Asian sector: 15°S − 30°N LAT and 80°E − 110°E LON

    2 4 6 8 10 12 14 16 18 20 22 24−15

    −10

    −5

    0

    5

    10

    15

    20

    25

    30

    ∆ T

    EC

    (T

    EC

    U)

    −5

    −4

    −3

    −2

    −1

    0

    1

    2

    3

    4

    5

    −5

    −2.5

    0

    2.5

    5American sector 5°N 10°S 20°S

    (d). ∆TEC (TECU) for selected latitudes

    −5

    −2.5

    0

    2.5

    5African sector 13°N 5°N 5°S

    ∆ T

    EC

    (T

    EC

    U)

    0 2 4 6 8 10 12 14 16 18 20 22 24−5

    −2.5

    0

    2.5

    5Asian sector 15°N 5°N 5°S

    Time (UT)

    Low latitude electrodynamics changes contributes to poleward TIDs thatcan reach midlatitudes. It is not yet clear why equatorward propagation ispredominantly in Indian/Asian sector.

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

  • End

    Thank you

    John Bosco Habarulema, Seminar at ISR, Boston College Low latitude contribution to mid-latitude ionospheric changes

    0.0: 0.1: 0.2: 0.3: 0.4: 0.5: 0.6: 0.7: 0.8: 0.9: 0.10: 0.11: 0.12: 0.13: 0.14: 0.15: 0.16: 0.17: 0.18: 0.19: 0.20: 0.21: 0.22: 0.23: 0.24: 0.25: 0.26: 0.27: 0.28: 0.29: 0.30: 0.31: 0.32: 0.33: 0.34: 0.35: 0.36: anm0: 0.EndLeft: 0.StepLeft: 0.PlayPauseLeft: 0.PlayPauseRight: 0.StepRight: 0.EndRight: 0.Minus: 0.Reset: 0.Plus: