55
Is opacityinduced minor metal market volatility a threat to promising green technologies? A study of the tellurium market Fredrik Söderqvist Master of Science Thesis Uppsala University Department of Economics Submitted June 7, 2013 Supervisor: Associate Professor Mikael Bask

Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

 

 

 

 

Is  opacity-­‐induced  minor  metal  market  volatility  a  threat  to  promising  green  

technologies?  A  study  of  the  tellurium  market  

 

Fredrik  Söderqvist      Master  of  Science  Thesis  Uppsala  University  Department  of  Economics  Submitted  June  7,  2013  Supervisor:  Associate  Professor  Mikael  Bask                                      

Page 2: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   2    

 

     

Page 3: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   3    

 

                     This   master   thesis   was   written   in   the   spring   of   2013   as   part   of   the   Uppsala  University  Master  Programme  in  Economics.  I  would  like  to  thank  Sander  de  Leeuw  at  New  Boliden  AB  for  the  support,  inspiration,  and  data  access  he  has  generously  granted   me,   and   my   supervisor   Mikael   Bask   for   his   thoughtful   guidance   and  meticulous  supervision  of  this  thesis.    For   questions,   comments   or   inquiries   regarding   the   content,   methods,   data   or  conclusions  drawn  in  this  thesis,  please  contact  [email protected]    

Page 4: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   4    

 

Abstract  Tellurium  is  one  of  the  rarest  metals  in  the  earth’s  crust.  Increased  demand  for  cadmium  telluride  photovoltaic  cells  along  with  an  opaque  pricing  and  quantity-­‐reporting   system,   have   recently   caused   high   price   volatility   and   a   speculative  bubble   in  the  tellurium  market,  resulting  in  overstocking  and  depressed  prices.  In  a  longer  perspective  this  may  be  a  threat  to  cadmium  telluride  photovoltaics  as  a  power-­‐generating  technology.  This  master  thesis  compares  how  actors  may  perceive  news  innovation  in  the  opaque  tellurium  market  compared  to  the  more  transparent   molybdenum   market.   A   quantitative   analysis   of   industry   news  reporting  on  the  two  metals,  combined  with  a  SVAR  impulse  response  analysis,  helps   me   determine   which   actors   and   factors   exert   most   influence   on   spot  market   prices.   In   the   opaque   tellurium  market,   relatively   unreliable   proxies   of  supply  and  demand  are  most  frequent  in  the  news  reporting  while  having  a  big  impact   on   prices,   whereas   the   transparent   molybdenum   market   uses   more  reliable  variables  –  such  as  futures  prices –  and  transparent  supply  information,  whilst  also  relying  on  a  frequent  stream  of  dependable  proxies  to  scope  market  sentiments.   My   findings   lead   me   to   recommend   policy   makers   to   implement  measures   to   increase   market   transparency,   which   may   be   accomplished   by  extending   the   data-­‐sharing   regime   of   the   REACH   database   to   minor   metal  markets.  Attempting  to  limit  speculation  in  minor  metal  markets  is  perhaps  too  blunt  a  tool  to  fix  an  inherent  problem  of  a  free  exchange-­‐pricing  mechanism.  

Sammanfattning  Tellur   är   en   av   de   mest   sällsynta   metallerna   på   Jorden.   Ökad   efterfrågan   av  kadmiumtelluridsolpaneler   har   nyligen   orsakat   stor   volatilitet   på  tellurmarknaden.  Ett  opakt  prissättnings-­‐och  kvantitetsrapporteringssystem  har  bidragit   till   att   en   prisbubbla   bildats   och   spruckit,   vilket   resulterat   i   att  marknadsaktörer   köpt   på   sig   stora   lager   till   höga   priser   som   de   sedan   inte  kunnat  sälja  vidare.  I  ett  längre  perspektiv  kan  detta  innebära  begränsningar  vid  tillverkning  av  solcellsteknologi  baserad  på  kadmiumtellurid,  då  ett  volatilt  pris  kan  göra  nya  tellurgruvprojekt  alltför  riskabla.  Denna  masteruppsats  jämför  hur  en   typisk   marknadsaktör   kan   reagera   på   prisinnovationer   i   den   opaka  tellurmarkanden   och   den   mer   transparenta   molybdenmarknaden.   Metoden  består   av   en   kvantitativ   analys   av   facknyheter   rörande   de   två   metallerna,  varifrån   variabler   väljs   till   en   SVAR  modell  med   impuls-­‐responsanalys.  Urvalet  av   variabler   är   få   och   volatila   på   den   opaka   tellurmarknaden,  medan   den  mer  transparenta   molybdenmarknaden   har   ett   större   utbud   av   variabler   som  kännetecknas   av   god   transparens   och   relativ   förutsägbarhet.   Mina   slutsatser  leder   mig   till   att   rekommendera   beslutsfattare   att   vidta   åtgärder   för   att   öka  tellurmarknadens  transparens  genom  EU-­‐samarbetet,  förslagsvis  genom  att  göra  anonymiserad  data  från  REACH  databasen  tillgänglig  för  allmänheten.  Samtidigt  avråder   jag   från   åtgärder   som   syftar   till   att   minska   spekulation,   då  implementering  av  en  sådan  policy  kan  bli  både  dyr  och  komplicerad.    Key  words:  Tellurium,  Minor  Metal,  Market  Volatility,  Market  Transparency,  Molybdenum,  Market  Efficiency,  REACH,  SVAR,  Quantitative  Analysis,  London  Metal  Exchange.    JEL  codes:  G13,  G28,  Q02,  Q31,  Q32,  Q38,  Q55.    

Page 5: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   5    

 

Table  of  Contents  

IS  OPACITY-­‐INDUCED  MINOR  METAL  MARKET  VOLATILITY  A  THREAT  TO  PROMISING  GREEN  TECHNOLOGIES?  A  STUDY  OF  THE  TELLURIUM  MARKET  .............  1  ABSTRACT  ..........................................................................................................................................  4  SAMMANFATTNING  ........................................................................................................................  4  1.  INTRODUCTION  ...........................................................................................................................  6  2.  BACKGROUND  ..............................................................................................................................  8  2.1  TELLURIUM  .................................................................................................................................................  8  2.2  TELLURIUM  SUPPLY  ...................................................................................................................................  9  2.3  TELLURIUM  DEMAND  ..............................................................................................................................  11  2.4  THE  TELLURIUM  MARKETPLACE  ...........................................................................................................  12  2.5  THE  TELLURIUM  MARKET  TODAY  ..........................................................................................................  13  2.6  MOLYBDENUM  -­‐  A  NOT-­‐SO  MINOR  METAL  ...........................................................................................  14  2.7  CRITICAL  MINOR  METALS  .......................................................................................................................  15  2.8  PREVIOUS  STUDIES  OF  MINOR  METAL  MARKETS  ................................................................................  15  

3.  METHOD:  DETERMINING  THE  PRICE  MECHANISMS  OF  TELLURIUM  AND  MOLYBDENUM  ...............................................................................................................................  17  3.1  SVAR  AND  IMPULSE  RESPONSE  FUNCTIONS  .......................................................................................  17  3.2  QUANTITATIVE  ANALYSIS  .......................................................................................................................  18  

4.  DATA  AND  RESULTS  ................................................................................................................  22  4.1  SPOT  PRICES  AND  RETURNS  ...................................................................................................................  22  4.2  QUANTITATIVE  ANALYSIS  FINDINGS  .....................................................................................................  24  4.3  INCORPORATING  APPROPRIATE  ACTORS  AND  FACTORS  INTO  THE  SVAR  MODEL  .......................  28  4.3.1  The  Yu  et  al  (2012)  model  on  applied  on  tellurium  .........................................................  28  4.3.2  A  market-­‐  specific  tellurium  model  .........................................................................................  32  4.3.3  A  market-­‐specific  molybdenum  model  ..................................................................................  36  

4.4  OTHER  FINDINGS  FROM  THE  QUANTITATIVE  ANALYSIS  ....................................................................  40  5.  CONCLUSIONS  ............................................................................................................................  44  REFERENCES  ...................................................................................................................................  46  APPENDIX  ........................................................................................................................................  50  LIST  OF  ABBREVIATIONS  ................................................................................................................................  50  VAR  AND  SVAR  FUNCTION  DERIVATION  ...................................................................................................  51  QUANTITATIVE  ANALYSIS  CODING  EXAMPLE  .............................................................................................  53  COMPLETE  STRUCTURAL  INNOVATION  GRAPHS  ........................................................................................  54  

     

Page 6: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   6    

 

1.  Introduction    As   photovoltaic   (PV)   technologies   recently   reached   grid   parity   without  government  subsidies   in  several  places  and  thus  becoming  a  cheaper  source  of  power  compared  to  buying  electricity  from  the  power  grid1,  demand  for  critical  materials   in   PV   technologies   is   expected   to   increase.   One   of   these   critical  materials   is   tellurium   (Te),   a  minor  metal2  and   one   of   the   rarest  metals   in   the  Earth’s   crust.   Until   recently,   Te   has   mainly   been   used   as   a   machinability-­‐  increasing   alloying   agent   in   steel   manufacturing.   The   metal’s   semi-­‐conducting  properties  –  when  bound  with  cadmium  to  produce  Cadmium  Telluride  (CdTe)  –  have   proven   excellent   at   converting   solar   radiation   into   electricity   in   CdTe   PV  solar   cells.   CdTe   PV   is,   as   of   February   2013,   the   most   efficient   technology   to  harness   the  power  of   the  sun  with   regards   to  costs  per  watt  produced   ($/Wp)  and  conversion  efficiency;  however,  long  term  CdTe  growth  may  be  hemmed  by  the  limited  supply  of  Te  and  its  relative  rarity.  Despite  demand  looking  positive  in  the  long  run,  the  spot  market  price  for  Te  tells  a  conflicting  story.  Prices  have  rocketed  and  fallen  in  recent  years,  and  thus  volatility  is  very  high.  To  compare  the  highs  and   lows;   in   June  2004  99.99%  pure  Te  cost  $31  per  kg  on   the  open  market,  seven  years  later  in  June  2011  it  cost  $430  per  kg,  and  in  June  2012  the  spot  price  was  only  $145  per  kg.  Like  most  minor  metals,  Te  is  not  listed  on  any  commodities  bourse,   and   there   exists   little   reporting  of   traded  quantities.  This  makes  business  and  long-­‐term  investment  difficult  for  actors  on  the  market  and  could   threaten   future   development   of   CdTe   PV   production.   At   a   UK   House   of  Commons  Science  and  Technology  Committee  (2011)-­‐  hearing,  it  was  suggested  that   critical   metal   market   supply-­‐information,   such   as   Te   supply,   should   be  improved,   and   measures   to   limit   speculative   buying   should   be   considered   in  order  to  remedy  volatility  in  minor  metal  markets.    This   thesis   is   an   attempt   to   determine   what   causes   volatility   in   the   Te   metal  market.  The  two  main  research  questions  are:  which  factors,  actors,  and  market  institutions  have  the  biggest  impact  on  Te  prices,  and  what  does  this  tell  us  about  the  overall  trading  conditions  on  the  market?  The  results  and  methodology  could  lend  conclusions  valid  to  other   industry-­‐critical,  opaquely  traded  minor  metals,  and   add   to   the   discussion   as   to  what   can  be   done   to   reduce   volatility   in   these  markets.   This   thesis   also   contributes   to   the   scientific   literature   concerning   Te  supply   limitations   to  CdTe  PV,  which   to  my  knowledge  has  not   focused  on   the  threat  to  the  future  supply  of  Te  that  high  price  volatility  may  pose.    In   order   to   determine   what  makes   the   Te   price   fluctuate,   a   SVAR-­‐model   with  impulse   response   functions   is   estimated   using   the   same   aggregated  macroeconomic   variables  which   Yu   et   al   (2012)   used   to   attempt   to   determine  price  fluctuations  in  the  photovoltaic  silicon  feedstock  (PVSF)  spot  market.  PVSF  is   a   highly   price   volatile,   critical  material   in   a   rival   PV   solar   cell   technology.   A  

                                                                                                               1  REneweconomy  article  UBS:  Boom  in  unsubsidised  solar  PV  flags  energy  revolution:  http://reneweconomy.com.au/2013/ubs-­‐boom-­‐in-­‐unsubsidised-­‐solar-­‐pv-­‐flags-­‐energy-­‐revolution-­‐60218  (accessed  May  21  2013).  2  A  metal  included  in  the  Minor  Metal  Trade  Association:  http://www.mmta.co.uk/history-­‐and-­‐change  (accessed  May  21  2013).  

Page 7: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   7    

 

quantitative  analysis  is  then  applied  to  a  set  of  articles  published  in  an  industry  newspaper,   the  Metal  Bulletin,   in  order  to  better  select  variables  that  are  more  market-­‐specific.  In  order  to  benchmark  and  better  relate  the  Te  results,  the  same  method   is   applied   to   molybdenum   (Mo),   which   is   a   minor   metal   with   similar  characteristics  and  applications  as  Te.  The  selection  of  Mo   is  mainly  motivated  by   its   introduction   to   the   London   Metal   Exchange   (LME)   in   2010;   a   market  regime  transition  that  introduced  futures  contracts,  and  transparent  pricing  and  quantitative  reporting  mechanisms.    My   findings   indicate   that  market-­‐specific   actors,   factors   and   institutions  amply  describe   price   fluctuations   in   both   the   Te   and   Mo   markets,   whereas   the  aggregate  macroeconomic  variables  presented  by  Yu  et  al  (2012)  do  not  explain  price   fluctuations   well.   The   quantitative   analysis   suggests   that   there   are   few  variables   to   choose   from   in   the   Te   market   (mainly   market   specific   stock  companies).   These   variables   explain   price   fluctuations   quite   well,   but   are   not  very   transparent.   On   the   Mo   market   there   are   plenty   of   proxies   of   supply,  indices,  and  futures  prices  that  amply  explain  variation,  whilst  exhibiting  steady  information   flows  of   transparent  price  and  quantity  reports.  From  this   I  advise  that  measures  are  taken   in  the  Te  market   to   introduce  some  of   the   institutions  that   help   reduce   volatility   on   the   Mo   market.   I   deem   that   the   most   critical  measure  would   be   to   improve   quantitative   transparency   in   the  market,  which  could  be  done  within  the  data-­‐sharing  regime  of  the  REACH  framework.    In  the  second  chapter,  a  background  to  Te,  its  supply,  demand,  marketplace,  and  market   today   is   given,   along   with   a   brief   introduction   to   the   Mo   market,   a  definition   of   minor   metals,   and   a   summary   of   older   studies   regarding   minor  metal   market   information,   efficiencies,   deficiencies   and   transparency.   In   the  third   chapter,   the   SVAR  model,   as   presented   by   Yu   et   al   (2012)   is   introduced,  along  with  a  description  of  my  quantitative  analysis.  In  the  fourth  chapter,  spot  prices   and   returns   of   Te   and   Mo   are   selected.   Results   from   the   quantitative  analysis  are  then  presented,  from  which  variable  selection  is  made,  followed  by  SVAR  and  impulse  response  function  results  from  the  Yu  et  al,  Te-­‐market  specific  and   Mo-­‐   market   specific   SVAR   models.   Finally,   other   findings   from   the  quantitative  analysis  are  presented.  In  the  last  chapter  I  discuss  my  conclusions  and  policy  recommendations.      

Page 8: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   8    

 

2.  Background  

2.1  Tellurium    Te  is  an  element  in  the  same  family  as  oxygen,  sulphur,  selenium  and  polonium.  Its  abundance  on  Earth,  as  displayed  in  Figure  1,  shows  that  it  is  one  of  the  nine  rarest  metals,  where  seven  of  these  are  considered  “precious”  (Green  2010).  Te  has  semi  conducting  properties,  meaning  it  has  the  electrical  properties  of  both  a  conducting  metal  and  an  insulator  (Nussbaum  1962).  Te  supply  has  traditionally  been  a  by-­‐product  of  copper,  lead,  and  zinc  processing,  but  can  also  be  extracted  from  gold  processing  (Green  2009,  New  Boliden  2011)  and  is  mined  as  a  primary  metal  on  two  locations  in  China,  and  one  in  Mexico  (USGS,  2013a).    

 Figure  1  Shows  that  Te  (inside  the  yellow  Rarest  “metals”-­‐cloud)  is  one  of  the  9  rarest  metals  in  the  Earth’s  crust.  Its  abundance  is  similar  to  that  of  gold  (Au)  and  platinum  (Pt).  Source:  USGS  2002.  

In  recent  years,  an  increase  in  demand  for  Te  has  taken  place  due  to  a  change  in  the  primary  industrial  usages  of  the  metal.  The  Selenium  Tellurium  Development  Association   (STDA),   whose   members   include   most   of   the   world’s   major  producers   of   Te,   estimates   that   global   distribution   by   consumption   is   40%   in  solar   cells,   30%   in   thermoelectric   and   photoelectric   copying   devices,   15%   in  metallurgy   as   an   alloying  metal,   5%   in   rubber   formulation   as   a   vulcanisation-­‐  and   acceleration   in   rubber   compounding   processes,   and   10%   in   other  applications   such   as   in   blasting   caps   and   ceramic-­‐   and   glass   pigments   (STDA,  2012,  USGS  2012a).    The  40%  final  consumption  in  photovoltaic  cells  is  due  to  a  recent  demand  surge  that  started  around  the  year  2000,  when  production  of  CdTe  thin  PV  solar  panels  increased  as  a  result  of  technological  advancements  and  government  subsidies  of  PV  (Candelise  et  al,  2011).    

