39
MEEN 618: ENERGY AND VARIATIONAL METHODS Read: Chapter 4 WORK, ENERGY , AND VARIATIONAL CALCULUS CONTENTS Work done External and internal work done Strain energy and strain energy density Complementary strain energy Strain energy and comple- mentary strain energy of Trusses, Torsional members, and beams The principle of minimum total potential energy Virtual work done Elements of variational calculus JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

MEEN 618: ENERGY AND VARIATIONAL METHODS

Read: Chapter 4

WORK, ENERGY , AND VARIATIONAL CALCULUSCONTENTS

Work done External and internal work done Strain energy and strain energy

density Complementary strain energy Strain energy and comple-

mentary strain energy ofTrusses, Torsional members, and beams

The principle of minimum totalpotential energy

Virtual work done Elements of variational calculus

JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 2: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

Work done Magnitude of the force multiplied by the magnitude of the displacement in the direction of the force:

F

u

F uW

B

A

FudF u

F uB

A

dW d

W d

JN Reddy - 2 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 3: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

Energy is the capacity to do work

002 21 1

02 200

,s se

es

dE F de F ke

E F de ke ke

Fe

m

k

0W FeF

F

0e e

Work done

F

0e

sF ke=

sF ke=

kk

m●

fsFsF

e0ede

sFNote that

0e e

dE Wde

(strain energy)

JN Reddy - 3 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 4: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

Work and Energy 4

EXTERNAL AND INTERNAL WORK IN A DEFORMABLE BODY

JN Reddy

Work done by external forces

( ) ( ) ( ) ( )EW d s s d

f x u x t u

t d

f d

d

d

In calculating the external work done, the applied (external) forces (or moments) are assumed to be independent of the displacements (or rotations) they cause in a body.

JN Reddy - 4 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 5: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

Work and Energy 5JN Reddy

Work done by internal forces (1D)

1dx1x

A11σ 11σ

1u 1u1

1 1 11 11

udu dx dxx∂

= =∂

d

0U

0*U

11

11 11 1 11 11 1

0 1

0 11 0 00

( )

( )

( ,)

A d dx d Adx

dU Adx

U dU U U d

STRAIN ENERGY DENSITY AND STRAIN ENERGY

JN Reddy - 5 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 6: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

Work and Energy 6JN Reddy

Strain energy of a 3D solid

12 ( ) : ( )dU

x x

0 00

0

( ,)ij

ij

ij

i

ij ij

ij j

U d U U d

U d d

If the only energy stored in the body is the strain energy, we write

For a linear elastic body, we have

IU W

STRAIN ENERGY DENSITY AND STRAIN ENERGY

JN Reddy - 6 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 7: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

Work and Energy 7JN Reddy

11

11 11 1 11 11 1

0 1

0 11 0 00

*

* * * *

( )

)

( )

( ,

A d dx d AdxdU Adx

U dU U U d

Complementary strain energy for 1D

COMPLEMENTARY STRAIN ENERGY DENSITY AND COMPLEMENTRY STRAIN ENERGY

d 0U

0*U

Complementary strain energy for 3D

0 00

* * *( ,)ij

ijij ijU d U U d

JN Reddy - 7 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 8: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

STRAIN ENERGY AND COMPLEMENTRY STRAIN ENERGY OF TRUSSES

0 0 01 1

0 0 01 01

0

( ) ( ) ( )

* *( ) *( ) *( )

, ( )

, ( )

i

i

i

i

i i

N Ni i i

i ii i

N

i

i i i

Ni i i

i ii i

U U d A LU U

U U d A LU

d

dU

A truss is a collection of uniaxial members, each of which can only carry axial force (compressive or tensile). The members are connected through pins that allow relative rotation.

The strain energy and complementary strain energy of a truss with N members each having ist own length, area of cross section, and modulus are

JN Reddy - 8 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 9: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

AN EXAMPLE

OB

C

vO

a u−

b v+

u

(a)(b)

O1

K = material constantAi = cross-sectional area of the ith

memberPin connections

B

C30 =

2b

aP

OP

2F

1F

2

10

0

, ,,

KK

1 1 12 2 2 2 22 2 21

2 2

21 1 1 2 1BO BOBO

( ) ( )a u v a u v au u ua a a a

Find the (1) strain energy and (2) complementary strain energy of the truss

1 12 2 2 2 2 22 2

22 2 2 2

12

2 2 2 2

21 1

3 31 2 14

CO COCO

( ) ( ) ( ) ( )a u b v a b u v bv aua b a b

bv au bv au v ua b a b a

(1) From Fig. (b), we have the following strains:

