23
Ion Beam Centre www.surreyibc.ac.uk IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation and Modelling for Ion Beam Analysis 23 - 27 February 2009, Miramare - Trieste, Italy Chris Jeynes University of Surrey Ion Beam Centre Guildford, England Monday February 23 rd 2009

Ion Beam Centre IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

  • View
    230

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

The IAEA Intercomparison of IBA codes

Joint ICTP/IAEA Workshop on Advanced Simulation and Modelling for Ion Beam Analysis

23 - 27 February 2009, Miramare - Trieste, Italy

Chris JeynesUniversity of Surrey Ion Beam Centre

Guildford, England

Monday February 23rd 2009

Page 2: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

IAEA-sponsored intercomparison of IBA software codes

Nuno P. Barradas (Instituto Tecnológico e Nuclear & University of Lisbon)

Kai Arstila (Katholieke Universiteit Leuven)

Gabor Battistig (MFA Budapest)

E. Kótai & Edit Szilágyi (KFKI Budapest)

Marco Bianconi & G. Lulli (CNR-IMM Bologna)

Nick Dytlewski (IAEA, Vienna)

Chris Jeynes (University of Surrey Ion Beam Centre)

Matej Mayer (Max-Planck-Institut Garching)

Eero Rauhala (University of Helsinki)

Mike Thompson (Cornell University New York)

Nuclear Instruments and Methods B262 (2007) 281-303summary at: Nuclear Instruments and Methods B266 (2008) 1338-1342

This talk was presented at the IBA conference in Hyderabad, September 2007

http://www.mfa.kfki.hu/sigmabase/ibasoft/

Page 3: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Context

• Status of software for Ion Beam Analysis in Materials Development, NAPC/PS/2002/F1.TM - 25886, (IAEA, Vienna 2003)

• E. Rauhala, N.P. Barradas, S. Fazinić, M. Mayer, E. Szilágyi, M. Thompson, Status of ion beam data analysis and simulation software,   Nucl. Instr. Meth. B244 (2006) 436

• Barradas & Rauhala chapter on IBA Software in new IBA Handbook (this has been circulated on ION)

• IAEA cross-section CRP: A. Gurbich, I. Bogdanovic-Radovic, M. Chiari, C. Jeynes, M. Kokkoris, A.R. Ramos, M. Mayer, E. Rauhala, O. Schwerer, Shi Liqun and I. Vickridge, Status of the problem of nuclear cross section data for IBA, Nucl. Instrum. Methods Phys. Res., Sect. B, 266(2008)1198-1202

• PIXE & PIGE not considered here

Page 4: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

• Ion Beam Analysis is an accurate and traceable technique• IBA is not trivial to calculate:

– The yield e at detected energy E3 for an element e is given by the triple integral: (D.K.Brice, Thin Solid Films 19 1973, 121)

– Even in the single scattering approx. the calculation is intricate– Many physical effects to take care of

• New generation single scattering codes• Monte Carlo code available for comparison • IAEA persuaded of need for support (cf IAEA support of IBANDL, SigmaCalc)

Need for Intercomparison

Page 5: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Depth profiling codes

• First Generation Single Scattering Codes

– Ziegler (1976)

– GISA (Rauhala, 1984)

– RUMP (Thompson, 1985)

– RBX (Kótai, 1994)

• Straggling Code

– DEPTH (Szilágyi, 1995) • New Generation Single Scattering Codes

– DataFurnace (“NDF” Barradas, Jeynes & Webb 1997)

– SIMNRA (Mayer, 1997)

• Monte Carlo Code

– MCERD (Arstila, 2000)

Page 6: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Overview of Intercomparison

1. Comparative simulations

1. Baseline RBS (sanity check)

a) Screening

b) Pileup

c) Double scattering

2. Channelling

3. EBS with sharp resonances O(a,a)O: (3.04 MeV 4He)

4. ERD (1.5 MeV He)

5. HI-RBS (3.5 MeV Li)

6. HI-ERD (50 MeV I)

7. NRA (1 MeV 3He)

8. NRA (1 MeV D)

2. Detailed analysis of real spectra (RBS)

1. a-Si spectrum (sanity check)

