47
Traffic modelling, from fundamentals to large network simulations Jan de Gier ACEMS, University of Melbourne BAM Conference, RMIT 2014 Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 1 / 36

Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Traffic modelling, from fundamentals to large network simulations

Jan de Gier

ACEMS, University of Melbourne

BAM Conference, RMIT 2014

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 1 / 36

Page 2: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Outline

1 Cellular AutomataM/M/1 QueueThe asymmetric exclusion processNagel-Schreckenberg process

2 Two-dimensional modelsNetNaschOpen problems

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 2 / 36

Page 3: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Collaborators

Tim Garoni (Monash University)

Lele (Joyce) Zhang (Monash University)

Somayeh Shiri (Monash University)

Omar Rojas (La Trobe University)

Andrea Bedini (University of Melbourne)

Caley Finn (University of Melbourne)

John Foxcroft (University of Melbourne)

. . .

VicRoads

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 3 / 36

Page 4: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

History

History

(2008) ARC Centre of Excellence MASCOS begin working with VicRoadsSix-month AMSI Industry Internship with VicRoads

(2008 - 2011) MASCOS/VicRoads projects build prototype modelStochastic cellular automaton model of traffic in networksModel is discrete in space, time, and state variablesGeneralizes models studied in Mathematical Physics

(2012 - 2014) ARC Linkage ProjectImplemented realistic traffic signals into model (SCATS)Various versions of SCATS, including following features:

Adaptive cycle times, splits and offsetsLinking (Green wave)Tram priority processesPedestrian signals

(2015 - ) ARC CoE ACEMS/VicRoads develop real world applicationsNetNaSch, a versatile model for road traffic networksCEllular Automaton Simulator for Arterial Roads (CEASAR)Inner North Road and Tram NetworkVicRoads Policy Development

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 4 / 36

Page 5: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

History

History

(2008) ARC Centre of Excellence MASCOS begin working with VicRoadsSix-month AMSI Industry Internship with VicRoads

(2008 - 2011) MASCOS/VicRoads projects build prototype modelStochastic cellular automaton model of traffic in networksModel is discrete in space, time, and state variablesGeneralizes models studied in Mathematical Physics

(2012 - 2014) ARC Linkage ProjectImplemented realistic traffic signals into model (SCATS)Various versions of SCATS, including following features:

Adaptive cycle times, splits and offsetsLinking (Green wave)Tram priority processesPedestrian signals

(2015 - ) ARC CoE ACEMS/VicRoads develop real world applicationsNetNaSch, a versatile model for road traffic networksCEllular Automaton Simulator for Arterial Roads (CEASAR)Inner North Road and Tram NetworkVicRoads Policy Development

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 4 / 36

Page 6: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

History

History

(2008) ARC Centre of Excellence MASCOS begin working with VicRoadsSix-month AMSI Industry Internship with VicRoads

(2008 - 2011) MASCOS/VicRoads projects build prototype modelStochastic cellular automaton model of traffic in networksModel is discrete in space, time, and state variablesGeneralizes models studied in Mathematical Physics

(2012 - 2014) ARC Linkage ProjectImplemented realistic traffic signals into model (SCATS)Various versions of SCATS, including following features:

Adaptive cycle times, splits and offsetsLinking (Green wave)Tram priority processesPedestrian signals

(2015 - ) ARC CoE ACEMS/VicRoads develop real world applicationsNetNaSch, a versatile model for road traffic networksCEllular Automaton Simulator for Arterial Roads (CEASAR)Inner North Road and Tram NetworkVicRoads Policy Development

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 4 / 36

Page 7: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

History

History

(2008) ARC Centre of Excellence MASCOS begin working with VicRoadsSix-month AMSI Industry Internship with VicRoads

(2008 - 2011) MASCOS/VicRoads projects build prototype modelStochastic cellular automaton model of traffic in networksModel is discrete in space, time, and state variablesGeneralizes models studied in Mathematical Physics

(2012 - 2014) ARC Linkage ProjectImplemented realistic traffic signals into model (SCATS)Various versions of SCATS, including following features:

Adaptive cycle times, splits and offsetsLinking (Green wave)Tram priority processesPedestrian signals

(2015 - ) ARC CoE ACEMS/VicRoads develop real world applicationsNetNaSch, a versatile model for road traffic networksCEllular Automaton Simulator for Arterial Roads (CEASAR)Inner North Road and Tram NetworkVicRoads Policy Development