STRAIN ENERGY AND COMPLEMENTRY STRAIN ENERGY OF TRUSSES - AN EXAMPLE

JN Reddy - 9 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 10: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

(1) continued [note that the stress in member 1 is compressive and it is tensile in member 2; see part (b) to confirm this]

The strain energy densities of each member is

1 1

2 2

13 3 2

1 1 1 1 1 1 20 30 0

33 2

2 2 2 2 2 2 20 0 0

2 23 3

2 2 3 33 3 4

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,K K uU d K da

K K v uU d K da

1 2

1 2 1 20 0 1 1 0 2 2 0

313 22

1 23

2 4 3 33 43 3

( ) ( ) ( ) ( )

V VU U d U d A LU A L U

KA a u KA a v ua a

The total strain energy of the truss is

STRAIN ENERGY AND COMPLEMENTRY STRAIN ENERGY OF TRUSSES - AN EXAMPLE

JN Reddy - 10 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 11: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

STRAIN ENERGY AND COMPLEMENTRY STRAIN ENERGY OF TRUSSES - AN EXAMPLE

(2) From Fig. (a), we have

2 1 1 22 0 30 3 2sin , cos , , ,F F PF PF P F

1 1

2 2

21 331 1 1 1 10 2 3 20 0

1

22 332 2 2 2 20 2 2 3 20 0

2

1 33

1 1 83 3

( ) ( )

( ) ( )

( )*( ) ( ) ( ) ( ) ( )

( )*( ) ( ) ( ) ( ) ( )

,PU d dK K A K

PU d dK K A K

The complementary strain energy densities of each member are

3 31 2

0 1 1 0 2 2 2 2 2 21 2

1 3 3 163 3

* *( ) *( ) P a P aU U A L U A LA K A K

The total complementary strain energy of the truss is

JN Reddy - 11 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 12: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

STRAIN ENERGY AND COMPLEMENTRY STRAIN ENERGY OF TORSION OF CIRCULAR SHAFTS

The shear stress in a shaft subjected to torque

( )xTrrJ

dr+

r

0 5.R d=

( )x rr

T

RA

A

Lx

•●●

d = diameter of the shaftJ = polar moment of inertia

2 20 0 0

2 4 22

x x

x x x x x xGU d G d G

The strain energy density and strain energy are

2 ,x xr TLL GJ

The complementary strain energy density is

2 22 22

20 0 0 0

1 12 2 2

/L d L

xG rU d G dr rd dx GJ dx

L L

20 0

2 22 22

0 0 0 0

122

1 1 1 12 2 2

*

/*

x

x x x

L d L

xv

U dG

Tr TU d dr rd dx dxG G J GJ

JN Reddy - 12 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 13: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

STRAIN ENERGY AND COMPLEMENTRY STRAIN ENERGY OF STRAIGHT E-B BEAMS

The strain energy density and strain energy of the Euler-Bernoulli (E-B) beam are (linear elastic material)

222

0 20 0

2 222 2

0 2 20 0

2 2

12 2

( )xx xx

xx xx xx xx xx

L L

xx xxv A

E E du d wU d E x d zdx dx

E du d w du d wU U d z dAdx A D dxdx dx dx dx

2( ) , ( )xx xxA A

A E x dA EA D z E x dA EI

2 22 2

0 0 0

22 22

0 2 20 0

122 2 2 2

12

1*

* * , ( )

xx xz xx xzxx xx xz xz

L Ls

sA A

N VQU d dE G E A G Ib

f VN M AU U dAdx dx f Q z dAEA EI GA I b

The complementary strain energy density and complementary strain energy of the Euler-Bernoulli beam are

JN Reddy - 13 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 14: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

STRAIN ENERGY AND COMPLEMENTRY STRAIN ENERGY OF E-B BEAMS - AN EXAMPLE

A

B D

b

vP

hP

a

xvV P=

hN P= hP

vPvM P x=hP

vP

hP

vP

v hP b P a+

vP bhP

vPhP vP

vP b

x

x

Ph

vP

x

hV P=

vN P=

v hM P b P x= +

vP b

Determine the complementary strain energy of the (determinate) frame structure.

