14
Master1 Réservoirs Géologiques Dynamique des Bassins - Michel Séranne 1 IV – OTHER TYPES OF BASINS 1- Strike-slip basins 2- Aulacogens 3- Cratonic basins 4– Late orogenic basins and more… Master1 Réservoirs Géologiques Dynamique des Bassins - Michel Séranne Tectonic setting of strike-slip faulting 2 Woodcock 1986 1- Strike-slip Basins

IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

1

IV – OTHER TYPES OF BASINS

1- Strike-slip basins 2- Aulacogens 3- Cratonic basins 4– Late orogenic basins and more…

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

Tectonic setting of strike-slip faulting

2

Woodcock 1986

1- Strike-slip Basins

Page 2: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

3

Seismic examples of strike-slip faults

« Flower structure »

Normal fault component

of mvt.

Reverse fault component

of mvt.

-  difficult to image in seismic (sub-vertical feature) -  evidence of deformation of surrounding sediments -  evidence of vertical components of movement (unconsistent normal or reverse fault)

1- Strike-slip Basins

Sub-vertical fault

Growth structures +unconformities

Offshore California

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

Ba

ssins

- M

iche

l Sér

anne

4

Seismic examples of strike-slip basins

1- Strike-slip Basins

NW SE

Ghab Basin (Syria)

Brew & al, 2001, J.GeolSoc. London

Page 3: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

Altyn-Tagh strike-slip fault and associated basins

5

1- Strike-slip Basins

10 km

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

6

Strike-slip structures in maps

Christie-Blick et al, 1985 Allen & Allen, 2005

Right-lateral Left-lateral

Com

pres

sion

al

Rest

rain

ing

bend

Ex

tens

iona

l Re

slea

sing

ben

d

Opposite block moves towards the left

Opposite block moves towards the right

Guiraud & Séguret 1986

Stress distribution in a releasing overstep (pull-

apart basin). Note extensional structures

in the overstep and compression outside, at

the fault tip.

1- Strike-slip Basins

Page 4: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

Structure of strike-slip basin: Northern Gulf of California

7

Low-angle and oblique to bounding faults = extensional

High-angle and // to major bounding faults = Strike-slip

Unconformities : jumps of faults activity Aragon & Martin 2007

1- Strike-slip Basins

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

8

Strike-slip basins : Lithosphere structure

Sedimentary basins in extensional relay zone, between strike-slip faults -  extensional faults => rift features -  stretching parallel to strike-slip faults

Relay zone Transverse section Longitunidal section

Pull apart Basin

Rm: Transpression = strike-slip + compression Transtention = strike-slip + extension

1- Strike-slip Basins

extension in relay

Page 5: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

Strike-slip basins : Lithosphere deformation

9

Deformation patterns in model m2.2.1 after 100 km of strike-slip displacement in the sections crossing the central part of a pull-apart basin parallel to the faults (A), perpendicular to the faults (B), and in horizontal cross sections in the upper crust (C), in the lower crust (D), and in the upper mantle (E). The deformation pattern is changing from "classical" pull-apart type of structure (as shown in Fig. 1A) in the upper crust to the diffuse shear zone in the mantle, with the transition pattern in the lower crustal detachment zone

Petrunin & Sobolev, Geology 2006

1- Strike-slip Basins

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

10

Thin-skinned vs lithosphere structure

Deformation above a decollement (thrust nappe) ⇒  no thermal effect ⇒  average heat flow (+/- 60mW/m2) ⇒  Vienna Basin

Deformation affecting the entire lithosphere ⇒  important, localised thermal effect ⇒  High heat flow (80-120 mW/m2) ⇒  Salton Trough

Allen & Allen, 2005

1- Strike-slip Basins

Page 6: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

11

Subsidence of strike-slip basins Subsidence origin : • vertical component on SS & normal faults • reduced thermally-driven subsidence

=>Thin-skinned SSB: No lithospheric thinning => Thick-skinned SSB : Fast cooling (by lateral heat loss)

• Rm: frequent inversion (switch of active segments within a broad wrenching zone)

Wu & al , 2009

1- Strike-slip Basins

Basin subsidence

Geological Society of America Bulletin, January/February 2009 59

300 200 100Ma

00

2

4

kilometers

INTRACONTINENTAL BASINS

1 23

4 5

6

7 8

500 400

Seafloor subsidence

Figure 4. Tectonic subsidence of intracontinental basins. Locations shown in Figure 1. See thermal decay curve (dashed) for subsidence of cooling seafl oor (Stein and Stein, 1992), minus 1500 m, is shown for comparison. 1—Illi-nois Basin, Farley well (Bond and Kominz, 1984); 2—Michigan Basin (Bond and Kominz, 1984); 3—Williston Basin, North Dakota (Bond and Kominz, 1984); 4—Williston Basin, Saskatchewan (Fowler and Nisbet, 1985); 5—Northeast German Basin (Scheck and Bayer, 1999); 6—Southwest Ordos Basin (Xie, 2007); 7—Paris Basin (Prijac et al., 2000); 8—Parana Basin (Zalan et al., 1990).

