20
Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 897 IX.7 ADDITIONAL INTEGRAL TRANSFORMS 6.7.1 Solution of 3-D Heat Equation in Cylindrical Coordinates 6.7.2 Mellin Transform 6.7.3 Legendre Transform 6.7.4 Jacobi and Gegenbauer Transform Solution of generalized heat conduction problem 6.7.5 Laguerre Transform 6.7.6 Hermite Transform 6.7.7 Hilbert and Stiltjes Transform 6.7.8 Z Transform

IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 897

IX.7 ADDITIONAL INTEGRAL TRANSFORMS

6.7.1 Solution of 3-D Heat Equation in Cylindrical Coordinates

6.7.2 Mellin Transform

6.7.3 Legendre Transform

6.7.4 Jacobi and Gegenbauer Transform Solution of generalized heat conduction problem

6.7.5 Laguerre Transform

6.7.6 Hermite Transform

6.7.7 Hilbert and Stiltjes Transform

6.7.8 Z Transform

Page 2: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 898

6.7.1 Solution of 3-D Heat Equation in Cylindrical Coordinates

( )u r, ,z,tθ 2 2 2

2 2 2 2

u 1 u 1 u u g 1 ur r k tr r z αθ

∂ ∂ ∂ ∂ ∂+ + + + =

∂ ∂∂ ∂ ∂ (1)

1) z -variable a) Case of 0 z K≤ ≤ (Finite Cylinder) Use Finite Fourier Transform in z -variable: ( ){ }k ku z u=T (2) with the inverse

{ }-1kuT ( )k k

ku Z z= ∑

( )2

2k k k2

u zu

∂ = − ∂

T (3)

b) Case of z 0≥ (Finite Cylinder) Use the corresponding standard, sine or cosine Fourier Transform in z -variable. c) Case of z−∞ < < ∞ (Finite Cylinder) Use Finite Integral Transform in z -variable. ( ){ } ( )F u z u ω= (4)

( ) ( )

22

2

u zF u

zω ω

∂ = − ∂

(5)

1r

r

0

z

1r

r

0

z K=

z

Page 3: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 899

2) θ -variable

a) Case of 1 2θ θ θ≤ ≤ (Piece of Cake) Boundary conditions have to be set at 1θ θ= and 2θ θ= .

Reduce to interval 00 θ θ≤ ≤ and then use Finite Fourier Transform in θ variable:

( ){ }n nu uθ = T (6) { }-1

nu =T Operational property:

( )2

2n n n2

uu

θη

θ ∂ = −

T (7)

b) Case of 0 2θ π≤ ≤ (full rotation) There no boundary conditions in this case for 0 2θ π= = , but solution has to be 2π -periodic:

( ) ( )u u 2θ θ π= +

Construct integral transform base on the Fourier series on the interval 0 2θ π≤ ≤ (see Table):

( ) ( )u u 2θ θ π= + ( ) ( )0 n nn 1

a a cos n b cos nθ θ∞

=

= + + ∑

where the Fourier coefficients are defined by:

( )2

00

1a u d2

π

θ θπ

= ∫

( ) ( )2

n0

1a u cos n dπ

θ θ θπ

= ∫

( ) ( )2

n0

1b u sin n dπ

θ θ θπ

= ∫

Substitute them into the Fourier series and rearrange:

( )u θ ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2

n 10 0 0

1 1u s ds u s cos ns ds cos n u s sin ns ds sin n2

π π π

θ θπ π

=

= + +

∑∫ ∫ ∫

( )u θ ( ) ( ) ( ) ( ) ( ) ( )2 2

n 10 0

1 1u s ds u s cos ns cos n sin ns sin n ds2

π π

θ θπ π

=

= + +

∑∫ ∫

( )u θ ( ) ( ) ( )2 2

n 10 0

1 1u s ds u s cos n s ds2

π π

θπ π

=

= + −

∑∫ ∫

1θ θ=

θ

2θ θ=

r

( )r ,θ

0 θ

Page 4: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 900

Then integral transform and its inverse can be defined as:

( ){ }0 u θT 0u ( )2

0

1 u s ds2

π

π= ∫ (8)

( ){ }n u θT nu ( ) ( )2

0

1 u s cos n s dsπ

θπ

= − ∫ n 1,2,...= (9)

{ }-1nuT ( )u θ n

n 0u

=

= ∑ (10)

Operational properties of this integral transform:

2

0 2

∂ ∂

T ( )22

20

u s1 ds2 s

π

π∂

=∂∫

( ) 2

0

u s1 02 s

π

π∂

= = ∂ (11)