AN EXAMPLE:

BA BA

BA

DB DB DB

, ,

, ,

v h

v h

h v v

N P V P

M P b P x

N P V P M P

2 2 2 2 3 22

0

2 22

0

2 22 2 2 2 3

12 2 2 2 6 2

12 2 2

1 12 2 3 2

DB

BA

*

*

,b

h s v h v s vv

av s h

v h

v s hv v h h

P f P P b P b f P bU P x dxEA EI GA EA EI GA

P f PU P b P x dxEA EI GA

P a f P aP ab P P a b P aEA EI GA

All members have the same E, A, and I

JN Reddy - 14 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 15: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

TOTAL POTENTIAL ENERGY AND COMPLEMENTRY ENERGY

12

( ) ( ) :EU V d d d

u σ ε ε f u t u

The potential energy of a 3D solid ( , )I E EW U W V

For an E-B beam, they are

12

*( ) : ( )d d d

σ σ ε σ f u t u

The complementary energy of a 3D solid

22 2

20 0

12

( , ) ...L Ldu d wu w EA EI dx fu qw dx

dx dx

22 2

0 0

12

*( , ) ...L L

sxx xz

f VN M dx fu qw dxEA EI GA

JN Reddy - 15 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 16: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

THE PRINCIPLE OF MINIMUM TOTAL POTENTIAL ENERGY

Minimum nature of PE:

22 2

20 0

22 2

20 0

22 20 0

20

12

12

12

( , )L L

L L

L

du d wu w EA EI dx fu qw dxdx dx

du d wEA EI dx fu qw dxdx dx

du d wEA EI ddx dx

0 00

220 0

2 20

22 20 0

20

1 0 02

( , ) ( ) ( )

( , ) ( , )

L

L

L

x fu qw dx

du d wdu d wEA EI dxdx dx dx dx

du d wu w EA EI dxdx dx

u w u w

because u and w satisfy the equilibrium equations

JN Reddy - 16 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 17: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

VIRTUAL WORKVirtual displacements are those which satisfy the homogeneous form of the specified kinematic boundary conditions, but otherwise arbitrary.

,x u

Fq

w

,z w

00 0 0 ˆˆ( ) , ( ) , ˆ

x

dwu u w wdx

=

= = = − =

21 1 1 1

ˆˆˆ( ) , ( )u x u a x w x w x b x

2 2 2 31 1 1 1 2 1 2 2 1 2 , ; ,u a x w b x u a x a x w b x b x

Set of admissible displacements

Set of admissible virtual displacements

Virtual work done by actual forces in moving through their respective displacements is

( , )q F

0

( ) ( ) cos ( ) sin ( )L

W q s w s ds F u L F w L

JN Reddy - 17 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 18: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

COMPLEMENTARY VIRTUAL WORK

Virtual forces are those which satisfy the self-equilibrium conditions, but otherwise arbitrary.

0 0 0* ( ) ( ) ( ) ( ) ( )

( ) ( )

W P u L F w L P u F w M

P u L F w L

L

F( )q x

P

( )f x,x u

,z w

0

0 00 0

0

( )( )

x

uw

dwdx =

==

=

P

F

P

FM F L = ⋅

,z w

,x uL

The set is clearly is in self-equilibrium.

( , )P F

The virtual work doneby virtual forces in moving through actual Displacements is

JN Reddy - 18 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 19: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

VIRTUAL WORK DONE

0 ( ) : ( )I ij kl ijW U d d d

δ σ ε δε

Internal virtual work done in a 3D body

Internal complementary virtual work done

0* * ( )( ) :I ij kl ijW U d d d

δ ε σ δσ

tf u uEW d d

External virtual work done in a 3D body

External complementary virtual work done

u tf u*

uEW d d

* * *;I E I EW W W W W W Total virtual virtual work done

JN Reddy - 19 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 20: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

VIRTUAL WORK DONE FOR E-B BEAMS

2

20

L

Id u d wW N M dxdx dx

Internal virtual work done

Internal complementary virtual work done

0 1 1

02* ( ) ( ) ( )L

I xx xx xzW N M V dx

( ) ( ) q( ) ( ) VW pointforcesb d

Ea c

W f x u x dx x w x dx

External virtual work done in a 3D body

External complementary virtual work done* ( ) ( ) ( ) ( ) VW

b d

Ea c

W f x u x dx q x w x dx

JN Reddy - 20 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 21: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