Page 9: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   9    

 

2.2  Tellurium  supply    Estimating   an   exact   volume   of   world   supply   for   tellurium   is   difficult.   Many  countries   and   companies   do   not   report   their   production,   while   volumes  recovered   from   recycled   photoelectric   devices   is   not   reported   at   all   (USGS,  2012a).  The  United  States  Geological  Survey  (2013)  has  chosen  to  withhold  total  US-­‐output   from   the   public   in   order   to   “avoid   disclosing   company   proprietary  data”,   and  due   to   inaccuracies   in   the  data,   have   chosen   to   list  world   output   as  N/A   since   2006.   The   British   Geological   Survey   (BGS,   2013)   has   since   2007  published   data   on   Canadian,   American,   Peruvian   and   Japanese-­‐produced  tonnages  of  Te,   estimating  US  production  at  50   tonnes  per  year.  To  add   to   the  inaccuracies,  all  global  production  estimates  are  only  based  on  Te  produced  from  copper   anode   slimes.3  As   Te   is   not   traded   on   any   major   bourse,   there   are   no  accounting   or   reporting   requirements   –   such   as   those   associated   with   the  London  Metal  Exchange  (2013)  –  and  thus  traded  quantities  remain  unreported.  This   means   that   an   estimated   BGS   (2013)   “total   world   production”  (approximately  96  tonnes)  as  reported  by  Speirs  et  al  (2011),  is  much  lower  than  real  production,  as  it  omits  data  from  Te-­‐producing  countries  such  as  Australia,  Belgium,   Chile,   China,   Colombia,   Germany,   India,   Kazakhstan,   Mexico,   the  Philippines,   and   Poland   (USGS,   2013a).   The   most   thorough   estimate   of   total  world  production  from  copper  anode  slimes  is  between  450  and  500  tonnes  per  year  was  carried  out  by  the  UK  consultancy  firm  Oakdene  Hollins  (2012).    When  discussing  future  supply  of  a  metal,  so-­‐called  reserves  and  reserve  bases  must  be  taken  into  account.  Reserves  are  defined  by  the  USGS  as  the  part  of  the  reserve   base,  which   could   be   economically   extracted   or   produced   at   a   time   of  determination.   Reserve   bases   are   identified   sources   of   a   mineral   which   meet  physical  and  chemical  criteria  related  to  current  mining  practices,  and  that  may  one  day  be  extracted  economically  (USGS  2012a).  Reserves  reported  by  the  USGS  show  only  reserves  of  Te  bound  to  copper  ores,  and  are  thus  an  underestimation  with  regards  to  real  Te  reserves.  The  Oakdene  Hollins  report  (2012)  estimate  the  copper  anode  slimes  reserves  to  be  close  to  24  000  tonnes  of  Te.    Scientific   literature   concerned   with   photovoltaic   progress   has   made   several  attempts  to  estimate  present  and  future  world  supply  of  Te,  as  CdTe  technology  will   not   be   a   viable   power   generation   technology   without   a   steadily   available  supply   of   Te.   In   a   meta-­‐study   of   Te   availability,   Candelise   et   al   (2011)  summarises  data  from  six  studies  between  1998  and  2009  that  estimates  future  yearly   cumulative   supply   of   Te   from  128   to   2000   tonnes   per   year.   A   common  fault   in   many   of   these   estimates   is   that   they   use   the   above-­‐mentioned  underestimated   USGS   data   to   reach   their   conclusions.   Green   (2009)   does   a  further   analysis   of   possible   Te   that   can   be   extracted   from   other   ores,   and   so-­‐called  Bonanza  deposits  that  mines  Te  as  a  primary  metal.  Hourari  et  al  (2013)  is  the  latest  attempt,  and  looks  at  future  supply  from  a  dynamic  perspective,  which  means  that  it  implicitly  takes  Te  prices  and  future  demand  of  CdTe  into  account  when   estimating   future   supplied   quantities   of   Te   in   2050.   The   supply   is  made  dynamic   by   taking   other   possible   final   usages   of   Te   into   account,   as   well   as                                                                                                                  3  A  product  of  electrolysis  copper  refinement,  from  which  impurities  such  as  Te  can  be  extracted.  

Page 10: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   10    

 

including  Te  which  could  be  extracted  when  recycling  spent  CdTe  PV  units.  The  study   concludes   that   future   Te   supply   available   for   CdTe   PV   production   is  expected   to   be   slightly   lower   than   in   previous   studies.   These   global   flows   and  feedback   loops   may   in   the   end   influence   both   supply   and   demand.   Figure   2  illustrates  how   loops  of  Te   supply   are  determinant   for   the  production  of  CdTe  PV.      

 Figure  2  The  CdTe  casual  loop  diagram,  which  highlights  areas  where  production  costs  of  producing  CdTe  PV  can  be  reduced.  Source:  Houari  et  al  (2013).  

Figure   3,   the   dynamic  model,   visualises  where   future   sources   of   Te  may   come  from,  and  where  it  may  end  up.    

 Figure  3  The  system  dynamics  model  where  annual  Te  production  plays  a  big  role.  Source:  Houari  et  al  (2013).  

A  common  problem  in  these  studies  is  that  they  fail  to  include  the  estimated  41  tonne   yearly   output   from   Kankbergsgruvan   in   Västerbotten   (Boliden   2011)  extracted   from  gold   –   a  method  which   until   recently   has   faultily   been  deemed  unprofitable   for   Te-­‐prices   under   $800/kg   (Green   2009).   Another,  more   recent  threat   to   future  supplies  are  new,  more  efficient  copper  processing   techniques,  which   are   not   able   to   extract   Te   from   the   anode   slimes,   and   are   expected   to  decrease  world  Te  output  as  the  use  of  these  techniques  increase  in  application  (Oakdene  Hollins,  2012).  

Page 11: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   11    

 

2.3  Tellurium  demand    Future   demand   of   Te   is   dependent   on   estimates   of   future   technological  advancements   and   production   improvement,   as  well   as   demand   for   PV   power  generation.  To  measure  economic  efficiency  gains   in  CdTe  technology,  an   index  of  USD  cost  per  Watt  produced  is  often  used,  which  enables  comparison  through  time   and   competing   power-­‐generating   technologies.   The   latest   Cost   per   Watt  produced   estimate   by   the  market   leader   First   Solar,   is   $0.68/Wp   per   panel,   at  record   breaking   20%   solar   conversion   efficiency,   making   it   the   most   cost-­‐efficient   PV   technology   readily   available   to   the  market   (First   solar   2012).   This  cost   per   panel   is   not   the   same   as   cost   per   PV-­‐system   or   facility,   which   are  generally  higher.      A  working  paper  by  Speirs  et  al  (2011)  gives  a  clear  overview  of  potential  future  demand  of  Te  in  CdTe  PV  manufacturing.  Future  demand  of  Te  is  dependent  on  the   above-­‐mentioned   cost   of   producing   electricity.   The   working   paper   shows  that  the  limited  future  supply  of  Te  should  not  be  a  threat  to  CdTe  development,  as  CdTe  PV-­‐units  will  in  the  future  require  less  Te  to  produce  the  same  amount  of  energy.  Figure  4  illustrates  the  content  of  a  CdTe  PV  thin  film  cell  and  how  much  of  it  is  composed  of  an  active  CdTe  layer.  This  layer  is  expected  to  decrease  in  the  future  through  technological  progress.  Woodhouse  et  al  (2012)  have  calculated  that   at   a   CdTe   module   produced   at   $0.70/Wp   spends   $0.15/Wp   on   the   CdTe  active  layer,  and  that  future  material  intensity  will  decrease  from  74  tonnes  of  Te  per  GW  today,  to  17  tonnes  per  GW  in  2020.    

 Figure  4  Illustration  of  composition  of  a  CdTe  thin  film  solar  cell.  The  thickness  of  the  Active  CdTe  is  an   area   believed   possible   to  make   thinner,   which  would   decrease   future   demand   for   Te.   Source:  Speirs  et  al  (2011).  

Speirs   et   al   (2011)   continues   to   conclude   that   CdTe   demand   for   Te   in   2030  ranges   from  480   to  1800   tonnes  per  year,  which  exceeds  current  supply  of  Te,  including   Te   usages   for   in   other   applications.   This   is   an   indication   of   future  

Page 12: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   12    

 

supply   shortages,   which   will   ultimately   lead   to   higher   prices.   The   previously  mentioned   papers   on   the   possible   limitations   on   CdTe   PV   posed   by   supply  shortages  make   some   estimates   to   a  maximum   price  where   power   generation  would   still   be   profitable,   such   as   Candelise   et   al   (2011),   who   estimate   a  maximum   spot   price   of   $700/kg   of   99.99%  Te,   and   Green   (2009)   at   $800/kg.  Woodhouse  et  al  (2012)  estimate  that  at  current  prices,  production  in  2020  will  be  constrained  at  10  GW  of  annual  production,  which  may  only  be  remedied  with  higher  prices  that  make  future  mining  projects  more  profitable.    Thus,  Te  availability  ought  not  to  constrict  future  production  of  CdTe  PV  as  long  as  costs   for  Te  do  not  exceed  a  certain  threshold,  and  the  active  CdTe   layers   in  the  panels  continue  to  decrease.  This  thesis  attempts  to  fill  a  gap  in  the  scientific  literature,  namely  to  provide  a  more  robust  study  of  how  price  mechanisms  can  affect   future   Te   price   scenarios,   which   has   been   requested   in  most   of   the   key  literature  used  in  this  thesis  (Candelise  et  al  2011,  2012,  Green  2009,  2010,  and  Speirs  et  al  2011).  

2.4  The  tellurium  marketplace    Te  is  traded  through  long-­‐term  supply  contracts  and  individual  trades  between  large   consumers   and   suppliers.   Potential   buyers   and   sellers   can   list   proposed  prices   on   specialist   websites,   which   are   then   matched.   Price   quotes   usually  represent  expert  estimates  of  representative  prices  in  trades  being  executed  on  a  particular   day,   and   not   actual   traded   volumes   and   prices   (Oakdene   Hollins  2012).  My  anonymous  source  (2013)  with  good  insight  in  the  market  adds  minor  metal   conferences   and   companies’   existing   costumer   networks   as   possible  forums   to   meet   potential   customers.   These   marketplaces   are   thus   thoroughly  opaque   to   outsiders.   The   only   “open”  marketplace   I   have   found   is   the   Chinese  trading  website   Alibaba,  where   sellers   can   post   advertisements   to   sell   various  qualities  and  quantities  of  Te.4    Te   prices   are   posted   on   several   trading   and   market   news   sites,   including   the  Metal  Bulletin,  a  UK-­‐based  paper  that  reports  on  global  non-­‐ferrous  metals  and  steel  markets  (Metal  Bulletin  2013a).  As  tellurium  is  not  traded  on  any  bourse,  prices  are  estimated  with  the  aid  of  different  metal  warehouses.  Metal  Bulletin,  which  lists  many  different  spot  prices  of  metals  and  commodities,  has  done  this  for  many  years.  The  goal   is   to  discover   at  what   level  market  participants  have  concluded   business,   made   offers   or   received   bids   over   a   certain   time   period;  usually   the  period  between   the   last  price-­‐listing   in   the  paper.  After   interaction  with  market  actors,  Metal  Bulletin  confirm  the  transaction  with  both  sides,  weigh  the  price  and  quantity   to  other   transactions  during  the   time  period,  and   finally  post  a  price  listing  consisting  of  a   low  and  high  price.  They  reserve  the  right  to  remove   any   data   they   consider   outliers   or   discount   prices   they   consider  questionable.  Metal  Bulletin  stress   that   they  attempt   to  engage  (and  encourage  engagement)  with  all  sellers  and  buyers  on  the  market,   irrespective  of  size,  are                                                                                                                  4  This  market  can  be  accessed  by  searching  for  Tellurium  on  www.alibaba.com  or  via  the  link:  http://www.alibaba.com/trade/search?fsb=y&IndexArea=product_en&CatId=&SearchText=tellurium.  

Page 13: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   13    

 

impartial  and  independent,  and  do  not  have  any  vested  commercial  interests  in  pricing  of   their   listed  metals.  The  smallest   traded   lots   taken   into  consideration  when  determining  the  price  of  Te  is  250kg,  which  recently  changed  from  500kg  (Metal  Bulletin  2013b).    Figure  5  illustrates  how  volatile  the  spot  price  of  Te  is,  which  is  a  common  trait  for  many  minor  metals  (Candelise  et  al  2012).    

 

Figure  5  Te  average  weekly  price  from  February  6  2006  to  February  28  2013.  Note:  There  are  no  price  listings  for  June  12  and  26,  as  well  as  October  2  2009.  Source:  FOB  USA  Warehouse  (February  4  2006  to  June  22  2012)  and  Metal  Bulletin  (June  29  2012  to  February  22  2013).  

2.5  The  tellurium  market  today    In  a  volatile  spot  market  based  on  estimates  of  long-­‐term  contracts,  there  may  be  incentives  for  actors  to  ride  bubbles  for  short-­‐term  profits  (Harrison  et  al  1978,  Biasis  et  al  1998).  For  example,  in  June  2011  the  price  of  Te  peaked  at  $430/kg,  up  from  $165/kg  in  2009.  After  the  2011-­‐peak,  spot  prices  declined  steadily  for  a  year  and  are   stabilised  at   levels   just   above  $100/kg.  This   is   indicative   that   the  two-­‐year  160%  increase   in  price  bears   the  markings  of  a  speculative  bubble.  A  similar  phenomenon  can  be  observed   for   the  years  2006   to  2008,  when  prices  more  than  doubled  and  then  dropped  to  half  its  peak  value.  It  has  been  suggested  that  these  bubbles  were  initiated  by  speculative  buying  of  Te  under  the  pretext  that  the  limited  supply  of  the  metal  would  be  insufficient  to  meet  future  demand  (USGS,  2013b).  This  lead  to  a  hoarding  of  the  material  in  warehouses,  bought  at  inflated  prices.  Once  the  market  discovered  this,  the  price  rapidly  fell,  and  prices  are   still   depressed,   as   the   stocked   Te   bought   during   the   bubble   has   yet   been  depleted   (Oakdene   Hollins,   2012).   The   recent   change   in   minimum   reported  quantities   in   the   Metal   Bulletin   from   500kg   to   250kg   might   further   be  interpreted  as  an  indicator  that  volumes  on  the  market  are  currently  so  low,  that  making  statistical  samples  of  market  interactions  are  difficult  at  these  volumes.    Recent  statements  by  major  actors  on  the  Te  market  predict  that  2013  prices  will  remain   in   the   $100-­‐150/kg   range,   stressing   the   market   would   benefit   from  

Page 14: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   14    

 

reduced  volatility,  or  else  suppliers  would   find   it  hard  to   finance   future  mining  projects  of  the  metal.5    The  bubble  may  be   the   result  of   speculative   trading  on  an  opaque  market   that  lacks   transparent   reporting   over   whom   trades   what   to   where,   which   has  resulted   in   high   volatility.   In   a   conference   paper,   Green   (2010)   compares   Te  price  fluctuations  to  those  experienced  by  photovoltaic  silicon  feedstock  (PVSF),  which   is   a  material  whose   price   has   recently   been   studied   by   Yu   et   al   (2011).  This  observation  is  discussed  further  in  the  method  chapter.    In   order   to   compare   how   an   opaquely   traded   minor   metal   may   differ   from   a  transparently   traded   minor   metal,   I   make   an   assessment   of   the   market   for  molybdenum   (Mo),   which   is   traded   under   a  more   transparent  market   regime,  and  is  listed  on  the  London  Metal  Exchange  (LME).  

2.6  Molybdenum  -­‐  a  not-­‐so  minor  metal      It   is   difficult   to   justify   a   comparison   of   the  market   of   one   chemical   element   to  another;  should  chemical  characteristics,  chemical  family,  application,  or  price  be  used   as   a   basis   for   comparison?   I   have   chosen   to   compare   Te   to   Mo   for   the  following  reasons:  they  are  both  minor  metals  of  similar  atomic  number  (Mo  no.  42   and   Te   no.   52);   they   are   by-­‐products   of   copper   production,   and   thus   their  supply   relies  heavily  on   the  extraction  and   refinement  of   copper;  and   they  can  both  be  used  as  steel  alloying  agents.  Finally,  Mo  was  one  of   two  minor  metals  introduced   to   the   LME   in   February   2010,   which  may   help   to   illustrate   how   a  minor   metal   is   traded   under   the   transparent   market   conditions   which   were  implemented  prior  to  the  LME-­‐introduction  (Oakdene  Hollins,  2012).    Mo  is  a  refractory  metallic  element  principally  used  as  an  alloying  agent  in  iron,  steel,   and   superalloys   to   enhance   desirable   properties   such   as   machinability,  toughness,   strength   and   corrosion-­‐resistance   (USGS,   2012b).   These   properties,  along   with   it   having   one   of   the   highest   melting   points   of   all   the   chemical  elements,   means   that   Mo   has   few   chemical   substitutes.   Mo   does   not   exist   in  nature   as   a   free   metal,   and   is   usually   found   in   deposits   bound   to   low-­‐grade  porphyry-­‐molybdenum   and   copper   deposits.   The   most   important   ore   is  molybdenite,  and  total  world  supply  is  roughly  composed  of  half  Mo  mined  as  a  primary  product  and  half  as  a  by-­‐product  of  copper  mining.  Final  usages  of  the  metal   are   24%   stainless   steel,   16%   full   alloy   steel,   11%   tool-­‐   and   high-­‐speed  steel,  10%  high  strength   low  alloy  (HSLA)  steel,  9%  carbon  steel,  6%  cast   iron,  8%   catalysts,   6%   metal   &   alloys,   5%   superalloys,   and   5%   others   (Oakdene  Hollins,   2012).   An   interesting   development   is   the   relatively   small-­‐scale  application   of  Mo   in   CIGS-­‐PV6  cells   as   an   electrical   conductor,  which   lends   the  metal   a   small   application-­‐   connection   with   the   Te   market.   Data   of   yearly  production  and  usage  of  Mo  is  readily  available  and  indicates  a  market  roughly  in  balance  with  regards  to  supply  and  demand  (IMOA,  2011).                                                                                                                    5  “Tellurium  price  seen  in  $100-­‐150/kg  range  this  year  –  5N  Plus”  by  Martin  Hayes,  http://www.fastmarkets.com/minor_metals/5nt1  (accessed  on  March  26,  2013).    6  Another  thin  film  PV  technology.    

Page 15: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   15    

 

Mo   spot   prices   are   reported   using   the   same   sampling   procedure   as   Te   (Metal  Bulletin,  2013).  Recently,   an  official   cash  price  was  also  made  available  via   the  LME,  which  differs   slightly   in   sampling  procedure,   but  will   not   be   used   in   this  thesis  due  to  the  limited  time  span  of  the  data.  The  main  difference  between  the  two   metals   is   there   exists   a   futures   market   for   Mo   via   the   London   Metal  Exchange   (LME,   2013),   and   thus   the   spot   prices   can   be   seen   as   a   reflection   of  long-­‐term  contracts  traded  transparently  on  a  free  market.  Although  only  6  702  tonnes   of   Mo   had   been   traded   on   the   bourse   between   its   opening   and  March  2012,  which   amounts   to   approximately  1  %  of   total   estimated   traded  volumes  (Oakdene  Hollins,   2012),   one   can   argue   that   the  mere   existence  of   a   regulated  futures  market  will  reduce  volatility  (Slade,  1988).  

2.7  Critical  minor  metals    Apart  from  being  considered  minor  metals,  Mo  and  Te  have  both  been  assessed  for  their  criticality  by  the  European  Commission  (2010).  To  qualify  as  a  critical  material,  a  raw  material  must  “face  high  risks  with  regard  to  access  to  it,  i.e.  high  supply  risks  or  high  environmental  risks,  and  be  of  high  economic  importance…  the  likelihood  that   impediments  to  access  occur   is  relatively  high  and  impacts   for  the  whole   EU   economy   would   be   relatively   significant.”   Many   of   the   materials  considered  in  the  report  are  minor  metals.  Although  this  assessment  from  2010  did   not   qualify  Mo   or   Te   as   critical  materials,   the   2011   the   Commissions   Joint  Research  Centre  (JRC,  2011)  added  Te  to  the  list  due  to  it  being  a  critical  material  in  strategic  energy  technologies.    In   January   2013   the   US   Federal   Energy   Department   (2013)   followed   suit   by  adding  Te  to  a  research  hub  of  critical  materials  known  as  the  Critical  Materials  Institute  (CMI).  The  hub  mainly  focuses  on  research  that  reduces  supply  risks  to  the   metal,   which   includes   making   extraction   techniques   more   efficient   and  reducing  the  usage  in  production  and  manufacturing.  

