17

ISSN 1001–0742 Journal of Environmental Sciences

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ISSN 1001–0742 Journal of Environmental Sciences
Page 2: ISSN 1001–0742 Journal of Environmental Sciences

ISSN 1001–0742 Journal of Environmental Sciences Vol. 25 No. 11 2013

CONTENTS

Aquatic environment

Advanced oxidation of bromide-containing drinking water: A balance between bromate and trihalomethane formation controlYongjing Wang, Jianwei Yu, Po Han, Jing Sha, Tao Li, Wei An, Juan Liu, Min Yang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2169

Effects on nano zero-valent iron reactivity of interactions between hardness, alkalinity, and natural organic matterin reverse osmosis concentrateYuhoon Hwang, Hang-Sik Shin · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2177

Environmental significance of biogenic elements in surface sediments of the Changjiang Estuary and its adjacent areasYu Yu, Jinming Song, Xuegang Li, Huamao Yuan, Ning Li, Liqin Duan · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2185

Environmental factors influencing cyanobacteria community structure in Dongping Lake, ChinaXuetang Lu, Chang Tian, Haiyan Pei, Wenrong Hu, Jun Xie · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2196

Disinfection byproduct precursor removal by enhanced coagulation and their distribution in chemical fractionsYanmei Zhao, Feng Xiao, Dongsheng Wang, Mingquan Yan, Zhe Bi · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2207

Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediationof an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris)Fatemeh Vafaei, Ali Movafeghi, Alireza Khataee · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2214

Decrease of NH4+-N by bacterioplankton accelerated the removal of cyanobacterial blooms in aerated aquatic ecosystem

Xi Yang, Ping Xie, Zhimei Ma, Qing Wang, Huihui Fan, Hong Shen · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2223Spatial and seasonal variability of CO2 flux at the air-water interface of the Three Gorges Reservoir

Le Yang, Fei Lu, Xiaoke Wang, Xiaonan Duan, Lei Tong, Zhiyun Ouyang, Hepeng Li · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2229

Atmospheric environment

Removal of nitric oxide from simulated flue gas via denitrification in a hollow-fiber membrane bioreactorXinyu Zhang, Ruofei Jin, Guangfei Liu, Xiyang Dong, Jiti Zhou, Aijie Wang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2239

Terrestrial environment

Comparison of a plant based natural surfactant with SDS for washing of As(V) from Fe rich soilSoumyadeep Mukhopadhyay, Mohd. Ali Hashim, Jaya Narayan Sahu, Ismail Yusoff, Bhaskar Sen Gupta · · · · · · · · · · · · · · · · · · · · · · 2247

Environmental biology

Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4Lingfen Kong, Shaoyuan Zhu, Lusheng Zhu, Hui Xie, Kunchang Su, Tongxiang Yan,Jun Wang, Jinhua Wang, Fenghua Wang, Fengxia Sun · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2257

Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewaterDonghui Wen, Jing Zhang, Ruilin Xiong, Rui Liu, Lujun Chen · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2265

Absolute dominance of hydrogenotrophic methanogens in full-scale anaerobic sewage sludge digestersJaai Kim, Woong Kim, Changsoo Lee · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2272

Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium,Pseudomonas sp. CBZ-4Ang Li, Rui Cai, Di Cui, Tian Qiu, Changlong Pang, Jixian Yang, Fang Ma, Nanqi Ren · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2281

Environmental catalysis and materials

Effects of solution chemistry on arsenic(V) removal by low-cost adsorbentsYuru Wang, Daniel C. W. Tsang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2291

Synergistic photocatalytic degradation of pyridine using precious metal supported TiO2 with KBrO3

Fei Tian, Rongshu Zhu, Feng Ouyang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2299

Page 3: ISSN 1001–0742 Journal of Environmental Sciences

Environmental analytical methods

Simultaneous determination of brominated phenols in soils (Cover story)Wei Han, Sen Wang, Honglin Huang, Lei Luo, Shuzhen Zhang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2306

Simultaneous determination of ten taste and odor compounds in drinking water by solid-phase microextractioncombined with gas chromatography-mass spectrometryXichao Chen, Qian Luo, Shengguang Yuan, Zi Wei, Hanwen Song, Donghong Wang, Zijian Wang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2313

Benzene, toluene and xylenes levels in new and used vehicles of the same modelJoanna Faber, Krzysztof Brodzik, Anna Goła-Kopek, Damian Łomankiewicz· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2324

Preparation, characterization and application of thiosemicarbazide grafted multiwalled carbon nanotubesfor solid-phase extraction of Cd(II), Cu(II) and Pb(II) in environmental samplesJie Zhang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2331

Determination of VOCs in groundwater at an industrial contamination site using a homemadelow-density polyethylene passive diffusion samplerXu Ma, Zhiqiang Tan, Long Pang, Jingfu Liu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2338

Quantification of changes in zero valent iron morphology using X-ray computed tomographyPing Luo, Elizabeth H. Bailey, Sacha J. Mooney · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2344

Serial parameter: CN 11-2629/X*1989*m*183*en*P*22*2013-11

Page 4: ISSN 1001–0742 Journal of Environmental Sciences
Page 5: ISSN 1001–0742 Journal of Environmental Sciences

ISSN 1001–0742 Journal of Environmental Sciences Vol. 25 No. 11 2013

CONTENTS

Aquatic environment

Advanced oxidation of bromide-containing drinking water: A balance between bromate and trihalomethane formation controlYongjing Wang, Jianwei Yu, Po Han, Jing Sha, Tao Li, Wei An, Juan Liu, Min Yang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2169

Effects on nano zero-valent iron reactivity of interactions between hardness, alkalinity, and natural organic matterin reverse osmosis concentrateYuhoon Hwang, Hang-Sik Shin · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2177

Environmental significance of biogenic elements in surface sediments of the Changjiang Estuary and its adjacent areasYu Yu, Jinming Song, Xuegang Li, Huamao Yuan, Ning Li, Liqin Duan · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2185

Environmental factors influencing cyanobacteria community structure in Dongping Lake, ChinaXuetang Lu, Chang Tian, Haiyan Pei, Wenrong Hu, Jun Xie · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2196

Disinfection byproduct precursor removal by enhanced coagulation and their distribution in chemical fractionsYanmei Zhao, Feng Xiao, Dongsheng Wang, Mingquan Yan, Zhe Bi · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2207

Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediationof an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris)Fatemeh Vafaei, Ali Movafeghi, Alireza Khataee · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2214

Decrease of NH4+-N by bacterioplankton accelerated the removal of cyanobacterial blooms in aerated aquatic ecosystem