2. IRMM certified Sb implant in Si

3. HfO/Si sample

4. Co-Re multilayer sample (roughness)

Page 7: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Baseline Calculation

Simulation of 50nm Au/200nm SiO2/Si (1.5MeV 4He+, Bohr straggling, 16keV detector resolution, single pure Rutherford scattering, no pileup, SRIM 2003)

All codes:

0.3% agreement: yield & height of various features

SIMNRA, DataFurnace & RUMP:

0.1% yield & height agreement

Surface & interface positions agree at 100eV

SIMNRA, DataFurnace:

Edge widths agree at 500eV

0 500 1000 15000

5000

10000

15000

20000

Yie

ld (

arb

. u

nits

)

E (keV)

DEPTH GISA MCERD NDF RBX RUMP SIMNRA

Structure 1, Calculation 1

Theta=150Theta=15000

In=60In=6000, Out=30, Out=3000

Page 8: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Simulation of 50nm Au/200nm SiO2/Si (1.5MeV 4He+, Bohr straggling, 16keV detector resolution, single Rutherford scattering with screening, no pileup, SRIM 2003)

Same as previous, but with L’Ecuyer and Andersen screening

Gold signal

SIMNRA & DataFurnace indistinguishable, RUMP very close

1250 1300 135016000

17000

18000

17000

18000

a)

Andersen screening: NDF RUMP SIMNRA

No screening: NDF RUMP SIMNRA

Yie

ld (

arb.

uni

ts)

E (keV)

b)

Structure 1, Calculations 2 and 3

L'Écuyer screening: DEPTH NDF SIMNRA

No screening: (SIMNRA)

Yie

ld (

arb.

uni

ts)

Page 9: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Simulation of 50nm Au/200nm SiO2/Si (1.5MeV 4He+, Bohr straggling, 16keV detector resolution, single pure Rutherford scattering, pileup no PUR, SRIM 2003)

0 500 1000 1500

10

100

1000

10000

Structure 1, Calculation 7

Yie

ld (a

rb. u

nits

)

E (keV)

NDF RUMP SIMNRA SIMNRA without pileup

Same as previous but with pileup and no pileup rejection

SIMNRA & DataFurnace almost indistinguishable: difference due to slight variation in pileup treatment

RUMP very close

Page 10: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Simulation of 50nm Au/200nm SiO2/Si (1MeV 4He+, Bohr straggling, 16keV detector resolution, screened Rutherford scattering, pileup, SRIM 2003, multiple & double scattering)

Same as previous, but with double scattering and pileup

SIMNRA & DataFurnace almost indistinguishable

0 200 400 600 800 10001

10

100

1000

10000

100000

Structure 1, Calculation 26

NDF total DS

SIMNRA total DS

Yie

ld (a

rb. u

nits

)

E (keV)

Page 11: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Simulation of Channelling

100% substitutional 66keV 1016 Ge/cm2 implant into bulk (100)Si; Si point defect distribution = Ge distribution but with 2% max concentration, Perfect (unreconstructed) surface

Only RBX

Comparison with Monte Carlo code BISIC is impressive

1250 1500 1750 20000.1

1

10

100

1000Structure 5, Calculation 28

random channelled RBX channelled BISIC

Yie

ld (

arb

. un

its)

E (keV)

BISIC:BISIC: E. Albertazzi, M. Bianconi, G. Lulli, R. Nipoti, M. Cantiano, Nucl. Instrum. E. Albertazzi, M. Bianconi, G. Lulli, R. Nipoti, M. Cantiano, Nucl. Instrum. Methods B118 Methods B118

(1996) 128(1996) 128

Page 12: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

EBS with sharp resonances

Simulation of 50nm Au/200nm SiO2/Si 3.15 MeV 4He+, Bohr straggling, SigmaCalc cross-sections for O()O.