2.8  Previous  studies  of  minor  metal  markets      Although  I  have  not  found  any  studies  on  the  effects  of  information  transparency  on   a   minor   metal   market,   I   have   found   older   papers   that   are   tangent   to   the  subject.   The   first   example   is   Lee   et   al   (1998),   who   concludes   that   increased  transparency   helps   the   price   discovery   process   become   more   efficient,   by  looking  at  how  the  opening  of  limit  order  books  in  the  Korean  stock  exchange  in  1992  decreased  price  volatility  and  increased  liquidity  in  the  stock  market.    The  market   efficiency   of   the   London  Metal   Exchange  was  widely   debated   in   a  series  of  articles  in  the  late  1980’s  and  early  1990’s.  Slade  (1989)  looked  at  how  changes   in   pricing   systems   changed   in   the   1980’s.   At   this   time,   non-­‐ferrous  metals   such   as   aluminium   and   nickel   were   introduced   to   the   LME,   which   the  author  (correctly)  assumed  would  signal  an  industry-­‐wide  shift  in  pricing  system  from  traditional  producer-­‐pricing  mechanisms  to  competitive  exchange  pricing.  Although  the  producer  pricing  system  –  a  price  cartel  system  consisting  of  major  metals  suppliers  –  was  less  volatile,  it  had  no  price  mechanism  to  accommodate  shifting   consumer   demand.   This  meant   there  were  major   profit   incentives   for  producers   to  shift   to  a  well-­‐organised  exchange  system,  although  this  carried  a  

Page 16: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   16    

 

cost  of  increased  market  volatility.  Apart  from  profits,  the  exchange  system  has  a  significant   advantage   due   to   its   pricing   transparency,   which   means   that   the  transaction  price   is  always   true  and  uniform  to  all   customers.  Well   functioning  institutional  rules,  such  as  contract  enforcement,  where  breaches  may  lead  to  (a  very  public)  expulsion  from  the  exchange,  is  another  reason  why  a  system  shift  took  place.  Slade’s  description  of  a  period  of  transition  between  two  systems  of  price  setting  captures  the  resistance  many  had  (and  still  have)  to  future  markets;  namely  that  they  are  inherently  risky  and  bubble-­‐inducing.  More  recent  studies  have  disproved  this,  and  attribute  this  superstition  to  a  lack  of  understanding  of  how  transparent  futures  market  actually  work  (Irwin  et  al,  2009).      Hallwood  (1988)  argues  that  an  unregulated  exchange  market  is  not  as  efficient  as   a   regulated  one.  At   the   time,   copper   contracts  were   traded  on   the  LME,  but  industry  preference  meant  contracts  were  often  negotiated  using  LME  futures  as  a   benchmark.   These   prices   are   by   definition   less   efficient   than   the   LME-­‐negotiated  contracts,  and  caused  prices  that  fluctuated  more  than  actual  cyclical  demand.   According   to   this   argument,   the   low-­‐volume  Mo  market   of   today  will  become   less  volatile   if  higher  volumes  are   traded  over   the  LME.  Eggert   (1991)  looked   at   how   prices   of   more   commonly   traded   metals   and   commodities  fluctuate   more   compared   to   consumption   of   the   metal,   thus   pointing   out  inefficiencies   in   the  market.   The  debate   focused  mainly   on  whether   or   not   the  market  could  be  deemed  efficient.  The  final  say  in  the  debate  was  the  disproval  of  efficiency  by  Sephton  and  Cochrane  (1990).  Although  debating  whether  or  not  a  market  could  be  deemed  efficient  was  a   frequently  debated  topic  at   the  time,  proving   or   disproving   a   specific   market’s   efficiency   may   be   considered   an  antiquated   discussion   today.   However,   these   discussions   revolved   around   a  proposed   paradigm   shift   in   pricing   systems,   and   need   to   be   read   from   that  perspective.    This  thesis  does  not  focus  on  the  nature  of  the  Efficient  Market  Hypothesis  per  se,  but  acknowledges  that  more  information  and  transparency  both  lead  to  a  more  efficient   market   and   reduced   price   volatility.   I   conclude   that   the   results   from  these   early   studies   carry   little   validity   in   today’s   markets   where   global   news  have   a   much   more   instantaneous   effect   of   markets,   nor   does   their   topic   of  discussion   add   much   to   current   academic   debate.   In   the   following   chapter   a  method  is  selected  to  determine  how  markets  react  to  availability  of  information,  which  may  differ  depending  on  the  efficiency  of  the  market.      

Page 17: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   17    

 

3.   Method:   Determining   the   price   mechanisms   of   tellurium  and  molybdenum  

3.1  SVAR  and  impulse  response  functions    Robust  long-­‐term  prognostics  of  price  scenarios  on  a  volatile  market  are  difficult  to   design,   and   as   with   all   forecasts   under   high   volatility,   results   are   often  imprecise  and  should  merely  be  seen  as  best  guesses  of  future  scenarios.  Still,  if  one   can   better   understand   what   makes   the   market   tick,   decisions   regarding  future  investments  may  become  better  informed.  This  is  what  Yu,  Song,  and  Bao  (2012)  attempt  to  do  by  modelling  real  price   fluctuations  of  PVSF,  which   is  the  primary  component  of   a  PV   technology   rival   to  CdTe.  This   is  done  by   studying  impulse   response   functions   on   number   of   variables   using   a   Structural   Vector  Autoregressive  Model  (SVAR)  that  includes  (p)  periods  of  lag.    

𝐴!𝑧! = 𝛼! + 𝐴!𝑧!!!

!

!!!

+ 𝜀!  

 where  𝑧!  is  a  𝑘×1-­‐vector  of  the  𝑘  variables  that  are  to  be  studied;  𝛼  is  a  constant  𝑘×1-­‐vector;  𝐴!  is  the  time-­‐invariant  𝑘×𝑘-­‐  matrix  where  the  main  diagonal  terms  are  set  to  1.  𝜀!  is  the  𝑘×1  error  term,  which  satisfies  the  assumptions  E 𝜀! = 0,  or  every  error  term  has  mean  zero;  E 𝜀!𝜀!′ = Σ,  or  the  contemporaneous  matrix  of   error   terms   is  Σ  (a  𝑘×𝑘  positive-­‐semidefinite   matrix);   and  E 𝜀!𝜀!!! = 0 ,  meaning   for   every   non-­‐zero  𝑘,   there   is   no   correlation   across   time,   or   more  specifically,  no  serial  correlation  in  individual  terms  across  time.    A   SVAR   model   imposes   restrictions   on   the   response   of   underlying   Vector  Autoregressive   (VAR)-­‐variables,   meaning   one   can   include   assumed   inter-­‐variable   causality,   from   which   impulse   response   functions   can   be   calculated  using   OLS   estimation.  More   information   on   derivation   and   assumptions   of   the  VAR  and  SVAR  models  are  found  in  the  Appendix.    For  𝑒! = 𝐴!!!𝜀! ,   we   can   incorporates   the   causality   assumptions   for   each  model  into  the  𝐴!!!-­‐matrix.  The  optimal  number  of  lags  (p)  is  then  determined  using  the  Akaike  Information  Criterion  (AIC).    In  the  Yu  et  al  model,  𝑧! = (𝑒𝑢𝑟𝑜! ,𝑛𝑎𝑡! , 𝑜𝑖𝑙! ,𝑎𝑔𝑔! , 𝑐𝑜𝑛! , 𝑠𝑝𝑜𝑡!),  where  the  lagged  variables  𝑒𝑢𝑟𝑜!  represents   euro-­‐to-­‐dollar   exchange   rate,  𝑛𝑎𝑡!  and  𝑜𝑖𝑙!  the   price  of  natural  gas  and  oil,  𝑎𝑔𝑔!  real  economic  activity,  and  𝑐𝑜𝑛!  and  𝑠𝑝𝑜𝑡!  represents  contract-­‐   and   spot   prices   of   PVSF,   all   expressed   in   logs.   I   use   the   same  assumptions   as   Yu,   Song,   and   Bao,   which   can   be   read   in   Section   3.1.2   in   their  article.   These   assumptions   are   translated   into   the   equation   below,   where   the  diagonal  𝑎!! = 𝑎!! = ⋯ = 𝑎!! = 1  by  construction.    

Page 18: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   18    

 

𝑒! ≡

𝑒!!"#

𝑒!!"#

𝑒!!"#

𝑒!!"!

𝑒!!"

=

𝑎!! 0 0 0 00 𝑎!! 𝑎!" 0 0𝑎!" 𝑎!" 𝑎!! 0 0𝑎!" 𝑎!" 𝑎!" 𝑎!! 0𝑎!" 𝑎!" 𝑎!" 𝑎!" 𝑎!!

𝜀!!"#

𝜀!!"#

𝜀!!"#

𝜀!!"!

𝜀!!"

 

 This   thesis  attempts  to  develop  this  model   further  by  placing  greater  emphasis  on  variable  selection.  The  above  Yu  et  al   (2012)-­‐  variables  are  selected   to  best  capture  macroeconomic  impacts  on  the  market.  As  PVSF  is  a  critical  component  of  a  rival  technology,  the  Yu  et  al-­‐  variables  and  restrictions  should  work  just  as  well   for   the   Te  market.   However,   I   believe  market   specific   shocks  may   better  capture   fluctuations  on  a   specific  market   via  market   spillover   effects   (Morales,  2008).  To  do  this,  inter-­‐variable  causality  in  the  SVAR-­‐model  has  to  be  explicitly  stated,  and  then  translated  into  the  (𝐴!!!)-­‐causality  assumption  matrix  as  is  done  above.   The   error   term  matrix   (Σ)   is   estimated   separately   and   indicates   if   the  error   term   assumptions   are   fulfilled.7  This   thesis   only   considers   short-­‐term  causality  shocks  to  the  Te  and  Mo  prices,  which  means  that  Te  and  Mo  spot  price  will  not  have  an  effect  on  other  market  variables  in  the  short  run.8    From   the   SVAR   model,   structural   impulse   response   functions   and   Cholesky  accumulated   response   functions   are   then   calculated.   The   structural   impulse  response  function  gives  an  indication  of  how  a  response  variable  reacts  to  a  one  standard  deviation   shock   from  an   impulse  variable.  The  Cholesky   function   is   a  measure   of   how   an   accumulated   one   standard   deviation   shock   to   an   impulse  variable   affects   the   mean   square   error   of   a   response   variable,   expressed   as   a  fraction  of  the  response  variable’s  total  mean  square  error.  This  gives  a  measure  of   how   much   a   shock   of   the   impulse   variable   affects   a   response   variable’s  deviation  from  its  mean,  or  more  explicitly:  its  volatility.    This   thesis   is   a   continuation   of   the   discussion   called   for   by   Yu   et   al   regarding  variable   selection,   as   they   did   not   achieve   significant   results   in   their   paper.   In  some  sense,  it  is  also  an  attempt  to  validate  the  appropriateness  of  using  a  SVAR-­‐model   to   assess   how   different   variables   impact   critical  minor  materials.   Apart  from   applying   the   Yu   et   al  macroeconomic   variables   to   the   Te   spot   price,   this  thesis   investigates  which  variables  more  specific   to  the  Te  and  Mo  markets  are  appropriate,   which   is   established   using   quantitative   analysis   methodology  described  in  the  next  section.  

3.2  Quantitative  analysis    Selecting   reliable   market-­‐specific   variables   presents   some   difficulties   to   a  layman   not   familiar   with   a   market.   In   order   to   determine   which   factors   and  actors  may  be  deemed  most  important  in  a  market,  a  content  analysis  is  carried  

                                                                                                               7  All  models  and  estimations  are  done  using  STATA  12.  The  causality  assumptions  of  the  𝐴!!!-­‐matrix  is  input  as  the  A-­‐matrix,  and  the  standard  assumptions  for  the  Σ-­‐matrix  is  input  as  the  B-­‐matrix.  8  Estimating  long-­‐run  impulse  response  functions  could  capture  these  causalities.  I  have  chosen  not  to  include  such  estimations  in  this  thesis.  

Page 19: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   19    

 

out   on   a   set   of   articles   published   in   the  Metal   Bulletin.   The   coding   scheme   is  designed  with  reliability,  validity,  accuracy,  and  precision  in  mind,  using  method  established   in  Neuendorf   (2002).   The  methodological   inspiration   partly   comes  from  Tetlock  (2007),  which  uses  a  simple  quantitative  analysis  on  a  popular  Wall  Street   Journal   column   to   study   how   the   media   and   stock   prices   interact,   and  Tetlock  et  al   (2008),   that   looks  at  how  linguistic  qualities   in   firm-­‐specific  news  reporting  may  predict   a   firm’s  accounting  earnings  and  stock   returns;  or  more  specifically,  how  the  market  has  a  tendency  to  underreact  to  the  usage  of  words  that  may   reveal   negative   sentiments   on   returns   and   earnings.  My   approach   is  different   to   these  studies,  and   focuses  more  on  determining   if  and  how  a  news  innovation   is   expected   to   cause   a   price   change,   and  who   is   the   catalyst   of   the  event.    The   selection   of   SVAR-­‐model   variables   takes   frequency   of   actor-­‐   and   factor-­‐mentions,  market  mechanisms,  and  other  insights  from  the  quantitative  analysis  into   account.   Actors   and   factors   can   either   have   an   effect   on   supply,   such   as  stocks   of   mining   companies,   or   demand,   such   as   stocks   of   consumers   of   the  metals.   If   possible,   effects   of   actors   and   factors   are   quantified   using   their  respective  stock  prices,  and  relevant  factor  indices.    The  articles  are  collected  from  the  Metal  Bulletin  news  archive  by  searching  for  the  terms  tellurium  –“MB  NON-­‐FERROUS  PRICE  CHANGE”  and  molybdenum  –“MB  NON-­‐FERROUS   PRICE   CHANGE”.   The   –“MB   NON-­‐FERROUS…”-­‐term   excludes   so-­‐called  price-­‐update   articles,  which   are   not   proper   news   articles,   but   listings   of  daily  price  changes.  All  articles  from  February  20  2010  until  February  28  2013  are  pasted   into  word  documents   and   imported   into   excel-­‐spread   sheets  where  the  coding  scheme  is  inserted  at  the  top  of  each  sheet.    The   decoding   of   the   articles   is   done   in   six   steps.   The   first   step   determines  whether   the   news   article   is   price-­‐pertinent;   or   can   the   described   event   in   the  article   theoretically   change   the   price   of   the  metal?   Examples   of   non-­‐pertinent  articles  are   those   that  do  not  directly  deal  with   the  supply  or  demand  of  Te  or  Mo,   such   as   those   dealing   with   Te   as   an   impurity   in   steel   scrap.   Examples   of  pertinent   topics   include   business   reports   of   increased   production,   changes   in  market   conditions,   opening   of   new   mines,   or   reporting   on   changes   in   trade  barriers.  Articles  may  also  be  deemed  pertinent  if  the  content  is  deemed  relevant  to  the  research  question  of  my  thesis.      If  the  article  is  deemed  pertinent,  the  next  step  is  to  determine  the  general  topic  of   the   article,   which   is   best   described   as   a   one-­‐sentence   description   of   the  article’s   effect   on   a   metal   price.   This   is   done   with   the   purpose   of   improving  referencing  ability,   so   the  description  does  not  need   to  be  consistent  with  how  previous  topics  are  coded.    Next  the  coding  aims  to  determine  whom  the  main  catalyst  of  the  news  event  is.  It  is  possible  that  more  than  one  actor  is  deemed  the  catalyst,  or  that  there  may  be   no   specific   catalyst   at   all.   An   almost   identical   topic   or   catalyst,   which   has  already   been   covered   in   a   previous   Metal   Bulletin   article   is   still   coded   as  pertinent,   as   reporting   intensity   may   be   indicative   of   perceived   event  importance.    

Page 20: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   20    

 

 Market   impact   is   then   assessed,   which   is   done   from   a   supply   and   demand-­‐  perspective.  The  goal  is  to  assess  if  the  article  is  describing  a  perceived  increase  or  decrease  in  supply  or  demand.  If  an  article  reports  increased  steel  bar  prices  which  contains  Te,  this  is  assessed  as  a  sign  of  positive  demand.  When  the  article  describes   a   supply   shortage,   or   “tight”   supply,   this   is   interpreted   as   a   sign   of  positive  demand,  as  predicted  market  supply  is  surpassed  by  expected  demand.  The   exception   to   this   is  when   the   article   describes   a   true   supply   shock   event,  such  as  natural  disasters.    The   final   coding   attempts   to   anticipate   how   a   positive   or   negative   effect   on  supply   and   demand   can   be   translated   into   a   price   change.   Positive   demand  means   expected   higher   prices,   and   thus   Possible   price   impact   is   coded   “+”.  Positive   supply   means   expected   lower   prices,   and   the   article   would   then   be  coded  as   “–“.  The  opposite   is   applied   for  negative   supply  and  demand.  Articles  covering   prices   “stabilising”   or   “adjusting”   are   seen   as   price   changes   too.  Previous   articles   then   need   to   be   considered;   if   the   price   is   adjusting   after   a  positive  rally,  demand  is  coded  as  “–“,  and  the  article  is  coded  as  “+”if  it  concerns  a  stabilisation  after  a  price  drop.    The   above   principles   are   also   applied   to   the  Mo  Metal   Bulletin   articles.   As   the  market  for  Mo  is  much  larger,  and  the  level  of  market  maturity  can  be  considered  higher,  some  special  precautions  need  to  be  taken  when  decoding  these  articles.  Articles  covering  price  changes   in  products  where  Mo   is  a  component   (such  as  steel)  is  not  deemed  pertinent,  unless  the  article  explicitly  states  that  this  has  in  turn  affected  the  Mo  price,  such  as  when  an  article  states  increased  demand  for  steel.    In   order   to   assert   the   reliability   and   validity   of   the   quantitative   analysis,   a  random  sample  of  25  articles  for  each  metal  is  reread  and  recoded  a  few  weeks  after  the  initial  quantitative  analysis.  The  results  of  these  readings  are  compared  with  the  results  of  the  original  quantitative  analysis.  If  the  results  differ  to  a  large  degree,  the  quantitative  analysis  will  have  to  be  respecified  in  order  to  ascertain  replicability  and  then  reapplied  to  the  entire  dataset.    The   robustness   of   a   quantitative   analysis   can   always   be   questioned   for   its  reliability  and  replicability.  My  readings  are  done  with  the  intent  of  figuring  out  what   effect   a   news   article  may  have   on   a   “typical  market   actor”,   and  how   this  theoretical   person   would   assess   the   market   situation.   The   decoding   can   thus  only  be  considered  a  best  guess  of  what  a  typical  trader  thinks,  and  is  thus  biased  by  my  personal   opinions   of  what   constitutes   a   “typical  market   actor”.   Another  limitation   of   the   study   is   it   is   only   conducted   on   Metal   Bulletin   articles.   This  means  that  the  sample  only  contains  news  events  deemed  most  relevant  by  that  particular   newspaper’s   journalists   and   editors.   A   future   study   could   include   a  quantitative  analysis  of  other  journals,  papers  and  websites.    The   quantitative   analysis   is   used   to   legitimise   variable   selection   for   the   SVAR  model.  Quantifying  which  actors  are  mentioned  most  may  give  some  numerical  support   for   choosing   a   particular   actor.   A   catalyst   actor   selected   from   the  quantitative  analysis   is  referred  to  as  a  market  proxy,  meaning  the  articles   it   is  

Page 21: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   21    

 

mentioned   in  are  pieces  of   information  market  actors  use   to  assess   the  overall  picture  of  the  market.  This  raises  a  question  of  causality,  as  the  most  mentioned  companies   may   also   be   reliant   on   the   price   of   the   commodity   in   question.  Frequent  mentioning  as  catalysts  in  a  news  article  may  be  seen  as  indication  of  perceived  market   importance,  which   in  turn  suggests   that   the  proxy’s  causality  on  the  metal  price  is  significant  from  an  innovation  perspective.    Selecting  an  appropriate  proxy  means  that  I  implicitly  make  the  assumption  that  a  company’s  stock  price  (or  perceived  company  value)   is  a  good  measure  of   its  profitability.   This   is   a   bold   assumption,   but   necessary   in   order   to   make  quantification  possible.    The  most  important  element  of  using  this  method  is  that  it  involves  reading  and  digesting  a   large   sample  of  market-­‐specific  news   in   chronological  order,   giving  the   reader   an   insight   into   a  market   they   previously   did   not   have.   This   overall  impression  may  give  qualitative  insights  that  further  help  in  variable  selection.    Once   the   main   actors,   factors,   or   other   quantifiable   instances   have   been  established  through  the  content  analysis,  these  are  fitted  into  a  SVAR(p)-­‐model,  where  𝑧!  is   composed   of   a   time   series   vector   of   these   variables,   along   with  assumed   short   term   causality   assumptions   translated   into   their   respective  𝐴!-­‐matrix.      