COMPLEMENTARY VIRTUAL WORK DONE: AN EXAMPLE

a

b

A

B DhPδ

vPδ

v hP b P aδ δ+hPδ

vPδ

x

xhPδ

vPδ

hN Pδ δ=

vV Pδ δ=

vM P xδ δ=vPδ

hPδvP bδ

vN Pδ δ=hV Pδ δ= h vM P x P bδ δ δ= +

0

* *

* *

,

E

L

Is

E v h

N M VW U N M V dxEA EI K GA

W V v P u P

DB BA DB BA

DB BA

, , ,

,h v v h

v v h

N P N P V P V P

M P x M P b P x

0

3

0

22

2

3

12

12

DB DBDB DB DB DB

BA BABA BA BA BA

*

*

,

bDB

s

h v vh v

s

bBA

s

vv h v

v h

N M VU N M V dxEA EI K GA

P b P b P bP PEA EI K GA

N M VU N M V dxEA EI K GA

P a aP b a P b PEA EI

a aP b PEI

3

3h

hs

P a PK GA

JN Reddy - 21 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 22: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

FIRST VARIATION and VARIATIONAL SYMBOLThe delta operator used in conjunction with virtual quantities has special importance in variational calculus. The operator is called the variational operator because it is used to denote a variation (or change) in a given quantity.

u u, ; ( ) ( ) ( ) ( ) u v v u v v u

2 2 2

2

2

22 2

O

( , , ) ( , , )

( , , )

( ) ( )( ) ( , , )! !

( )

F F x u v u v F x u uF FF x u u v vu u

v F v v F F x u uu u u

F Fv vu u

JN Reddy - 22 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 23: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

0

0

( , )

( ) ( )( ) ( )

dF u v u vFd

F u v F u vu v u v

F F F Fv v u uu u u u

0lim F F FF v v

u u

F F F Fv v u uu u u u

FIRST VARIATION OF A FUNCTION OF A DEPENDENT VARIABLE

Define

Alternatively,

JN Reddy - 23 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 24: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

ANALOGY BETWEEN TOTAL DIFFERENTIALAND VARIATIONAL OPERTOR

F F FdF dx du dux u u

F Fx FF u ux u u

0

1 2 1 2 1 2 1 2 1 2

11 1 2 1 21 1 12

2 2

3 4

21( ) ( ) (, ( )

(

)

, ( ) ( ) () )n n

F F F F F F F F F FF F F F F F n F FF F

Analogy

Properties

0 0 0 0

(1)

(2)

( ) ( )( )( )a a a a

du dv d dv udx dx dx dx

udx vdx vdx udx

JN Reddy - 24 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 25: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

FIRST VARIATION OF A FUNCTIONAL

A functional is a mapping (or operator) from a vector spaceU into the real number field R. Thus, if (i.e. u is an element of U), then is a real number.

Fu U

( )F u

The First Variation of a Functional

A functional

( ) ( , , ) ,b

a

duI u F x u u dx udx

( ; ) ( , , )b b b

a a a

x bb

a x a

F FI u u F x u u dx F dx u u dxu u

F d F Fudx uu dx u u

JN Reddy - 25 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 26: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

FUNDAMENTAL LEMMA OF VARIATIONAL CALCULUS AND EULER EQUATIONS

0( ) ( ) ( ) ( )b

aG x x dx B a a

Lemma: If G is an integrable function and is arbitraryin a< x <b and is arbitrary, then the statement

( )x( )a

0 0( ) and ( )G x a x b B a implies that

which are called the Euler equations. If

0( ; )x bb

a x a

F d F FI u u udx uu dx u u

0 andI

0 0;x b

x a

F d F Fa x bu dx u u

is arbitraryin( , ) and at and , thenu a b x a x b

JN Reddy - 26 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 27: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

EULER EQUATIONS OF FUNCTIONAL IN 2D,INVOLVING TWO DEPENDENT VARIABLES

( , ) ( , , , , , , , ) , , .x x y y xuI u v F x y u v u v u v dxdy u etcx

Given the functional

find the Euler equations if . 0I

0 x y x yx y x y

x y x y

F F F F F Fu u u v v v dxdyu u u v v v

F F F F F Fu vu x u y u v x v y v

x y x yx y x y

dxdy

F F F Fn n u n n v dxdyu u v v

We have

JN Reddy - 27 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 28: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

EULER EQUATIONS OF FUNCTIONAL IN 2D,INVOLVING TWO DEPENDENT VARIABLES

If is arbitrary in and on , then the Euler Equations are as follows:

u

0

0

0

0

in

on

x y

x y

x yx y

x yx y

F F Fu x u y u

F F Fv x v y v

F Fn nu uF Fn nv v

See the textbook for examples (some will be discussed in the class)

JN Reddy - 28 Lecture Notes on ENERGY PRINCIPLES AND VARIATIONAL METHODS

Page 29: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

Problems with Constraints-1

: Find the minimum of the function ( , ) with no constraints.