2

n 2

∂ ∂

T ( ) ( )22

20

u s1 cos n s dss

π

θπ

∂= − ∂∫

( ) ( )2

0

u s1 cos n s ds

π

θπ

∂ = − ∂

( ) ( ) ( ) ( )2 2

00

u s u s1 1cos n s d cos n ss s

π π

θ θπ π

∂ ∂ = − − − ∂ ∂

( ) ( )2

0

1n sin n s d u sπ

θπ

= − − ∫

( ) ( ) ( )22

00

1 1u sin n s n u s d sin n sππ

θ θπ π = − − + − ∫

( ) ( )2

2

0

1n u s cos n s dsπ

θπ

= − − ∫

2nn u= − (12)

Example:

Page 5: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 901

Application of integral transforms in z and θ variables to the Heat Equation (1):

For the finite solid cylinder (combination of cases 1a and 2b) the consecutive application of the integral transforms (2) and (8,9) together with the operational properties (7) and (11,12) yields:

2 2

k ,n k ,n k ,n k ,n2k ,n k k ,n2 2

u u g u1 n 1u ur r k tr r

ωα

∂ ∂ ∂+ − − + =

∂ ∂∂

(14)

where n 0,1,2,...= ( )k 0 ,1,2,...= ( k 0= , I a case of N-N b.c.’s)

Equation (14) defines the order of the Hankel transform for elimination of the differential operator in r -variable (see p.388 and p.393). Therefore, the transformation of equation (14) should be consequently performed with the Hankel transforms of all non-negative integer orders: nH n 0,1,2,...=

Thus, the Hankel transform of equation (14) is: for solid cylinder 10 r r≤ ≤ :

k ,n,m k ,n,m2 2m k ,n,m k k ,n,m

g u1u uk t

λ ωα∂

− − + =∂

(15)

and for r 0≥ :

k ,n k ,n2 2k ,n k k ,n

g u1u uk t

λ ωα∂

− − + =∂

(16)

Now, equation (15) is an ordinary differential equation which subject to initial condition can be solved by variation of parameter or by the Laplace Transform to find the transformed solution:

( )k ,n,mu t

or ( )k ,nu t ,λ

(17)

Then the solution of the IBVP for the Heat Equation (1) can be found by the consecutive application of the inverse transforms:

( ) ( ) ( )( )

( )n mk ,n ,m k2

k n m n m

Fourier Series (10)

J ru r, ,z,t u t, Z z

J r

λθ θ

λ

=

∑ ∑ ∑

( ) ( ) ( )( )

( )nk ,n ,m k2

k n 0 n m

Fourier Series (10)

J ru r, ,z,t u t, d Z z

J r

λθ θ λ λ

λ

=

∑ ∑ ∫

(18)

1r

r

0

z K=

z

Page 6: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 902

( ) ( )1u r , Uθ θ=

θ

0 2π

( )u r,θ

Example: ( )u r,θ 2 2

2 2 2

u 1 u 1 u 0r rr r θ

∂ ∂ ∂+ + =

∂∂ ∂ (1’)

( ) ( )1u r , Uθ θ= Dirichlet Apply Integral Transform (8-9) with operational properties (11-12):

2 2n n

n2 2

u u1 n u 0r rr r

∂ ∂+ − =

∂∂

n 0,1,2,...= (14’)

( ){ } ( ) ( )n 1 n 1 nu r , u r , Uθ θ θ= =

T Apply FHT-I ( )I

nH with operational property on p.389 (Dirichlet): ( ) ( ) ( )2

1 m,n n 1 m,n 1 n m,n m,nr J r U u 0λ λ θ λ θ+ − =

where m,nλ are positive roots of ( )n 1J r 0λ = . Transformed Solution:

( ) ( ) ( )1 n 1 m,n 1n,m n

m,n

r J ru U

λθ θ

λ+=

Inverse Hankel Transform:

( ) ( ) ( )( )

n n,mn n,m 2

m 1n n,m

J ru r, u

J r

λθ θ

λ

=

= ∑

Inverse Integral Transform (Fourier series):

( ) ( )nn 0

u r, u r,θ θ∞

=

= ∑ ( ) ( ) ( )( )

n 1 m,n 1 n m,n1 n 2

n 0 m 1 m,n n m,n

J r J rr U

J r

λ λθ

λ λ

∞ ∞+

= =

= ∑∑

( ) ( ) ( )( )

n 1 m,n 1 n m,n1 n 2

n 0 m 1 2m,n 1n 1 m,n 1

J r J rr U

r J r2

λ λθ

λλ

∞ ∞+

= =+

= ∑∑

( ) ( )

( )n m,nn

n 0 m 11 m,n n 1 m,n 1

J rU2r J r

λθλ λ

∞ ∞

= = +

= ∑∑

r

( )r ,θ

0 θ

Page 7: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 903

Same Example: ( )u r,θ 2 2

2 2 2

u 1 u 1 u 0r rr r θ

∂ ∂ ∂+ + =

∂∂ ∂ (1’)