Page 22: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   22    

 

4.  Data  and  results    Here,  data  covering  spot  prices  and   indices   from  February  1,  2004  to  February  28,   2013   are   presented.   For   the   quantitative   analysis,   the   shorter   timespan   of  February  20,  2010  to  February  28,  2013  is  used.  

4.1  Spot  prices  and  returns    To  represent  Te  spot  prices,  I  have  chosen  to  use  a  weekly  price  listing  based  on  Freight  On  Board  (FOB)  USA  99.95%  Te  USD/kg,  for  which  I  have  available  data  from  February  1,  2004  until  to  June  22,  2012.  After  this  date  I  have  chosen  to  use  Metal  Bulletins  Tellurium  Metal  MB  free  market  minimum  99.9%  USD/kg.  Metal  Bulletin   posts   a   bi-­‐weekly   high   and   low   price   on   Wednesdays   and   Fridays.   I  calculate  the  Friday  spot  price  as  the  average  of  the  average  high  and  low  price  of  the   Wednesday   and   Friday   price.   A   change   in   price   in   the   USA   FOB-­‐listing   is  more  gradual  than  the  Metal  Bulletin-­‐price  listing,  which  is  why  I  have  chosen  to  use  this  index  as  much  as  possible,  as  it  captures  small  price  changes  better  than  the  Metal  Bulletin   listings,  while   its  data   is  collected  in  a  similar  manner  as  the  Metal   Bulletin   index.   The   returns   of   Te   are   displayed   in   Figure   6   with   its  statistical  properties  in  Table  1.    

 

Figure  6:  Weekly  returns  of  Te  from  February  2004  to  February  2013.  

Table  1   indicates   that   volatility,   expressed  as   standard  deviation,   is  quite  high.  The  positive  skewness  shows  a  condensed  distribution  of  negative  returns  and  a  more  scattered  distribution  of  positive  returns,  while  the  relatively  high  kurtosis  indicates  that  the  tails  are  quite  “fat”,  meaning  returns  are  often  not  distributed  close  to  the  mean.    

  Mean  return   St  Dev   Skewness   Kurtosis  

Te  Returns   0,003954205   0,03561644   1,406308088   6,051458108    Table  1:  Statistical  properties  of  Te  returns.  

Page 23: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   23    

 

Determining   which   Mo   spot   price   to   use   requires   some   thought.   There   is   no  official  LME  spot-­‐  or  cash  price  available  until  June  2010,  and  these  are  quoted  in  monthly   average   prices   per  metric   tonne.   In   order   to   capture   the   price   of   the  metal   in   earlier   time   periods,   a   couple   of   price   indices   need   to   be   considered:  Molybdenum   Fe65   (FeMo65   or   FeMo)   Cost,   Insurance,   in   Freight   (CIF),   North  Western  Europe  (NEW)  USD/kg,  and  Molybdenum  Mo3  CIF  NWE  USD/LB,  which  have   been   sampled   from   Thompson   Reuters   Datastream.   The   prices   of   these  indices   are   displayed   in   Figure   7,   including   the   official   LME   cash  price   for  Mo,  which   is   normally   expressed   in   USD/metric   tonne,   but   is   here   converted   to  USD/kg.    

 

Figure  7:  Price  development  of  the  three  Mo  metal  cash-­‐  and  spot  prices  that  are  considered  to  represent  Mo  spot  price.  

Both  indices  are  Mo-­‐products,  but  may  be  used  in  slightly  different  applications  (Oakdene  Hollins,  2012).  A  comparison  of  the  returns  of  these  two  commodities  in  Figure  8  shows  that  the  returns  follow  a  similar  pattern,  however  Mo3  seems  more  volatile  than  FeMo65,  which  is  apparent  from  the  statistical  aspects  of  their  returns,  presented  in  Table  2.  As  both  metals  display  similar  means  and  standard  deviations,  the  skewness  and  kurtosis  shows  that  the  Mo3-­‐price  has  fatter  tails,  and   is   thus  more  volatile.  On   the   consumption   side,  Molybdenum  oxide  grades  made   up   approximately   29%   of   the   total   world-­‐Mo   market   in   2011,   whereas  Ferro-­‐molybdenum  products  made  up  approximately  14%  (USGS,  2012b).  From  a   technical   perspective,   Fe65   contains   approximately   60-­‐65%   Mo,   which   is  similar   to   the   57,4-­‐63%   grade   of   concentrate   used   by   the   LME   (USGS,   2012b,  LME,  2012).  From  this  information  I  have  chosen  to  use  the  returns  of  FeMo65,  as  this  Mo-­‐product  is  most  similar  to  the  Mo  product  traded  on  the  LME.    

Page 24: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   24    

 

 

Figure  8:  Returns  of  FeMo  and  Mo3  from  February  2004  to  February  2013.  

  Mean   Std  Dev   Skewness   Kurtosis  FeMo65   0,002280685   0,057349343   2,336119248   26,98847513  MoO3   0,002392993   0,059340308   2,819789123   44,43852061  

 Table  2:  Statistical  aspects  of  FeMo65  and  Mo3  weekly  returns.  

As   the   institutions  associated  with   the  Mo  market  changed  drastically  with   the  LME   introduction   in   February   2010,   comparing   how   market   volatility   differs  between   these   two   time   periods   is   important.   Table   3   shows   that   both   return  means   and   standard   deviations   are   lower   after   the   LME   introduction.   The  negative  skewness  after  the  introduction  indicates  that  positive  returns  are  more  likely,  and  the  decreased  kurtosis  indicates  that  the  tails  are  less  “fat”,  and  thus  the  expected  returns  are  much  closer  to  the  mean  than  before.  Comparing  return  data  that  excludes  the  financial  crisis  of  2008  still  indicates  that  the  market  was  less   volatile   before   the   LME   introduction,   lending   support   to   the   claim   that   an  LME  introduction  reduces  market  volatility.    

    Mean   Std  Dev   Skewness   Kurtosis  FeMo65   Pre-­‐LME   0,0042   0,0683   2,0119   19,2141  

Pre-­‐Crisis   0,0072   0,0652   2,0124   25,4012  LME   -­‐0,0015   0,0231   -­‐0,2852   4,5714  

MoO3   Pre-­‐LME   0,0044   0,0696   2,6530   34,4931  Pre-­‐Crisis   0,0073   0,0640   5,0656   50,3788  LME   -­‐0,0016   0,0299   -­‐2,1049   9,6714  

 Table  3:  Comparison  of  statistical  aspects  of  the  two  Mo  metals  weekly  returns,  pre-­‐  financial  crisis  (February  26  2004  to  October  10  2008),  and  pre-­‐  (February  26  2005  to  February  19  2010)  and  post  LME  launch  (February  19  2010  to  February  22  2013).  

4.2  Quantitative  analysis  findings    The  time  period  selection  for  the  quantitative  analysis  of  Te  and  Mo  was  partially  based   on   the   fact   that   there   are   few   articles   that   deal   directly   with   Te   until  shortly  before  the  pre-­‐2011  bubble.  Also,   the  period  before  February  20,  2010,  

Page 25: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   25    

 

Mo  had  not  yet  been   introduced   to   the  LME,   and   is   thus  not  of   interest   to   this  study,   as   I   only  wish   to   study   the   transparent  Mo  market.   Extending   the   time  period  would  shed  little  light  on  selecting  variables  for  the  Te  market,  yet  would  require  much  time  downloading  and  decoding  Mo  articles.  In  order  to  ascertain  the  reliability  and  validity  of  my  quantitative  analysis,  a  random  selection  of  25  Te   and   25   Mo   news   articles   were   reread   and   recoded   on   May   24,   2013   with  almost  identical  results  to  the  original  decoding,  asserting  the  replicability  of  my  method.    The   Te-­‐   related   articles   that   exist   before   February   2010   deal  mainly  with   Te-­‐  consumption  before  the  PV  market  increased  demand  in  the  late  00’s.  One  such  article   is  Who  needs  Tellurium?9,   that  deals  with   the   smallness,   irrelevance  and  price  opacity  of   the  market.  For   the  selected   time  period   there  exists  a   total  of  119  articles,  where  81  of  them  were  deemed  pertinent;  these  are  displayed  over  time  in  Figure  9.  Out  of  these  81  pertinent  articles,  61  were  deemed  to  be  price  innovations  that  alter  either  the  supply  or  demand  of  the  market.    

 

Figure  9:  Total  number  and  number  of  pertinent  Te  articles  from  February  1  2010  to  February  28  2013.  

The  main   catalysts   to   these   events   are   captured   in   Table   4,  which   shows   that  CdTe  PV  solar  cell  producer  and  market-­‐leader  First  Solar  Inc.  is  mentioned  most  in  price  innovation  articles.    When  these  are  further  broken  down  into  demand-­‐  and   supply   shocks,  we   see   that  First  Solar   dominates   the   demand   shocks  with  regards  to  number  of  pertinent  articles.  Supply  shocks  seem  to  be  dominated  by  mining  companies,  who  add  or  subtract  supply  to  the  market.  The  second  most  mentioned   company   is  5N  Plus   Inc.,   which   is   exclusively  mentioned   in   articles  that  can  be  read  as  demand  innovations.  Considering  that  5N  Plus  refines  Te  into  CdTe10,  this  suggests  that  the  company  is  a  better  indicator  of  the  state  of  supply  

                                                                                                               9  Metal  Bulletin,  July  10  2000.  10  5N  Plus  corporate  website:  http://www.5nplus.com/index.php/en/selsComposes.html  (accessed  on  May  3,  2013).  

Page 26: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   26    

 

in  the  market.  Vital,  which  is  mentioned  four  times,  is  another  refiner  of  Te  that  could  be  considered  a  supply  proxy.  This  will  be  discussed  more  in  section  4.3.2.    

Catalysts   Demand  shocks   Supply  shocks  FIRST  SOLAR   8   FIRST  SOLAR   8   BOLIDEN   5  BOLIDEN   5   5N  PLUS   5   VITAL   3  5N  PLUS   5   MCP   2   NYRSTAR   3  VITAL   4       RETORTE   2  MCP   3          NYRSTAR   3          II-­‐VI   2          RETORTE   2          

 Table  4:  Number  of  pertinent  Te  articles  where   the  actor  or   factor  was  deemed  to  be   the  catalyst.  Only  companies  with  more  than  one  pertinent,  price-­‐changing  article  are  presented.  

In  summary,  the  Te  market  goes  from  low  levels  of  reporting  activity  in  2010,  to  a  much  higher  levels  in  2011-­‐2012.  2013  has  so  far  offered  very  little  reporting,  which   most   likely   indicates   low   activity   on   the   market   rather   than   a   loss   of  journalistic  interest.    For   the   Mo   market,   a   total   of   1022   articles   were   studies,   where   581   were  deemed  pertinent.  Their  distribution  over  time  is  displayed  in  Figure  10.    

 

Figure  10:  Total  number  and  number  of  pertinent  Mo  articles  from  February  1  2010  to  February  28  2013.  

Out  of   these,  561  were  deemed  to  be  price   innovations,  out  of  which  328  were  deemed  to  have  an  identifiable  catalyst.  In  Table  5,  actors  and  factors  with  more  than   three   articles   are   split   up   according   to   catalysts   for   demand-­‐   or   supply  shocks.    

Page 27: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   27    

 

Catalysts   Demand  shocks   Supply  shocks  MACRO   41   MACRO   34   FREEPORT-­‐MCMORAN   24  SEASON   32   SEASON   31   GENERAL  MOLY   17  FREEPORT-­‐MCMORAN   24   STEEL   3   THOMPSON  CREEK   15  GENERAL  MOLY   17       CODELCO   12  THOMPSON  CREEK   16       ANTOFAGASTA   10  LME   13       RIO  TINTO   9  CODELCO   12       MOLY  MINES   6  ANTOFAGASTA   10       TASEKO   6  RIO  TINTO   9       MACRO   5  MOLY  MINES   6       INMET   5  TASEKO   6       MOLYMET   4  INMET   5       ROCA  MINES   4  MOLYMET   5       AVANTI   3  TRADE  BARRIERS   5       BHP  BILLITON   3  ROCA  MINES   4       NORILSK  NICKEL   3  AVANTI   3       SOUTHERN  COPPER  CORP   3  BHP  BILLITON   3       TECK   3  MERCATOR   3       TRADE  BARRIER   3  NORILSK  NICKEL   3       XSTRATA   3  SOUTHERN  COPPER  CORP   3          STEEL   3          TECK   3          TRADE  BARRIER   3          USD   3          XSTRATA   3          

 Table  5:  Number  of  pertinent  Mo  articles  where  the  actor  or   factor  was  deemed  to  be  the  catalyst.  Only  companies  with  more  than  two  pertinent,  price-­‐changing  articles  are  presented  in  this  table  

The  most   common   catalyst   is   the   MACRO   variable,   which   is   most   common   in  form   of   demand   shocks,   and   mainly   concerns   exogenous   international   price  shocks.  The  second  most  mentioned  is  SEASON,  which  may  also  be  considered  a  demand   shock.   It   is   a   variant   of   the   MACRO   catalyst,   but   is   used   to   decode  articles  covering  price  changes  when  production   is  expected  to  be   low,  such  as  summer  vacation  periods  in  the  north-­‐western  hemisphere,  or  Chinese  holidays  like  the  Chinese  New  Year  and  the  semi-­‐annual  Golden  Week.  Out  of  all  the  288  demand   shocks,   155   were   deemed   to   affect   demand   negatively   and   133  positively.    The  supply  shock  side  is  dominated  by  mining  companies,  and  usually   involves  reporting   of   possible   and   real   supply   changes   from   these   actors.   Examples   of  supply  shocks  are  news  reports  on  mining  projects  gaining  key  local  government  support,   strikes   at   mines   or   production   facilities,   or   possible   mining   projects  being   cancelled.   Out   of   273   supply   shocks   94   were   deemed   to   affect   supply  negatively  and  179  positively.    A  flaw  in  my  coding  scheme  is  that  it  only  captures  a  catalyst  of  an  event;  it  does  not   say   much   about   the   day-­‐to-­‐day   structure   of   the   market.   Although   mainly  macro-­‐   and   seasonal   catalysts   seem   to   affect   demand,   this   tells   little   of  who   is  demanding  Mo.  From  reading   the  articles,   it   is   clear   that  buyers  are  agents   for  steel  mills  around  the  world,  which  are  captured  as  a  catalyst  in  three  instances,  but  are  in  reality  major  price  setting  players  in  the  market.  Another  flaw  with  my  methodology   is   that   it   fails   to  capture   the   intensity  of  a  specific  news  article.  A  

Page 28: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   28    

 

single   article   about   a   specific   innovation  may   have   had   a   large   impact   on   the  market,  but  cannot  be  captured  properly  by  my  quantitative  analysis.    As   there  may  be   several   articles   reporting   on   the   same   event,   the  quantitative  analysis  proves  to  be  a  rather  blunt   instrument   in  determining  which  actors  or  factors   to   pick.   A   typical   example   of   this   in   the  Mo  market   are   supply   shocks  caused  by  mining  companies’  reporting  on  new  production  activities,  which  are  reported   on   several   times   as   the   project   progresses   from   prospecting   and  feasibility  studies,  to  becoming  a  fully  functioning  and  producing  mine.  However,  several   reports   on   a   single,   drawn   out   events   like  mining   projects  may   be   an  indication  on   the   importance   journalists  place  on  a  particular  project,  which   in  turn  could  affect  market  sentiments.  Sometimes  the  catalyst  is  coded  as  N/A  due  to   there  being  uncertainty  over  whom  a  market   “buyer”   is.   I   assume   these   are  mainly  consumers  of  Mo,  such  as  steel  mills,  or  price  speculators,  such  as  hedge  funds.    During  the  readings  I  noticed  that  China  and  Chinese  demand  is  often  mentioned  in  the  articles.  Having  “China”  as  a  catalyst  would  be  an  awkward  variable,  but  in  order  to  get  an  impression  of  Chinese  frequency  in  the  articles,  I  searched  all  the  articles  for  the  term  “China”,  which  was  mentioned  at  least  once  in  311  articles,  out  of  which  188  were  deemed  pertinent.  “China”  appeared  over  902  times  in  all  the  articles,  and  485  times  in  articles  deemed  pertinent.  

4.3  Incorporating  appropriate  actors  and  factors  into  the  SVAR  model    My   accumulated   qualitative   knowledge   of   both   markets,   along   with   the  numerical   indications   given   by   the   quantitative   analysis,   are   now   to   be  quantified  and  inserted  into  SVAR  models.  