Necessary condition

0

Sin

P

ce and are arbitrary and independent, we have

0 a

robl

nd 0

em 1 F x y

F FdF dx dyx y

dx dy

F Fx y

¶ ¶= + =

¶ ¶

¶ ¶= =

¶ ¶

Page 30: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

: Find the minimum of the function ( , ) subjected to the constraint ( , ) 0

Necessary condition

0

But and are not inde

Problem 2

pendent of each otherbecause of the

F x yG x y

F FdF dx dyx y

dx dy

=

¶ ¶= + =

¶ ¶

cannotconstraint, we set

0 and 0F Fx y

¶ ¶= =

¶ ¶

Problems with Constraints-2

Page 31: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

Problems with Constraints-3

Introduce new function( , , ) ( , ) ( , )

where is the Lagrange multiplier. Set

0

Now , , and are independent of each other; so

Lagrange M

,we can se

ultiplier Method:L

L L LL

F x y F x y G x y

F F FdF dx dy dx y

dx dy d

l l

l

ll

l

= +

¶ ¶ ¶= + + =

¶ ¶ ¶

t

0, 0,

( , ) 0.

L L

L

F FF G F Gx x x y y y

F G x y

l l

l

¶ ¶¶ ¶ ¶ ¶= + = = + =

¶ ¶ ¶ ¶ ¶ ¶¶

= =¶

Page 32: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

Problems with Constraints-4

[ ]2Introduce new function

( , , ) ( , ) ( , )2

where is the penalty parameter. Set

0

Since and are independent of each other, we c

Penalty Functi

an set

on Method:

P

P PP

P

F x y F x y G x y

F FdF dx dyx y

dx dy

F F GGx x

gl

g

g

= +

¶ ¶= + =

¶ ¶

¶ ¶ ¶= +

¶ ¶ ¶0, 0.PF F GG

x y y yg

¶ ¶ ¶= = + =

¶ ¶ ¶

Page 33: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

Comparison of the two methods

Lagrange Multiplier M

0,

et :

0

hod

.L LF FF G F Gx x x y y y

l l¶ ¶¶ ¶ ¶ ¶

= + = = + =¶ ¶ ¶ ¶ ¶ ¶

Penalty Function

0, 0.

Method:P PF FF G F GG Gx x x y y y

g g¶ ¶¶ ¶ ¶ ¶

= + = = + =¶ ¶ ¶ ¶ ¶ ¶

We find that in the penalty function method we can compute( , )G x yg gl g=

Page 34: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

AN EXAMPLE: ALGEBRAIC PROBLEM

F (x, y) = 2x2 + y2 − 8x+ y + 1, G(x, y) ≡ 2x− y = 0Lagrange Multiplier Method

4x− 8 + 2λ = 0, 2y + 1− λ = 0, 2x− y = 0x = 0.5, y = 1.0, λ = 3.0

Penalty Function Method

4x− 8 + 2γ(2x− y) = 0, 2y + 1− γ(2x− y) = 0

xγ =8 + 3γ

4 + 6γ, yγ =

3γ − 12 + 3γ

Clearly, as γ →∞, we havelimγ→∞xγ = 0.5 = x, lim

γ→∞ yγ = 1.0 = y

Page 35: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

Table: A comparison of the penalty solution with the exact forvarious values of the penalty parameter γ.

γ 1.0 10.0 25.0 50.0 100.0 1000.0

xγ 1.1 0.5938 0.5390 0.5197 0.5099 0.5010yγ 0.4 0.9063 0.9610 0.9803 0.9901 0.9990G(xγ , yγ) 1.8 0.2813 0.1169 0.0592 0.0298 0.0030λγ 1.8 2.8125 2.9221 2.9605 2.9801 2.9980

Penalty Function Method (Example -continued)

),( γγγ γλ yxG=

Page 36: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

AN EXAMPLE: CONTINUUM PROBLEM-1

: Find the minimum of the functional ( , ) subjected to the constraint ( , ) 0.Minimize

subjected to(

Lagrange Multi

Pro

( , ) ( , ,

plie

ble

, , , )r Metho

, , )

