31
Isomerization from Silacyclopentadienyl Complexes to Rhodasilabenzenes, Possible or Not? Ying huang Si [R h'] Si Possible? [R h] R R

Isomerization from Silacyclopentadienyl Complexes to Rhodasilabenzenes , Possible or Not?

  • Upload
    amora

  • View
    20

  • Download
    0

Embed Size (px)

DESCRIPTION

Isomerization from Silacyclopentadienyl Complexes to Rhodasilabenzenes , Possible or Not?. Ying huang. Metallabenzene. 1. What’s metallabenzene complexes? . [M] = ML n , ML n-1 X or ML n-2 X 2 2.History - PowerPoint PPT Presentation

Citation preview

Page 1: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Isomerization from Silacyclopentadienyl Complexes to Rhodasilabenzenes, Possible or Not?

Ying huang

Si[Rh']

SiPossible?

[Rh]

RR

Page 2: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Contxet

Background

My work

Result Summary and next work

Page 3: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

1. What’s metallabenzene complexes? .

[M] = MLn, MLn-1X or MLn-2X2

2.History In 1979 ,Thorn and Hoffmann predicted the three classes of stable metallabenzenes

.

D.L. Thorn, R. Hoffmann, Nouv. J. Chim,1979, 3, 39

Mn

L

L

LRh

L

L

Cl

ClRh

L

L

LL

L is a neutral 2e- donor ligand

Metallabenzene

Page 4: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

In 1982

Since then Various metallaaromatics have been reported.

the first metallabenzene

W.R. Roper, J. Chem. Soc. Chem.Commun. 1982, 811

Page 5: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

M.M. Haley,Organometallics,2003, 22, 3279; M.M. Haley, Chem. Eur. J, 2005, 11,1191

Iridabenzene

3 1

Page 6: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Rhodabenzene No rhodabenzene has yet been isolated. only rhodabenzvalene

was isolated at -30 in 2002.℃

M. M. Haley, Organometallics ,2002,21,4320

48%

Page 7: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Reasons DFT calculations

(diffuse functions for use with the SDD and SDB-cc-pVDZ basis set-RECP combinations are presented for the transition metals.)

M. E.van der Boom,J.M. L. Martin, J. Am. Chem. Soc. 2004, 126, 11699

Rh

H3P PH3

RhH3P

PH3

H3P

20.5 kcalmol-1

-56.8 kcalmol-1

TS

Page 8: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

SilabenzeneAromaticity HF(B3LYP/6-311G**) Si- C :1.771 Å ASE( aromatic stabilization energy) :70–85% (6-31G*) of that of

benzene.

Apeloig, Y., Karni, M. ,Wiley: NewYork,1998, 2, Chapter 1.

But simple neutral silaaromatic compounds are known to be highly reactive.

Si

Page 9: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Free energy surface (kcal/mol) in the reaction of silabenzene with acetylene. ( B3LYP/6-31G(d)) N.Tokitoh,J. Chin. Chem. Soc,2008,55, 3

Reason

Page 10: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

synthesis No silabenzene stable at ambient temperature has ever been reported

until 1999.

2,4,6-tris[bis(trimethylsilyl)methyl]phenyl

N . Tokitoh ,Pure Appl. Chem, 1999,71, 495.

Page 11: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Molecular structure of Tbt-substituted silabenzene

bond lengths (Å): Si-C=1.765(1.770)C-C =1.391(1.399;1.381;1.394)

N.Tokiton,Acc. Chem. Res. 2004, 37, 86

X-rayRaman

Schematic drawings of the vibrational modes for the strongest in-plane vibrations of benzene and silabenzene

Page 12: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

N.Tokitoh,Organometallics , 2005 , 24 , 6141

Half-Sandwich complexes containing Si

Page 13: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

A. Sekiguchi ,J. Am. Chem. Soc,2009, 131, 9902

Rhodium Half-Sandwich

47%

The first group 9 metal complex with the heavy cyclopentadienyl ligand and the first heavy cyclopentadienyl complex of half-sandwich type.

Page 14: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

bond lengths (Å): Si1-Si2 =2.2294(8),Si2-Si3 = 2.2807(8), Si1-C2 =1.871(2), Si3-C1 = 1.857(2), C1-C2=1.413(3), Si1-Si4 =2.3864(8), Si2-Si5 =2.3821(8), Si3-Si6 =2.4001(8), Rh1-Si1 =2.5231(6), Rh1-Si2 =2.6845(6), Rh1-Si3 =2.4806(6), Rh1-C1 =2.371(2), Rh1-C2 = 2.323(2), Rh1-C34 =1.900(2), Rh1-C35 =1.873(2), C34-O1 =1.141(3), C35-O2 =1.147(3).