4.3.1  The  Yu  et  al  (2012)  model  on  applied  on  tellurium    First,  a  SVAR  model  for  Te  is  run  using  the  same  aggregate  structural  indicators  as  Yu,  Song,  and  Bao  (2012)  to  explain  price  fluctuations.  The  FOB  USA  99.95%  Te  USD/kg  price  is  used  to  represent  the  Te  spot  price.  These  –  and  all  the  below  indicators   expressed   in  USD  –   are  deflated  using  US  CPI   collected   from   the  US  Bureau  of  Labor  Statistics.  I  assume  US  CPI  is  used  throughout  the  Yu,  Song,  and  Bao-­‐   article,   as   this   is   not   explicitly   stated.  All   data   are   collected  on   a  monthly  basis  and  prices  are  adjusted  to  February  2004-­‐levels.  This  means  I  use  the  last  available  price  listing  of  each  indicator  each  month,  which  for  Te-­‐listings  means  the  last  Friday  of  each  month.    The   explaining   variables   in   the   SVAR  model   are:   a   CPI   adjusted   euro-­‐to-­‐dollar  exchange   rate;   CPI   adjusted   WTI   natural   gas   prices;   CPI   adjusted   Henry   Hub  crude  oil  prices;   Industrial  Price   Index   (IPI),  which   is   the  US   IPI,   sourced   from  the  Board  of  Governors  of  the  Federal  Reserve  System,  the  Euro-­‐area  IPI  sourced  from  Eurostat,  and  Japanese  IPI,  sourced  from  the  Japanese  Ministry  of  Economy,  Trade  and  Industry  and  Eurostat,  weighted  by  their  regional  quarterly  GDP  from  

Page 29: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   29    

 

Eurostat.11  As   there   is  no  data  on  Te  contract  pricing,   this   is  excluded   from  the  model.  All   SVAR  models  use  monthly  price   listings  and  are  displayed   in  Figure  11.    

 

Figure  11:  The  LOG-­‐expression  of  CPI  adjusted  variables  as  selected  used  by  Yu  et  al.  IPI  LOG  x  10  has  been  included  to  better  visualise  the  industrial  production  index  and  is  not  used  in  the  SVAR  model.  

Using   the   Yu   et   al-­‐   variables   on   a   structural   response   SVAR  model   for   the   Te  market   presented   some   difficulties.   First,   as  my   replication   does   not   have   the  same  number  of  variables  as  Yu,   Song  and  Bao,   so  a  new  optimal   set  of   lags   is  recalculated  using  AIC,  which   is   2   for   this  dataset.   Second,   the  model  does  not  achieve  convergence.  Studying  the  error  terms  of  the  Σ  -­‐matrix  in  Table  6,  which  should  be  close  to  0,  there  is  reason  to  believe  assumption  3  of  the  SVAR  model  is  not  fulfilled  for  oil  or  gas  prices,  which  may  indicate  either  cointegration  or  serial  correlation  between  the  variables.  Regressing  the  two  variables,  then  running  an  Augmented  Dick-­‐Fuller  test  for  unit  roots  of  the  residual  error  terms  rejects  the  null  hypothesis  that  they  are  cointegrated,  which  is  also  confirmed  by  a  Johansen  test   for   cointegration.   A   Lagrange  multiplier   test   confirms   that   there   is   indeed  serial  correlation  between  lagged  variables,  and  thus  a  major  assumption  of  the  SVAR  model   is   unfulfilled.   I   suspect   that   Yu   et   al.’s   data   also   had   this   problem  with  serial  correlation,  which  would  most  likely  affect  their  results.    

 EURUSDLOG   GASLOG   OILLOG   IPILOG   TELOG  

EURUSDLOG   0,01284311          GASLOG   0   3122,4177  

     OILLOG   0   0   126,22352      IPILOG   0   0   0   0,00475299  

 TELOG   0   0   0   0   0,03325936    Table  6:  The  output  𝚺  -­‐matrix  from  the  structural  impulse  response  function,  may  indicate  that  Gas  and  Oil  prices  are  biased  estimates,  as  their  expected  error  term  is  not  close  to  0.  

                                                                                                               11  As  there  are  yet  any  estimates  of  first  quarter  2013  GDP,  I  have  assumed  them  to  be  the  same  as  fourth  quarter  2012.  

Page 30: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   30    

 

Another   problem   I   encountered  when   replicating   the   study   is   I   have   not   been  able   to   recreate   the   two   variables   “specific   policy   shocks”   or   “other   specific  demand   shocks”   used   in   their   Cholesky   accumulated   response   function.   It   is  unclear   which   variables   were   used   or   how   the   authors   quantified   different  national  policies  or  industry  specific  shocks.    The   issue   with   serial   correlation   was   dealt   with   by   first   running   the   impulse  response  function  without  gas,  then  without  oil.  No  convergence  error  occurred  either   time,   and   the   error   terms   were   in   both   cases   unbiased.   From   this  information   I   choose   to   drop   oil   as   a   variable   based   on   the   fact   that   it   is   not  normally   used   in   power   generation.   The   issue   of   using   policy-­‐   and   industry  specific  shocks  was  simply  dealt  with  by  excluding  them  from  the  SVAR  model.    Figure   12   displays   the   results   of   the   altered   version   of   the   Yu   et   al   structural  impulse  response   function  model  on  Te  with  error   terms  presented   in  Table  6.  The   rightmost   column   is   of  most   interest,   as   it   displays   how   impulse   variable  functions   may   affect   the   Te   price   over   24   time   periods.   Further,   Figure   13  displays   a   cumulative   response   to   a   one   standard   deviation   structural  innovation.    

  EURUSDLOG   GASLOG   IPILOG   TELOG  EURUSDLOG   0,01375093  

     GASLOG   0   0,06825692      IPILOG   0   0   0,0065813  

 TELOG   0   0   0   0,03663012    Table  7:  The  𝚺  -­‐matrix  of  the  altered  model  indicates  an  unbiased  impulse  response  function.  

 Figure  12:  Responses  to  structural  one  S.D.  innovation.  EURUSDLOG  is  EUR  to  USD  exchange  rate,  GASLOG  is  gas  price,  IPI  is  the  US,  Eurozone,  Japan  Industrial  Price  Index,  OILLOG  are  oil  prices,  and  TELOG  is  the  Price  of  Te.  All  are  expressed  as  logarithms.  The  rightmost  column  captures  the  effect  of  an  impulse  on  the  Te  price.  

0

.005

.01

.015

-.010

.01

.02

.03

-.002

0

.002

.004

-.06

-.04

-.02

0

-.005

0

.005

.01

0

.05

.1

-.002

0

.002

.004

-.02

0

.02

.04

-.005

0

.005

-.02

0

.02

.04

0

.005

.01

-.04-.02

0.02.04

-.005

0

.005

-.04-.02

0.02.04

-.004

-.002

0

.002

-.05

0

.05

.1

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Te3, EURUSDLOG, EURUSDLOG Te3, EURUSDLOG, GASLOG Te3, EURUSDLOG, IPILOG Te3, EURUSDLOG, TELOG

Te3, GASLOG, EURUSDLOG Te3, GASLOG, GASLOG Te3, GASLOG, IPILOG Te3, GASLOG, TELOG

Te3, IPILOG, EURUSDLOG Te3, IPILOG, GASLOG Te3, IPILOG, IPILOG Te3, IPILOG, TELOG

Te3, TELOG, EURUSDLOG Te3, TELOG, GASLOG Te3, TELOG, IPILOG Te3, TELOG, TELOG

95% CI structural irf

step

Graphs by irfname, impulse variable, and response variable

Response to structural one S.D. innovation ± 2 S.E.

Page 31: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   31    

 

   Figure  13:  Cholesky  accumulated  response  to  structural  one  S.D.  innovation  ±  2  S.E  with  the  same  variables  as  in  Figure  12.  

Comparing   my   own   findings   with   Yu   et   al’s   I   notice   that   there   is   but   one  significant   impulse   response   functions   at   any   given   time   period.   Looking   at  Figures  11  and  12  in  Yu  et  al,  and  Figures  12  and  13  above,  we  can  see  that  the  tails   of   the   impulse   response   functions   are   quite   fat.   The   only   variable   that  causes  a  significant  effect  on  Te  prices  is  the  Euro  to  USD  exchange  rate,  which  according  Yu  et  al  partially  captures  the  effects  of  the  Euro  crisis.   In  my  model,  the   price   of   Te   is   affected   negatively   by   an   exchange   rate   shock.   The   effect   is  significant,  meaning   it   is  non-­‐zero  on  a  95%-­‐level   for   the   first  10   time  periods.  Further,   the  Cholesky  accumulated   response   function   in  Figure  13  of   exchange  rate   shows   a   large   fraction   of   the   Te   mean   square   errors   are   explained   by  exchange  rate  shocks.    I  believe  that  the  lack  of  significance  in  the  above  and  Yu  et  al’s  may  be  the  result  of  omitted  variable  bias,  or  simply  using  the  wrong  variables.  Although  my  study  uses  a  slightly  different  time  period  and  a  different  –  but  in  many  regards  similar  –  spot  price,  our  results  are  only  similar  with  regards  to  the  lack  of  significance.  The  Yu  et  al  selection  of  variables  seems  to  stem  mainly  from  reasoning  around  general  macroeconomic   theory  and  not   from  real  market  observations.   I   argue  that  each  market  has  its  own,  specific  pricing  mechanisms,  and  these  need  to  be  considered  when  studying  the  PVSF  and  Te  markets.  The  only  conclusion  I  draw  from   the   application   of   the   Yu   et   al   paper   on   Te   is   that   it   shows   how   little  different   macroeconomic   variables   affect   the   price   of   a   metal.   Further,   their  paper   does   not   shed   much   light   on   which   policies   to   pursue   –   one   of   the  purposes  of  their  paper  –  nor  what  actually  explains  longer-­‐term  fluctuations  in  the  market.    

0

.5

1

1.5

-.1

0

.1

.2

-.05

0

.05

0

.5

1

-.2

0

.2

.4

0

.5

1

-.05

0

.05

.1

-.1-.05

0.05

.1

-.1-.05

0.05

.1

-.20.2.4.6

0

.5

1

1.5

-.04-.02

0.02.04

-.02-.01

0.01.02

-.1

0

.1

.2

-.2-.1

0.1.2

0

.5

1

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Te3, EURUSDLOG, EURUSDLOG Te3, EURUSDLOG, GASLOG Te3, EURUSDLOG, IPILOG Te3, EURUSDLOG, TELOG

Te3, GASLOG, EURUSDLOG Te3, GASLOG, GASLOG Te3, GASLOG, IPILOG Te3, GASLOG, TELOG

Te3, IPILOG, EURUSDLOG Te3, IPILOG, GASLOG Te3, IPILOG, IPILOG Te3, IPILOG, TELOG

Te3, TELOG, EURUSDLOG Te3, TELOG, GASLOG Te3, TELOG, IPILOG Te3, TELOG, TELOG

95% CI fraction of mse due to impulse

step

Graphs by irfname, impulse variable, and response variable

Accumulated response to Cholesky one S.D. innovation ± 2 S.E.

Page 32: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   32    

 

4.3.2  A  market-­‐  specific  tellurium  model    I   now   run   a   market   specific-­‐model   for   Te   based   on   the   findings   from   the  quantitative   analysis.   This   is   done   to   illustrate   that   market-­‐specific   variables  better  explain  variation  than  the  Yu  et  al  variables.    The  first  variable  I  select  for  the  model  is  the  Industrial  Production  Index  (IPI).  Although  I  only  have  one  price  changing  innovation  coded  as  a  macroeconomic  in   the   quantitative   analysis,   it   may   be   important   to   include   some   index   for  worldwide  industrial  demand  as  this  captures  conjectural  cycles  and  shocks.  Not  including  a  variable  for  world  demand  would  be  an  implicit  assumption  that  the  Te  market   is   immune  to  business  cycles,  which  it  most   likely   is  not.  To  capture  aggregate  world  demand  I  use  an  IPI  variable  slightly  different  from  the  Yu  et  al-­‐model.   The   IPI-­‐value   used   by   Yu   et   al   is   based   on  US,   Eurozone,   and   Japanese  industrial  production  indices,  weighted  by  each  country’s  nominal  GDP.  It  omits  China,  a  major  actor  in  the  PV  industry,  and  the  world’s  second  economy  in  GDP  terms.   For   the   Te   SVAR   model   I   have   thus   used   an   IPI   which   also   includes  Chinese   IPI,   sourced   from   the   OECD.   From   2006   there   are   no   January   values  given;  this  is  dealt  with  by  using  February  IPI  for  this  time  period.  Adding  China  also   means   that   GDP-­‐   weighting   needs   to   be   recalculated,   for   which   I   use  different   nominal   GDP   data   for   all   the   countries   as   there   seems   to   exist   little  detailed  Chinese  GDP-­‐data,  except   from  the   International  Monetary  Fund.  They  provide   the  most   up-­‐to-­‐date   statistics   on  GDP,   including   an   estimate   for   2013.  The  difference  between  the  two  IPIs  is  illustrated  in  Figure  14.    

 

Figure  14:  The  difference  in  IPI  when  the  index  includes  (IPINEW,  using  yearly  GDP  weights)  and  excludes  (IPI  Yu  et  al,  using  quarterly  GDP  weights)  China.  

The  most  mentioned   actor   in   the  quantitative   analysis   is  First  Solar  Inc12.  First  Solar   is   a   world-­‐leading   producer   of   PV,   both   technologically   with   regards   to  generation   and   cost   efficiency,   and   total   solar   output  measured   in  megawatts.  

                                                                                                               12  First  Solar  website:  http://www.firstsolar.com/en/About-­‐First-­‐Solar  (accessed  on  May  3,  2013).  

Page 33: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   33    

 

Their   primary   generation   technology   is   CdTe   PV.   First   solar   was   listed   on  NASDAQ  on  November  17  2006;  meaning  prices  from  February  28  2004  are  not  available.  These  are   listed  as  blanks  which  does  not  pose  any  problems   for   the  SVAR-­‐model.  First  Solar  is  my  first  example  of  a  market  proxy.  This  includes  the  assumption  that  First  Solar  has  causality  on  the  Te  price,  and  the  Te  price  only  has  causality  on  First  Solar  in  a  longer-­‐run  perspective.    In  order  to  capture  supply  on  the  market,   I  have  chosen  to   include  the  stock  of  the   Canadian   chemical   refining   company  5N  Plus   Inc.   Other  mining   companies  that  produce,  or  are  about  to  add  supply  of  Te  to  the  market  could  be  used,  but  Te  production  usually  makes  up  a  small  fraction  of  these  businesses,  thus  making  their  stock  prices  poor  proxies  for  Te  supply.  5N  Plus  is  a  good  candidate  in  this  aspect,  as  it  specialises  in  refining  chemicals  specific  to  this  market;  one  of  them  being   production   of   CdTe.13  My   variable   includes   their   stock   price   from   28  December  2007.    Another  company   I   considered  as  a  choice  of  proxy,  mainly  due   to   its   frequent  mentioning   in   the  Metal  Bulletin,   is  Vital  Chemicals.   This   is   not   possible   as   the  company  is  not  listed  on  any  bourse  or  stock  exchange.  There  are  other  mining  companies  mentioned  as  well,  such  as  Boliden  AB,  but  their  stock  price  should  be  poor   indicator,   as   Te   mining   makes   up   a   small   proportion   of   their   business  compared  to  other  minerals.    All  the  time  series  are  treated  in  a  similar  manner  as  in  Yu  et  al.  The  stock  values  are  price  adjusted  using  the  same  CPI,  which  is  set  to  be  1  on  February  27,  2004.  Each   index   is   then  expressed  as  a  10-­‐based   logarithm,  as  can  be  seen   in  Figure  15.  

 

Figure  15:  The  Te-­‐model  variables.  IPI  LOG  x  10  has  been  included  to  better  visualise  the  industrial  production  index  and  is  not  used  in  the  SVAR  model.  

                                                                                                               13  5N  Plus  website:  http://www.5nplus.com/index.php/en/apropos/historique.html  (accessed  on  May  3,  2013).  

Page 34: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   34    

 

The   underlying   assumptions   for   the   Te   model   are:   IPI   is   assumed   not   to   be  affected  by  either  of  the  two  companies,  nor  the  Te  spot  price.  The  profitability,  and  thus  the  stock  of  First  Solar,   is  expected  to  be  affected  by  IPI.  Although  the  long-­‐term   profitability   of   the   company   may   be   threatened   from   very   high   Te  prices,  this  is  not  true  for  the  short  run.  5N  Plus,  who  is  a  major  supplier  to  the  CdTe   PV-­‐industry,   is   expected   to   be   affected   by   IPI,   as   well   as   the   First   Solar  stock,  as  First  Solar  purchases  CdTe  from  5N  Plus.  5N  Plus  is  not  expected  to  be  affected  by  Te  prices  in  the  short  run  for  the  same  reasons  as  First  Solar.  I  expect  the  Te  spot  price  to  be  affected  by  all   the  above  variables;   IPI  should  affect   the  CdTe-­‐market   as   a  whole,   and   thus  Te;   the  First  Solar   stock   acts   as   a   proxy   for  CdTe  industry  demand;  the  5N  Plus  as  a  proxy  for  industry  supply.    

𝑒!!" ≡

𝑒!!"!

𝑒!!"#$

𝑒!!!

𝑒!!"  !"#$

=

𝑎!,! 0 0 0𝑎!,! 𝑎!,! 0 0𝑎!,! 𝑎!,! 𝑎!,! 0𝑎!,! 𝑎!,! 𝑎!,! 𝑎!,!

𝑢!!"!

𝑢!!"#$

𝑢!!!

𝑢!!"  !"#$

 

 The  optimal  number  of  lags  for  this  model  is  determined  to  be  2  by  the  AIC.  The  structural   impulse  response-­‐  and  Cholesky  accumulated  response  functions  are  presented  in  Figures  16  and  17.    

   Figure  16:  Te  response  to  structural  one  S.D.  innovation.  FIVENLOG  is  5N  Plus  stock,  FSLRLOG  is  the  First   Solar   Inc.   stock   price,   IPILOG   is   the   new   Industrial   Production   Index,   including   China,   and  TELOG  is  the  Te  price.  All  variables  are  expressed  as  logarithms.  The  complete  structural  response-­‐  and  Cholesky  accumulated  response  diagrams  are  presented  in  the  appendix.  

 

-.02

0

.02

.04

-.02

0

.02

.04

-.02

0

.02

.04

-.05

0

.05

0 10 20 30 0 10 20 30

TeSVAR, FIVENLOG, TELOG TeSVAR, FSLRLOG, TELOG

TeSVAR, IPILOG, TELOG TeSVAR, TELOG, TELOG

95% CI structural irf

step

Graphs by irfname, impulse variable, and response variable

Response to structural on S.D. innovation ± 2 S.E.