( ) ( )1u r , Uθ θ= Dirichlet Apply Integral Transform (8-9) with operational properties (11-12):

2 2n n

n2 2

u u1 n u 0r rr r

∂ ∂+ − =

∂∂

n 0,1,2,...= (14’)

( ){ } ( ) ( )n 1 n 1 nu r , u r , Uθ θ θ= =

T

22 2n n

n2

u ur r n u 0

rr∂ ∂

+ − =∂∂

n 0,1,2,...= (14’)

It is a Cauchy-Euler Equation for n 1,2,...= with the general solution: n n

n 1 2u c r c r−= +

and 2

2 n n2

u ur r 0

rr∂ ∂

+ =∂∂

n 0= (14’’)

with the general solution: 0 1 2u c c ln r= + Because solution has to be bounded: 0 1u c=

nn 1u c r=

Apply boundary condition: ( ) ( )0 1 0u r , Uθ θ=

( )0 0u U θ=

( ) ( )n 1 nu r , Uθ θ=

( )n

n n n1

ru Ur

θ=

( ) ( )nn 0

u r, u r,θ θ∞

=

= ∑ ( )n

nn 0 1

rUr

θ∞

=

=

r

( )r ,θ

0 θ

Page 8: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 904

6.7.2 Mellin Transform ( )u x : → , p∈

( ){ }u xM ( )u p= ( ) p 1

0

u x x dx∞

−= ∫ (19)

( ){ }1 u p−M ( )u x= ( )

c ip

c i

1 u p x dp2 iπ

+ ∞−

− ∞

= ∫ (20)

Examples: 1) { }nxe−M nx p 1

0

e x dx∞

− −= ∫

t p 1p

0

1 e t dtn

∞− −= ∫ t nx=

( )p

pn

Γ=

Operational properties: 1) ( ){ }u x′M ( ) ( )p 1 u p 1= − − − ( ){ }u x′′M ( )( ) ( )p 1 p 2 u p 2= − − −

( ) ( ){ }nu xM ( ) ( )

( ) ( )n p1 u p n

p nΓ

Γ= − −

2) ( )2dx u x

dx

M ( ) ( )2 21 p u p= −

3) ( )u t dt ∫x

0

M ( )1 u p 1p

= − +

4) Convolutions Applications: Mellin transform is used for solution of differential and integral

equations, evaluation of fractional integrals and derivatives, to summation of infinite series

Examples: 1) (Debnah, p.218)

2 2

22 2

u u ux x 0xx y

∂ ∂ ∂+ + =

∂∂ ∂ ( )x 0,∈ ∞ , ( )y 0,1∈

( )u x,0 0=

( )a 0 x 1

u x,10 x 1

≤ ≤= >

Solution:

( ) ( ) ( )n

n

n 1

1au x, y x sin n yn

π ππ

∞−

=

−= ∑

x

ya

Page 9: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 905

6.7.3 Legendre Transform 6.7.4 Jacobi and Gegenbauer Transform Solution of generalized heat conduction problem 6.7.5 Laguerre Transform 6.7.6 Hermite Transform 6.7.7 Hilbert and Stiltjes Transform 6.7.8 Z Transform REFERENCES 1. J.V.Beck, K.D.Cole et al. Heat Conduction Using Green’s Functions. Hemisphere Publishing, 1992. 2. D.G. Duffy. Green’s Functions with Aplications, Chapman&Hall/CRC, 2001.

Page 10: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 906

Page 11: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 907

Les Modeles Globaux PPT 1st Radiation School Odeillo SLW-1 SPECTRAL MODEL

η

( )b bE Tη

1∆

C( )absorption - line blackbodydistribution function F C

( )F C0a1 0

η

( )η g

absorptioncross - sectionC = C T

SLW -1spectralmodel

C

0C

1C

1 0a =1- a

( )

0 0 g ba = F C ,T = T,T = T

gray gas

clear gas

0∆

κP

⋅P 1 1κ = a κ

R 1κ = κ

Planck -mean absorption coefficient

Rosseland-mean absorption coefficient

Physical meaning of SLW -1 parameters

∂+

∂1

R 1 P bI = -κ I κ Is

∂∂

0I = 0s

SSLLWW--11 RRTTEE::

1 1a , κ

with efficiently definedgray gas parameters

Page 12: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 908

ηC , 2cm

molecule

0C

1C

Page 13: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 909

CONSTRUCTION OF THE EFFICIENT SLW-1 SPECTRAL MODEL

0 1 1 1

Alternatively, two parameters must be defined in the SLW -1 spectral model : either cross - sections C and C , or gray gas coefficient κ and its weight a

1C

0C

CηC

η

0κ = 0

1 1κ = NYC

( )0 0 g ba = F C ,T ,T

−1 0a = 1 a

Total net radiative flux in the isothermal plane layer at temperature T bounded by black cold walls :

