9
Benefits l Improved Gate, Avalanche and Dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead Free l RoHS Compliant, Halogen-Free HEXFET ® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G D S Gate Drain Source Absolute Maximum Ratings Symbol Parameter Units I D @ T C = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) A I D @ T C = 100°C Continuous Drain Current, V GS @ 10V (Silicon Limited) I D @ T C = 25°C Continuous Drain Current, V GS @ 10V (Wire Bond Limited) I DM Pulsed Drain Current P D @T C = 25°C Maximum Power Dissipation W Linear Derating Factor W/°C V GS Gate-to-Source Voltage V dv/dt Peak Diode Recovery V/ns T J Operating Junction and °C T STG Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw Avalanche Characteristics E AS (Thermally limited) Single Pulse Avalanche Energy mJ I AR Avalanche Current A E AR Repetitive Avalanche Energy mJ Thermal Resistance Symbol Parameter Typ. Max. Units R θJC Junction-to-Case ––– 0.402 R θCS Case-to-Sink, Flat Greased Surface 0.50 ––– °C/W R θJA Junction-to-Ambient ––– 62 300 Max. 180 130 670 120 190 See Fig. 14, 15, 22a, 22b 370 5.3 -55 to + 175 ± 20 2.5 10lb in (1.1N m) IRFB4110PbF S D G TO-220AB D S D G Form Quantity IRFB4110PbF TO-220 Tube 50 IRFB4110PbF Base Part Number Package Type Standard Pack Orderable Part Number 1 www.irf.com © 2014 International Rectifier Submit Datasheet Feedback April 28, 2014 V DSS 100V R DS(on) typ. 3.7mmax. 4.5mI D (Silicon Limited) 180A I D (Package Limited) 120A

irfb4110pbf

Embed Size (px)

DESCRIPTION

irfb4110pbf

Citation preview

Page 1: irfb4110pbf

Benefits Improved Gate, Avalanche and Dynamic dv/dt

Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead Free RoHS Compliant, Halogen-Free

HEXFETPower MOSFETApplicationsHigh Efficiency Synchronous Rectification in SMPSUninterruptible Power SupplyHigh Speed Power SwitchingHard Switched and High Frequency Circuits

G D SGate Drain Source

Absolute Maximum RatingsSymbol Parameter Units

ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) A

ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)

ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited)

IDM Pulsed Drain Current

PD @TC = 25°C Maximum Power Dissipation W

Linear Derating Factor W/°CVGS Gate-to-Source Voltage V

dv/dt Peak Diode Recovery V/nsTJ Operating Junction and °C

TSTG Storage Temperature Range

Soldering Temperature, for 10 seconds

(1.6mm from case)

Mounting torque, 6-32 or M3 screw

Avalanche CharacteristicsEAS (Thermally limited) Single Pulse Avalanche Energy mJ

IAR Avalanche Current A

EAR Repetitive Avalanche Energy mJ

Thermal ResistanceSymbol Parameter Typ. Max. Units

RθJC Junction-to-Case ––– 0.402

RθCS Case-to-Sink, Flat Greased Surface 0.50 ––– °C/W

RθJA Junction-to-Ambient ––– 62

300

Max.180

130

670

120

190

See Fig. 14, 15, 22a, 22b

370

5.3

-55 to + 175

± 20

2.5

10lbin (1.1Nm)

S

D

G

TO-220AB

D

SD

G

Form Quantity

IRFB4110PbF TO-220 Tube 50 IRFB4110PbF

Base Part Number Package TypeStandard Pack

Orderable Part Number

VDSS 100VRDS(on) typ. 3.7mΩ max. 4.5mΩID (Silicon Limited) 180A ID (Package Limited) 120A

Page 2: irfb4110pbf

Calculated continuous current based on maximum allowable junction

temperature. Bond wire current limit is 120A. Note that currentlimitations arising from heating of the device leads may occur withsome lead mounting arrangements.