STRIKE-SLIP BASINS100 Ma 0

0

2

4

kilometers

Seafloor subsidence

Seafloor subsidence

4 5a

5b

6

Ma100 00

2

4

kilometers

Seafloor subsidence

1 2 3

Ma100 00

2

4

kilometers

7 89

Figure 3. Tectonic subsidence curves for strike-slip basins. Locations shown in Figure 1. Thermal decay curve (dashed) for subsidence of cooling seafl oor (Stein and Stein, 1992), minus 500 m, is shown for comparison. 1—Chuck-anut Basin (Johnson, 1984, 1985); 2—Ridge Basin (Crowell and Link, 1982; Karner and Dewey, 1986); 3—Death Valley (Hunt and Mabey, 1966); 4—Salinian block (Graham, 1976); 5—Los Angeles Basin (Rumelhart and Ingersoll, 1997); 6—Gulf of California (Curray and Moore, 1984); 7—Cuyama Basin (Dickinson et al., 1987); 8—Bozhang Depression (Hu et al., 2001); 9—Salton Trough (Kerr et al., 1979).

Xie & Heller, 2009

1: Chuckanut Basin (NW Washington) 2: Ridge Basin , 3: Death Valley, 4: Salinian Block, 5 : Los Angeles, 6: Gulf of California

Geodynamic subsidence curve of typical strike-slip basins

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

12

Sedimentation model Death Valley, Ca.

Wide alluvial fans on inactive border

Narrow & steep alluvial fans along active faulted border

Sabkha

Axial drainage

1- Strike-slip Basins

Page 7: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

13

Strike-slip movement => lateral migration of

sedimentary sources & depocentres

• Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual basins difficult to correlate • Syntectonic sediments (all. fans, progr. unconf., rapid facies change)

Link &Osborne, 1978, Crowell & Link 1982

Steel, 1988

Sedimentation pattern in strike-slip basins

1- Strike-slip Basins

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

Aulacogen basins 2- Aulacogen Basins

��LQLWLDO�ULIWLQJ�WULSOH�SRLQW

���REOLTXH�ULIWLQJ�DORQJDEDQGRQHG�EUDQFK

���SRVW�ULIW�ILOOLQJIOXYLDO�YDOOH\���PDMRU�GHOWD

Page 8: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

Examples of Aulacogen basins

15 Stampfli & Borel, 2002

Ziegler, 1990

2- Aulacogen Basins

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

Examples of Aulacogen basins

16

2- Aulacogen Basins

Iapetus Ocean (Cambrian-Early Mississipian)

Appalachian orogen front (late Palaeozoic)

William Thomas, 2011, Geosphere,7, 97-120

S. Oklahoma « aulacogen » (Proterozoic-

Cambrian)

1: Rifting + thermal subsidence

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

Soreghan & al 2012, Geosphere,8,654-668

- M

iche

l Sér

anne

-

Mic

hel S

éran

ne 2: Inversion

foreland basin

Page 9: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

17

Cratonic Basins: Michigan Basin -> old rift ???

100km

Geological map

stratigraphy Ordovician

Cretaceous

Precambrian Keweenawan rift

outcrops

Precambrian Keweenawan rift (positive gravity

anomaly)

Iospachs (1000ft)

Carboniferous

3- Intra-cratonic Basins

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

18

Taoudenni Basin : the largest sedimentary basin in the World

18

From Moussine & al. From Moussine & al.

3- Intra-cratonic Basins

Page 10: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

19

Hypotheses for subsidence of intra-cratonic basins

3- Intra-cratonic Basins

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

20

Flow in the mantle responsible for subsidence & uplift ? 3- Intra-cratonic Basins

Dynamic topography : vertical displacement of the Earth surface generated in response to flow in the mantle (differs from topography = near surface density contrasts) • Long wavelength (>1000km) • Heterogeneities within mantle imaged by seismic tomography Ex: Congo Basin ???

ACCE

PTED

MAN

USCR

IPT

ACCEPTED MANUSCRIPT

e) f)0˚

10˚20˚30˚

40˚

SW NESENW

0

500

1000

1500

2000

2500

-3

-2

-1

0

1

2

3

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0˚10˚20˚30˚

450

2600

+0.5% -0.5%

10˚E 20˚E 30˚E

20˚S

10˚S

10˚N

10˚E 20˚E 30˚E

1 1

2

1

2

1

2

20˚S

10˚S

10˚N

1 tomo

1 std dev

%

-3

-2

-1

0

1

2

3

2 tomo

2 std dev

%

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6anomaly (left) / standard deviation (right) (%)

c) d)

−3 −2 −1 0 1 2 3anomaly (left) / standard deviation (right) (%)

1

2

1

2

−3 −2 −1 0 1 2 3anomaly (left) / standard deviation (right) (%)

