15
Vol.:(0123456789) SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x Research Article Investigation on the performance and emissions profile of CI engine using cashew nut shell pyro oil–toluene–diesel blends K. Venkatesan 1 Received: 7 October 2020 / Accepted: 15 April 2021 Published online: 26 April 2021 © The Author(s) 2021 OPEN Abstract This article examines the prospects of using toluene added cashew nut shell pyro oil–diesel blends as alternative fuels in CI engine. Effects of adding fixed proportion (by vol.) of toluene (TU) to various cashew nut shell pyro oil (CPO)–diesel (D) blends on the performance and exhaust emission characteristics of a direct injection, single cylinder, water cooled, naturally-aspirated, constant speed run, 4-stroke CI engine were investigated under varied brake power conditions. Tested fuels were neat diesel, CPOT5 (5% CPO + 5% TU + 90% D), CPOT10 (10% CPO + 5% TU + 85% D) and CPOT15 (15% CPO + 5% TU + 80% D). CPO was extracted through a lab-scale fast pyrolysis apparatus. Fuel samples were prepared and characterized according to ASTM standards. Owing to the features like low sensitivity, impressive anti pinging, etc., presence of toluene in an optimal CPO-diesel blend was expected to promote the engine characteristics. Set of experi- ments were conducted for each fuel mixture and the respective in-cylinder pressure, fuel consumption, exhaust emission levels, temperatures were recorded. At the rated power output condition, CPOT5 fuel had shown 1.67% increased brake thermal efficiency, 5% reduced brake specific fuel consumption, almost 3% reduced exhaust gas temperatures as well as reduced the exhaust emissions such as HC (from 91 to 87 ppm), CO (from 0.1 to 0.08%), NO x (from 458 to 426 ppm), smoke levels (from 72 to 69 BSN). CPOT5 showed improved combustion characteristics like reduced ignition delays and combustion durations, increased rates of cylinder pressure rise and heat release. However, overall attained improve- ments in the engine parameters were found to be not up to the mark which makes the chances of using CPOT5 as best alternative to diesel feeble. * K. Venkatesan, [email protected] | 1 Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh 522502, India. Article highlights The Cashew nut shells agro-waste is efficiently con- verted into an alternative fuel. Effect of adding toluene to pyro oil – diesel blends in CI engine is examined. Engine performance is improved marginally with 1.6% higher brake thermal efficiency (BTE) and 5% lower brake specific fuel consumption (BSFC). Reductions in CO, HC, NOx and smoke emissions are observed. Reduced Ignition delay and combustion durations, increased rate of pressure rise, and increased HRR are observed. Keywords Cashew nut shell pyro oil · Toluene · Diesel · CI engine · Performance and emissions characteristics

Investigation on the performance and emissions profile of

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Vol.:(0123456789)

SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x

Research Article

Investigation on the performance and emissions profile of CI engine using cashew nut shell pyro oil–toluene–diesel blends

K. Venkatesan1

Received: 7 October 2020 / Accepted: 15 April 2021 Published online: 26 April 2021 © The Author(s) 2021 OPEN