Repetitive rating; pulse width limited by max. junctiontemperature.

Limited by TJmax, starting TJ = 25°C, L = 0.033mH RG = 25Ω, IAS = 108A, VGS =10V. Part not recommended for use above this value.

S

D

G

ISD ≤ 75A, di/dt ≤ 630A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994.Rθ is measured at TJ approximately 90°C.

Static @ TJ = 25°C (unless otherwise specified)Symbol Parameter Min. Typ. Max. Units

V(BR)DSS Drain-to-Source Breakdown Voltage 100 ––– ––– V∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.108 ––– V/°CRDS(on) Static Drain-to-Source On-Resistance ––– 3.7 4.5 mΩVGS(th) Gate Threshold Voltage 2.0 ––– 4.0 VIDSS Drain-to-Source Leakage Current ––– ––– 20 µA

––– ––– 250IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA

Gate-to-Source Reverse Leakage ––– ––– -100

Dynamic @ TJ = 25°C (unless otherwise specified)Symbol Parameter Min. Typ. Max. Units

gfs Forward Transconductance 160 ––– ––– SQg Total Gate Charge ––– 150 210 nCQgs Gate-to-Source Charge ––– 35 –––Qgd Gate-to-Drain ("Miller") Charge ––– 43 –––

RG Gate Resistance ––– 1.3 ––– Ωtd(on) Turn-On Delay Time ––– 25 ––– nstr Rise Time ––– 67 –––td(off) Turn-Off Delay Time ––– 78 –––tf Fall Time ––– 88 –––Ciss Input Capacitance ––– 9620 ––– pFCoss Output Capacitance ––– 670 –––Crss Reverse Transfer Capacitance ––– 250 –––Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 820 –––Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 950 –––

Diode CharacteristicsSymbol Parameter Min. Typ. Max. Units

IS Continuous Source Current ––– ––– 170 A

(Body Diode)ISM Pulsed Source Current ––– ––– 670

(Body Diode)VSD Diode Forward Voltage ––– ––– 1.3 Vtrr Reverse Recovery Time ––– 50 75 ns TJ = 25°C VR = 85V,

––– 60 90 TJ = 125°C IF = 75AQrr Reverse Recovery Charge ––– 94 140 nC TJ = 25°C di/dt = 100A/µs

––– 140 210 TJ = 125°CIRRM Reverse Recovery Current ––– 3.5 ––– A TJ = 25°Cton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

ID = 75ARG = 2.6Ω

VGS = 10V

VDD = 65V

TJ = 25°C, IS = 75A, VGS = 0V

integral reverse

p-n junction diode.

ConditionsVGS = 0V, ID = 250µAReference to 25°C, ID = 5mAVGS = 10V, ID = 75A VDS = VGS, ID = 250µAVDS = 100V, VGS = 0VVDS = 100V, VGS = 0V, TJ = 125°C

MOSFET symbol

showing the

VDS = 50V

Conditions

VGS = 10V VGS = 0VVDS = 50Vƒ = 1.0MHzVGS = 0V, VDS = 0V to 80V VGS = 0V, VDS = 0V to 80V

ConditionsVDS = 50V, ID = 75AID = 75A

VGS = 20VVGS = -20V

Page 3: irfb4110pbf

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature

Fig 2. Typical Output Characteristics

Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage

0.1 1 10 100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D, D

rain

-to-

Sou

rce

Cur

rent

(A

)

VGSTOP 15V

10V8.0V6.0V5.5V5.0V4.8V

BOTTOM 4.5V

≤60µs PULSE WIDTHTj = 25°C

4.5V

0.1 1 10 100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D, D

rain

-to-

Sou

rce

Cur

rent

(A

)

4.5V

≤60µs PULSE WIDTHTj = 175°C

VGSTOP 15V

10V8.0V6.0V5.5V5.0V4.8V

BOTTOM 4.5V

1 2 3 4 5 6 7

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D, D

rain

-to-

Sou

rce

Cur

rent

(A

)