200 km std dev

500 km std dev500 km tomo 800 km std dev800 km tomo

g)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6anomaly (left) / standard deviation (right) (%)

b)10˚E 20˚E 30˚E10˚E 20˚E 30˚E

200 km tomo 200 km tomo - UM 200 km std dev - UM

2

1

2

1

2

Figure 7

ACCE

PTED

MAN

USCR

IPT

ACCEPTED MANUSCRIPT

e) f)0˚

10˚20˚30˚

40˚

SW NESENW

0

500

1000

1500

2000

2500

-3

-2

-1

0

1

2

3

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0˚10˚20˚30˚

450

2600

+0.5% -0.5%

10˚E 20˚E 30˚E

20˚S

10˚S

10˚N

10˚E 20˚E 30˚E

1 1

2

1

2

1

2

20˚S

10˚S

10˚N

1 tomo

1 std dev

%

-3

-2

-1

0

1

2

3

2 tomo

2 std dev

%

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6anomaly (left) / standard deviation (right) (%)

c) d)

−3 −2 −1 0 1 2 3anomaly (left) / standard deviation (right) (%)

1

2

1

2

−3 −2 −1 0 1 2 3anomaly (left) / standard deviation (right) (%)

200 km std dev

500 km std dev500 km tomo 800 km std dev800 km tomo

g)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6anomaly (left) / standard deviation (right) (%)

b)10˚E 20˚E 30˚E10˚E 20˚E 30˚E

200 km tomo 200 km tomo - UM 200 km std dev - UM

2

1

2

1

2

Figure 7

ACCE

PTED

MAN

USCR

IPT

ACCEPTED MANUSCRIPT

e) f)0˚

10˚20˚30˚

40˚

SW NESENW

0

500

1000

1500

2000

2500

-3

-2

-1

0

1

2

3

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0˚10˚20˚30˚

450

2600

+0.5% -0.5%

10˚E 20˚E 30˚E

20˚S

10˚S

10˚N

10˚E 20˚E 30˚E

1 1

2

1

2

1

2

20˚S

10˚S

10˚N

1 tomo

1 std dev

%

-3

-2

-1

0

1

2

3

2 tomo

2 std dev

%

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6anomaly (left) / standard deviation (right) (%)

c) d)

−3 −2 −1 0 1 2 3anomaly (left) / standard deviation (right) (%)

1

2

1

2

−3 −2 −1 0 1 2 3anomaly (left) / standard deviation (right) (%)

200 km std dev

500 km std dev500 km tomo 800 km std dev800 km tomo

g)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6anomaly (left) / standard deviation (right) (%)

b)10˚E 20˚E 30˚E10˚E 20˚E 30˚E

200 km tomo 200 km tomo - UM 200 km std dev - UM

2

1

2

1

2

Figure 7

Buiter & al, 2011

Page 11: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

A new model for subsidence of cratonic basins ?

21

Armitage & Allen, 2010

3- Intra-cratonic Basins

water-loaded subsidence (no sediment=> no effect of sediment load => =geodynamic subsidence) for high strain rate (left) and low strain rate (right) Thermal diffusion cools the upwelled asthenospheric mantle at a rate equal to the upward advection of the asthenosphere. Therefore when the extension is very slow, the upwelled asthenospheric mantle cools as it rises, and the thermal lithosphere thins less than by instantaneous or fast extension. This counters the buoyancy of the otherwise warmer upwelled mantle, giving prolonged thermal subsidence.

21

Extensional strain rate

Stre

tchi

ng f

acto

r β

Cratonic basins are part of the rift–drift suite, occupying a portion of the existence

field at low stretch factors and low extensional strain rate.

Armitage & Allen, 2010

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

22

3- Intra-cratonic Basins

The Congo intra-cratonic basin

Kadima & al, 2012

Age (Ma)

Geod

ynam

ic s

ubsi

denc

e

Simplified geological map + sediment isopachs + seismic profiles & borehole locations

22

Age (Ma) Age (Ma) Geodynamic subsidence from the wells + McKenzie type subsidence for normal and thick lithosphere (100 & 250 km)

Page 12: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

23

3- Intra-cratonic Basins

The Congo intra-cratonic basin Kadima & al, 2012

Age (Ma)

Residual gravity anomaly obtained by removing the basin effect to the surface free air anomaly Evidence of an ancient rift ?

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

Late orogenic extensional basins East Shetland platform: Devonian extension following Caledonian orogeny

4- Late-orogenic Basins

Page 13: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

Model of late-orogenic extensional basin

Seguret & al. 1989

Séranne 1988

4- Late-orogenic Basins

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

Driving forces for late orogenic basins

Séranne 1993

e.g. : Variscan Europe e.g. : Scandinavian Caledonides e.g. : W. Mediterranean; Aegean

4- Late-orogenic Basins

Extensional collapse Lateral extrusion Roll-back

Page 14: IV – OTHER TYPES OF BASINS - Géosciences Montpellier · sedimentary sources & depocentres • Wrenching zone => several juxtaposed SSB separated by uplifted areas => Individual

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

27

Subsidence of all type of basins.

27

Compare and discuss !

Mas

ter1

Rés

ervo

irs

Géol

ogiq

ues Dyn

amique

des

Bas

sins

- M

iche

l Sér

anne

28

Heat flow of all type of basins. flow of all type of basins.

Allen & Allen 2006

Compare and discuss !