Xi Yang, Ping Xie, Zhimei Ma, Qing Wang, Huihui Fan, Hong Shen · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2223Spatial and seasonal variability of CO2 flux at the air-water interface of the Three Gorges Reservoir

Le Yang, Fei Lu, Xiaoke Wang, Xiaonan Duan, Lei Tong, Zhiyun Ouyang, Hepeng Li · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2229

Atmospheric environment

Removal of nitric oxide from simulated flue gas via denitrification in a hollow-fiber membrane bioreactorXinyu Zhang, Ruofei Jin, Guangfei Liu, Xiyang Dong, Jiti Zhou, Aijie Wang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2239

Terrestrial environment

Comparison of a plant based natural surfactant with SDS for washing of As(V) from Fe rich soilSoumyadeep Mukhopadhyay, Mohd. Ali Hashim, Jaya Narayan Sahu, Ismail Yusoff, Bhaskar Sen Gupta · · · · · · · · · · · · · · · · · · · · · · 2247

Environmental biology

Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4Lingfen Kong, Shaoyuan Zhu, Lusheng Zhu, Hui Xie, Kunchang Su, Tongxiang Yan,Jun Wang, Jinhua Wang, Fenghua Wang, Fengxia Sun · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2257

Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewaterDonghui Wen, Jing Zhang, Ruilin Xiong, Rui Liu, Lujun Chen · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2265

Absolute dominance of hydrogenotrophic methanogens in full-scale anaerobic sewage sludge digestersJaai Kim, Woong Kim, Changsoo Lee · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2272

Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium,Pseudomonas sp. CBZ-4Ang Li, Rui Cai, Di Cui, Tian Qiu, Changlong Pang, Jixian Yang, Fang Ma, Nanqi Ren · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2281

Environmental catalysis and materials

Effects of solution chemistry on arsenic(V) removal by low-cost adsorbentsYuru Wang, Daniel C. W. Tsang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2291

Synergistic photocatalytic degradation of pyridine using precious metal supported TiO2 with KBrO3

Fei Tian, Rongshu Zhu, Feng Ouyang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2299

Page 6: ISSN 1001–0742 Journal of Environmental Sciences

Environmental analytical methods

Simultaneous determination of brominated phenols in soils (Cover story)Wei Han, Sen Wang, Honglin Huang, Lei Luo, Shuzhen Zhang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2306

Simultaneous determination of ten taste and odor compounds in drinking water by solid-phase microextractioncombined with gas chromatography-mass spectrometryXichao Chen, Qian Luo, Shengguang Yuan, Zi Wei, Hanwen Song, Donghong Wang, Zijian Wang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2313

Benzene, toluene and xylenes levels in new and used vehicles of the same modelJoanna Faber, Krzysztof Brodzik, Anna Goła-Kopek, Damian Łomankiewicz· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2324

Preparation, characterization and application of thiosemicarbazide grafted multiwalled carbon nanotubesfor solid-phase extraction of Cd(II), Cu(II) and Pb(II) in environmental samplesJie Zhang · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2331

Determination of VOCs in groundwater at an industrial contamination site using a homemadelow-density polyethylene passive diffusion samplerXu Ma, Zhiqiang Tan, Long Pang, Jingfu Liu · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2338

Quantification of changes in zero valent iron morphology using X-ray computed tomographyPing Luo, Elizabeth H. Bailey, Sacha J. Mooney · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2344

Serial parameter: CN 11-2629/X*1989*m*183*en*P*22*2013-11

Page 7: ISSN 1001–0742 Journal of Environmental Sciences

jesc.a

c.cn

JOURNAL OFENVIRONMENTALSCIENCES

ISSN 1001-0742

CN 11-2629/X

www.jesc.ac.cn

Available online at www.sciencedirect.com

Journal of Environmental Sciences 2013, 25(11) 2306–2312

Simultaneous determination of brominated phenols in soils

Wei Han, Sen Wang, Honglin Huang, Lei Luo, Shuzhen Zhang∗

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China. E-mail: [email protected]

Received 23 January 2013; revised 15 April 2013; accepted 17 April 2013

AbstractBrominated phenols (BPs), a widely used group of emerging flame retardants, are important environmental contaminants and exhibitendocrine disrupting potential. Method for simultaneous determination of tetrabromobisphenol A (TBBPA), tribromophenol (TBP),dibromophenols (DBPs) and monobromophenols (MBPs) in soils using gas chromatography-mass spectrometry analysis (GC/MS)was successfully developed. Cleanup methods for soil extracts including several solid-phase extraction cartridges and different elutionsolvents were compared and optimized. Florisil cartridge with dichloromethane as the elution reagent was selected for sample cleanupowing to its high and reproducible recoveries of the target analytes in soils. Derivatization conditions were tested and the optimalconditions were obtained with 20 µL silylation reagent at room temperature. The chromatographic separation was optimized withdifferent columns and DB-XLB column was selected for its excellent separation of the analytes. The limits of detection for thetarget compounds were from 0.04 to 0.19 ng/g. Mean recoveries of the compounds from spiked soils exceeded 84% with a goodreproducibility, excepting that the recovery of 2-bromophenol was relatively poor (lower than 55%) due to its instability. The developedmethod was applied to the determination of the BPs in the soils collected from e-waste sites. The contents of BPs in the soils were at ng/glevels with TBBPA and TBP the most frequently detected. To our knowledge, this is the first report for the simultaneous determinationof TBBPA, TBP, DBPs and MBPs in soils.

Key words: brominated phenols; analysis; soil; derivatization; GC/MS

DOI: 10.1016/S1001-0742(12)60298-8

Introduction

Brominated flame retardants (BFRs), which have beenused in a variety of commercial and industrial applicationsworldwide, cause a great concern as persistent organic con-taminants (Covaci et al., 2011; Huang et al., 2010; Guerraet al., 2011; Wang et al., 2011). Among them, brominatedphenols (BPs) are a widely used group of BFRs because oftheir high efficiency and low cost. For example, tetrabro-mobisphenol A (TBBPA) possesses the largest productionvolume with the global size of 1.7 × 105 tons in 2004,covering around 60% of the total BFR market (Covaci etal., 2009). Moreover, its use as flame retardants is currentlynot restricted in many countries such as USA and China(Guerra et al., 2011). Similarly, tribromophenol (TBP) isalso used as a reactive flame retardant to a lesser extentthan TBBPA and has been recently classified as one of thenovel BFRs to replace the banned compounds (Covaci etal., 2011). Due to their wide applications, both TBBPA andTBP have been detected in various environmental media

* Corresponding author. E-mail: [email protected]

including water, air, sediment, dust and sewage sludge,together with some biotic samples such as fish, birds andmarine and terrestrial mammals (Covaci et al., 2009, 2011;Deng et al., 2010; Halden et al., 2010). Furthermore, theyhave also been found to cause adverse health effects suchas endocrine disruption, hepatoxicity and neurotoxicity onhumans and other organisms even at environmental levels(Covaci et al., 2009; Deng et al., 2010; Howe et al., 2005;Ezechias et al., 2012). Therefore, both TBBPA and TBPare considered as important environmental contaminantswith respect to their widely applications and influences onliving organisms.