Page 15: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Zhenyang Lin , Guochen Jia,Dalton Trans., 2011, 40, 11315

DFTPackage : Gaussian 03Method: B3LYPbasis sets : 6-31G LanL2DZ (Re(z(f) = 0.869))

[Re']Possible?

[Re]

RR

Page 16: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

energies for the rearrangement reactions of rhenabenzenes. The relative electronic energies and Gibbs free energies at 298 K (in parentheses) are given in kcal mol-1.

Page 17: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Effect of 2OMe substituent on reaction energies for the rearrangement reactions of rhenabenzene.

possible

Page 18: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Energy profiles calculated for the formation of the rearrangement of 1 to 2. The relative electronic energies and Gibbs free energies at 298 K (in parentheses) are given in kcal mol-1.

TS

Page 19: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

My work

bond lengths (Å): Si3-Si4 =2.21321 (2.2807),Si2-Si3 =2.21328(2.2294),Si4-C10=1.87771(1.857),Si2-C11=1.87793 (1.871), C10-C11=1.39592(1.413), Si4-Rh=2.51113(2.4806), Si2-Rh=2.51036(2.5231),Si3-Rh= 2.77879 (2.6845), C11-Rh=2.51842(2.323), C10-Rh=2.51852(2.371)

H. Yasuda, V. Ya. Lee, A. Sekiguchi ,J. Am. Chem. Soc, 2009, 131, 9902.

DFTPackage : Gaussian 03Method: m05basis sets : 6-31G * LanL2DZ (Rh (z(f) = 1.350) Si(z(f)= 0.262) P (z(f) =0.340))

Page 20: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

The Gibbs free energies and the relative electronic energies (in parentheses) are given in kcal/mol

SiSi

Si

RhH3Si

H3Si

H3Si

CH3

CH3

OC CO

0.0(0.0)

SiRh Si

Si

H3Si

SiH3

SiH3

H3CCH3

CO

OC

57.10(58.34)

SiSi

Si

Rh

OC CO

Si

Rh Si

SiCO

OC

52.2(50.1)

Si

Rh

OC CO

Si

Rh

CO

OC34.0(35.8)

0.0(0.0)

Si

Rh

CO

OC

OC31.24(22.03)

0.0(0.0)

-CO

Page 21: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Si

[Rh] + SiH3CH3 + 3CH3CH3 + 2CH2CH2 CH3[Rh] SiH2

+ CH3SiH2CH3 + 4CH3CHCH2

[Rh]=Rh(CO)3

Si

Rh

CO

OC

OC

13.7(10.1)Kcal/mol

B3LYP

Guochen Jia, Zhenyang Lin, Organometallics 2003, 22, 3898

[Os] = Os(PH3)2(CO)I

Conjugation energies:46.66 kcal/mol

Conjugation energies:43.52 kcal/mol

Conjugation energies

Page 22: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Effect of OMe substituent on reaction energies for the rearrangement reactions of rhodasilabenzenes

The blue ones have imaginary frequencies

SiRhCO 31.63

(22.96)

0.0(0.0)

OMe

SiRhCO 35.50

(25.90)

0.0(0.0)

OMe Si

RhOC CO

+COOMe

Si

RhOC CO

+COMeO

OC

OC

OC

OC

SiRhCO

Si

RhOC CO

+CO

Si

RhOC CO

+CO

SiRhCO

MeO

SiRhCO

OMe

Si

RhOC CO

+COOMe

SiRhCO

MeO

Si

RhOC CO

+CO

OMe

31.24(22.03)

0.0(0.0)

(16.95)25.89

0.0(0.0)

0.0(0.0)

0.0(0.0)

22.64(13.03)

22.43(12.71) MeO

25.31(25.88)

20.34(21.62)

0.0(0.0)

OC

OC

OC

OC

OC

OC

OC

OC

Page 23: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

SiRhCO

Si

RhOC CO

+CO

MeO

OMeOMe

SiRhCO

MeO

Si

RhOC CO

+COMeO

MeO

MeO

SiRhCO

MeO

Si

RhOC CO

+COMeO MeO

OMe OMe

0.0(0.0)

0.0(0.0)

0.0(0.0)

19.35(8.75)

15.67(4.44)

12.26(0.714)

MeO

MeOOC

OC

OC

OC

OC

OC

Effect of 2OMe substituent on reaction energies for the rearrangement reactions of rhodasilabenzenes

Page 24: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Effect of PMe3 substituent on reaction energies for the rearrangement reactions of rhodasilabenzenes.

