59
IR SPECTROSCOPY

IR SPECTROSCOPY. h86E

Embed Size (px)

Citation preview

Page 1: IR SPECTROSCOPY.  h86E

IR SPECTROSCOPY

Page 2: IR SPECTROSCOPY.  h86E

• http://www.youtube.com/watch?v=DDTIJgIh86E

Page 3: IR SPECTROSCOPY.  h86E

• Light is one form of electromagnetic radiation.

• Light is only a very small part of the electromagnetic spectrum.

• Electromagnetic waves consist of electric and magnetic fields which are perpendicular to each other and to the direction of travel of the wave.

• The electric and magnetic fields vibrate at the same frequency as each other.

Page 4: IR SPECTROSCOPY.  h86E

THE ELECTROMAGNETIC SPECTRUM

Page 5: IR SPECTROSCOPY.  h86E

Atoms, molecules and ions can absorb (or emit) electromagnetic radiation of specific frequencies, and this can be used to identify them.

Electromagnetic radiation absorbed

What the energy is used for

Spectroscopy technique

Ultra-violet / visibleMovement of electrons to higher energy levels

Ultra-violet / visible spectroscopy

Infra-red To vibrate bondsInfra-red

spectroscopy

Microwaves To rotate moleculesMicrowave

spectroscopy

Radio waves To change nuclear spin NMR spectroscopy

Page 6: IR SPECTROSCOPY.  h86E

INFRA-RED SPECTROSCOPY

• All bonds vibrate at a characteristic frequency.

• There are different types of vibration.

Symmetric stretch Assymmetric stretch Bending

• The frequency depends on the mass of the atoms in the bond, the bond strength, and the type of vibration.

• The frequencies at which they vibrate are in the infra-red region of the electromagnetic spectrum.

Page 7: IR SPECTROSCOPY.  h86E

INFRA-RED SPECTROSCOPY

• Wavenumbers (cm-1) are used as a measure of the wavelength or frequency of the absorption.

Wavenumber = 1 wavelength (cm)

• If IR light is passed through the compound, it will absorb some or all of the light at the frequencies at which its bonds vibrate.

• IR light absorbed is in the range 4000 – 400 cm-1.

• Above 1500 cm-1 is used to identify functional groups.

• Below 1500 cm-1 is used for fingerprinting.

Page 8: IR SPECTROSCOPY.  h86E

BELOW 1500 cm-1 – “Fingerprinting”

• Complicated and contains many signals – picking out functional group signals difficult.

• This part of the spectrum is unique for every compound, and so can be used as a "fingerprint".

• This region can also be used to check if a compound is pure.

Page 9: IR SPECTROSCOPY.  h86E

CH2 C

CH3

CH2 CH3

CH3 C CH

CH3

CH3

Page 10: IR SPECTROSCOPY.  h86E

cyclohexane

C–H

Page 11: IR SPECTROSCOPY.  h86E

cyclohexene

C–H

Page 12: IR SPECTROSCOPY.  h86E

butanal

C–H

CH2 CH2 C

O

HCH3

Page 13: IR SPECTROSCOPY.  h86E

ethanoic acid

O–H

CH3 C

O

O H

Page 14: IR SPECTROSCOPY.  h86E

ethanol

O–H

CH3 CH2 O H

Page 15: IR SPECTROSCOPY.  h86E

butanal

C=O

CH2 CH2 C

O

HCH3

Page 16: IR SPECTROSCOPY.  h86E

propanone

C=O

CH3 C

O

CH3

Page 17: IR SPECTROSCOPY.  h86E

ethanoic acid

C=O

CH3 C

O

O H

Page 18: IR SPECTROSCOPY.  h86E

methyl ethanoate

C=O

CH3 C

O

O CH3

Page 19: IR SPECTROSCOPY.  h86E

CH3 CH2 O H

Page 20: IR SPECTROSCOPY.  h86E
Page 21: IR SPECTROSCOPY.  h86E
Page 22: IR SPECTROSCOPY.  h86E
Page 23: IR SPECTROSCOPY.  h86E
Page 24: IR SPECTROSCOPY.  h86E
Page 25: IR SPECTROSCOPY.  h86E
Page 26: IR SPECTROSCOPY.  h86E
Page 27: IR SPECTROSCOPY.  h86E
Page 28: IR SPECTROSCOPY.  h86E
Page 29: IR SPECTROSCOPY.  h86E
Page 30: IR SPECTROSCOPY.  h86E
Page 31: IR SPECTROSCOPY.  h86E

Task 1

Page 32: IR SPECTROSCOPY.  h86E

Exercise 1

Match the following eight compounds to the following eight IR spectra.

hex-2-ene

pentane

methylpropan-1-ol

2-methylpentan-3-one

butanal

butanoic acid

propyl ethanoate

nitrobenzene

Page 33: IR SPECTROSCOPY.  h86E

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 34: IR SPECTROSCOPY.  h86E

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 35: IR SPECTROSCOPY.  h86E

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 36: IR SPECTROSCOPY.  h86E

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 37: IR SPECTROSCOPY.  h86E

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 38: IR SPECTROSCOPY.  h86E

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 39: IR SPECTROSCOPY.  h86E

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 40: IR SPECTROSCOPY.  h86E

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 41: IR SPECTROSCOPY.  h86E

C-O

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

C=O

propyl ethanoate

CH3 C

O

O CH2 CH2 CH3

Page 42: IR SPECTROSCOPY.  h86E

C=O

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

2-methylpentan-3-one

CH3 CH C

O

CH2 CH3

CH3

Page 43: IR SPECTROSCOPY.  h86E

methylpropan-1-ol

O-H

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

CH3 CH CH2 OH

CH3

Page 44: IR SPECTROSCOPY.  h86E

C-H

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

nitrobenzene NO2

Page 45: IR SPECTROSCOPY.  h86E

C-H

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

pentane CH3 CH2 CH2 CH2 CH3

Page 46: IR SPECTROSCOPY.  h86E

C-H 10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

C=O

butanal CH3 CH2 CH2 C

O

H

Page 47: IR SPECTROSCOPY.  h86E

O-H

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

butanoic acid CH3 CH2 CH2 C

O

O H

Page 48: IR SPECTROSCOPY.  h86E

C=C

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

C-HC-H

hex-2-ene CH3 CH CH CH2 CH2 CH3

Page 49: IR SPECTROSCOPY.  h86E

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

F

Page 50: IR SPECTROSCOPY.  h86E

G

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 51: IR SPECTROSCOPY.  h86E

9

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 52: IR SPECTROSCOPY.  h86E

10

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 53: IR SPECTROSCOPY.  h86E

11

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

%T

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Page 54: IR SPECTROSCOPY.  h86E

P

Page 55: IR SPECTROSCOPY.  h86E

Q

Page 56: IR SPECTROSCOPY.  h86E

R

Page 57: IR SPECTROSCOPY.  h86E

S

Page 58: IR SPECTROSCOPY.  h86E

T

Page 59: IR SPECTROSCOPY.  h86E

U