Soil represents a major sink for organic contaminantssuch as TBBPA and TBP in the terrestrial environment dueto their partition ability and low water solubility (Covaci etal., 2009; Hakk and Letcher, 2003). Furthermore, TBBPAand TBP can be partly degraded to lesser brominatedanalogues in soils mainly due to soil microbe activitiesand plant-soil interaction (Hakk and Letcher, 2003; Poloet al., 2006; Voordeckers et al., 2002). This not onlyresults in co-contamination of BPs in soils, but also bringsadditional adverse influences to bear on the environment

Page 8: ISSN 1001–0742 Journal of Environmental Sciences

jesc.a

c.cn

No. 11 Simultaneous determination of brominated phenols in soils 2307

and human health due to their different biological effectscompared with their precursor. Therefore, more concernshould be given to the environmental presence of TBBPAand TBP together with their possible degradation productsof lesser brominated analogues, which firstly necessitatesthe establishment of analytical methods for simultaneousdetermination of BPs in soils as well as in other environ-mental matrices.

Methods for determination of TBBPA and TBP inenvironmental samples such as water, soil, sediment andair have been established with gas chromatography-massspectrometry (GC/MS) as the most commonly used an-alytical tool due to its high selectivity and sensitivity(Covaci et al., 2009; Sanchez-Brunete et al., 2009; Lopezet al., 2009). Simultaneous determination of TBBPA andits degradation products of bisphenol A in sediment andsludge has been established by high performance liquidchromatography-electrospray tandem mass spectrometry(LC-MS/MS) (Chu et al., 2005). However, there are veryfew validated analytical methods for the determinationof simple BPs such as monobromophenols (MBPs) anddibromophenols (DBPs), possible degradation productsof TBP in the environment, and no method has beenreported for the simultaneous determination of TBBPA,TBP and the lesser BPs in soils. Therefore, the majorobjective of this study was to develop a fast, selectiveand sensitive method for the simultaneous determinationof BPs including TBBPA, TBP, DBPs and MBPs in soilsby GC/MS. In the present work, GC/MS was used due tothe reason that in comparison GC/MS is more availablealthough LC-MS/MS method is more robust. Consideringthe necessity of cleanup and derivatization for sample anal-ysis because of the complex matrices of soils and polarityof the BPs, attentions were mainly paid to optimization ofsample cleanup with different solid-phase extraction (SPE)cartridges and derivatization procedure. The establishedmethod was verified by analyzing the target compoundsin the soils collected from e-waste contaminated sites. Toour knowledge, this is the first report for the simultaneousdetermination of TBBPA, TBP, DBPs and MBPs in soils.

1 Materials and methods

1.1 Chemicals and reagents

The BPs investigated in this study include TBBPA, TBPand MBPs of 2-bromophenol (2-MBP), 3-bromophenol(3-MBP) and 4-bromophenol (4-MBP), and DBPs of 2,4-dibromophenol (2,4-DBP), 2,5-dibromophenol (2,5-DBP),2,6-dibromophenol (2,6-DBP) and 3,5-dibromophenol(3,5-DBP). Their physicochemical properties are providedin Table 1, respectively. TBBPA (> 97%) was obtainedfrom Sigma-Aldrich Chemical Co. (USA). 2,5-DBP waspurchased from Accu Standard Co. The other BPs in-cluding tetrabromophenol (Tetra-BP) were supplied by Dr.Ehrenstorfer Co. (Germany). However, Tetra-BP was notincluded in further analysis of the soils due to suitability ofthe sample pretreatment procedures. 13C-TBBPA and 13C-PCB-208 (> 99%) used as recovery surrogate compoundand the internal standard, respectively, were purchasedfrom Cambridge Isotope Laboratories (MA, USA).

Individual standard stock solutions of the BPs wereprepared by dissolving each pure compound in ethyl ac-etate. Working solutions (10 µg/mL for 2,5-dibromophenoland 16 µg/mL for the others) were prepared by mixingindividual stock solutions, followed by serial dilution withethyl acetate. The dosage of 2,5-DBP used in this studywas 60% of that of the other eight BPs without special note.13C-TBBPA and 13C-PCB-208 were used as the recoverysurrogate compound and the internal standard at the con-centrations of 50 ng/mL and 25 ng/mL, respectively.

All organic solvents used including hexane,dichloromethane, acetone and ethyl acetate were HPLC-grade and purchased from Fisher Scientific (USA).The 12-port Visiprep SPE Vacuum Manifold and thederivatization reagent (BSTFA: TMCS 99:1) were bothpurchased from Supelco Co. (USA). Anhydrous sodiumsulfate was obtained from Beijing Chemical Factory andpretreated by heating in a muffle furnace at 400°C for 4 hrto remove possible organic contaminants. Glassware waswashed with detergent solution, rinsed with pure water,air dried and heated at 400°C for 4 hr in sequence prior touse.

Table 1 Physicochemical properties of brominated phenols (BPs) (Kuramochi et al., 2008; Howe et al., 2005)

Compound Abbreviation Chemical Molecular Water solubility Kow pKαformula mass (mg/L)

2-Monobromophenol 2-MBP C6H5Br1O 173 – 1.69–2.35 –3-Monobromophenol 3-MBP C6H5Br1O 173 – 1.98–2.63 –4-Monobromophenol 4-MBP C6H5Br1O 173 17400 1.94–2.63 9.172,4-Dibromophenol 2,4-DBP C6H4Br2O 252 208 2.56–3.48 7.792,5-Dibromophenol 2,5-DBP C6H4Br2O 252 – 2.56 –2,6-Dibromophenol 2,6-DBP C6H4Br2O 252 – 2.37 –3,5-Dibromophenol 3,5-DBP C6H4Br2O 252 – – –Tribromophenol TBP C6H3Br3O 331 59, 61 3.74–4.24 6.08Tetrabromobisphenol A TBBPA C15H12Br4O2 544 0.08–4.16 4.50–5.90 7.5, 8.5

“–”: not available.