N.P. Barradas, E. Alves, C. Jeynes, M. Tosaki, Nucl. Instrum. N.P. Barradas, E. Alves, C. Jeynes, M. Tosaki, Nucl. Instrum. Methods B247 (2006) Methods B247 (2006) 381-389381-389 A.F. Gurbich, C. Jeynes, Nucl. Instrum. Methods B265 (2007) 447-452A.F. Gurbich, C. Jeynes, Nucl. Instrum. Methods B265 (2007) 447-452

3043keV resonance: 3043keV resonance: 10*Rutherford10*Rutherford

4% agreement 4% agreement between SIMNRA, between SIMNRA, DataFurnace, RUMP in DataFurnace, RUMP in region of sharp region of sharp resonanceresonance

Significant algorithmic Significant algorithmic differences: differences: DataFurnace algorithm DataFurnace algorithm demonstrably superiordemonstrably superior

0

4

8

12

3020 3050 3080

keV

RT

R

Theta=150Theta=15000

In=60In=6000, Out=30, Out=3000

Page 13: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

1.8MeV 4He ERD, SigmaCalc cross sections Simulation of CD2 150nm/CH2 150nm/CD2

150nm

16keV detector resolution, Bohr straggling

6m mylar range foil

DataFurnace and SIMNRA agree at:

0.1% (yields),

400eV (edge positions)

~800eV (edge widths)

Excellent agreement with MCERD

400 500 600 700 800 900 10000

2000

4000

6000Structure 2, Calculation 19

DEPTH NDF RBX RUMP SIMNRA

Yie

ld (

arb

. u

nits

)

E (keV)

Theta=30Theta=3000

In=15In=1500, Out=15, Out=150 0 (angle to (angle to surface) surface)

Page 14: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Heavy Ion RBS

Simulation of 50nm Au/200nm SiO2/Si (3.5MeV 7Li+, Bohr straggling, 16keV detector resolution, pure Rutherford scattering, pileup, SRIM 2003)

GISA: SRIM91

RUMP, SIMNRA, DataFurnace agree at:

0.3% (Yield/Height)

700eV (edge pos’ns)

SIMNRA, DataFurnace agree at:

800eV (edge widths)

Theta=150Theta=15000

In=60In=6000, Out=30, Out=3000

Page 15: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Heavy Ion ERDSimulation of 50nm Au/200nm SiO2/Si (50MeV 127I10+, Bohr straggling, 200keV detector resolution, SRIM 2003, multiple scattering)

MCERD not known to be good

Analytical codes appear to have 20% error on scattered I signal

Outstanding problem

Theta=40Theta=4000

In=10In=1000, Out=30, Out=300 0 (angle to (angle to surface)surface)

Page 16: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

1MeV 3He+ NRASimulation of CD2 150nm/CH2 150nm/CD2

150nm

d(3He, 4He)p

d(3He, p)4He

Q=18.35MeV

1980 cross-sections

6um range foil

Low energy (4He) signal hard to calculate. NDF carries calculation to lower energies

Excellent agreement for p signal

W. Möller and F. Besenbacher, W. Möller and F. Besenbacher, Nucl. Instr. and Meth. Nucl. Instr. and Meth. 168 (1980) 111168 (1980) 111

Theta=170Theta=17000

In=0In=000, Out=10, Out=1000

Page 17: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

1MeV 2H+ NRASimulation of a bulk Fe4N

sample

14N(d,a)12C

Q=13.57MeV

1mb/sr

6um range foil

Inverse kinematics below 550keV

Theta=170Theta=17000

In=0In=000, Out=10, Out=1000

Page 18: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Real Spectrum of a-Sia-Si, 2MeV, 3.840(8)keV/ch, 1.95(2)msr, 150.0(2)0 scattering angle, 46.0(5)uC

“… all the codes obtain excellent agreement in the important high energy region of the Si signal”

G. Lulli, E. Albertazzi, M. Bianconi, G.G. Bentini, R. Nipoti, R. Lotti, Nucl. G. Lulli, E. Albertazzi, M. Bianconi, G.G. Bentini, R. Nipoti, R. Lotti, Nucl. Instrum. Methods B170 Instrum. Methods B170 (2000) 1.(2000) 1.

