35
John Bally Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder Star Formation Star Formation in in Clusters Clusters

John Bally Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder Star Formation

Embed Size (px)

Citation preview

John Bally

Center for Astrophysics and Space Astronomy

Department of Astrophysical and Planetary Sciences University of Colorado, Boulder

Star FormationStar Formation inin ClustersClusters

OutlineOutline• Most stars form in clusters: - Transient clusters => T, OB associations > 90% of stars: < few x cross ~ r / - Open clusters: few % of stars: ~ 10 - 103 x cross - Globular clusters: <<1% of stars: >> 103 x cross • Dissipation by cores, envelopes, disks: - Collapse, interactions, IMF, mergers (?)• Formation of clusters: Feedback from massive stars GMC: Vescape < CII ~ 10 km/s => Transient?

Vescape > CII ~ 10 km/s => Open ?

Vescape >> CII ~ 10 km/s => SSC => Globular ?

NGC 1333: 1 Myr, ~ 102 YSOs

Orion Nebula: 1 Myr, ~ 103 YSOs

NGC 6603: 4 Myr, ~ 104 YSOs

30 Dor: 4 Myr, ~ 105 YSOs

Cluster Formation ICluster Formation I

• Turbulent Giant Molecular Clouds: - Dissipation - Shocks => transient clumps - Occasionally, clumps bound by gravity - Graviational collapse: r ~ 107, ~ 1021

- Fragmentation => Cluster • Star formation: - Competitive accretion: - dM/dt M, dM/dt high in dense core => Range of masses - Feedback: Outflows, UV, supernovae (SNe) - Interactions: => IMF, binaries, mergers

Cluster Formation IICluster Formation II• Interactions: - Facilitated by disks, proto-star envelopes - Capture formed binaries Binary single star Binary binary - Stellar mergers (?) => high mass stars, GRBs?• Ejection of star(s) : Hardening of surviving binary - High-velocity runaway stars (V > 50 km s-1) - Intermediate-velocity runaways (10 <V < 50 km s-1) - Field multiple star distribution?• Mass-segregation• Initial Mass Function - Ejection => stop accretion => final stellar mass - Determined by interactions in N-body system?

The Orion/Eridanus Bubble (H): d=180 to 500pc; l > 300 pc Orion OB1 Association: ~40 > 8 M stars: ~20 SN in 10 Myr

1a (8 - 12 Myr; d ~ 350 pc))

1b (3 -6 Myr; d ~ 420 pc)

1c (2 - 6 Myr; d ~ 420 pc)

1d (<2 Myr; d ~ 460 pc)

Ori (< 3 Myr)

Barnards's Loop Eridanus Loop

OrionAE Aur150 km/s

Infrared view of winter sky (10 - 120 m)

Orion B

Orion A

Orion Nebula

Orion MolecularClouds

13CO 2.6 mm

20 km/s

Orion belowthe Belt:

Horsehead Nebula

Orion Nebula

NGC 2024 (OB1 d)

Orionis (c)

NGC 1977

OriNGC1980: Source of Col + AE Aur ; V ~ 150 km/s runaways, 2.6 Myr ago

NGC 1981

Ori OB1c

Ori OB1d

CO (Bally et al.)2MASS stars (Carpenter et al.)

850 mdust continuum

Northernpart ofOrion A

SCUBA

Trapezium

NKLTrapezium

OMC1-S

(L = 105 Lo

t << 105 yr)

(L = 104 Lo ,

t < 105 yr)

(L = 105 Lo

t < 105 yr )

OMC 1 Outflow

t = 3,000 yr)

Orion NebulaOrion Nebula

Trapezium clusterTrapezium cluster

Proper motions:Van Altena et al. 88

Vesc ~ 6 km s-1

2.6

1.8

5 2.5

d253-535 in M43

YSOs with disks and envelopes are common:Facilitate interactions?

M = 20m = 5Mdisk= 1

Close encounters

Moeckel & Bally 05

ProgradeRetrograde

Moeckel & Bally 05Close encounters

OrionBN/KLH2

OMC1-S Jets

CO

HH

NICFPSAPO 3.5 mFirst light21 Nov 04

HH 202

Zapata jet +HH 625

HH 269

HH 530Schmid-Burgk jet

HH 529

HH 203/204 HH 528

11.7 m

Gemini STReCS

104 AU

0.5 – 2.2 m

104 AU

11.7 m

104 AU

High-velocity stars: source I, BN (Rodriguez et al. 2005)

BN: ~ 30 km s-1

I: ~ 13 km s-1

i ~ 24o

t ~ 500 yrs

Arches ClusterGalactic Center

• Age ~ 2 Myr

• ~ 50 OB stars

• 103-4 stars (?)

• 3 X 105 stars pc-3

Stolte et al. (2005)ApJ, 628, L113

Shallow, broken IMF (Arches) Stolte et al. (2005)• Mass segregation• Low M cut-off, bias towards massive stars• Dynamical evolution?

Background

Salpeter = -1.35

core

annulus

Mass segregation in the Arches

Massive Stars: HII, SNe & SFEMassive Stars: HII, SNe & SFE• Ionization (HII): - Photo-ionization => Cs ~ 10 km/s - Cs > Vescape => Fast blow-out of gas => OB star stops star formation - If SFE < 0.3, blow-out < tcross => Unbound association - Cs < Vescape => Slow removal of gas

=> Open cluster• Supernovae (SN) - MGMC Vesc < Meject Veject => SN stops star formation=> Open cluster - MGMC Vesc > Meject Veject (supermassive core) => Globular cluster

ConclusionsConclusions• Most stars form in transient clusters: - Transient T / OB associations • Circumstellar gas: - Dissipation - Mass segregation - Capture formed binaries - High-velocity stars - Mergers • Impact of Massive Star UV, SN: - Vescape < CII ~ 10 km/s => Transient association

- Vescape > CII ~ 10 km/s => Open Cluster

- Vescape >> CII ~ 10 km/s => SSC => Globular Cluster

The End