Page 9: ISSN 1001–0742 Journal of Environmental Sciences

jesc.a

c.cn

2308 Journal of Environmental Sciences 2013, 25(11) 2306–2312 /Wei Han et al. Vol. 25

1.2 Sample preparation

The soil samples (5–25 cm in depth) were collectedfrom the sites contaminated with e-waste dismantling andrecycling activities in Guangdong Province of China. Afterfreeze-dried, the soil samples were ground and passedthrough a 2-mm sieve and then stored at –20°C in sealedplastic bags before use. The mixture of 2 g soils with2 g anhydrous sodium sulfate was homogenized andtransferred to extraction thimble. Then 20 µL of surrogatecompound 13C-TBBPA solution (1 µg/mL) was spikedinto the soil samples. After the added organic solventevaporated (about 2 hr), the samples were soxhlet extractedfor 24 hr with 100 mL hexane and acetone mixture (1:1,V/V). The extract was rotary evaporated to 1–2 mL andtransferred to 10 mL centrifuge tube with 2 mL hexaneand acetone mixture (1:1, V/V) as the rinsing reagent. Theextract was then dried with a soft nitrogen flow at roomtemperature and 1 mL hexane was added to dissolve theresidue.

Cartridge purification was performed on SPE VacuumManifold. Five kinds of different cartridges were obtainedfrom three manufactures with the detail information asfollows: acidic alumina, 2 g/6 mL; florisil, 1 g/6 mL; silicagel-1, 1 g/6 mL; silica gel-2, 500 mg/6 mL; silica gel-3,500 mg/6 mL. The cartridges were conditioned with 10 mLhexane before use. Then the extract was allowed to passthrough the cartridge drop by drop with the gravitationalflow rate. The cartridge was washed with 10 mL hexanewhich was discarded and the analytes were eluted withdifferent solvents (10 mL) for comparison with the flowrate at approximately 1 mL/min.

The collected eluate was concentrated to dryness undera gentle stream of nitrogen and reconstituted in ethylacetate. The derivative reagent was added and the deriva-tization conditions (dosage of the derivative reagent andtemperature) were optimized. Then the sample with thefinal volume of 400 µL was filtered through the nylonmembrane (0.22 µm) before GC/MS analysis.

1.3 GC/MS analysis

The measurement of the BPs was performed by an Agilent7890 GC/MS (5975 inert) (USA). Columns of HP-5MS(30 m × 0.25 mm × 0.25 µm) and DB-XLB (30 m× 0.25 mm × 0.25 µm) were compared for separationefficiency. The gas of helium with high purity (99.99%)was applied with the flow rate of 1 mL/min. The volumeof injection was 1 µL with the non-split model. Thetemperature program was set as follows: oven temperatureheld at 75°C for 1 min, then increased to 150°C at therate of 20°C/min and held for 7 min, then increased to300°C with the rate of 35°C/min and held for 6 min.The total running time was 22 min. The temperatures ofoven and injection inlet were set at 300°C and 250°C,respectively. The temperatures of ion source, transfer lineand quadrupole were maintained at 230°C, 280°C and

150°C, respectively. For mass spectrometry information,the characteristic ions of the target compounds, surrogatecompound and internal compound were determined by fullscan model. SIM mode was applied in the further analysis.The quantification ions and the retention time to indentifytarget compounds were also included.

2 Results and discussion

2.1 Optimization of sample pretreatment and analysis

2.1.1 Soil extraction and cleanupSoxhlet extraction with a mixture of hexane and acetone(volume of 100 mL at 1:1 mixture ratio) has been success-fully applied to extract some organic contaminants such asPCBs, PBDEs, TBBPA and HBCD with different polaritiesin various environmental media such as soils (Huang etal., 2010, 2011; Wang et al., 2011), sediments (Mai etal., 2005), plant (Huang et al., 2010; Wang et al., 2011)and bird tissue samples (He et al., 2010). Therefore it wasadopted in the present study. Extract for 24 hr was shown toachieve quantitative recoveries of all the target compoundsfrom soils.

Cleanup step is a key procedure for the determinationof target compounds in soils to reduce or eliminate thematrix interferences. Silica, florisil and aluminium oxideare the commonly used adsorbents for the separation ofpolar phenolic compounds in soils, sediments and othersolid matrices (Sanchez-Brunete et al., 2009; Lopez et al.,2009; Chu et al., 2005; Blanco et al., 2006; Liu et al.,2004). Therefore optimization of cartridge with differentadsorbent materials is significant in achieving a high andreproducible recovery together with an effective cleanup ofsample extract. In this study, five kinds of cartridges withvarious filling materials provided by different producerswere compared for their recoveries. A mixture of the nineBPs (20 ng of each compound) was uploaded onto thecartridges. Different recoveries were obtained after elutingby 10 mL dichloromethane as shown in Fig. 1, which wasprobably attributed to the differences among the cartridgesincluding packing material properties, size and porosity.The poorest recovery was obtained for the acidic aluminaoxide cartridge in which the fillings strongly retained thepolar compounds with the recovery less than 40% forall the target compounds at the optimized experimentalcondition. The florisil cartridge showed the best recoveries(73% for 2-MBP and over 82% for the other BPs) and wastherefore used for further analysis, whereas the other car-tridges were not suitable for simultaneous determinationof all the BPs. The recovery obtained by the relativelylower polar solvent (hexane:dichloromethane, 1:1, V/V ,10 mL) as the elution solvent for the selected cartridgewas not satisfactory (data not shown) and consequentlydichloromethane was chosen as the elution solvent. More-over, the soil extracts became clear after purification with

Page 10: ISSN 1001–0742 Journal of Environmental Sciences

jesc.a

c.cn

No. 11 Simultaneous determination of brominated phenols in soils 2309

Silica gel-1 Silica gel-2 Florisil Silica gel-3 Acidic alumina

0

20

40

60

80

100

120

Rec

over

y (

%)

2-MBP

3-MBP

4-MBP

2,5-DBP

Compound

3,5-DBP

2,6-DBP

2,4-DBP

TBP

TBBPA

Fig. 1 Recoveries of the BPs from cartridge cleanup.

the selected cartridge.

2.1.2 DerivatizationThe silylation reagent of BSTFA:TMCS (99:1, V/V) wasused to increase the volatility, thermal stability and detec-tor response of the BPs. Heating at 70°C or 60°C has beenchosen for derivatization of phenols previously (Liu et al.,2004; Sanchez-Brunete et al., 2009). The impact of heatingon derivatization was investigated at the temperature of26, 40, 60 and 80°C controlled by water bath for 1hr (256 ng of each compound with enough derivativereagent of 100 µL). The results showed that the increaseof temperature did not improve the derivative efficiency.Therefore, heating was unnecessary for the derivatizationreaction and room temperature was used in the followingexperiments with the derivatization time controlled for atleast 1 hr.