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 4 / 36

Page 8: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata M/M/1 Queue

M/M/1 Queue

Arrival rate αService rate β

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 5 / 36

Page 9: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata M/M/1 Queue

M/M/1 Queue

Arrival rate αService rate β

α

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 6 / 36

Page 10: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata M/M/1 Queue

M/M/1 Queue

Arrival rate αService rate β

α

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 7 / 36

Page 11: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata M/M/1 Queue

M/M/1 Queue

Arrival rate αService rate β

α

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 8 / 36

Page 12: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata M/M/1 Queue

M/M/1 Queue

Arrival rate αService rate β

β

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 9 / 36

Page 13: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata M/M/1 Queue

M/M/1 Queue

Arrival rate αService rate β

β

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 10 / 36

Page 14: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata M/M/1 Queue

M/M/1 Queue

Arrival rate αService rate β

α

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 11 / 36

Page 15: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata M/M/1 Queue

M/M/1 Queue

Arrival rate αService rate β

Length probability distribution function Pn obeys master equation

P̃0 = βP1 + (1− α)P0

P̃n = αPn−1 + βPn+1 + (1− α− β)Pn n > 0.

Factorised stationary solution:

Pn =

(1− α

β

)(α

β

)n

α < β.

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 12 / 36

Page 16: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

Asymmetric simple exclusion process (ASEP)

One-dimensional stochastic cellular automata very popular in statisticalmechanics starting in 1990s

Such models do a reasonable job of explaining qualitative behaviour of freewaytraffic

Sponaneous jams emerge as consequence of collective behaviour

Advanced analytical methods (integrability, random matrix theory)

If x1(t) = 0, then with probability α, x1(t + 1) = 1

If xL(t) = 1, then with probability β, xL(t + 1) = 0

If xi (t) = 1 and xi+1(t) = 0 then with probability p, xi (t + 1) = 0 and xi+1(t) = 1

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 13 / 36

Page 17: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

Asymmetric simple exclusion process (ASEP)

One-dimensional stochastic cellular automata very popular in statisticalmechanics starting in 1990s

Such models do a reasonable job of explaining qualitative behaviour of freewaytraffic

Sponaneous jams emerge as consequence of collective behaviour

Advanced analytical methods (integrability, random matrix theory)

αp2

If x1(t) = 0, then with probability α, x1(t + 1) = 1

If xL(t) = 1, then with probability β, xL(t + 1) = 0

If xi (t) = 1 and xi+1(t) = 0 then with probability p, xi (t + 1) = 0 and xi+1(t) = 1

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 14 / 36

Page 18: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

Asymmetric simple exclusion process (ASEP)

One-dimensional stochastic cellular automata very popular in statisticalmechanics starting in 1990s

Such models do a reasonable job of explaining qualitative behaviour of freewaytraffic

Sponaneous jams emerge as consequence of collective behaviour

Advanced analytical methods (integrability, random matrix theory)

βp2

If x1(t) = 0, then with probability α, x1(t + 1) = 1

If xL(t) = 1, then with probability β, xL(t + 1) = 0

If xi (t) = 1 and xi+1(t) = 0 then with probability p, xi (t + 1) = 0 and xi+1(t) = 1

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 15 / 36

Page 19: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

Asymmetric simple exclusion process (ASEP)

One-dimensional stochastic cellular automata very popular in statisticalmechanics starting in 1990s

Such models do a reasonable job of explaining qualitative behaviour of freewaytraffic

Sponaneous jams emerge as consequence of collective behaviour

Advanced analytical methods (integrability, random matrix theory)

p2

If x1(t) = 0, then with probability α, x1(t + 1) = 1

If xL(t) = 1, then with probability β, xL(t + 1) = 0

If xi (t) = 1 and xi+1(t) = 0 then with probability p, xi (t + 1) = 0 and xi+1(t) = 1

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 16 / 36

Page 20: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

Asymmetric simple exclusion process (ASEP)

One-dimensional stochastic cellular automata very popular in statisticalmechanics starting in 1990s

Such models do a reasonable job of explaining qualitative behaviour of freewaytraffic

Sponaneous jams emerge as consequence of collective behaviour

Advanced analytical methods (integrability, random matrix theory)

αp2

If x1(t) = 0, then with probability α, x1(t + 1) = 1

If xL(t) = 1, then with probability β, xL(t + 1) = 0

If xi (t) = 1 and xi+1(t) = 0 then with probability p, xi (t + 1) = 0 and xi+1(t) = 1

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 17 / 36

Page 21: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

Asymmetric simple exclusion process (ASEP)

