12
Introduction Abstract and Motivation Sobolev Spaces Isotonia Isotonic Regression in Sobolev Spaces Michal Pešta Department of Probability and Mathematical Statistics Supervisor: Mgr. Zdenˇ ek Hlávka, Ph.D. Robust 2006 Michal Pešta Isotonic Regression in Sobolev Spaces

Isotonic Regression in Sobolev Spacesartax.karlin.mff.cuni.cz/~macim1am/pub/teach/michal.pdf · 2006. 11. 14. · Isotonia Isotonic Regression in Sobolev Spaces Michal Pešta Department

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

  • IntroductionAbstract and Motivation

    Sobolev SpacesIsotonia

    Isotonic Regression in Sobolev Spaces

    Michal Pešta

    Department of Probability and Mathematical Statistics

    Supervisor:Mgr. Zdeněk Hlávka, Ph.D.

    Robust 2006

    Michal Pešta Isotonic Regression in Sobolev Spaces

  • IntroductionAbstract and Motivation

    Sobolev SpacesIsotonia

    DAX Calloptions – Multiple Observations

    6000 6500 7000 7500

    010

    020

    030

    040

    050

    060

    070

    0Calloptions with Point−Wise Confidence Intervals

    Strike price

    Opt

    ion

    pric

    e

    Regression CurveAsymtotic CIBootstrap CIWild Bootstrap CI

    Figure: DAX Calloptions Data – Monotonic (Decreasing) and Convex Regression Curve in SobolevSpace of rank m = 4 with various types of 95% Confidence Intervals.

    we would like to control the value of first m derivatives at observation points

    Michal Pešta Isotonic Regression in Sobolev Spaces

  • IntroductionAbstract and Motivation

    Sobolev SpacesIsotonia

    Aim of Paper and Main Steps of Procedure

    Searching for Regression Function with Specific Constraints

    nonparametric estimation takes place over balls of functions which are elementsof suitable Sobolev space (sufficiently smooth sets of functions)

    the Sobolev spaces are special types of Hilbert spaces ⇒ facilitate calculation ofleast square projection ⇒ decomposition into mutually orthogonal complementstransform the problem of searching for the best fitting function in an infinitedimensional space into a finite dimensional optimization problem

    isotonic regression ≡ imposition of additional constraint —isotonia— onnonparametric regression estimation, e.g. monotonicity, convexity or concavity

    confidence intervals based on asymptotic behaviour and bootstrap techniques

    tests of monotonicity, concavity, convexity, . . .

    Michal Pešta Isotonic Regression in Sobolev Spaces

  • IntroductionAbstract and Motivation

    Sobolev SpacesIsotonia

    Aim of Paper and Main Steps of Procedure

    Searching for Regression Function with Specific Constraints

    nonparametric estimation takes place over balls of functions which are elementsof suitable Sobolev space (sufficiently smooth sets of functions)

    the Sobolev spaces are special types of Hilbert spaces ⇒ facilitate calculation ofleast square projection ⇒ decomposition into mutually orthogonal complementstransform the problem of searching for the best fitting function in an infinitedimensional space into a finite dimensional optimization problem

    isotonic regression ≡ imposition of additional constraint —isotonia— onnonparametric regression estimation, e.g. monotonicity, convexity or concavity

    confidence intervals based on asymptotic behaviour and bootstrap techniques

    tests of monotonicity, concavity, convexity, . . .

    Michal Pešta Isotonic Regression in Sobolev Spaces

  • IntroductionAbstract and Motivation

    Sobolev SpacesIsotonia

    Aim of Paper and Main Steps of Procedure

    Searching for Regression Function with Specific Constraints

    nonparametric estimation takes place over balls of functions which are elementsof suitable Sobolev space (sufficiently smooth sets of functions)

    the Sobolev spaces are special types of Hilbert spaces ⇒ facilitate calculation ofleast square projection ⇒ decomposition into mutually orthogonal complementstransform the problem of searching for the best fitting function in an infinitedimensional space into a finite dimensional optimization problem

    isotonic regression ≡ imposition of additional constraint —isotonia— onnonparametric regression estimation, e.g. monotonicity, convexity or concavity

    confidence intervals based on asymptotic behaviour and bootstrap techniques

    tests of monotonicity, concavity, convexity, . . .

    Michal Pešta Isotonic Regression in Sobolev Spaces

  • IntroductionAbstract and Motivation

    Sobolev SpacesIsotonia

    Aim of Paper and Main Steps of Procedure

    Searching for Regression Function with Specific Constraints

    nonparametric estimation takes place over balls of functions which are elementsof suitable Sobolev space (sufficiently smooth sets of functions)

    the Sobolev spaces are special types of Hilbert spaces ⇒ facilitate calculation ofleast square projection ⇒ decomposition into mutually orthogonal complementstransform the problem of searching for the best fitting function in an infinitedimensional space into a finite dimensional optimization problem

    isotonic regression ≡ imposition of additional constraint —isotonia— onnonparametric regression estimation, e.g. monotonicity, convexity or concavity

    confidence intervals based on asymptotic behaviour and bootstrap techniques

    tests of monotonicity, concavity, convexity, . . .