Different dosages of derivative reagent (10, 20, 40,and 100 µL) were applied to compare the derivatizationefficiency. A mixture of nine BPs with each one at the finalconcentration of 640 ng/mL was used and the derivativetime was 1 hr at room temperature. The results showedthat the response did not change significantly with theincrease of the derivative reagent dosage, and 20 µL wassufficient for complete derivatization and was applied inthe following experiments.

2.1.3 Optimization of GC/MS parametersConsidering the polarity differences of the BPs, two dif-ferent chromatography columns of distinct polarities (non-polarity and weak polarity) were applied to the separationof the nine BPs using the same oven temperature program.HP-5MS capillary column is an excellent non-polaritycolumn coated with (5%-phenyl)-methylpolysiloxane. Ithas been recommended for the separation of organic con-taminants such as PCBs, chlorinated pesticides, phenolsand BPDEs (Gu et al., 2011; Huang et al., 2010, 2011;Wang et al., 2011). DB-XLB column has low polaritywith unique selectivity and exceptional low bleed. The

chromatograms for the separation of the target compoundson the two columns are shown in Fig. 2. Even though HP-5MS column gave symmetrical chromatographic peaks,peaks for 3,5-DBP and 2,6-DBP overlapped seriously.Whereas DB-XLB column showed high resolution andselectivity for the separation of the nine BPs in both themixed standard solution and soil extracts (Fig. 3). Thisdemonstrates an obvious advantage of DB-XLB columnover HP-5MS column for the separation of the DBPisomers. Therefore, the DB-XLB column was selected forthe analysis considering its excellent separation potential.The characteristic ions with their abundance percent andretention time of the analytes are listed in Table 2.

2.2 Validation of the method

In order to investigate the recoveries of the target com-pounds, 2 g subsample of a BP-free soil (Alfisols) collectedfrom an agricultural field in Beijing were added with 0.2mL of BPs at two different concentrations dissolved inethyl acetate to reach the final concentration of 2 and 40ng/g and the solvent was evaporated before extraction.The blank and the control groups were also analyzed.

10.0 10.5 11.0 11.5 12.0 12.5 13.0

HP-5MS column

2,6-DBP

2,4-DBP

2,6-DBP3,5-DBP2,4-DBP

2,5-DBP

3,5-DBP

2,5-DBP

DB-XLB column

Time (min)

Fig. 2 Separation of dibromophenol isomers by chromatography.

Page 11: ISSN 1001–0742 Journal of Environmental Sciences

jesc.a

c.cn

2310 Journal of Environmental Sciences 2013, 25(11) 2306–2312 /Wei Han et al. Vol. 25

4 6 8 10 12 14 16 18 20 22 24

0

20000

40000

60000

80000

4 6 8 10 12 14 16 18 20 22 24

0

20000

40000

60000

80000

Tetra-BP

a

TBBPA13C-PCB-208

TBP

2,4-DBP

4-MBP

2,5-DBP

2,6-DBP3,5-DBP

3-MBP

Abund

ance

Time (min)

2-MBPA

bu

ndan

ce

Time (min)

2-MBP

3-MBP 4-MBP

2,5-DBP

3,5-DBP2,6-DBP

2,4-DBP

TBP

13C-PCB-208

TBBPA and13C-TBBPA

b

Fig. 3 Chromatogram of the BPs in a mixture of standard compounds at 50 µg/L (a) and a spiked soil at 10 ng/g (b).

The results are shown in Fig. 4. The recoveries of theBPs were satisfactory ranging from 84.3% to 121.6% withthe relative standard deviations of 0.04%–12.7% with thesole exception of 2-MBP which had a little poor recovery(44.6%–55.7%). The relatively low recovery of 2-MBPwas attributed to its poor stability in the treatment process.Compared to the other BPs, 2-MBP had the lowest meltingand boiling points (Howe et al., 2005) and a relative weakintermolecular hydrogen bonding interaction. Therefore, ithad a weaker stability and a stronger evaporation potentialthan the others. During preconcentration treatment withnitrogen flow, the loss of 2-MBP was much heavier thanother BPs. The average recovery of each analyte fromthe spiked soils experiencing the whole sample treatmentprocedure was higher than the one from the cartridge

Table 2 Characteristic ions, relative abundances and retention time ofthe target compounds

Compound Characteristic ions (m/z) Quantitative Retention(abundance, %) ion (m/z) time (min)

2-MBP 231 (94), 229 (99), 246 (30) 231 6.383-MBP 231 (99), 229 (99), 244 (51) 231 6.544-MBP 231 (99), 229 (91), 246 (70) 231 6.912,5-DBP 309 (99), 307 (51), 322 (14) 309 11.133,5-DBP 309 (99), 307 (52), 324 (46) 309 11.292,6-DBP 309 (99), 311 (50), 324 (16) 309 11.602,4-DBP 309 (99), 311 (52), 324 (27) 309 12.13TBP 387 (97), 389 (99), 404 (22) 389 14.62TBBPA 673 (99), 675 (71), 688 (25) 673 21.4313C-TBBPA 685 (99), 687 (71), 700 (12) 685 21.43

cleanup treatment alone (Fig. 1). This phenomenon waspossibly ascribed to the protective effect of the soil ma-trices on lessening the loss of the target compounds.Overall the recoveries of BPs for the whole procedure weresatisfactory.

The detection limits of the method for the target com-pounds were obtained according to the concentrations ofsignal to noise equal to three, and the results are listed inTable 3. 13C-PCB-208 (25 ng/mL) was used as the internalstandard to correct the response deviation caused by theinstrumental instability. Under the optimized conditions,the response was found to be linear in the validated rangefrom 0 to 200 ng/mL with the correlation coefficient (R2)higher than 0.9960 (Table 3), which demonstrates therobustness and reliability of the method established.

Table 3 Linear equations and detection limits

Compound Regression Correlation Methodequation coefficient (R2) detection

limit (ng/g)

2-MBP Y = 0.0004X + 0.9778 0.9990 0.053-MBP Y = 0.0003X + 0.5363 0.9993 0.044-MBP Y = 0.0004X + 0.8032 0.9992 0.052,5-DBP Y = 0.0005X – 0.3868 0.9996 0.053,5-DBP Y = 0.0006X – 0.2779 0.9996 0.072,6-DBP Y = 0.0006X + 0.0092 0.9998 0.062,4-DBP Y = 0.0006X + 0.5482 0.9995 0.06TBP Y = 0.0007X + 0.7903 0.9991 0.05TBBPA Y = 0.0042X + 1.7159 0.9960 0.19

Page 12: ISSN 1001–0742 Journal of Environmental Sciences

jesc.a

c.cn

No. 11 Simultaneous determination of brominated phenols in soils 2311

Table 4 Concentrations of the BPs in the e-waste contaminated soils (unit: ng/g)

Soil 2-MBP 3-MBP 4-MBP 2,5-DBP 3,5-DBP 2,6-DBP 2,4-DBP TBP TBBPA

1 – – – – – – 0.17 0.72 6.072 1.12 – 1.69 – 0.07 1.78 1.99 0.64 5.053 0.14 – – – – 0.86 2.10 2.64 15.344 – – – – 0.13 0.47 1.97 0.94 16.985 – – – – – 0.07 – 0.85 5.15

“–”: below the limit of detection.