Stationary state no longer simply factorised

but can use matrix product formalism

PL(x1, . . . , xL) =1ZL〈W |

L∏i=1

[xiD + (1− xi )E ] |V 〉,

with normalisation

ZL = 〈W |(D + E)L|V 〉 = 〈W |CN |V 〉, C = D + E

For example,

P5(10110) =1Z5〈W |DEDDE |V 〉

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 18 / 36

Page 22: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

Asymmetric simple exclusion process (ASEP)

Stationary state no longer simply factorised

but can use matrix product formalism

PL(x1, . . . , xL) =1ZL〈W |

L∏i=1

[xiD + (1− xi )E ] |V 〉,

with normalisation

ZL = 〈W |(D + E)L|V 〉 = 〈W |CN |V 〉, C = D + E

For example,

P5(10110) =1Z5〈W |DEDDE |V 〉

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 18 / 36

Page 23: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

If matrices are known, it is easy to compute quantities of interest.

Density:

ρi = E[xi ] =1

ZN〈W |C i−1DCN−i |V 〉

Current:Ji,i+1 = p E[τi (1− τi+1)] =

pZN〈W |C i−1DECN−i−1|V 〉

The matrices satisfy the relations:

pDE = D + E ,

〈W |E =1α〈W |,

D|V 〉 =1β|V 〉.

HenceJi,i+1 = J =

pZN〈W |C i−1DECN−i−1|V 〉 =

ZN−1

ZN

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 19 / 36

Page 24: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

If matrices are known, it is easy to compute quantities of interest.

Density:

ρi = E[xi ] =1

ZN〈W |C i−1DCN−i |V 〉

Current:Ji,i+1 = p E[τi (1− τi+1)] =

pZN〈W |C i−1DECN−i−1|V 〉

The matrices satisfy the relations:

pDE = D + E ,

〈W |E =1α〈W |,

D|V 〉 =1β|V 〉.

HenceJi,i+1 = J =

pZN〈W |C i−1DECN−i−1|V 〉 =

ZN−1

ZN

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 19 / 36

Page 25: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

If matrices are known, it is easy to compute quantities of interest.

Density:

ρi = E[xi ] =1

ZN〈W |C i−1DCN−i |V 〉

Current:Ji,i+1 = p E[τi (1− τi+1)] =

pZN〈W |C i−1DECN−i−1|V 〉

The matrices satisfy the relations:

pDE = D + E ,

〈W |E =1α〈W |,

D|V 〉 =1β|V 〉.

HenceJi,i+1 = J =

pZN〈W |C i−1DECN−i−1|V 〉 =

ZN−1

ZN

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 19 / 36

Page 26: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

Explicit matrix representation

D =1p

1 1 0 0 · · ·0 1 1 00 0 1 10 0 0 1...

. . .

, E =1p

1 0 0 0 · · ·1 1 0 00 1 1 00 0 1 0...

. . .

〈W | =κ

p(1, a, a2, a3, . . .), |V 〉 =

κ

p(1, b, b2, b3, . . .)T

wherea =

1− αα

, b =1− ββ

, κ =1α

+1β− 1αβ

.

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 20 / 36

Page 27: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

Explicit matrix representation

D =1p

1 1 0 0 · · ·0 1 1 00 0 1 10 0 0 1...

. . .

, E =1p

1 0 0 0 · · ·1 1 0 00 1 1 00 0 1 0...

. . .

〈W | =κ

p(1, a, a2, a3, . . .), |V 〉 =

κ

p(1, b, b2, b3, . . .)T

wherea =

1− αα

, b =1− ββ

, κ =1α

+1β− 1αβ

.

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 20 / 36

Page 28: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

ASEP Phase diagram

Analytic expressions for

Stationary state

Density and current profiles

Relaxation rates

Fluctuations, large deviations

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 21 / 36

Page 29: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

Mathematical techniques

Stationary state: Matrix product states

Relaxation rates: Eigenvalues of transition matrix⇒ Integrability

Large deviations, current generating functions: Random matrix techniques,Integrability

Example: Current large deviation functionLet Q1(t) be the total time-integrated current, i.e., the net number of particle jumpsbetween the left boundary reservoir and site 1 in the time interval [0, t ].

Moments are encoded in 〈eλQ1(t)〉 (average over histories)

Theorem (Current fluctuations)

In the low density regime

E(λ) := limN→∞

limt→∞

log1t〈eλQ1(t)〉 = p

a(eλ − 1)

(1 + a)(eλ + a).