TJ = 25°C

TJ = 175°C

VDS = 25V

≤60µs PULSE WIDTH

1 10 100

VDS, Drain-to-Source Voltage (V)

100

1000

10000

100000

C, C

apac

itanc

e (p

F)

VGS = 0V, f = 1 MHZCiss = Cgs + Cgd, C ds SHORTED

Crss = Cgd Coss = Cds + Cgd

Coss

Crss

Ciss

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

3.0

RD

S(o

n) ,

Dra

in-t

o-S

ourc

e O

n R

esis

tanc

e

(

Nor

mal

ized

)

ID = 75A

VGS = 10V

0 50 100 150 200

QG, Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

VG

S, G

ate-

to-S

ourc

e V

olta

ge (

V)

VDS= 80V

VDS= 50V

ID= 75A

Page 4: irfb4110pbf

Fig 8. Maximum Safe Operating Area

Fig 10. Drain-to-Source Breakdown Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 11. Typical COSS Stored Energy

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 12. Maximum Avalanche Energy vs. DrainCurrent

0.0 0.5 1.0 1.5 2.0

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I SD

, Rev

erse

Dra

in C

urre

nt (

A)

TJ = 25°C

TJ = 175°C

VGS = 0V

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Temperature ( °C )

90

95

100

105

110

115

120

125

V(B

R)D

SS

, Dra

in-t

o-S

ourc

e B

reak

dow

n V

olta

ge (

V)

Id = 5mA

0 20 40 60 80 100 120

VDS, Drain-to-Source Voltage (V)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ene

rgy

(µJ)

25 50 75 100 125 150 175

TC , Case Temperature (°C)

0

20

40

60

80

100

120

140

160

180

I D,

Dra

in C

urre

nt (

A)

Limited By Package

25 50 75 100 125 150 175

Starting TJ , Junction Temperature (°C)

0

100

200

300

400

500

600

700

800

E AS

, S

ingl

e P

ulse

Ava

lanc

he E

nerg

y (m

J) IDTOP 17A

27ABOTTOM 108A

0.1 1 10 100 1000

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100

1000

10000

I D,

Dra

in-t

o-S

ourc

e C

urre

nt (

A)

Tc = 25°CTj = 175°CSingle Pulse

1msec

10msec

OPERATION IN THIS AREA LIMITED BY R DS(on)

100µsec

DC

Page 5: irfb4110pbf

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Typical Avalanche Current vs.Pulsewidth

Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15:(For further info, see AN-1005 at www.irf.com)1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far inexcess of Tjmax. This is validated for every part type.

2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.4. PD (ave) = Average power dissipation per single avalanche pulse.5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase

during avalanche).6. Iav = Allowable avalanche current.7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as

25°C in Figure 14, 15).tav = Average time in avalanche.D = Duty cycle in avalanche = tav ·fZthJC(D, tav) = Transient thermal resistance, see Figures 13)

PD (ave) = 1/2 ( 1.3·BV·Iav) =T/ ZthJC

Iav = 2T/ [1.3·BV·Zth]EAS (AR) = PD (ave)·tav

1E-006 1E-005 0.0001 0.001 0.01 0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

The

rmal

Res

pons

e (

Z th

JC )

0.20

0.10

D = 0.50

0.020.01

0.05

SINGLE PULSE( THERMAL RESPONSE ) Notes:

1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

Ri (°C/W) τi (sec)

0.09876251 0.0001110.2066697 0.0017430.09510464 0.012269

τJ

τJ

τ1

τ1τ2

τ2 τ3

τ3

R1

R1 R2

R2 R3

R3

τC

τC

Ci= τi/RiCi= τ i/Ri

25 50 75 100 125 150 175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

E AR

, A

vala

nche

Ene

rgy

(mJ)

TOP Single Pulse BOTTOM 1.0% Duty CycleID = 108A

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

tav (sec)