2-MBP 3-MBP 4-MBP 2,5-DBP 3,5-DBP 2,6-DBP 2,4-DBP TBP TBBPA0

20

40

60

80

100

120

140

Rec

ov

ery (

%)

40 ng/g

2 ng/g

Compound

Fig. 4 Recoveries of the BPs from a spiked soil at the concentrations of2 and 40 ng/g.

2.3 Application of the method to real soil sample analy-sis

The developed method was applied to analyze BPs in thesoils collected from e-waste sites. The results (Table 4)suggest that e-waste dismantling and recycling activitiesresulted in contamination of BPs in the soils. TBBPA andTBP were found in all the soil samples while MBPs andDBPs were only found in some of the soil samples. Inaddition, TBBPA showed a higher concentration than theothers probably owing to its larger usage in electronicdevices and appliances (Covaci et al., 2009) than the otherBPs. Whereas, 3-MBP and 2,5-DBP in the soils werebelow the detection limits.

3 Conclusions

A method for simultaneous analysis of nine BPs in soilswas successfully developed. Florisil cartridge was adoptedin sample purification and DB-XLB GC column wasselected for BPs separation. The limits of detection andthe recoveries for the compounds were satisfied. Moreover,the linearity of the calibration curves and the repeatabilitywere also robust. The developed method was successfullyapplied to determine BPs in the soils collected from e-waste sites. The method developed for BP analysis is ofgreat significance for the investigation of environmentalbehavior and fate of BPs.

Acknowledgments

This work was supported by the National Basic Re-search (973) Program of China (No. 2014CB441102) andthe National Natural Science Foundation of China (No.21177139).

References

Blanco E, Casais M C, Mejuto M C, Cela R, 2006. Approachesfor the simultaneous extraction of tetrabromobisphenol A,tetrachlorobisphenol A, and related phenolic compoundsfrom sewage sludge and sediment samples based on matrixsolid-phase dispersion. Analytical Chemistry, 78(8): 2772–2778.

Chu S G, Haffner G D, Letcher R J, 2005. Simultaneous determi-nation of tetrabromobisphenol A, tetrachlorobisphenol A,bisphenol A and other halogenated analogues in sedimentand sludge by high performance liquid chromatography-electrospray tandem mass spectrometry. Journal of Chro-matography A, 1097(1-2): 25–32.

Covaci A, Harrad S, Abdallah M A E, Ali N, Law R J, HerzkeD et al., 2011. Novel brominated flame retardants: Areview of their analysis, environmental fate and behaviour.Environment International, 37(2): 532–556.

Covaci A, Voorspoels S, Abdallah M A E, Geens T, Harrad S,Law R J, 2009. Analytical and environmental aspects of theflame retardant tetrabromobisphenol-A and its derivatives.Journal of Chromatography A, 1216(3): 346–363.

Deng J, Liu C S, Yu L Q, Zhou B S, 2010. Chronic expo-sure to environmental levels of tribromophenol impairszebrafish reproduction. Toxicology and Applied Pharmacol-ogy, 243(1): 87–95.

Ezechias M, Svobodova K, Cajthaml T, 2012. Hormonal activ-ities of new brominated flame retardants. Chemosphere,87(7): 820–824.

Gu Z Y, Jiang J Q, Yan X P, 2011. Fabrication of isoretic-ular metal-organic framework coated capillary columnsfor high-resolution gas chromatographic separation of per-sistent organic pollutants. Analytical Chemistry, 83(13):5093–5100.

Guerra P, Alaee M, Eljarrat E, Barcelo D, 2011. Introduction tobrominated flame retardants: Commercially products, ap-plications, and physicochemical properties. In: BrominatedFlame Retardants (Eljarrat E, Barcelo D, eds.). Springer-Verlag, Berlin, Heidelberg. 1–17.

Hakk H, Letcher R J, 2003. Metabolism in the toxicokinetics andfate of brominated flame retardants–a review. EnvironmentInternational, 29(6): 801–828.

Halden A N, Nyholm J R, Andersson P L, Holbech H, Norrgren

Page 13: ISSN 1001–0742 Journal of Environmental Sciences

jesc.a

c.cn

2312 Journal of Environmental Sciences 2013, 25(11) 2306–2312 /Wei Han et al. Vol. 25

L, 2010. Oral exposure of adult zebrafish (Danio rerio) to2,4,6-tribromophenol affects reproduction. Aquatic Toxicol-ogy, 100(1): 30–37.

He M J, Luo X J, Yu L H, Liu J, Zhang X L, Chen S J et al., 2010.Tetrabromobisphenol-A and hexabromocyclododecane inbirds from an e-waste region in south China: Influenceof diet on diastereoisomer- and enantiomer-specific dis-tribution and trophodynamics. Environmental Science andTechnology, 44(15): 5748–5754.

Howe P D, Dobson S, Malcolm H M, 2005. 2,4,6-Tribromophenol and other simple brominated phenols.Concise International Chemical Assessment Document 66,World Health Organization, Geneva. 1–47.

Huang H L, Zhang S Z, Christie P, Wang S, Xie M, 2010.Behavior of decabromodiphenyl ether (BDE-209) in thesoil-plant system: Uptake, translocation, and metabolism inplants and dissipation in soil. Environmental Science andTechnology, 44(2): 663–667.

Huang H L, Zhang S Z, Christie P, 2011. Plant uptake and dissi-pation of PBDEs in the soils of electronic waste recyclingsites. Environmental Pollution, 159(1): 238–243.

Kuramochi H, Kawamoto K, Miyazaki K, Nagahama K, MaedaK, Li X W et al., 2008. Determination of physicochemicalproperties of tetrabromobisphenol A. Environmental Toxi-cology and Chemistry, 27(12): 2413–2418.

Liu R, Zhou J L, Wilding A, 2004. Microwave-assisted extractionfollowed by gas chromatography-mass spectrometry for thedetermination of endocrine disrupting chemicals in riversediments. Journal of Chromatography A, 1038(1-2): 19–26.

Lopez P, Brandsma S A, Leonards P E G, De Boer J, 2009. Meth-ods for the determination of phenolic brominated flameretardants, and by-products, formulation intermediates anddecomposition products of brominated flame retardants inwater. Journal of Chromatography A, 1216(3): 334–345.