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 22 / 36

Page 30: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata The asymmetric exclusion process

Mathematical techniques

Stationary state: Matrix product states

Relaxation rates: Eigenvalues of transition matrix⇒ Integrability

Large deviations, current generating functions: Random matrix techniques,Integrability

Example: Current large deviation functionLet Q1(t) be the total time-integrated current, i.e., the net number of particle jumpsbetween the left boundary reservoir and site 1 in the time interval [0, t ].

Moments are encoded in 〈eλQ1(t)〉 (average over histories)

Theorem (Current fluctuations)

In the low density regime

E(λ) := limN→∞

limt→∞

log1t〈eλQ1(t)〉 = p

a(eλ − 1)

(1 + a)(eλ + a).

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 22 / 36

Page 31: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata Nagel-Schreckenberg process

Nagel-Schreckenberg process

Generalises ASEPVehicles can have different speeds 0, 1, . . . , vmax

2 0 3 2

xn and vn denote position and speed of the nth vehicle

dn denotes the gap in front of the nth vehicleNaSch rules:

vn 7→ min(vn + 1, vmax)vn 7→ min(vn, dn)vn 7→ max(vn − 1, 0) with probability pxn 7→ xn + vn

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 23 / 36

Page 32: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata Nagel-Schreckenberg process

Nagel-Schreckenberg process

Generalises ASEPVehicles can have different speeds 0, 1, . . . , vmax

3 1 3 3

xn and vn denote position and speed of the nth vehicle

dn denotes the gap in front of the nth vehicleNaSch rules:

vn 7→ min(vn + 1, vmax)vn 7→ min(vn, dn)vn 7→ max(vn − 1, 0) with probability pxn 7→ xn + vn

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 24 / 36

Page 33: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata Nagel-Schreckenberg process

Nagel-Schreckenberg process

Generalises ASEPVehicles can have different speeds 0, 1, . . . , vmax

2 0 2 3

xn and vn denote position and speed of the nth vehicle

dn denotes the gap in front of the nth vehicleNaSch rules:

vn 7→ min(vn + 1, vmax)vn 7→ min(vn, dn)vn 7→ max(vn − 1, 0) with probability pxn 7→ xn + vn

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 25 / 36

Page 34: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata Nagel-Schreckenberg process

Nagel-Schreckenberg process

Generalises ASEPVehicles can have different speeds 0, 1, . . . , vmax

1 0 2 3

xn and vn denote position and speed of the nth vehicle

dn denotes the gap in front of the nth vehicleNaSch rules:

vn 7→ min(vn + 1, vmax)vn 7→ min(vn, dn)vn 7→ max(vn − 1, 0) with probability pxn 7→ xn + vn

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 26 / 36

Page 35: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Cellular Automata Nagel-Schreckenberg process

Nagel-Schreckenberg process

Generalises ASEPVehicles can have different speeds 0, 1, . . . , vmax

1 0 2 3

xn and vn denote position and speed of the nth vehicle

dn denotes the gap in front of the nth vehicleNaSch rules:

vn 7→ min(vn + 1, vmax)vn 7→ min(vn, dn)vn 7→ max(vn − 1, 0) with probability pxn 7→ xn + vn

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 27 / 36

Page 36: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Two-dimensional models NetNasch

Traffic modelling: network of cellular automata

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 28 / 36

Page 37: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Two-dimensional models NetNasch

Traffic modelling: network of cellular automata

(a) Road network (b) Intersection

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 29 / 36

Page 38: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Two-dimensional models NetNasch

NetNaSch: A mesoscopic model of arterial networks

Ingredients:Dynamics on lanes modelled with (extended) NaSch modelMultiple lanes with lane changingTurning decisions (random)Appropriate rules for how vehicles traverse intersections

Sydney Coordinated Adaptive Traffic System (SCATS)

FeaturesMultiple agent types: cars, trams, buses, bicycles, pedestrians, . . .Easily applied to arbitrary network structuresEssentially any rules for traffic signals can be implementedRelatively modest amount of input data required

Goals:Statistical mechanics of traffic (phase tranistions, non-equilibrium behaviour)New scenario analysis, generic behaviourPolicy development

Parking restrictionsChange signal systemsTram priority

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 30 / 36

Page 39: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Two-dimensional models NetNasch

NetNaSch: A mesoscopic model of arterial networks

Ingredients:Dynamics on lanes modelled with (extended) NaSch modelMultiple lanes with lane changingTurning decisions (random)Appropriate rules for how vehicles traverse intersections

Sydney Coordinated Adaptive Traffic System (SCATS)

FeaturesMultiple agent types: cars, trams, buses, bicycles, pedestrians, . . .Easily applied to arbitrary network structuresEssentially any rules for traffic signals can be implementedRelatively modest amount of input data required