    Michal Pešta Isotonic Regression in Sobolev Spaces

  • IntroductionAbstract and Motivation

    Sobolev SpacesIsotonia

    Aim of Paper and Main Steps of Procedure

    Searching for Regression Function with Specific Constraints

    nonparametric estimation takes place over balls of functions which are elementsof suitable Sobolev space (sufficiently smooth sets of functions)

    the Sobolev spaces are special types of Hilbert spaces ⇒ facilitate calculation ofleast square projection ⇒ decomposition into mutually orthogonal complementstransform the problem of searching for the best fitting function in an infinitedimensional space into a finite dimensional optimization problem

    isotonic regression ≡ imposition of additional constraint —isotonia— onnonparametric regression estimation, e.g. monotonicity, convexity or concavity

    confidence intervals based on asymptotic behaviour and bootstrap techniques

    tests of monotonicity, concavity, convexity, . . .

    Michal Pešta Isotonic Regression in Sobolev Spaces

  • IntroductionAbstract and Motivation

    Sobolev SpacesIsotonia

    Aim of Paper and Main Steps of Procedure

    Searching for Regression Function with Specific Constraints

    nonparametric estimation takes place over balls of functions which are elementsof suitable Sobolev space (sufficiently smooth sets of functions)

    the Sobolev spaces are special types of Hilbert spaces ⇒ facilitate calculation ofleast square projection ⇒ decomposition into mutually orthogonal complementstransform the problem of searching for the best fitting function in an infinitedimensional space into a finite dimensional optimization problem

    isotonic regression ≡ imposition of additional constraint —isotonia— onnonparametric regression estimation, e.g. monotonicity, convexity or concavity

    confidence intervals based on asymptotic behaviour and bootstrap techniques

    tests of monotonicity, concavity, convexity, . . .

    Michal Pešta Isotonic Regression in Sobolev Spaces

  • IntroductionAbstract and Motivation

    Sobolev SpacesIsotonia

    Least SquaresEstimators

    Infinite to Finite

    Theorem (Infinite to Finite)

    Let y = (y1, . . . , yn)′ and define

    σ̂2 = minf∈Hm

    1n

    nXi=1

    [yi − f (xi )]2 s.t. ‖f‖2Sob,m ≤ L, (1)

    s2 = minc∈Rn

    1n

    [y −Ψc]′ [y −Ψc] s.t. c′Ψc ≤ L (2)

    where c is a n × 1 vector and Ψ is the representor matrix. Then σ̂2 = s2. Furthermore,there exists a solution of optimizing problem of the form

    bf = nXi=1

    bciψxi (3)where bc = ( bc1, . . . , bcn)′ solves σ̂2. The estimator bf is unique a.s.

    Michal Pešta Isotonic Regression in Sobolev Spaces

  • IntroductionAbstract and Motivation

    Sobolev SpacesIsotonia

    Least SquaresEstimators

    Construction of Regression Estimator

    observations X1, . . . ,Xnestimator

    bf (x) = nXj=1

    bcj 2mXk=1

    exph<

    `eiθk

    ´x

    i

    I[x≤Xj ]γk cosh=

    `eiθk

    ´x

    i+ I[x>Xj ]γ2m+k sin

    h=

    `eiθk

    ´x

    i ff(4)

    bf is NOT estimated using goniometric splines NEITHER kernel functionsquadratic optimizing with constraints provides bcjRiesz Representation Theorem gives us θkboundary conditions of specific differential equation provides γk

    Michal Pešta Isotonic Regression in Sobolev Spaces

  • IntroductionAbstract and Motivation

    Sobolev SpacesIsotonia

    Least SquaresEstimators

    Construction of Regression Estimator

    observations X1, . . . ,Xnestimator

    bf (x) = nXj=1

    bcj 2mXk=1

    exph<

    `eiθk

    ´x

    i

    I[x≤Xj ]γk cosh=

    `eiθk

    ´x

    i+ I[x>Xj ]γ2m+k sin

    h=

    `eiθk

    ´x

    i ff(4)

    bf is NOT estimated using goniometric splines NEITHER kernel functionsquadratic optimizing with constraints provides bcjRiesz Representation Theorem gives us θkboundary conditions of specific differential equation provides γk

    Michal Pešta Isotonic Regression in Sobolev Spaces

  • IntroductionAbstract and Motivation

    Sobolev SpacesIsotonia

    Choosing of Smoothing Parameter

    Cross–Validation

    0.2 0.4 0.6 0.8

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    Monotonic Regression in Sobolev Space

    Independent X data

    Dep

    ende

    nt Y

    dat

    a

    −4.5 −4.0 −3.5 −3.0 −2.5 −2.0

    0.04

    00.

    045

    0.05

    00.

    055

    Cross−Validation for Smoothing Parameter

    log(χ)C

    V(χ

    )

    Figure: Monotonic Regression Curve in Sobolev Space of rank m = 2 for the best value ofSmoothing Parameter χ (left) according to Cross–Validation function CV (right).

    Cross–Validation gives us optimal smoothing parameter

    Michal Pešta Isotonic Regression in Sobolev Spaces

    IntroductionAbstract and MotivationAim of Paper and Main Steps of Procedure

    Sobolev SpacesLeast SquaresEstimators

    IsotoniaChoosing of Smoothing Parameter