Mai B X, Chen S J, Luo X J, Chen L G, Yang Q S, Sheng G Y etal., 2005. Distribution of polybrominated diphenyl ethers insediments of the pearl river delta and adjacent South ChinaSea. Environmental Science and Technology, 39(10): 3521–3527.

Polo M, Llompart M, Garcia-Jares C, Gomez-Noya G, BollainM H, Cela R, 2006. Development of a solid-phase microex-traction method for the analysis of phenolic flame retardantsin water samples. Journal of Chromatography A, 1124(1-2):11–21.

Sanchez-Brunete C, Miguel E, Tadeo J L, 2009. Determina-tion of tetrabromobisphenol-A, tetrachlorobisphenol-A andbisphenol-A in soil by ultrasonic assisted extraction andgas chromatography-mass spectrometry. Journal of Chro-matography A, 1216(29): 5497–5503.

Voordeckers J W, Fennell D E, Jones K, Haggblom M M,2002. Anaerobic biotransformation of tetrabromobisphenolA, tetrachlorobisphenol A, and bisphenol A in estuarinesediments. Environmental Science and Technology, 36(4):696–701.

Wang S, Zhang S Z, Huang H L, Christie P, 2011. Behaviorof decabromodiphenyl ether (BDE-209) in soil: Effects ofrhizosphere and mycorrhizal colonization of ryegrass roots.Environmental Pollution, 159(3): 749–753.

Page 14: ISSN 1001–0742 Journal of Environmental Sciences

Editorial Board of Journal of Environmental SciencesEditor-in-Chief

Hongxiao Tang Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Associate Editors-in-ChiefJiuhui Qu Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaShu Tao Peking University, ChinaNigel BellPo-Keung Wong

Editorial BoardAquatic environmentBaoyu GaoShandong University, ChinaMaohong FanUniversity of Wyoming, USAChihpin Huang National Chiao Tung UniversityTaiwan, ChinaNg Wun JernNanyang Environment & Water Research Institute, SingaporeClark C. K. LiuUniversity of Hawaii at Manoa, USAHokyong ShonUniversity of Technology, Sydney, AustraliaZijian WangResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaZhiwu WangThe Ohio State University, USAYuxiang WangQueen’s University, CanadaMin YangResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaZhifeng YangBeijing Normal University, ChinaHan-Qing YuUniversity of Science & Technology of ChinaTerrestrial environmentChristopher AndersonMassey University, New ZealandZucong CaiNanjing Normal University, ChinaXinbin FengInstitute of Geochemistry, Chinese Academy of Sciences, ChinaHongqing HuHuazhong Agricultural University, ChinaKin-Che LamThe Chinese University of Hong KongHong Kong, ChinaErwin KlumppResearch Centre Juelich, Agrosphere InstituteGermanyPeijun LiInstitute of Applied Ecology, Chinese Academy of Sciences, China

Environmental toxicology and healthJingwen Chen Dalian University of Technology, ChinaJianying HuPeking University, ChinaGuibin JiangResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaSijin LiuResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaTsuyoshi NakanishiGifu Pharmaceutical University, JapanWillie PeijnenburgUniversity of Leiden, The NetherlandsBingsheng ZhouInstitute of Hydrobiology, Chinese Academy of Sciences, ChinaEnvironmental catalysis and materialsHong He Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaJunhua LiTsinghua University, ChinaWenfeng Shangguan Shanghai Jiao Tong University, ChinaYasutake Teraoka Kyushu University, JapanRalph T. YangUniversity of Michigan, USAEnvironmental analysis and methodZongwei CaiHong Kong Baptist University, Hong Kong, ChinaJiping ChenDalian Institute of Chemical Physics, Chinese Academy of Sciences, ChinaMinghui ZhengResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaMunicipal solid waste and green chemistryPinjing HeTongji University, ChinaEnvironmental ecologyRusong WangResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Editorial office staff

Managing editorEditorsEnglish editor

Michael SchloterGerman Research Center for Environmental HealthGermanyXuejun WangPeking University, ChinaLizhong ZhuZhejiang University, ChinaAtomospheric environmentJianmin ChenFudan University, ChinaAbdelwahid MelloukiCentre National de la Recherche ScientifiqueFranceYujing MuResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaMin ShaoPeking University, ChinaJames Jay SchauerUniversity of Wisconsin-Madison, USAYuesi WangInstitute of Atmospheric Physics, Chinese Academy of Sciences, ChinaXin YangUniversity of Cambridge, UKEnvironmental biologyYong CaiFlorida International University, USAHenner HollertRWTH Aachen University, GermanyJae-Seong LeeHanyang University, South KoreaChristopher RensingUniversity of Copenhagen, DenmarkBojan SedmakNational Institute of Biology, LjubljanaLirong SongInstitute of Hydrobiology, the Chinese Academy of Sciences, ChinaChunxia WangNational Natural Science Foundation of ChinaGehong WeiNorthwest A & F University, ChinaDaqiang YinTongji University, ChinaZhongtang YuThe Ohio State University, USA

Copyright© Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

Imperial College London, United KingdomThe Chinese University of Hong Kong, Hong Kong, China

Zixuan Wang Suqin Liu Zhengang MaoCatherine Rice (USA)

Qingcai Feng

Page 15: ISSN 1001–0742 Journal of Environmental Sciences

JOURNAL OF ENVIRONMENTAL SCIENCES环境科学学报(英文版)

(http://www.jesc.ac.cn)Aims and scopeJournal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environ-mental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research andvaluable findings in environmental sciences. The types of articles published are research article, critical review, rapidcommunications, and special issues.The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrialwater and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environ-ment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments;toxicological effects of terrorist chemical release on the natural environment and human health; development of environ-mental catalysts and materials.For subscription to electronic editionElsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.For subscription to print editionChina: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China.Tel: +86-10-64017032; E-mail: [email protected], or the local post office throughout China (domestic postcode:2-580).Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Officenearest you.Submission declarationSubmission of an article implies that the work described has not been published previously (except in the form of anabstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere.The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the workwas carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any otherlanguage, including electronically without the written consent of the copyright-holder.Submission declarationSubmission of the work described has not been published previously (except in the form of an abstract or as part of apublished lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication shouldbe approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If themanuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, includingelectronically without the written consent of the copyright-holder.EditorialAuthors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel:+86-10-62920553, E-mail: [email protected], [email protected]. Instruction to authors is available at http://www.jesc.ac.cn.