Page 19: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Real Spectra of Certified Implant 481(3).1013/cm2 Sb implant in 90nm oxide/a-Si/c-Si

1.5MeV 4He+

1500 & 1700 detectors

Si

O

Sb

Counting Counting statistics: 0.05%statistics: 0.05%

Gain uncertainty: Gain uncertainty: 0.3%0.3%

Total experimental Total experimental uncertainty uncertainty (excluding (excluding stopping): 0.8%stopping): 0.8%

Sb fluence determined using SRIM 2003 stopping: Sb fluence determined using SRIM 2003 stopping: 481.15(55).10481.15(55).101313/cm/cm22 (0.1%) (0.1%)

Certified Sb implanted sample:Certified Sb implanted sample:K. H. Ecker, U. Wätjen, A. Berger, L. Persson, W. Pritzcow, M. Radtke, H. Riesemeier, NIM B188 K. H. Ecker, U. Wätjen, A. Berger, L. Persson, W. Pritzcow, M. Radtke, H. Riesemeier, NIM B188 (2002) 120(2002) 120

Page 20: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

HfO2/Si, 2.5MeV 4He+, 1650

scattering

SigmaCalc cross-sections for O (2*Rutherford at 2.5MeV)

Assuming HfOx result is:

296(4) ×1015 Hf/cm2

599(5) ×1015 O/cm2

2.96(8) ×1015 Zr/cm2

Uncertainty consistent with counting statistics

Page 21: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Si bulk / Re 5nm/(Co 2nm/Re 0.5

nm)15

1 MeV 4He RBS, 1600scattering, 15 keV

Average layer thicknessDataFurnace:

356(30).1013Re/cm2 207(17).1014Co/cm2 SIMNRA:

368(31).1013Re/cm2 227(13).1014Co/cm2

Average layer thickness difference (normalised)

28pm for the Re layers and 94pm for the Co layers

Roughness in conformal layers equivalent to features 0.6nm high and 40nm wide

N.P. Barradas, J.C. Soares, M.F. da Silva, F. Pászti, and E. Szilágyi, Nucl. Instrum. Methods B 94 N.P. Barradas, J.C. Soares, M.F. da Silva, F. Pászti, and E. Szilágyi, Nucl. Instrum. Methods B 94

(1994) 266(1994) 266 ; ; N.P. Barradas, Nucl. Instrum. N.P. Barradas, Nucl. Instrum. Methods B190 (2002) 247Methods B190 (2002) 247

0

500

1000

1500

Yie

ld (

cou

nts

)

=45º

Yie

ld (

cou

nts

)

data NDF SIMNRA

0

2000

4000

6000

=78º

Yie

ld (co

un

ts)

0

10000

20000

30000=80º

0

1000

2000

3000

4000

=82º

Yie

ld (co

un

ts)

600 700 800 9000

1000

2000

3000

4000=83º

E (keV)

Yie

ld (

cou

nts

)

600 700 800 9000

1000

2000

3000

4000

Real data 5: Co/Re multilayer

=84º

Yie

ld (co

un

ts)

E (keV)

Glancing exit geometry

Page 22: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Conclusions (I)

• All codes perform to design• New generation codes (DataFurnace & SIMNRA)

– Simulation results usually almost indistinguishable – Excellent results for RBS, HI-RBS, ERD (also RUMP)– Excellent results for EBS– Excellent results for NRA (including inverse kinematics)– Fair results for HI-ERD (also RBX)– Roughness and double scattering approximated– Accurate pileup (good in RUMP)

• MCERD comparison– Need MC code for HI-ERD!– MC code is completely independent algorithmically– Equivalent results from MC code validates analytical codes

• Summary– All codes give reasonable results– For HI-ERD you need MCERD– For channelling you need RBX (or a Monte Carlo code)– Otherwise, for best results you need DataFurnace or SIMNRA

Page 23: Ion Beam Centre  IBA IV: IAEA Intercomparison The IAEA Intercomparison of IBA codes Joint ICTP/IAEA Workshop on Advanced Simulation

Ion Beam Centre

www.surreyibc.ac.ukIBA IV: IAEA Intercomparison

Conclusions (II)

• Code validation: 0.1% agreement at best

• SIMNRA and DataFurnace are usually indistinguishable

• Independent implementation of same algorithms

• Independent algorithms (MCERD) also agree

• Incidental demonstration that SRIM03 stopping powers are (accidentally) correct (at 0.6%) for 1.5MeV 4He on Si (best stopping powers are currently known at only 2%)

• Thanks to IAEA!

Nuclear Instruments and Methods B262 (2007) 281-303summary at: Nuclear Instruments and Methods B266 (2008) 1338-1342

http://www.mfa.kfki.hu/sigmabase/ibasoft/