SiRh

Si

RhOC CO

+CO

SiRh PMe3

Si

RhOC CO

+COPMe3

SiRhCO

Si

RhOC CO

+COMe3P

31.24(22.03)

0.0(0.0)

(22.82)31.81

0.0(0.0)

0.0(0.0)

23.62(12.54)

SiRh

Si

RhOC CO

+CO

30.38(21.24)

0.0(0.0)

PMe3

Me3P

SiRhCO 27.65

(18.28)

0.0(0.0)

PMe3 Si

RhOC CO

+COPMe3

Si

RhOC CO

+CO

SiRhCO

Me3PPMe3

0.0(0.0)

35.33(24.89)

Me3P 1.16(2.86)

-3.56(-2.82)

0.00(0.00)

CO

CO

CO

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

Page 25: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Effect of PF3 substituent on reaction energies for the rearrangement reactions of rhodasilabenzenes

SiRhCOF3P

Si

RhOC CO

+CO

F3P 0.0(0.0)

9.98(1.42)

Si

RhOC CO

+CO

SiRhCO

F3P

SiRhCO

PF3Si

RhOC CO

+COPF3

PF3

(27.23)35.12

0.0(0.0)

0.0(0.0)

26.01(16.04)

SiRhCO 27.88

(19.00)

0.0(0.0)

PF3

SiRhCO 25.53

(16.66)

0.0(0.0)

PF3 Si

RhOC CO

+COPF3

Si

RhOC CO

+COF3P

-6.71(-6.41)

-15.09(-14.88)

0.00(0.00)

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

Page 26: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Effect of 2PF3 or 3PF3 substituent on reaction energies for the rearrangement reactions of rhodasilabenzenes

SiRhCO

Si

RhOC CO

+CO

PF3 PF3

SiRhCO

Si

RhOC CO

+COF3PF3P

F3P

F3P 0.0(0.0)

0.0(0.0)

14.96(7.72)

4.36(-7.22)

SiRhCO

Si

RhOC CO

+COF3P

F3P F3P 0.0(0.0)

4.15(-6.42)

PF3 PF3

Si

Si

RhOC CO

+COF3P

F3P

0.0(0.0)

-9.29(-22.66)

SiRhCO

Si

RhOC CO

+COPF3F3P 0.0

(0.0)

7.69(0.47)

PF3

PF3

F3P

F3P

F3P

F3P

F3P

RhOC

COOC

SiRhCO

Si

RhOC CO

+COF3P

F3P F3P 0.0(0.0)

2.32(-9.68)

F3P PF3PF3

OC

OC

OC

OC

OC

OC

OC

OC

OC

OC

Page 27: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

Effect of OMe and PF3 substituent on reaction energies for the rearrangement reactions of rhodasilabenzenes

SiRhCO

Si

RhOC CO

+CO

OMeOMe

SiRhCO

Si

RhOC CO

+COF3PMeO

MeO

F3P 0.0(0.0)

0.0(0.0)

15.60(7.20)

-3.04(-14.87)

Si

Si

RhOC CO

+COF3P

MeO 0.0(0.0)

3.51(-8.04)

Si

RhOC CO

+COOMeF3P 0.0

(0.0)

OMe

F3P

F3P

F3P

RhOC

COOC

SiF3P

RhOC

COOC

21.87(13.00)

OMe

SiRhCO

Si

RhOC CO

+COF3P

F3P 0.0(0.0)

F3P

11.86(1.46)

OMeF3POMe

SiRhCO

Si

RhOC CO

+COF3P

F3P 0.0(0.0)

F3P

4.30(-6.57)

F3P

OMe

OMe

OC

OC

OC

OC

OC

OC

OC

OC

Page 28: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

path 1

Path 2

TS

Si

Rh

OC

COOC

Si

Rh

OCCO

OC

SiRh

OCCO

OC

Si

Rh

OC CO

12.32(15.14)

-2.19(-11.83)

51.10(41.28)

Si

Rh COOC

31.24(22.03)

0.0(0.0)

?

TS2

IN2

IN1

TS1

+CO

SiRh

34.0(35.8)

Si

Rh

OC CO0.0(0.0)

SiRhOC

OC38.42(41.41)

SiRh

31.24(22.03)

SiRh

OC

OC

CO

OCC O

OCCO

OC

44.38(37.63)

TS2IN1

TS1+CO

Page 29: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

1. The thermodynamic of the Silacyclopentadienyl complexes is more stable than Rhodasilabenzene.

2. Computed how the substituents (OMe,PMe3,PF3) on the metallacycle affect the transformation and found that substituents and their locations on the metallacycle have a significant effect on the thermodynamic of the rearrangement reactions.

3. But can not realize the isomerization from Silacyclopentadienyl complexes to Rhodasilabenzenes.

4. Explore the possible pathway for the Rhodasilabenzene to Silacyclopentadienyl complexes.

Result Summary

Page 30: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

1. realize the isomerization from Silacyclopentadienyl complexes to Rhodasilabenzenes by using substituents on the metallacycle

2. Find the reaction pathway from Silacyclopentadienyl complexes to

Rhodasilabenzenes.

Next work

Page 31: Isomerization  from  Silacyclopentadienyl  Complexes to  Rhodasilabenzenes , Possible or Not?

.

.

.

Thanks for your attention