( ) ( ) ( ) ( ){ }−=

− ⋅ ⋅ − − ∑n

SLW n b j 3 j 3 jj 1

q x = 2πI T a E κ x E κ L xSLW-n

SLW-1 ( ) ( ) ( ) ( ){ }− − ⋅ ⋅ − − SLW 1 b 1 3 1 3 1q x = 2πI T a E κ x E κ L x

( ) ( )− −=

− → ∑M 2

SLW n m SLW 1 mm 0

q x q x minLEAST-SQUARES OPTIMIZATION

Page 14: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 910

CONSTRUCTION OF THE SLW-1 MODEL FOR OTHER GEOMETRIES

L0 x

Plane-Parallel Layer

Objective

find the SLW-1 parameters a1, κ1 with the help of the equivalent plane layer

L

0

x

y

xL

M

0

2-D Cartesian

3-D Cartesian

z

y

xL

M

0

H

Page 15: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 911

Rr

0

Infinite Cylinder

z

Rr

0

z H=

Rr

0

Finite Cylinder

Sphere

Page 16: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 912

SLW P -1 Approximation (equation for gray gases) :

( ) ( ) ( )j j j j j∇⋅∇ 2 2bG r - 3κ G r = -12πa κ I T

( ) ( )ˆ ˆ∫j j4π

G r = I r,s s dΩ

( ) ( )∇j jj

1q r = - G r3κ

( ) ( )j jj

∇⋅∇1Q r = G r

irradiation (radiation intensity integrated over all directions)

radiative flux vector

( ) ( )⋅∇j jj

1q r = - n G r3κ

net radiative flux

divergence of radiative flux

( ) ( )j j j j b= κ G r - 4πa κ I T

( ) ( ) ( )j j j j j− ⋅∇ +w w b w2 - ε 2 n G r κ G r = 4πa κ I T

ε 3

boundarycondition

j =1,...,n

( )jG⋅∇n rw

n

( )jG∇ rw

( )jG r

r

rw

0

radiative transferis modelled as a diffusion process

Page 17: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 913

P-1 APPROXIMATION FOR PLANE LAYER

L0 x

( ) ( ) ( )2

2 2j j j j j b2

d G x - 3κ G x = -12πa κ I Tdx

( )

∑n

j j bj

j=1j j

-4 3πa κ I LQ x = cosh 3κ x -23 32sinh κ L + 3cosh κ L

2 2

( )

∑n

j bj

j=1j j

4πa I Lq x = cosh 3κ x -23 32sinh κ L + 3cosh κ L

2 2

( ) ( )j j j2 d- G 0 + κ G 0 = 03 dx Cold

blackwalls

j =1,...,n

( ) ( )j j j2 d G L + κ G L = 03 dx

boundarycondition

Analytical Solution :

Page 18: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 914

P-1 APPROXIMATION FOR INFINITE CYLINDER

Rr

0

SLW -10

SLW -1

( ) ( ) ( ) − 2 2

j j j j j b1 d dr G r 3κ G r = -12πa κ I Tr dr dr

( ) ( )( ) ( ) ( )∑

nj b

1 jj=1 1 j 0 j

4πa I Tq r = I 3κ r

2I 3κ R + 3I 3κ R

Coldblackwall

j =1,...,n

( ) ( )j j j2 d G R + κ G R = 03 dx

( ) ( )r r0 1where I and I are the modified Bessel functions

( ) ( )( ) ( ) ( )∑

nj j b

0 jj=1 1 j 0 j

-12πa κ I TQ r = I 3κ r

2 3I 3κ R +3I 3κ R

boundarycondition

Analytical Solution :

Page 19: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 915

P-1 APPROXIMATION FOR SPHERE

R r0

L 0.92 R=

SLW -1SLW -10

( ) ( ) ( ) − 2 2 2

j j j j j b21 d dr G r 3κ G r = -12πa κ I T

dr drr

Coldblackwall

j =1,...,n

( ) ( )j j j2 d G R + κ G R = 03 dr

( ) ( )

( ) ( )( )

∑2n jj j b

j=1j j j j

sinh 3κ r-6πa κ I T RQ r =

3 1 rκ - sinh 3κ R + 3κ cosh 3κ R2 R

( ) ( )

( ) ( )( ) ( )

∑n j j jj b

2 2j=1

j j j j

3κ cosh 3κ r sinh 3κ r2πa I T Rq r = -

3 1 r rκ - sinh 3κ R + 3κ cosh 3κ R2 R

boundarycondition

Analytical Solution :

Page 20: IX.7 ADDITIONAL INTEGRAL TRANSFORMSvps/ME505/IEM/09 07.pdf · 898 Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 6.7.1 Solution of 3-D

Chapter IX The Integral Transform Methods IX.7 Additional Integral Transforms August 5 2017 916