Page 35: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   35    

 

   Figure  17:  Te  accumulated  response  to  Cholesky  one  S.D.  innovation.  The  same  variables  are  used  as  in  Figure  16  

A  5N  Plus  shock  affects  the  Te  price  positively  in  the  first  two  time  periods  on  a  95%   level,   at   the  90%   in   the   third  period,   after  which   it   is   zero.  The  Cholesky  response  function  is  not  significant  at  a  90%-­‐level.  This  is  evidence  that  although  the  5N  Plus  stock  may  cause  ripples  in  the  Te  price,  it  does  not  affect  Te  volatility.    The  stock  of  First  Solar  does  not  directly  affect  the  price  of  Te,  but  after  five  time  periods  we  see  a  positive  increase  in  price,  which  continues  to  rise  until  period  13.   This   then   ebbs   off   until   period   20,   when   the   response   function   reaches   0.  First  Solar  has  a  large,  significant  impact  on  the  Te  spot  price,  which  supports  the  findings  of  the  quantitative  analysis  that  the  profitability  of  this  company  has  a  large  effect  on  Te  prices.  The  five  period  lag  of  the  effect  is  most  likely  due  to  the  sluggish   response   of   Te   prices   to   contract   changes   associated   with   decreased  output  of   the  company.   If  First  Solar  experiences  problems,   they  most   likely   let  their   contracts   run   out   without   renewing   them.   This   means   that   high-­‐priced  contracts  that  have  yet  to  run  out  are  still  present  in  warehouses,  bringing  up  the  average  price.  The  First  Solar  contracts  are  estimated  together  with  lower  priced  contracts  negotiated  more  recently,  which  have  prices  closer  to  the  “real“  market  price.  The  accumulated  Cholesky  response  function  supports  the  lagged  variable  statement;  only  after  19(!)  periods  do  the  results  become  significant  at  a  below-­‐90%  level.  The  stock  price  then  explains  25%  of  the  Te  mean  square  errors.  This  may  be  due   to   the   long   time  period   the  Te  price   took   to  adjust   to   the   reduced  earnings  of  First  Solar  in  2011-­‐2012.      A  structural  shock   from  the   IPI  variable  seems  to   immediately  cause  a  positive  response   in   the   Te   market.   The   Te   response   variable   increases   at   a   90%  significance  level  until  period  5  (at  which  point  the  response  function  is  at  95%  significance  level),  and  reaches  0  at  period  10.  This  may  be  indicative  that  the  Te  market   may   be   affected   by   short-­‐term   reactions   in   the   global   conjuncture.  Studying   the   accumulated   Cholesky   response,   we   do   not   see   that   the   mean  

-.1

0

.1

.2

.3

-.2

0

.2

.4

.6

-.2

0

.2

.4

0

.5

1

0 10 20 30 0 10 20 30

TeSVAR, FIVENLOG, TELOG TeSVAR, FSLRLOG, TELOG

TeSVAR, IPILOG, TELOG TeSVAR, TELOG, TELOG

95% CI fraction of mse due to impulse

step

Graphs by irfname, impulse variable, and response variable

Accumulated response to Cholesky one S.D. innovation ± 2 S.E.

Page 36: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   36    

 

square  errors  of  Te  are  affected  by  a  structural   innovation  shift   in  IPI,  meaning  IPI  does  not  increase  volatility  on  the  Te  market.  

4.3.3  A  market-­‐specific  molybdenum  model    The  quantitative  analysis  indicates  that  most  of  the  demand  for  Mo  comes  from  steel  mills.  Instead  of  picking  individual  companies  as  proxies  for  demand  in  the  steel  market,   as   I   did   in   the   Te   example,   the  most   common   steel   grade   prices  containing   Mo   would   be   a   better   measure   of   aggregate   Mo   demand.   In   2011,  approximately  39%  of  world  consumption  of  Mo  was  in  low  alloy  steels,  15  %  in  stainless   alloy   steels,   and  8%   in   superalloys     (USGS,   2012b).  A  different   study,  Outlook   for   Molybdenum   2008   (2008)   states   that   the   market   is   composed   of  41%  of   stainless  steel  and  29%   low  alloy  steels.  This  either   indicates  a   shift   in  market  structure   from  stainless  to   low-­‐alloy  steels,  which   is  highly  plausible  as  the   world   output   dropped   in   the   wake   of   the   financial   crisis.   It   may   also   be  because   the   reports   use   slightly   different   definitions   of   what   constitutes   a  stainless   steel.  Out  of  all   the  stainless  steel  grades,  most  pre-­‐crisis  demand  was  for  the  Society  of  Automotive  Engineers  (SAE)  International  Standard  300-­‐series  of  steel.  The  second  most  popular  in  this  series  is  SAE  Type  316,  which  contains  approximately  2%  Mo  oxide.  Data  on  Mo-­‐alloy  usage   is  difficult   to  estimate,   as  only   the   US   gather   and   publish   data   on   this,   but   picking   Type   316   seems   to  capture  a  large  portion  of  Mo  consumption,  and  thus  demand.  However,  as  I  have  not  been  able   to   access   a  price   index   for   SAE  316   steel,   the  LME  offers   a   steel  billet   futures   index,   which   includes   a   wide   array   of   different   steel   types;   two  which  contain  Mo.  This  index  reaches  back  to  April  28  2008,  which  is  a  sufficient  timespan  for  the  SVAR  model.  The  data  is  expressed  in  USD  and  is  deflated  using  the  same  CPI-­‐index  as  earlier.    From   a   transparency   perspective,   an   LME   Mo   future   price   captures   market  expectations  of  future  supply  and  demand  well.  Future  demand  may  be  difficult  to  anticipate  –  apart  from  expected  seasonal  deviations  –  whereas  future  supply  scenarios   are   not.   The   quantitative   analysis   indicates   that  much   of   the   regular  reporting  in  the  Metal  Bulletin  regards  future  supply  scenarios.  If  an  actor  on  the  market   can   anticipate  when  new   supply   is   added   to   the  market,   he  or   she   can  speculate   on  what   the   price   of  Mo  will   be   3   or   15  months   in   the   future.   This  means  that  reporting  on  new  mining  projects  that  add  supply  to  the  market  may  not  change  the  spot  price  as  much  as  the  future  prices.  Figure  18  illustrates  that  the   3-­‐   and  15-­‐month   prices   fluctuate   in   similar   patterns,   but   are   not   identical.  The   quantitative   analysis   indicates   that   most   of   the   future   supply-­‐   reporting  concerns  projects  that  will  produce  output  after  a  period  longer  than  one  year,  so  the  SVAR  model  uses  the  LME  15  month  future  price  index.    

Page 37: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   37    

 

 

Figure  18:  CPI-­‐adjusted,  3-­‐  and  15  month  LME  Mo  prices,  expressed  in  logarithmic  form.  

Similar   to   Te,   the   Mo   quantitative   analysis   indicates   that   some   actors   on   the  market  are  more  frequently  reported  on  than  others.  Picking  a  particular  stock  for  a  variable  is  difficult,  as  company  profitability,  and  thus  its  stock  price,  may  be   the   result   of   a   large   number   of   variables   not   relevant   to   Mo   spot   prices.  However,  the  quantitative  analysis  shows  that  the  US  company  General  Moly  Inc.  is  the  second  most  reported  company  between  2010  and  early  2013.  This  may  be  because   it,   like   5N  Plus   in   the   Te  market,   could   be   considered   a   good  market  proxy   for   the   overall   supply   climate   on   the   Mo   market.   General   Moly   is   a  relatively   small   mining   company   engaged   in   exploration,   development   and  mining   of   Mo   in   the   United   States.14  Compared   to   many   of   the   other   top-­‐mentioned  companies  in  the  quantitative  analysis,  it  is  relatively  small,  and  does  not   seem   to  be   involved   in   the  mining  of  other  metals,  meaning   its   stock  price  could  be  a  good  indicator  for  Mo  supply.  Using  this  variable  again  raises  the  issue  of  causality;   it   is  very   likely   the  profitability  of  General  Moly,   and   thus   its  stock  price,   is   affected   by   the   Mo   spot   price.   However,   the   heavy   reporting   on   the  company   indicates   that   opposite   causality   is   perhaps  more   true.   The  Mo   price  should  not  have  an  effect  as   immediate  on  General  Moly  profitability  as  General  Moly-­‐innovations   have   on   the   Mo   price,   since   the   company   only   reports  profitability  on  a  quarterly  basis.  A  possible  problem   in  stock  price   for  General  Moly   is   that   the   stock   lies   steadily   at   0,1   cents   (0,001  USD)   until   June   9   2004,  when   it   jumps  up   to  2  cents   (0,02  USD)   (which  can  be  observed   in  Figure  19).  However,  as  this  price  is  listed  on  their  official  website,  I  have  chosen  to  use  the  data  as  it  is.    Considering  the  most  reported  company,  Freeport  McMoRan  Inc,  which  is  a  large  mining  company  with  gold,  copper  and  Mo  operations,  its  stock  price  is  coupled  with   three   other  metal   markets.   For   this   reason   I   have   chosen   not   to   include  their   stock   price   as   a   variable.   I   have   omitted   Thompson   Creek,   Codelco,   and  Antofagasta   for  the  same  reason;  they  are  all  major  suppliers  of  Mo,  but  have  a  

                                                                                                               14  Yahoo  Finance  fact  page  for  General  Moly:  http://finance.yahoo.com/q/pr?s=GMO  (accessed  on  May  3,  2013).  

Page 38: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   38    

 

much  broader  metal  portfolio   than  General  Moly,   and   their   stock  prices   should  thus  be  worse  at  explaining  Mo  prices.    The  quantitative  analysis  points  that  much  of  the  world  demand  for  Mo  seems  to  be   from   Chinese   steel   mills,   which   is   why   the   new   IPI   established   in   the   Te  section  is  used.      The  underlying  causality  assumptions  for  the  SVAR  model  are  as  following:  IPI  is  not  thought  to  be  directly  affected  by  any  of  the  explaining  variables.  Steel  price  is  affected  by  aggregate   international  demand   from  businesses.  General  Moly   is  affected  by  a  number  of  factors,  but  due  to  my  beliefs  of  its  stock  playing  a  role  of  a  market  proxy,  it  is  only  affected  by  global  demand  and  steel  demand.  The  15-­‐month   price   should   be   affected   by  market   expectations   of   future   demand   and  supply  of  Mo,  but  not  the  spot  price,  which  captures  the  immediate  demand  for  physical  quantities  of  Mo  at  a  given  moment.  The  log  of  CPI  adjusted  stock  prices  are  presented  in  Figure  19.    

 

Figure  19:  The  CPI  adjusted  LOG  prices  of  stocks  used  for  the  Mo  SVAR  model.  IPI  LOG  is  the  new  Industrial  Production  Index,  MOXV  is  the  LME  15  month  Mo  price,  FEMOLOG  is  the  FeMo  65  price,  STEELLOG  is  the  LME  3  month  Steel  price,  and  GENMOLOG  is  the  General  Molybdenum  Inc.  stock  price.  

 

𝑒!!" =

𝑒!!"!

𝑒!!"##$

𝑒!!"#

𝑒!!"!"

𝑒!!"#$

=

𝑎!,! 0 0 0 0𝑎!,! 𝑎!,! 0 0 0𝑎!,! 𝑎!,! 𝑎!,! 0 0𝑎!,! 𝑎!,! 𝑎!,! 𝑎!,! 0𝑎!,! 𝑎!,! 𝑎!,! 𝑎!,! 𝑎!,!

𝑢!!!"

𝑢!!"##$

𝑢!!"#

𝑢!!"!"

𝑢!!"#$

 

 The   optimal   number   of   lags   is   4   as   determined   by   the   AIC.   The   estimated  Σ–matrix  indicates  no  biased  estimates,  and  thus  no  issues  of  convergence  or  serial  correlation,  which  a  Lagrange-­‐multiplier  test  confirms  at  a  92%  level.  With  this  I  also   note   that   the   expected   similar  movements   of   the   FeMo-­‐   and   the   LME   15  

Page 39: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   39    

 

month  Mo  time  series  are  not  statistically  identical.  The  structural  response-­‐  and  accumulated  Cholesky  responses  are  presented  in  Figures  20  and  21.    

   Figure   20:   FeMo65   response   to   structural   one   S.D.   innovation.   FEMOLOG   is   FeMo65   spot   price,  GENMOLOG   is   General  Moly   stock   price,   IPILOG   is   the   new   Industrial   Production   Index,   including  China,  MOVXLOG  is  the  LME  15  month  Mo  futures  price,  and  STEELLOG  is  the  LME  3  month  futures  Steel   price.   All   variables   are   expressed   as   logarithms.   The   complete   structural   response-­‐   and  Cholesky  accumulated  response  diagrams  are  presented  in  the  appendix.  

   Figure  21:  FeMo65  accumulated  response  to  Cholesky  one  S.D.   innovation.  The  same  variables  are  used  as  in  Figure  20.  

-.01

0

.01

.02

-.02

0

.02

.04

-.03

-.02

-.01

0

.01

-.02

0

.02

.04

.06

-.02

0

.02

.04

.06

0 10 20 30

0 10 20 30 0 10 20 30

MoSVAR, FEMOLOG, FEMOLOG MoSVAR, GENMOLOG, FEMOLOG MoSVAR, IPILOG, FEMOLOG

MoSVAR, MOXVLOG, FEMOLOG MoSVAR, STEELLOG, FEMOLOG

95% CI structural irf

step

Graphs by irfname, impulse variable, and response variable

Response to structural one S.D. innovation ± 2 S.E.

-.05

0

.05

.1

.15

-.2

0

.2

.4

.6

-.2

0

.2

.4

-.5

0

.5

1

-.5

0

.5

1

0 10 20 30

0 10 20 30 0 10 20 30

MoSVAR, FEMOLOG, FEMOLOG MoSVAR, GENMOLOG, FEMOLOG MoSVAR, IPILOG, FEMOLOG

MoSVAR, MOXVLOG, FEMOLOG MoSVAR, STEELLOG, FEMOLOG

95% CI fraction of mse due to impulse

step

Graphs by irfname, impulse variable, and response variable

Accumulated response to Cholesky one S.D. innovation ± 2 S.E.

Page 40: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   40    

 

A  shock  from  the  General  Moly  stock  price  affects  the  FeMo  price  positively  in  an  increasing,  oscillating  manner,  and  the  increase  is  significant  at  the  95%  level  for  the  first  three  periods,   then  90%  significant   in  the  fourth,  after  which  it  cannot  be  statistically  different  from  zero.  The  Cholesky  function  indicates  that  General  Moly  has  a  big   impact  on  FeMo  volatility.  At   the  90%  level  we  see   that  a  shock  explains  25%  of  the  FeMo  mean  squared  errors  in  the  first  seven  time  periods.    A  conjectural  shock   from  the   industrial  production   index  does  not   indicate  any  significant  changes   in  results  until   the  ninth   time  period,  when   the  response   is  then  slightly  negative  at  a  95%  level  until  period  eleven.  This  is  counter-­‐intuitive  to  expectations,  yet  the  Cholesky  function  does  not  give  indication  that  Mo  mean  square  errors  are  affected  at  significant  levels.  I  interpret  this  as  IPI  being  a  poor  indicator   of   Mo   demand,   and   a   better   index   would   perhaps   be   a   more  disaggregated  index  of  a  relevant  sector.    As  expected,  a  shock  to  the  LME  15  month  Mo  index  affects  the  Mo  price  to  a  very  high  degree.  The  structural  impulse  response  function  is  affected  positively,  and  results   are   significant   at   the   90%   and   95%   levels   intermittently   until   the   23rd  time  period.  The  Cholesky  function  is  also  significant  at  the  90%  and  95%  levels  for  all  time  periods,  and  explains  77%  of  the  Mo  mean  square  errors.  This  is  not  surprising   as   they   are   indices   of   the   same   metal,   but   it   is   a   good   sign   that  investors  look  to  this  transparent  future  price  mechanism  when  determining  the  spot   price.   The   issue   of   causality   is   not   a   problem,   as   a   futures   product   is  fundamentally   different   from   a   spot   price,   despite   them   being   the   same  commodity;   a   product   now   is   fundamentally   different   from   a   promise   of   a  product  in  the  future.    Finally,  a  shock  to  the  LME  3  month  aggregate  steel  market  price  affects  the  Mo  price  in  the  second  time  period  positively  at  the  95%  level,  then  decreases  to  no  effect   (with   intermittent   90%-­‐95%   significance)   in   the   15th   time   period.   The  Cholesky  function  is  never  significant  at  the  90%  or  95%  levels,  but  comes  close  between   the   third   and   twelfth   time   periods,   when   close   to   20%   of   the   mean  square  errors  can  be  explained  by  the  steel  price  shock  at  an  88-­‐89%  level.  The  price  of  steel  is  thus  a  good  indicator  of  Mo  prices  as  a  whole,  and  could  perhaps  be   the   more   disaggregated,   sector-­‐specific   index   mentioned   in   the   IPI   shock  analysis  above.    When   comparing   the  Mo   and   the   Te   impulse   response   functions,   the  Mo   ones  seem   to  have  much  more  of   an  oscillating   character,  whereas   the  Te   functions  have  a  smoother  character.  I  suspect  this  may  be  caused  by  the  differing  number  of  lags,  as  determined  by  the  AIC.  

4.4  Other  findings  from  the  quantitative  analysis    There  are  many  aspects  of   the  Te  and  Mo  markets   that  are  difficult   to  quantify  and  measure.  The  ones  I  found  most  important  during  the  quantitative  analysis-­‐  readings  need  to  be  discussed  and  compared.    The  quantitative  analyses  of  the  Te  and  Mo  markets  reveal  several  aspects  with  regards  to  market  transparency.  The  first  and  most  obvious  aspect  is  the  amount  

Page 41: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   41    

 

of  reporting  done  on  market  events.  There  are  10  times  as  many  articles  written  about  Mo   than  Te  during   the   sample  period,  which   is  natural  when  comparing  the  physical   sizes  of  markets.  However,   the  number  of  Te  articles   increased  as  market  volumes  and  interest  for  the  metal  increased  in  2011.  If  Te  continues  to  be  a  highly  demanded  metal  the  number  of  actors  interested  in  reporting  should  increase,  which  in  turn  may  lead  to  more  reporting  on  the  subject,  and  thus  more  transparency.    A  second  aspect   is  related  to   the   foci  of   the  news  reporting   itself.  Although  the  Mo   reporting   seems   quite   comprehensive,   and   the   Te   reporting   increases   as  demand  for  the  metal  increases,  the  limitations  and  methodology  used  by  news  reporters   is  highly   influential  on  what   is  considered  an  innovation.   In  a  market  like   Mo,   where   registered   stock   companies   are   bound   by   accounting   rules,  quarterly  reporting  and  financial  statements,  it  is  cheap,  convenient  and  easy  for  a   news   reporter   to   write   a   story   about   these   stock   companies   earnings   and  production   changes.   On   the   Te   market,   however,   there   are   a   few   dominant  actors,  where  some  are  not  even  publically  listed,  meaning  less  easily  accessible  public   information   for   journalists   to   access   and   report   on.   Further,   the  quantitative   analysis   contained   many   Mo   “market   reports”   in   the   form   of  interviews   from   the   LME-­‐ring,   where   the   newspaper   interviews   traders   and  market   insiders   about   how   they   perceive   market   supply   and   demand.   These  articles   have   been   considered   with   caution   as   there   is   no   way   to   assert   the  extent,   truth   or   intent   behind   these   often-­‐speculative   statements.   The  importance  of   such  statements  are  crucial   in  establishing  market  perception  of  supply   and   demand,   and   such   signalling   market   mechanisms   can   be   seen   as  natural  aspects  of  a  mature  market.  These  types  of  speculative  statements  may  be  planted  with  the  reporter  for  signalling  purposes,  and  the  importance  of  the  news  article  may  thus  be  exaggerated,  as  it  merely  constitutes  an  easy  story  for  a  journalist   eager   to   fill   the  daily   “news  hole”.   There   are   fewer  of   these   types  of  signalling   articles   in   the   Te   sample,   which   can   partially   be   explained   by   the  smaller  market  size  and  by  the  fact  that  there  are  few  or  no  traders  to  interview.  The   sources   to   these   statements   in   the   Te   market   are   often   anonymous  warehouse  officials,  whose  business  models  rely  on  confidentiality  and  security,  and  this  is  perhaps  why  these  statements  are  so  few  and  less  precise.    On  May  19  2011,  the  Metal  Bulletin  published  the  article  UK  government  advised  to   investigate   speculation   in   critical   metals,   which   was   included   in   the   Te  quantitative  analysis  but  not  in  the  Mo  version.  Although  Te  is  not  mentioned  in  the  article,  it  was  included  as  it  is  being  traded  on  an  off-­‐exchange  minor  metal  market,  which  has  been  speculated  in  heavily  by  private  hedge  funds.  This  article  refers   to   a   UK   House   of   Commons   Science   and   Technology   Committee   (2011)  hearing   that   took   place   on   May   17   2011.   Apart   from   discussing   national  solutions  to  possible  future  supply  problems,  such  as  stockpiling  as  a  safeguard  against   market   failures,   the   hearing   focused   on   the   increased   importance   of  metals   in   financial  markets,   and   how   financial  markets   have   had   an   increased  impact  on  metal  prices.        