Journal of Environmental Sciences (Established in 1989)Vol. 25 No. 11 2013

Supervised by Chinese Academy of Sciences Published by Science Press, Beijing, China

Sponsored by Research Center for Eco-Environmental Elsevier Limited, The Netherlands

Sciences, Chinese Academy of Sciences Distributed by

Edited by Editorial Office of Journal of Domestic Science Press, 16 Donghuangchenggen

Environmental Sciences North Street, Beijing 100717, China

P. O. Box 2871, Beijing 100085, China Local Post Offices through China

Tel: 86-10-62920553; http://www.jesc.ac.cn Foreign Elsevier Limited

E-mail: [email protected], [email protected] http://www.elsevier.com/locate/jes

Editor-in-chief Hongxiao Tang Printed by Beijing Beilin Printing House, 100083, China

CN 11-2629/X Domestic postcode: 2-580 Domestic price per issue RMB ¥ 110.00

Page 16: ISSN 1001–0742 Journal of Environmental Sciences

Editorial Board of Journal of Environmental SciencesEditor-in-Chief

Hongxiao Tang Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Associate Editors-in-ChiefJiuhui Qu Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaShu Tao Peking University, ChinaNigel BellPo-Keung Wong

Editorial BoardAquatic environmentBaoyu GaoShandong University, ChinaMaohong FanUniversity of Wyoming, USAChihpin Huang National Chiao Tung UniversityTaiwan, ChinaNg Wun JernNanyang Environment & Water Research Institute, SingaporeClark C. K. LiuUniversity of Hawaii at Manoa, USAHokyong ShonUniversity of Technology, Sydney, AustraliaZijian WangResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaZhiwu WangThe Ohio State University, USAYuxiang WangQueen’s University, CanadaMin YangResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaZhifeng YangBeijing Normal University, ChinaHan-Qing YuUniversity of Science & Technology of ChinaTerrestrial environmentChristopher AndersonMassey University, New ZealandZucong CaiNanjing Normal University, ChinaXinbin FengInstitute of Geochemistry, Chinese Academy of Sciences, ChinaHongqing HuHuazhong Agricultural University, ChinaKin-Che LamThe Chinese University of Hong KongHong Kong, ChinaErwin KlumppResearch Centre Juelich, Agrosphere InstituteGermanyPeijun LiInstitute of Applied Ecology, Chinese Academy of Sciences, China

Environmental toxicology and healthJingwen Chen Dalian University of Technology, ChinaJianying HuPeking University, ChinaGuibin JiangResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaSijin LiuResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaTsuyoshi NakanishiGifu Pharmaceutical University, JapanWillie PeijnenburgUniversity of Leiden, The NetherlandsBingsheng ZhouInstitute of Hydrobiology, Chinese Academy of Sciences, ChinaEnvironmental catalysis and materialsHong He Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaJunhua LiTsinghua University, ChinaWenfeng Shangguan Shanghai Jiao Tong University, ChinaYasutake Teraoka Kyushu University, JapanRalph T. YangUniversity of Michigan, USAEnvironmental analysis and methodZongwei CaiHong Kong Baptist University, Hong Kong, ChinaJiping ChenDalian Institute of Chemical Physics, Chinese Academy of Sciences, ChinaMinghui ZhengResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaMunicipal solid waste and green chemistryPinjing HeTongji University, ChinaEnvironmental ecologyRusong WangResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Editorial office staff

Managing editorEditorsEnglish editor

Michael SchloterGerman Research Center for Environmental HealthGermanyXuejun WangPeking University, ChinaLizhong ZhuZhejiang University, ChinaAtomospheric environmentJianmin ChenFudan University, ChinaAbdelwahid MelloukiCentre National de la Recherche ScientifiqueFranceYujing MuResearch Center for Eco-Environmental Sciences, Chinese Academy of Sciences, ChinaMin ShaoPeking University, ChinaJames Jay SchauerUniversity of Wisconsin-Madison, USAYuesi WangInstitute of Atmospheric Physics, Chinese Academy of Sciences, ChinaXin YangUniversity of Cambridge, UKEnvironmental biologyYong CaiFlorida International University, USAHenner HollertRWTH Aachen University, GermanyJae-Seong LeeHanyang University, South KoreaChristopher RensingUniversity of Copenhagen, DenmarkBojan SedmakNational Institute of Biology, LjubljanaLirong SongInstitute of Hydrobiology, the Chinese Academy of Sciences, ChinaChunxia WangNational Natural Science Foundation of ChinaGehong WeiNorthwest A & F University, ChinaDaqiang YinTongji University, ChinaZhongtang YuThe Ohio State University, USA

Copyright© Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

Imperial College London, United KingdomThe Chinese University of Hong Kong, Hong Kong, China

Zixuan Wang Suqin Liu Zhengang MaoCatherine Rice (USA)

Qingcai Feng

Page 17: ISSN 1001–0742 Journal of Environmental Sciences

JOURNAL OF ENVIRONMENTAL SCIENCES环境科学学报(英文版)

(http://www.jesc.ac.cn)Aims and scopeJournal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environ-mental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research andvaluable findings in environmental sciences. The types of articles published are research article, critical review, rapidcommunications, and special issues.The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrialwater and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environ-ment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments;toxicological effects of terrorist chemical release on the natural environment and human health; development of environ-mental catalysts and materials.For subscription to electronic editionElsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.For subscription to print editionChina: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China.Tel: +86-10-64017032; E-mail: [email protected], or the local post office throughout China (domestic postcode:2-580).Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Officenearest you.Submission declarationSubmission of an article implies that the work described has not been published previously (except in the form of anabstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere.The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the workwas carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any otherlanguage, including electronically without the written consent of the copyright-holder.Submission declarationSubmission of the work described has not been published previously (except in the form of an abstract or as part of apublished lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication shouldbe approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If themanuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, includingelectronically without the written consent of the copyright-holder.EditorialAuthors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel:+86-10-62920553, E-mail: [email protected], [email protected]. Instruction to authors is available at http://www.jesc.ac.cn.

Journal of Environmental Sciences (Established in 1989)Vol. 25 No. 11 2013

Supervised by Chinese Academy of Sciences Published by Science Press, Beijing, China

Sponsored by Research Center for Eco-Environmental Elsevier Limited, The Netherlands

Sciences, Chinese Academy of Sciences Distributed by

Edited by Editorial Office of Journal of Domestic Science Press, 16 Donghuangchenggen

Environmental Sciences North Street, Beijing 100717, China

P. O. Box 2871, Beijing 100085, China Local Post Offices through China

Tel: 86-10-62920553; http://www.jesc.ac.cn Foreign Elsevier Limited

E-mail: [email protected], [email protected] http://www.elsevier.com/locate/jes

Editor-in-chief Hongxiao Tang Printed by Beijing Beilin Printing House, 100083, China

CN 11-2629/X Domestic postcode: 2-580 Domestic price per issue RMB ¥ 110.00