0

0d

m 3

b

a

I u vG u v

G u

I u v F x u u v v dx

u v v

Id

ò ¢ ¢=

¢ ¢

=

=

=

¶=

0

ba

F F F Fu u v v dxu u v v

G G G GG u u v vu u v v

d d d d

d d d d d

òæ ö¶ ¶ ¶ ÷ç ¢ ¢+ + + ÷ç ÷ç ¢ ¢è ø¶ ¶ ¶ ¶

¶ ¶ ¶ ¶¢ ¢= = + + +¢ ¢¶ ¶ ¶ ¶

Page 37: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

0 ba

ba

F F F Fu u v vu u v vG G G Gu u v v dxu u v v

F G d F G uu u dx u u

F G d F G vv v dx v v

d d d d

l d d d d

l l d

l l d

ò

ò

é¶ ¶ ¶ ¶¢ ¢ê= + + +¢ ¢ê ¶ ¶ ¶ ¶ë

ùæ ö¶ ¶ ¶ ¶ ÷ç ¢ ¢ ú+ + + + ÷ç ÷ç ú¢ ¢è ø¶ ¶ ¶ ¶ ûìé ùæ öï ¶ ¶ ¶ ¶ï ÷çê ú= + - +í ÷ç ÷çê ú¢ ¢ï è ø¶ ¶ ¶ ¶ë ûïî

üé ùæ ö ï¶ ¶ ¶ ¶ ï÷çê ú+ + - + ý÷ç ÷çê ú¢ ¢ ïè ø¶ ¶ ¶ ¶ë û ïþSelect such that the coefficient of is zero.Then the coefficient of is zero because isindependent.

dx

vu u

l dd d

AN EXAMPLE: CONTINUUM PROBLEM-2

Page 38: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

AN EXAMPLE: CONTINUUM PROBLEM-3

( , , ) ( , ) ( , , , )( )

baL

ba

baL

ba

I u v I u v G u u v v dxF G dx

F G F GI u uu u u uF G F Gv v G dxv v v vF G d Fu u dx u

l ll

d l d l d

l d l d dl

l

ò

ò

ò

ò

¢ ¢º += +éæ ö æ ö¶ ¶ ¶ ¶÷ ÷ç ç ¢ê= + + +÷ ÷ç ç÷ ÷ç çê ¢ ¢è ø è ø¶ ¶ ¶ ¶ë

ùæ ö æ ö¶ ¶ ¶ ¶÷ ÷ç ç ¢ ú+ + + + +÷ ÷ç ç÷ ÷ç ç ú¢ ¢è ø è ø¶ ¶ ¶ ¶ ûìé¶ ¶ ¶ïïê= + - +í ¢ïê ¶ ¶ ¶ëïî

G uu

F F d F G v G dxv v dx v v

l d

l l d dl

ùæ ö¶ ÷ç ú÷ç ÷ç ú¢è ø¶ ûüùé æ ö ï¶ ¶ ¶ ¶ ï÷ç úê+ + - + + ý÷ç ÷ç ú¢ ¢ ïê è ø¶ ¶ ¶ ¶ë û ïþ

Page 39: JN Reddy - 1 Lecture Notes on ENERGY PRINCIPLES AND ...mechanics.tamu.edu/wp-content/uploads/2017/03/04-07_Work...2017/03/04  · =05. x r r T R A A L x • d = diameter of the shaft

AN EXAMPLE: CONTINUUM PROBLEM-3

212( , ) (

Penalty, )

Function Meth( , , , )

odbaP

baP

ba

I u v I u v G u u v v dxF G F GI G u G uu u u uF G F GG v G v dxv v v vFu

g

d g d g d

g d g d

ò

ò

ò

é ù¢ ¢º + ë ûéæ ö æ ö¶ ¶ ¶ ¶÷ ÷ç ç ¢ê= + + +÷ ÷ç ç÷ ÷ç çê ¢ ¢è ø è ø¶ ¶ ¶ ¶ë

ùæ ö æ ö¶ ¶ ¶ ¶÷ ÷ç ç ¢ú+ + + +÷ ÷ç ç÷ ÷ç ç ú¢ ¢è ø è ø¶ ¶ ¶ ¶ ûìé¶ïïê= íïê ¶ëïî

( , , , )

G d F GG G uu dx u u

F G d F GG G v dxv v dx v v

G u u v vg g g g g

g g d

g g d

l g

ùæ ö¶ ¶ ¶ ÷ç ú+ - + ÷ç ÷ç ú¢ ¢è ø¶ ¶ ¶ ûüùé æ ö ï¶ ¶ ¶ ¶ ï÷ç úê+ + - + ý÷ç ÷ç ú¢ ¢ ïê è ø¶ ¶ ¶ ¶ë û ïþ

¢ ¢=