Page 42: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   42    

 

The   perception   of   scarcity   of   certain   minerals   and   metals   may   lead   to  increased  speculation  and  volatility  in  price  and  supply.  There  is  a  need  for  accurate   and   reliable   information   on   scarcity   of   metals.   This   concern  underlines  the  recommendation  we  have  made,  that  the  Government  should  establish   and   regularly   update   a   shared   database   to   provide   such  information.  We   are   also   concerned   by   reports   of   hedge   funds   buying   up  significant   quantities   of   strategic   metals.   We   recommend   that   the  Government   investigate  whether   there  are   increasing   levels  of   speculation  in  the  metals  markets  and,  if  there  are,  their  contribution  to  price  volatility  and  whether  markets  that  allow  high  levels  of  speculation,  with  associated  price   volatility,   are  an  acceptable  way   to  deliver   strategic   commodities   to  end  users.  

   The   committee   thus   recommends   that   the   UK   government   needs   to   actively  encourage  supply  reporting  and  transparency.  The  second  recommendation,  that  the  government  should  investigate  the  possibility  of  limiting  speculative  trading,  is  not  about  improving  transparency  in  the  market,  but  rather  an  attempt  to  limit  whom  gets  to  trade  what  in  the  market.  The  example  presented  to  the  committee  to   illustrate   the  negative  effects  of   speculation  was   recent  purchases  of   copper  made  by  UK  hedge  funds.  Although  this  may  have  been  briefly  disruptive  to  the  copper  market,  it  by  no  means  made  it  collapse.  This  may  in  large  part  be  due  to  copper  market  transparency,  meaning  the  purely  speculative  purchase  was  easy  to  detect,   and  actors   in   the  market   could  quickly  adjust   to   the  new  supply  and  demand  situation,  albeit  at  a  cost.    The  above  hearings  brought  another  regulation  to  my  attention,  which  deals   in  minor  metals   in  another  aspect.  The  much-­‐debated  EU  regulation  of  hazardous  materials   handling,   REACH   (Registration,   Evaluation,   Authorisation,   and  Restriction  of  Chemicals),  imposes  regulations  and  restrictions  on  producers  and  consumers   dealing   in   materials   that   are   considered   toxic.15  REACH   requires  producers   and   consumers   to   register   usage   of   registered   materials   within   an  industry-­‐  or  sectorial-­‐  specific  Substance  Information  Exchange  Forum  (SIEF)16,  which  is  handled  by  the  European  Chemicals  Agency  (ECHA).  The  purpose  of  the  system   is   to   make   information   sharing   of   toxic   substances   more   efficient,  harmonise   labelling   of   products   with   toxic   contents,   and   help   make   markets  more  efficient  with  regards  to  limiting  animal  testing.  This  means  that  actors  in  the   market   can   request   toxicity   testing   data   from   the   ECHA   for   a   particular  material,  eliminating  unnecessary  testing  of  toxins  on  vertebrate  animals.17    The  REACH  regulation  has  been  met  with  industry  criticism  for  being  disruptive  of   trade,  while   placing  much   of   the   costs   of   implementation   on   producers   and                                                                                                                  15  MMTA  REACH  information  page  http://www.mmta.co.uk/reach  (accessed  on  May  6,  2013).  16  EU  SIEF  information  page:  http://echa.europa.eu/web/guest/regulations/reach/substance-­‐registration/substance-­‐information-­‐exchange-­‐fora  (accessed  on  May  6,  2013).  17  ECHA  website  section  on  data  sharing:  http://echa.europa.eu/regulations/reach/substance-­‐registration/data-­‐sharing  (accessed  on  May  6,  2013).  

Page 43: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   43    

 

consumers.  Many  producers  are  sceptical  of  the  data  sharing,  which  they  say  risk  exposing  corporate  secrets.18    As   illustrated   in   Table   9   many   of   the   minor   metals   covered   by   the   REACH  regulation  have  also  been  assessed   for  criticality,  or  have  been  deemed  critical  by   the   European   Commission.   This   means   that   the   ECHA   should   have   high-­‐resolution   data   of   minor   metal   production   and   consumption   for   many   actors  trading  within,  and  exporting  to  the  EU.    

EU   minor  metals  assessed   for  their  criticality    

Requires  REACH  registration  in   some  form  

Antimony    Beryllium   X  Chromium   X  Cobalt    Gallium    Germanium    Indium    Lithium    Magnesium   X  Manganese   X  Molybdenum   X  Rare  earths   X  Rhenium   X  Silica  sand   X  Tantalum    Tellurium   X  Titanium    Tungsten   X  Vanadium   X  

 Table  8:  List  of  minor  metals  assessed  for  their  criticality  by  the  European  Commission  (2010)  and  minor  metals  and  REACH-­‐registration  status  as  defined  by  the  MMTA.  

As  the  REACH  database  is  used  to  share  information  with  the  purpose  of  bringing  market   efficiency   in   the   form   of   harm   reduction   to   vertebrate   animals,   my  question   is:   could   it   be   used   to   bring   greater   transparency   to   minor   metal  markets,  improving  efficiency  and  reducing  opacity-­‐induced  market  volatility?    

                                                                                                               18  EU  chemicals  bill  under  fire  from  US-­‐led  coalition,  EU  observer  website:  http://euobserver.com/economic/21813  (accessed  on  May  6,  2013).    

Page 44: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   44    

 

5.  Conclusions    The   application   of  my  methodology   to   the   Te   and  Mo  markets   illustrates   that  market-­‐specific  variables  can  amply  explain  variation   in  a  minor  metal  market.  The  types  of  variables  used  in  the  Mo  market  are  more  transparent  and  carry  a  better   degree   of   explanation   compared   to   the   Te  market.   The  Mo   future-­‐   and  steel  price,  along  with  a   long   list  of  possible  market  proxy-­‐companies,  help  Mo  actors  assess  the  market  on  day-­‐to-­‐day  basis,  which  is  a  clear  indication  that  Mo  is   traded   on   a   transparent   and   relatively   efficient   market.   The   Te   market   is  wholly   different,   with   no   transparent   indicators,   few   actors   to   use   as  market-­‐  proxies,   and   little   reporting   on   supplied   quantities.   These   opaque   market  conditions,   coupled  with   the   increased  demand   for  Te,   are   the  major   causes  of  the   high   Te   price   volatility,   which   poses   a   threat   to   the   future   supply   of   this  critical  material.   Although   previous   opacity  may   have   been   caused   by   the   low  news   reporting   on   Te,   the   increased   number   of   articles   in   2011   may   be   an  indication   that   increased   journalism  attention   to   the  market   does  not   improve  transparency  to  a  degree  where  speculation  becomes  less  harmful.    The  quantitative  analysis  highlights  the  important  role  journalists  play  in  a  free  market  as  deliverers  of  price  innovations.  The  Metal  Bulletin  reporting  seems  be  rather   western-­‐centric   in   its   reporting,   attributing   European   and   American  supply   and   demand   changes   to   specific   companies,   whereas   Chinese  counterparts   are   often   only   addressed   as   just   Chinese.   This   makes   my   study  slightly   “western-­‐biased”   from   a   market   perspective.   I   have   chosen   not   to  address   the  biases,  discourses,   and   language   specific   restrictions  of   journalists,  but  this  could  be  done  in  future  studies.    In   order   to   address   the   problems   caused   by   opacity-­‐driven   market   volatility,  policy  makers  need  to  consider  different  remedies.  The  introduction  of  a  futures  price,  such  as  has  been  done  for  the  PVSF  described  in  Yu  et  al  (2011),  does  not  solve  the  problem  of  high  volatility.  Although  the  Mo  spot  price  has  managed  to  achieve   reduced   volatility   by   being   introduced   to   the   LME,   this   can  mostly   be  attributed   to   the   new   transparent   pricing   and   quantity-­‐reporting   regimes  associated  with   LME   introduction.   I   believe   that   if   there   existed   a   transparent  system   of   quantitative   reporting   for   the   Te   market,   the   speculative   bubble   of  2011  may  not  have  been  so  severe  as  producers,  consumers  and  speculators  in  the  market  would  have  noticed  that  the  artificially  high  prices  of  the  metal  were  the  result  of  speculative  buying,  based  on  over-­‐optimistic  demand  estimates  and  supply  limitation,  and  not  physical  consumer  demand.    The  UK  committee  hearings  recommended  that  the  government  should  set  up  a  database  to  provide  better  information  on  market  available  quantities  of  metals.  I  suggest  they  do  this  on  the  EU-­‐level,  which  means  extending  the  limited  data-­‐sharing  regime  that  already  exists  within  the  EU  REACH  scheme.  This  database  ought  to  contain  high-­‐resolution  data  of  all  toxic  minor  metals  traded  within  the  EU.   If   this   data   is  made   available   in   a   responsible   and   easily   accessible  way,   it  may  be  a  cheap  remedy  to  reduce  opacity-­‐induced  volatility  in  small  minor  metal  markets.  It  is  unlikely  that  any  of  these  low-­‐volume  metals  will  be  introduced  to  

Page 45: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   45    

 

the  LME  or  a  bourse  similar  to  it,  as  this  seems  to  require  large  markets  in  order  to  reach  profitability.    Although   price   speculation   in   all   commodities   markets   may   cause   efficiency  losses,   I   do  not   see   any  efficient  means  of   limiting   such  behaviour.  This  would  involve  identifying  buyer  intent  at  each  transaction,  as  well  as  creating  a  system  of  enforcing  rules  to  limit  this  behaviour.  Speculation  has  long  been  seen  as  the  major  disadvantage  –  albeit  a  natural  part  –  of  a  free  exchange  system.    This   thesis   is   an   attempt   to   illustrate   that   a   free   exchange   system   can   only   be  efficient   if   the  market   is   transparent.   If   the   Te  market   remains   volatile,   fewer  suppliers  will  invest  in  mining  projects,  as  the  market  price  poses  a  potential  risk  to  their  operations.  Further  research  is  needed  to  better  understand  commodity  market  volatility  and  what  possible  roles  market  actors  and  policy  makers  ought  to  play  in  order  to  reduce  unnecessary  risks  to  companies  dependent  on  minor,  critical  materials.      

Page 46: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   46    

 

References    Anonymous  (2013),  email  correspondence  with  industry  source  with  good  insight  to  the  tellurium  market,  2013-­‐03-­‐20.  Transcript  available  on  request.    Biasis,  Bruno,  Peter  Bossaerts  (1998),  Asset  Prices  and  Trading  Volume  in  a  Beauty  Contest,  The  Review  of  Economic  Studies,  Volume  65,  No.  2,  pp.  307-­‐340.    British  Geological  Survey  (BGS)  (2013),  Brown,  T.J.,  Shaw,  R.A.,  Bide,  T,  Petavratzi,  E.,  Raycraft,  E.R.,  Walters,  A.S.,  World  Mineral  Production  2007-­‐2011,  Retrieved  on  2013-­‐03-­‐05  from:  http://www.bgs.ac.uk/mineralsuk/statistics/worldStatistics.html.      Candelise,  Chiara,  Jamie  F.  Speirs,  Robert  J.K.  Gross  (2011),  Materials  availability  for  thin  film  (TF)  PV  technologies  development:  A  real  concern?  Renewable  and  Sustainable  Energy  Reviews,  Volume  15,  Issue  9,  pp.  4972–4981.    Candelise,  Chiara,  Mark  Winskel,  Robert  Gross  (2012),  Implications  for  CdTe  and  CIGS  technologies  production  costs  of  indium  and  tellurium  scarcity,  Progress  in  Photovoltaics,  20:816,  pp.  816-­‐831.    Chan,  Whing  H.,  and  Maheu,  John  M.,  2002,  Conditional  Jump  Dynamics  in  Stock  Market  Returns,  Journal  of  Business  &  Economic  Statistics  20,  377-­‐389.    Eggert,  Roderick  G.  (1990),  An  empirical  and  conceptual  introduction,  Resource  Policy,  17:2,  pp.  91-­‐99.      European  Commission  (2010),  Report  of  the  Ad-­‐hoc  Working  Group  on  defining  critical  raw  materials,  European  Commission  Enterprise  and  industry,  version  July  30  2010.    Fama,  Eugene  F.  (1970),  The  Journal  of  Finance,  Vol.  25,  No.  2,  pp.  383-­‐417.    First  Solar  (2012),  Q3  2012  Earnings  Call,  November  1  2012.  Retrieved  on  2013-­‐02-­‐22  from:  http://investor.firstsolar.com/results.cfm.      Green,  Martin  A.  (2009),  Estimates  of  Te  and  In  Prices  from  Direct  Mining  of  Known  Ores,  Progress  in  Photovoltaics,  17:347-­‐359.    Green,  Martin  A.  (2010),  Price  and  Supply  Constraints  on  Te  and  In  Photovoltaics,  in  Photovoltaic  Specialist  Conference  (PVSC),  35th  IEEE,  2010.    Hallwood,  Paul  C.  (1988),  On  the  efficiency  of  the  London  Metal  Exchange:  Copper  prices,  Resource  Policy,  14:3,  pp.180-­‐182.    Harrison,  Michael,  David  M.  Kreps  (1978),  Speculative  Investor  Behavior  in  a  Stock  Market  with  Heterogeneous  Expectations,  The  Quarterly  Journal  of  Economics,  Vol.  92,  No.  2,  pp.  323-­‐336.    

Page 47: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   47    

 

Hourari,  Yassine,  Jamie  Speirs,  Chiara  Candelise,  Robert  Gross  (2013),  A  system  dynamics  model  of  tellurium  availability  for  CdTe  PV,  Progress  in  Photovoltaics,  DOI:  10.1002/pip.2359.    International  Molybdenum  Association  (IMOA)  (2011),  Global  production  and  use,  2006-­‐2010.  Retrieved  on  2013-­‐03-­‐20  from:  http://www.imoa.info/molybdenum/molybdenum_market_information/global_production_use.php.      Irwin,  Scott  H.,  Dwight  R.  Sanders,  Robert  Merrin  (2009),  Devil  or  Angel?  The  Role  of  Speculation  in  the  Recent  Commodity  Price  Boom  (and  Bust),  Journal  of  Agricultural  and  Applied  Economics,  41,2  (August  2009)  pp.  377.391.    European  Commission  Joint  Research  Centre  (JRC)  (2011),  Report:  Critical  Metals  in  Strategic  Energy  Technologies,  October  26  2011.    Lee,  Sang  Bin,  Jee  Seok  Chung  (1998),  The  Effect  of  Market  Transparency:  Volatility  and  Liquidity  in  the  Stock  Market,  Review  of  Quantitative  Finance  and  Accounting,  11  pp.  23-­‐35.    Lin,  Zheng-­‐Wei,  Chia-­‐Cheng  Chen,  Chia-­‐Cheng  Huang  (2010),  Profits  from  technical  analysis:  an  empirical  evidence  of  precious  metal  markets,  Investment  Management  and  Financial  Innovations,  7:4  pp.  131-­‐141.    London  Metal  Exchange  (2012),  Minor  Metals  Brochure.  Retrieved  on  2013-­‐04-­‐25  from:  http://www.lme.com/~/media/Files/Brochures/Minor%20metals/Minor%20metals%20brochure_V6-­‐1212.pdf.      London  Metal  Exchange  (2013),  LME  Official  Price.  Retrieved  on  2013-­‐02-­‐13  from:  http://www.lme.com/pricing-­‐and-­‐data/pricing/official-­‐price/.    Metal  Bulletin  (2013a),  About  us.  Retrieved  on  2013-­‐02-­‐19  from:  http://www.metalbulletin.com/About-­‐us.html.    Metal  Bulletin  (2013b),  Background  to  Metal  Bulletin  price  assessments  and  indices.  Retrieved  on  2013-­‐02-­‐19  from:  http://www.metalbulletin.com/pricing_methodology.      Morales,  Lucia  (2008),  Volatility  Spillovers  on  Precious  Metals  Markets:  the  Effect  of  the  Asian  Crisis,  Conference  paper.    Moshirian,  Fariborz,  Huong  Giang  (Lily)  Nguyen,  Peter  Kien  Pham  (2012),  Overnight  public  information,  order  placement,  and  price  discovery  during  the  pre-­‐opening  period,  Journal  of  Banking  &  Finance,  Volume  36,  Issue  10,  pp.  2837–2851.    Oakdene  Hollins  (2012),  Study  of  By-­‐Products  of  Copper,  Lead,  Zinc  and  Nickel,  A  report  for  International  Lead  and  Zinc  Study  Group,  International  Nickel  Study  Group,  International  Copper  Study  Group,  June  2012.  

