29
Structural origin of non-Newtonian rheology Computer simulations on a solution of telechelic associating polymers J. Stegen + , J. Billen°, M. Wilson °, A.R.C. Baljon °. A.V. Lyulin + + Eindhoven University of Technology (The Netherlands) ° San Diego State University (USA)

J. Stegen + , J. Billen ° , M. Wilson ° , A.R.C. Baljon ° . A.V. Lyulin +

Embed Size (px)

DESCRIPTION

Structural origin of non-Newtonian rheology Computer simulations on a solution of telechelic associating polymers. J. Stegen + , J. Billen ° , M. Wilson ° , A.R.C. Baljon ° . A.V. Lyulin + + Eindhoven University of Technology (The Netherlands) ° San Diego State University (USA). - PowerPoint PPT Presentation

Citation preview

Page 1: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Structural origin of non-Newtonian rheologyComputer simulations on a solution of telechelic associating polymers

J. Stegen+, J. Billen°, M. Wilson °, A.R.C. Baljon °. A.V. Lyulin+

+ Eindhoven University of Technology (The Netherlands)

° San Diego State University (USA)

Page 2: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Introduction

Page 3: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Polymeric gels

Reversible junctions between end groups (telechelic associating polymers)

Temperature

Sol Gel

Concentration

Page 4: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Constitutive relation for gel

Stress Shear rateViscosity

Constitutive relation for gelRegime where stress decreases with increasing shear due to shear induced structure:•decrease in number of elastic junctions•increased orientation in shear direction

/ /

/ , /x

F A F xy

x z v z

shear ratest

ress

Page 5: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Hybrid MD/MC simulation of a polymeric gel

Page 6: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Molecular dynamics simulation

Molecular dynamics:

Grest-Kremer bead-spring model

Equations of motion:

(Langevin equation, coupling to heat bath through fluctuation dissipation theorem)

i i i ir U rm r R t ��������������

Page 7: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Bead-spring model [K. Kremer and G. S. Krest.J. Chem. Phys 1990]

1

Distance

U

2

0

2 1ln2

10 R

rkRU ij

FENE

Repulsion all beads

Attraction beads in chain

12 6 12 6

4 ,

1.12

LJij ij c c

c

Ur r r r

r r

Page 8: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Associating polymer

Junction between end groups : LJ + FENE + Association energy

[A. Baljon et al., J. Chem. Phys., 044907 2007]

LJnobond

LJFENEassocbond

UU

UUUU

U bo

nd

Unobond

U

Distance

22assocU ò

Page 9: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Dynamics of associating polymer

Monte Carlo: attempt to form or destroy junction

~ exp( )B

UP

k T

new old

assoc FENE

U U U

U U

P<1possibleform

P=1form

Distance

Uassoc=-22

U

Page 10: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Simulation details

• 1000 polymeric chains, 8 beads/chain

• Units: (length), (energy & temperature), m (mass), (m/ (time);

• Box size: (23.5 x 20.5 x 27.4) with: • periodic boundary conditions in x,y

direction.• Fixed walls in z-direction

• Average volume density in system: 0.32

• NVT simulation

Page 11: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Shearing the system

Move wall with constant shear rate.

Some chains grafted to wall to minimise wall slip (50 per wall)

fixed wall

moving wall

Page 12: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Nomenclature

Bead (8 per chain) • Chain bead (6 per chain, white/gray)• End group (2 per chain)

• Dangler (blue)• Loop (orange)• Aggregate (red & orange)

Single chain

Network structure of 4 chains

Page 13: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Structural properties in equilibrium

Page 14: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Structural properties in mechanical equilibrium I

phase # aggregates # loops # danglers

T=1.0 Solution 390 ± 11 67 ± 8 593 ± 23

T=0.55 Gel transition

198 ± 7 184 ± 12 151 ± 11

T=0.35 Gel 107 ± 4 257 ± 4 62 ± 4

Page 15: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Structural properties in mechanical equilibrium II

Page 16: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Structural properties in mechanical equilibrium II

Page 17: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Structural properties in mechanical equilibrium III

T=1.0

Page 18: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Structural properties in mechanical equilibrium III

T=0.55

Page 19: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Structural properties in mechanical equilibrium III

T=0.35

Page 20: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Structural properties in mechanical equilibrium IV: Conclusions

• Aggregates increase in size with decreasing temperature

• Gel network immobile, macroscopic lifetime

• Spatial ordering of aggregates observed in gel phase

• Boundary effects visible at all temperatures, induces structure and ordering at lower temperature

Page 21: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Shear Banding

Page 22: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Shear banding: theory

Instable region in constitutiverelation (striped)

Stable configuration throughtwo shear bands coexisting ata stress σ

Lever rule: 3 1 1 2 2

1 2

· · · ,d

d

d d

d d

Plateau in shear-stress curve

Difference in mesoscopicstructure between bands

Page 23: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Shear banding: force and velocity profile

Simulation details: T=0.35εwall velocity 0.01 σ/τshear rate 3.6*10-4 τ -1

total wall displacement ~700 σ

Page 24: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Shear banding: aggregate size distribution

• More small and large aggregates in shear banding state• Large aggregates strong influence on velocity profile?

Page 25: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Shear banding: orientation function

ij

ji

r

rrQij

3

1

2

32

Orientation in xx-direction, xz-direction and perpendicular to zz-direction: effects of applied shear on chains decrease

No significant differences between shear bands

xx

zzxz

Page 26: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Shear banding: spatial distribution

High shear band very small (~5σ), too small to contain mesoscopic structure?

Fluctuations in density of ~10% at bottom of high shear band. No stationary flow but hopping like behaviour of end groups at interface?

Shear direction

Page 27: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Conclusion

• Shear bands in velocity profile observed.

• High shear band too small to accommodate a mesoscopic structure different from the low shear band.No significant differences in structure observed between bands.

• More large aggregates in a sheared system, these could be responsible for the observed shear banding.

• Fluctuations in end-group density at interface, no steady flow.

• Validity of lever rule has not been checked. Uncertain if observed shear banding corresponds to the shear banding observed in experiment.

Page 28: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Other work…

Jammed system at constant stress & fluctuation relation• Elastic behaviour visible • Two types of behaviour observed in time• Deviations from fluctuation relation observed

Page 29: J. Stegen + , J. Billen ° , M. Wilson  ° , A.R.C. Baljon  ° . A.V. Lyulin +

Questions?