Goals:Statistical mechanics of traffic (phase tranistions, non-equilibrium behaviour)New scenario analysis, generic behaviourPolicy development

Parking restrictionsChange signal systemsTram priority

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 30 / 36

Page 40: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Two-dimensional models NetNasch

NetNaSch: A mesoscopic model of arterial networks

Ingredients:Dynamics on lanes modelled with (extended) NaSch modelMultiple lanes with lane changingTurning decisions (random)Appropriate rules for how vehicles traverse intersections

Sydney Coordinated Adaptive Traffic System (SCATS)

FeaturesMultiple agent types: cars, trams, buses, bicycles, pedestrians, . . .Easily applied to arbitrary network structuresEssentially any rules for traffic signals can be implementedRelatively modest amount of input data required

Goals:Statistical mechanics of traffic (phase tranistions, non-equilibrium behaviour)New scenario analysis, generic behaviourPolicy development

Parking restrictionsChange signal systemsTram priority

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 30 / 36

Page 41: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Two-dimensional models NetNasch

11/24/2014 CEASAR ­ Cellular Automata Simulator for Arterial Roads

http://www.ms.unimelb.edu.au/~degier/ACEMS/CEASAR/ 2/4

http://ceasar.acems.org.au

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 31 / 36

Page 42: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Two-dimensional models NetNasch

Fundamental Diagram

The functional relationship between flow and density is the fundamental diagram

0.0 0.2 0.4 0.6 0.8 1.00.00

0.05

0.10

0.15

0.20

0.25

density

flow

Can be computed analytically for ASEP

What should happen in a network?

How should one even define network flow?(No prescribed direction)

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 32 / 36

Page 43: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Two-dimensional models NetNasch

Macroscopic Fundamental Diagrams

Simplest idea: relate arithmetic means of link density and flow

If network has link set Λ:ρ =

1|Λ|∑λ∈Λ

ρλ, J =1|Λ|∑λ∈Λ

ρλ is density of link λ and Jλ is its flow

Geroliminis & Daganzo 2008Empirical data from Yokohama

Buisson & Ladier 2009Empirical data from Toulouse

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 33 / 36

Page 44: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Two-dimensional models NetNasch

Time-dependent demand

Hysteresis in MFD consequence of heterogeneity

Zhang, G & de Gier 2013

Simulated data

Zhang, G & de Gier 2013

Simulated data

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 34 / 36

Page 45: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Two-dimensional models NetNasch

Two-bin model

Can a simple model explain hysteresis?

dρ1

dt= A(ρ1)− b1J(ρ1) + J(ρ2)p2(1− ρ1)− J(ρ1)p1(1− ρ2),

dρ2

dt= A(ρ2)− b2J(ρ2)− J(ρ1)p1(1− ρ2) + J(ρ1)p2(1− ρ1)

Let bin 1 be the boundary and bin 2 the interior.Loading and recovery phases of the two-bin model provide explanation

Theorem (Law of traffic)

It is easier to jam a network than to resolve it.

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 35 / 36

Page 46: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Two-dimensional models NetNasch

Two-bin model

Can a simple model explain hysteresis?

dρ1

dt= A(ρ1)− b1J(ρ1) + J(ρ2)p2(1− ρ1)− J(ρ1)p1(1− ρ2),

dρ2

dt= A(ρ2)− b2J(ρ2)− J(ρ1)p1(1− ρ2) + J(ρ1)p2(1− ρ1)

Let bin 1 be the boundary and bin 2 the interior.Loading and recovery phases of the two-bin model provide explanation

Theorem (Law of traffic)

It is easier to jam a network than to resolve it.

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 35 / 36

Page 47: Jan de Gier - bamconf.combamconf.com/special-files/bam2014/BAM-Presentation-Jan-DeGier.pdfOutline 1 Cellular Automata M/M/1 Queue The asymmetric exclusion process Nagel-Schreckenberg

Two-dimensional models Open problems

Open problems

Good theoretical models amenable to non-numerical analysis

NetNaSch: A realistic and flexible model of traffic in arterial networks

CEASAR: browser based CEllular Automata Simulator for Arterial Roads

Real time estimators of network behaviour

How does driver adaptivity affect the shape of MFDs?

Study on tram priority in Melbourne

Big data: Integrate stopline data (density), GPS data of probe vehicles andpredictive modelling

Jan de Gier (ACEMS, University of Melbourne) Traffic modelling, from fundamentals to large network simulations 28 April 2014 36 / 36