0.1

1

10

100

1000

Ava

lanc

he C

urre

nt (

A)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse)

Page 6: irfb4110pbf

!"#$%#&%'Fig 16. Threshold Voltage vs. Temperature

!"#$&(%'!"#$%#&%'

!"#$&(%'

-75 -50 -25 0 25 50 75 100 125 150 175 200

TJ , Temperature ( °C )

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

VG

S(t

h), G

ate

thre

shol

d V

olta

ge (

V)

ID = 250µA

ID = 1.0mA

ID = 1.0A

0 200 400 600 800 1000

diF /dt (A/µs)

0

5

10

15

20

25

I RR

(A

)

IF = 30A

VR = 85V

TJ = 25°C

TJ = 125°C

0 200 400 600 800 1000

diF /dt (A/µs)

0

5

10

15

20

25

I RR

(A

)

IF = 45A

VR = 85V

TJ = 25°C

TJ = 125°C

0 200 400 600 800 1000

diF /dt (A/µs)

80

160

240

320

400

480

560

QR

R (

nC)

IF = 30A

VR = 85V

TJ = 25°C

TJ = 125°C

0 200 400 600 800 1000

diF /dt (A/µs)

80

160

240

320

400

480

560

QR

R (

nC)

IF = 45A

VR = 85V

TJ = 25°C

TJ = 125°C

Page 7: irfb4110pbf

)

Fig 22a. Switching Time Test Circuit Fig 22b. Switching Time Waveforms

VGS

VDS90%

10%

td(on) td(off)tr tf

VGS

Pulse Width < 1µsDuty Factor < 0.1%

VDD

VDS

LD

D.U.T

+

-

Fig 21b. Unclamped Inductive WaveformsFig 21a. Unclamped Inductive Test Circuit

tp

V(BR)DSS

IAS

RG

IAS

0.01Ωtp

D.U.T

LVDS

+- VDD

DRIVER

A

15V

20VVGS

Fig 23a. Gate Charge Test Circuit Fig 23b. Gate Charge Waveform

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2 Qgd Qgodr

Fig 20. *%#%'"&for N-ChannelHEXFETPower MOSFETs

1K

VCCDUT

0

L

• • •

P.W.Period

di/dt

Diode Recoverydv/dt

Ripple ≤ 5%

Body Diode Forward DropRe-AppliedVoltage

ReverseRecoveryCurrent

Body Diode ForwardCurrent

VGS=10V

VDD

ISD

Driver Gate Drive

D.U.T. ISD Waveform

D.U.T. VDS Waveform

Inductor Curent

D = P.W.Period

+

+

+

-

+

+

+-

-

-

• !"!!• #$$• !"!!%"

Page 8: irfb4110pbf

,

TO-220AB packages are not recommended for Surface Mount Application.

IRFB4110 IRFB4110

PYWW?

LC LC

PART NUMBER

DATE CODEP = LEAD-FREEY = LAST DIGIT OF YEARWW = WORK WEEK? = ASSEMBLY SITE CODE

INTERNATIONAL RECTIFIER LOGO

ASSEMBLY LOT CODE

ORYWWP

LC LC

PART NUMBER

DATE CODEY = LAST DIGIT OF YEARWW = WORK WEEKP = LEAD-FREE

INTERNATIONAL RECTIFIER LOGO

ASSEMBLY LOT CODE

Page 9: irfb4110pbf

-

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USATo contact International Rectifier, please visit http://www.irf.com/whoto-call/

./01$1'''$!'#'

..2$$%344&$

Moisture Sensitivity Level TO-220 N/A

RoHS compliant

Qualification information†

Industrial†

(per JEDEC JESD47F†† guidelines)

Yes

Qualification level

Revision HistoryDate Comment

• Updated data sheet with new IR corporate template.• Updated package outline & part marking on page 8.• Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.• Updated typo on the Fig.19 and Fig.20, unit of Y-axis from "A" to "nC" on page 6.

4/28/2014