Page 48: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   48    

 

 Outlook  for  Molybdenum  2008  (2008),  confidential  report  from  CRU  international.      Neuendorf,  Kimberly  A.  (2002),  The  content  analysis  guidebook,  Sage  Publications,  London.    New  Boliden  (2011),  Kankberg  –  a  new  Boliden  gold  mine.  Retrieved  on  2013-­‐02-­‐13  from:  http://www.boliden.com/Documents/Press/Presentations/Kankberg.pdf.      Nussbaum,  Allen  (1962),  TELLURIUM,  American  Scientist,  Vol  50,  No.  2,  pp.  312-­‐321.    Selenium  Tellurium  Development  Association  (STDA)  (2012),  Se  &  Te.  Retrieved  on  2013-­‐02-­‐13  from:  http://www.stda.org/se_te.html.    Sephton,  Peter  S.,  Donald  K.  Cochrane  (1990),  A  note  on  the  efficiency  of  the  London  Metals  Exchange,  Economics  Letters,  33,  pp.341-­‐345.    Slade,  Margaret  E.  (1989),  The  two  pricing  systems  for  non-­‐ferrous  metals,  Resource  Policy,  15:3,  pp.  209-­‐220.    Speirs,  Jamie,  Robert  Gross,  Chiare  Candelise,  Bill  Cross  (2011)  Materials  availability:  potential  constraints  to  the  future  low-­‐carbon  economy  –  working  paper,  UK  Energy  Research  Centre.    Technology  Metals  Research,  Jack  Lifton  (2009),  2009-­‐07-­‐09,  The  Tellurium  Supply  Conjecture.  Retrieved  on  2013-­‐02-­‐11  from:  http://www.techmetalsresearch.com/2009/07/the-­‐tellurium-­‐supply-­‐conjecture/.    Tetlock,  Paul  C.  (2007),  Giving  Content  to  Investor  Sentiment:  The  Role  of  Media  in  the  Stock  Market,  The  Journal  of  Finance,  Vol.  62,  No.  3,  pp.  1139-­‐1168.    Tetlock,  Paul  C.,  Maytal  Saar-­‐Tsechansky,  Sofus  MacSkassy  (2008),  More  Than  Words:  Quantifying  Language  to  Measure  Firms’  Fundamentals,  The  Journal  of  Finance,  Vol.  63,  No.  3,  pp.  1437-­‐1467.    United  Kingdom  House  of  Commons  Science  and  Technology  Committee  (2011),  Strategically  Important  Metals.  Retrieved  on  2013-­‐05-­‐06  from:  http://www.publications.parliament.uk/pa/cm201012/cmselect/cmsctech/726/72606.htm.    United  States  Energy  Department  (2013),  Increasing  access  materials  critical  clean  energy  economy,  US  Energy  Department  website.  Retrieved  on  2013-­‐03-­‐26  from:  http://energy.gov/articles/increasing-­‐access-­‐materials-­‐critical-­‐clean-­‐energy-­‐economy.    

Page 49: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   49    

 

United  States  Geological  Survey  (USGS)  (2002),  Gordon  B.  Haxel,  James  B.  Hedrick,  and  Greta  J.  Orris,  Fact  sheet  087-­‐02:  Rare  Elements  –  Critical  Resources  for  High  Technology.  Retrieved  on  2013-­‐02-­‐20  from:  http://pubs.usgs.gov/fs/2002/fs087-­‐02/.    United  States  Geological  Survey  (USGS),  Micheal  W.  George  (2012a),  September  2012,  2011  Minerals  Yearbook:  Selenium  and  Tellurium  [Advanced  Release].  Retrieved  on  2013-­‐02-­‐11  from:  http://minerals.usgs.gov/minerals/pubs/commodity/selenium/myb1-­‐2011-­‐selen.pdf.      United  States  Geological  Survey  (USGS),  Désirée  E.  Polyak  (2012b),  September  2012,  2011  Minerals  Yearbook:  Molybdenum  [Advanced  Release].  Retrieved  on  2013-­‐03-­‐20  from:  http://minerals.usgs.gov/minerals/pubs/commodity/molybdenum/myb1-­‐2011-­‐molyb.pdf.      United  States  Geological  Survey  (USGS),  Micheal  W.  George  (2013a),  January  2013,  Mineral  Commodity  Summaries:  Tellurium.  Retrieved  on  2013-­‐02-­‐11  from:  http://minerals.usgs.gov/minerals/pubs/commodity/selenium/mcs-­‐2013-­‐tellu.pdf.    United  States  Geological  Survey  (USGS)  (2013b),  Metal  Prices  in  the  United  States  Through  2010,  pp.  175-­‐177.  Retrieved  on  2013-­‐03-­‐20  from:  http://pubs.usgs.gov/sir/2012/5188/.      Woodhouse,  Michael,  Alan  Goodrich,  Robert  Margolis,  Ted  James,  Ramesh  Dhere,  Tim  Gessert,  Teresa  Barnes,  Roderick  Eggert,  David  Albin  (2012),  Perspectives  on  the  pathways  for  cadmium  telluride  photovoltaic  module  manufacturers  to  address  expected  increases  in  the  price  for  tellurium,  Solar  Energy  Materials  &  Solar  Cells,  http://dx.doi.org/10.1016/j.solmat.2012.03.023.    Yu,  Yang,  Yuhua  Song,  Haibo  Bao  (2012),  Why  did  the  price  of  solar  PV  Si  feedstock  fluctuate  so  wildly  in  2004–2009?  Energy  Policy,  Volume  49,  pp.  572–585.      

Page 50: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   50    

 

Appendix    

List  of  abbreviations    Au  –  Gold    BGS  –  British  Geological  Survey    CdTe  –  Cadmium  Telluride    CIF  –  Cost,  Insurance,  in  Freight    CPI  –  Consumer  Price  Index    ECHA  -­‐  European  Chemicals  Agency    FeMo65  and  FeMo  –  Ferro  Molybdenum  (65)    FOB  –  Freight  On  Board    IPI  –  Industrial  Production  Index    LME  –  London  Metal  Exchange    Mo  –  Molybdenum    NWE  –  North  Western  Europe    Pt  –  Platinum    PV  –  Photovoltaic(s)    PVSF  –  Photovoltaic  Silicon  Feedstock    REACH  -­‐  Registration,  Evaluation,  Authorisation,  and  Restriction  of  Chemicals    SIEF  -­‐  Substance  Information  Exchange  Forum    STDA  –  Selenium  Tellurium  Development  Association    SVAR(p)  –  Structural  vector  autoregression  model  with  p  lags.    Te  -­‐  Tellurium    USGS  –  United  States  Geological  Survey    

Page 51: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   51    

 

VAR  and  SVAR  function  derivation19    A  VAR  model  of  p  lags  can  be  expressed  as:    

𝑧! = 𝛼 + 𝐵!𝑧!!!

!

!!!

+ 𝜀!  

 where  𝑧!  is   the  𝑘×1-­‐vector   of   the  𝑘  variables   that   are   to   be   studied;  𝛼  is   a  constant  𝑘×1 -­‐vector;  𝐵!  is   the   time-­‐invariant  𝑘×𝑘 -­‐   matrix   where   the   main  diagonal   terms   are   set   to   1;   and  𝜀!  is   the  𝑘×1  error   term,   which   satisfies   the  assumptions:    

1. E 𝜀! = 0,  or  every  error  term  has  mean  zero;    2. E 𝜀!𝜀!′ = Σ,   or   the   contemporaneous  matrix   of   error   terms   is  Σ  (a  𝑘×𝑘  

positive-­‐semidefinite  matrix)  3. E(𝜀!𝜀!!!),   meaning   for   every   non-­‐zero  𝑘,   there   is   no   correlation   across  

time,  or  more  specifically  no  serial  correlation  in  individual  terms  across  time.  

A   SVAR   model   of   p   lags   is   similar,   but   imposes   a   set   of   initial   intra-­‐variable  causality  assumptions  at  time  0  (𝐴!  on  the  left  hand  side),  using  the  same  error-­‐  term  assumptions  as  above,  and  is  expressed  as:    

𝐴!𝑧! = 𝛼! + 𝐴!𝑧!!!

!

!!!

+ 𝜀!  

 For  simplicity,  assume  a  2  structural  SVAR  model  with  1  lag.  This  is  expressed  as:    

1 𝐴!;!,!𝐴!;!,! 1

𝑧!,!𝑧!,! =

𝛼!,!𝛼!,! +

𝐴!;!,! 𝐴!;!,!𝐴!;!,! 𝐴!;!,!

𝑧!,!!!𝑧!,!!! +

𝜀!,!𝜀!,!  

 where      

Σ = E 𝜀!𝜀!! = 𝜎!! 00 𝜎!!

 

Writing  out  the  equation  explicitly  and  moving  𝑧!,!  to  the  right  hand  side:    

𝑧!,! = 𝛼!;! − 𝐴!;!,!𝑧!,! + 𝐴!;!,!𝑧!,!!! + 𝐴!;!,!𝑧!,!!! + 𝜀!,!    we   see   that   variable  𝑧!,!  can   have   an   effect   on   variable  𝑧!,!  if  𝐴!;!,!  is   non-­‐zero.  This   differs   from   the   VAR,   where  𝑧!,!  can   only   affect  𝑧!,!  in   periods  𝑡 + 1  and  

                                                                                                               19  Derivations  and  formulas  are  sourced  from  the  Journal  of  Statistical  Software  paper  VAR,  SVAR,  and  SVEC  models  http://www.jstatsoft.org/v27/i04/paper,  a  Boston  College  lecture  note  on  VAR,  SVAR  and  impulse  response  functions:  https://www2.bc.edu/~iacoviel/teach/0809/EC751_files/var.pdf,  and  Wikipedia  http://en.wikipedia.org/wiki/Vector_autoregression  (both  accessed  on  May  20  2013).  

Page 52: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   52    

 

forward,  but  not  directly  in  time  t.  Attempting  to  estimate  OLS  estimations  of  𝑧!,!  will   at   this   point   prove   futile,   as   it   will   yield   inconsistent   results.   However,  expressing   the   SVAR-­‐function   in   reduced   form  enables   us   to   solve   for  𝑧! .   First,  pre-­‐multiply  the  SVAR  within  the  inverse  of  𝐴!,    

𝑧! = 𝐴!!!𝛼! + 𝐴!!!𝐴!𝑧!!! + 𝐴!!!𝐴!𝑧!!! +⋯+ 𝐴!!!𝐴!𝑧!!! + 𝐴!!!𝜀!    then  denoting    

𝐴!!!𝛼! = 𝛼,   𝐴!!!𝐴!𝑧!!! = 𝐴!  for  𝑖 = 1,… ,𝑝,  and      𝐴!!!𝜀! = 𝑒!    the  SVAR  can  be  expressed  in  reduced  form  as    

𝑧! = 𝛼 + 𝐴!

!

!!!

+ 𝑒!  

 meaning   all   causality   assumptions   can   be   inserted   into  𝐴!!!  of   the  𝐴!!!𝜀! = 𝑒!-­‐  matrix,   as   is   done   in   the   methodology.   To   preform   a   structural   impulse-­‐   or  Cholesky  accumulated  response  function,  a  one  standard  deviation  shock  besets  the  model  at  time  0,  meaning  for      

𝑒! = 𝐴!!!𝜀!    the  initial  𝜀!  is  set  to    

𝜀! =

𝜀!,! = 1𝜀!,! = 0

⋮𝜀!,! = 0

 

 meaning  the  variable  vector  at  time  t  may  can  be  expressed  as    

𝑧! =

𝑧!,!𝑧!,!⋮𝑧!,!

= 𝐴!!!𝜀! =

1 𝑎!,! … 𝑎!,!𝑎!,! 1 … 𝑎!,!⋮ ⋮ ⋱ ⋮𝑎!,! 𝑎!,! … 1

𝜀!,!𝜀!,!⋮𝜀!,!

 

 where  𝑎!,!  in  the  𝐴!!!-­‐matrix  contains  causality  assumptions  for  time  0.  The  impulse  response  function  for  periods  𝑠  (with  𝑠 > 0)  can  thus  be  expressed  as    

𝑧! = 𝐴!!!𝐴!𝑧!!!    From  this,  an  OLS  estimation  is  computed  for  each  reduced-­‐form  equation.  This  can   be   calculated   using   most   quality   econometric   or   statistical   computer  software.   However,   the   algorithms   involved   in   solving   these   the   response  functions  are  quite  complicated  and  will  not  be  presented  here.  

Page 53: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   53    

 

Quantitative  analysis  coding  example  

 

   Figure  22:  Screenshot  of  a  typical,  pertinent  Te  article  with  filled-­‐in  coding  scheme  on  top.  

   Figure  23:  Screenshot  of  a  typical,  non-­‐pertinent  Mo  article,  with  filled-­‐in  coding  scheme  on  top.  

   

Page 54: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   54    

 

Complete  structural  innovation  graphs    

   Figure  24:    The  complete  structural  response  function  of  the  Te  model.  

 

   Figure  25:  The  complete  accumulated  Cholesky  response  function  of  the  Te  model.  

 

-.05

0

.05

-.1

-.05

0

.05

-.0020

.002

.004

.006

-.02

0

.02

.04

-.020

.02

.04

.06

-.05

0

.05

.1

-.004-.002

0.002.004

-.02

0

.02

.04

-.04-.02

0.02.04

-.1

-.05

0

.05

-.005

0

.005

.01

-.02

0

.02

.04

-.05

0

.05

-.1

-.05

0

.05

-.002

0

.002

.004

-.05

0

.05

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

TeSVAR, FIVENLOG, FIVENLOG TeSVAR, FIVENLOG, FSLRLOG TeSVAR, FIVENLOG, IPILOG TeSVAR, FIVENLOG, TELOG

TeSVAR, FSLRLOG, FIVENLOG TeSVAR, FSLRLOG, FSLRLOG TeSVAR, FSLRLOG, IPILOG TeSVAR, FSLRLOG, TELOG

TeSVAR, IPILOG, FIVENLOG TeSVAR, IPILOG, FSLRLOG TeSVAR, IPILOG, IPILOG TeSVAR, IPILOG, TELOG

TeSVAR, TELOG, FIVENLOG TeSVAR, TELOG, FSLRLOG TeSVAR, TELOG, IPILOG TeSVAR, TELOG, TELOG

95% CI structural irf

step

Graphs by irfname, impulse variable, and response variable

Response to structural one S.D. innovation ± 2 S.E.

0

.5

1

-.2

0

.2

.4

0

.2

.4

.6

-.2

0

.2

.4

0

.5

1

0

.5

1

1.5

-.05

0

.05

.1

-.20.2.4.6

-.05

0

.05

.1

-.05

0

.05

.1

0

.5

1

-.2

0

.2

.4

0

.2

.4

.6

-.20.2.4.6

-.2

0

.2

.4

0

.5

1

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

TeSVAR, FIVENLOG, FIVENLOG TeSVAR, FIVENLOG, FSLRLOG TeSVAR, FIVENLOG, IPILOG TeSVAR, FIVENLOG, TELOG

TeSVAR, FSLRLOG, FIVENLOG TeSVAR, FSLRLOG, FSLRLOG TeSVAR, FSLRLOG, IPILOG TeSVAR, FSLRLOG, TELOG

TeSVAR, IPILOG, FIVENLOG TeSVAR, IPILOG, FSLRLOG TeSVAR, IPILOG, IPILOG TeSVAR, IPILOG, TELOG

TeSVAR, TELOG, FIVENLOG TeSVAR, TELOG, FSLRLOG TeSVAR, TELOG, IPILOG TeSVAR, TELOG, TELOG

95% CI fraction of mse due to impulse

step

Graphs by irfname, impulse variable, and response variable

Accumulated response to Cholesky one S.D. innovation ± 2 S.E.

Page 55: Isopacity+induced!minormetal!market! …uu.diva-portal.org/smash/get/diva2:626368/FULLTEXT01.pdf · 2013-06-07 · F.!Söderqvist! Astudy"of"the"tellurium"market! 7! quantitativeanalysisisthenappliedtoaset!ofarticlespublishedin

F.  Söderqvist   A  study  of  the  tellurium  market   55    

 

 

   Figure  26:  The  complete  structural  response  function  of  the  Mo  model.  

 

   Figure  27:  The  complete  accumulated  Cholesky  response  function  of  the  Mo  model.  

-.01

0

.01

.02

-.02

0

.02

.04

-.001

0

.001

-.01

0

.01

.02

-.02

0

.02

.04

-.02

0

.02

.04

-.04-.02

0.02.04

-.002

0

.002

.004

-.02

0

.02

.04

-.05

0

.05

.1

-.03-.02-.01

0.01

-.04

-.02

0

.02

-.002

0

.002

.004

-.04

-.02

0

.02

-.1

-.05

0

.05

-.020

.02

.04

.06

-.04-.02

0.02.04

-.002-.001

0.001.002

-.020

.02

.04

.06

0

.05

.1

.15

-.020

.02

.04

.06

-.05

0

.05

-.002

-.001

0

.001

-.05

0

.05

.1

-.050

.05.1

.15

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

MoSVAR, FEMOLOG, FEMOLOG MoSVAR, FEMOLOG, GENMOLOG MoSVAR, FEMOLOG, IPILOG MoSVAR, FEMOLOG, MOXVLOG MoSVAR, FEMOLOG, STEELLOG

MoSVAR, GENMOLOG, FEMOLOG MoSVAR, GENMOLOG, GENMOLOG MoSVAR, GENMOLOG, IPILOG MoSVAR, GENMOLOG, MOXVLOG MoSVAR, GENMOLOG, STEELLOG

MoSVAR, IPILOG, FEMOLOG MoSVAR, IPILOG, GENMOLOG MoSVAR, IPILOG, IPILOG MoSVAR, IPILOG, MOXVLOG MoSVAR, IPILOG, STEELLOG

MoSVAR, MOXVLOG, FEMOLOG MoSVAR, MOXVLOG, GENMOLOG MoSVAR, MOXVLOG, IPILOG MoSVAR, MOXVLOG, MOXVLOG MoSVAR, MOXVLOG, STEELLOG

MoSVAR, STEELLOG, FEMOLOG MoSVAR, STEELLOG, GENMOLOG MoSVAR, STEELLOG, IPILOG MoSVAR, STEELLOG, MOXVLOG MoSVAR, STEELLOG, STEELLOG

95% CI structural irf

step

Graphs by irfname, impulse variable, and response variable

Response to structural one S.D. innovation ± 2 S.E.

-.050

.05.1

.15

0

.1

.2

.3

-.05

0

.05

.1

-.1

0

.1

.2

-.1

0

.1

.2

-.20.2.4.6

0

.5

1

0

.2

.4

-.20.2.4.6

0

.5

1

-.2

0

.2

.4

-.10.1.2.3

0

.5

1

-.2

0

.2

.4

-.2

0

.2

.4

-.5

0

.5

1

-.20.2.4.6

-.10.1.2.3

0

.5

1

-.5

0

.5

1

-.5

0

.5

1

-.10.1.2.3

-.050

.05.1

.15

-.5

0

.5

1

0

.5

1

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

MoSVAR, FEMOLOG, FEMOLOG MoSVAR, FEMOLOG, GENMOLOG MoSVAR, FEMOLOG, IPILOG MoSVAR, FEMOLOG, MOXVLOG MoSVAR, FEMOLOG, STEELLOG

MoSVAR, GENMOLOG, FEMOLOG MoSVAR, GENMOLOG, GENMOLOG MoSVAR, GENMOLOG, IPILOG MoSVAR, GENMOLOG, MOXVLOG MoSVAR, GENMOLOG, STEELLOG

MoSVAR, IPILOG, FEMOLOG MoSVAR, IPILOG, GENMOLOG MoSVAR, IPILOG, IPILOG MoSVAR, IPILOG, MOXVLOG MoSVAR, IPILOG, STEELLOG

MoSVAR, MOXVLOG, FEMOLOG MoSVAR, MOXVLOG, GENMOLOG MoSVAR, MOXVLOG, IPILOG MoSVAR, MOXVLOG, MOXVLOG MoSVAR, MOXVLOG, STEELLOG

MoSVAR, STEELLOG, FEMOLOG MoSVAR, STEELLOG, GENMOLOG MoSVAR, STEELLOG, IPILOG MoSVAR, STEELLOG, MOXVLOG MoSVAR, STEELLOG, STEELLOG

95% CI fraction of mse due to impulse

step

Graphs by irfname, impulse variable, and response variable

Accumulated response to Cholesky one S.D. innovation ± 2 S.E.