AbstractThis article examines the prospects of using toluene added cashew nut shell pyro oil–diesel blends as alternative fuels in CI engine. Effects of adding fixed proportion (by vol.) of toluene (TU) to various cashew nut shell pyro oil (CPO)–diesel (D) blends on the performance and exhaust emission characteristics of a direct injection, single cylinder, water cooled, naturally-aspirated, constant speed run, 4-stroke CI engine were investigated under varied brake power conditions. Tested fuels were neat diesel, CPOT5 (5% CPO + 5% TU + 90% D), CPOT10 (10% CPO + 5% TU + 85% D) and CPOT15 (15% CPO + 5% TU + 80% D). CPO was extracted through a lab-scale fast pyrolysis apparatus. Fuel samples were prepared and characterized according to ASTM standards. Owing to the features like low sensitivity, impressive anti pinging, etc., presence of toluene in an optimal CPO-diesel blend was expected to promote the engine characteristics. Set of experi-ments were conducted for each fuel mixture and the respective in-cylinder pressure, fuel consumption, exhaust emission levels, temperatures were recorded. At the rated power output condition, CPOT5 fuel had shown 1.67% increased brake thermal efficiency, 5% reduced brake specific fuel consumption, almost 3% reduced exhaust gas temperatures as well as reduced the exhaust emissions such as HC (from 91 to 87 ppm), CO (from 0.1 to 0.08%), NOx (from 458 to 426 ppm), smoke levels (from 72 to 69 BSN). CPOT5 showed improved combustion characteristics like reduced ignition delays and combustion durations, increased rates of cylinder pressure rise and heat release. However, overall attained improve-ments in the engine parameters were found to be not up to the mark which makes the chances of using CPOT5 as best alternative to diesel feeble.

* K. Venkatesan, [email protected] | 1Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh 522502, India.

Article highlights

• The Cashew nut shells agro-waste is efficiently con-verted into an alternative fuel.

• Effect of adding toluene to pyro oil – diesel blends in CI engine is examined.

• Engine performance is improved marginally with 1.6% higher brake thermal efficiency (BTE) and 5% lower brake specific fuel consumption (BSFC).

• Reductions in CO, HC, NOx and smoke emissions are observed.

• Reduced Ignition delay and combustion durations, increased rate of pressure rise, and increased HRR are observed.

Keywords Cashew nut shell pyro oil · Toluene · Diesel · CI engine · Performance and emissions characteristics

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x

AbbreviationsCI Compression ignitionCPO Cashew nut shell pyrolysis oilASTM American society for testing and materialsCPOT5 5 vol% CPO + 5 vol% toluene + 90 vol% neat

dieselCPOT10 10 vol% CPO + 5 vol% toluene + 85 vol% neat

dieselCPOT15 15 vol% CPO + 5 vol% toluene + 80 vol% neat

dieselBTDC Before top dead centreBTE Brake thermal efficiencyBSFC Brake specific fuel consumptionEGT Exhaust gas temperatureID Ignition delayCD Combustion durationHRR Heat release rateMRPR Maximum rate of pressure riseCO Carbon monoxideCO2 Carbon dioxideUBHC Un burnt hydrocarbonBSN Bosch smoke numberNOx Nitrogen oxidesk-Wh Kilo Watt hourCV Calorific valueppm Parts per millionrpm Revolutions per minute

1 Introduction

World’s primary energy supply is still greatly dominated by the gradually depleting fossil fuels. Amid the raising energy demands and environmental concerns around the globe, research has been driven towards developing much sustainable and renewable energy systems. Bio- mass is not only one of such energy resources but also can provide various high value-added products and bio chemicals such as composite materials, paints, adhesives, etc. [1, 2]. According to reports [3], bio energy contrib-utes a whopping 67% of the share amongst all available renewable energy sources and meanwhile the liquid bio fuels are being considered as the promising renewable solution for the versatile transport sector, wherein the CI engines plays a vital role. Biofuels (during 2000–2018), grown at 13% annual rate with sustainable development and witnessed (more than) 9 times the increased pro-duction from 17.3 billion litres to 160 billion litres. Being the world’s third-largest crude oil importer and fourth primary energy consumer, the Govt. of India by 2022 tar-geted produce 10 GW of bio energy by encouraging the utilization of alternative fuels, implementing strategic Bio-Fuel policies, expanding domestic mass production,

launching various bioenergy schemes and programmes, etc. [4]. Frequently increasing costs of diesel, stringent emission regulations and the dwindling of the conven-tional energy-resources (Coal, crude oil, etc.) are some of the main reasons to necessarily switch over to alterna-tive fuels. Blending diesel with a renewable biofuel could considerably reduce its consumption and so are the CO2 emissions but also improve the fuel quality as well as engine operation. Cashew nut shells are the abundantly generated agro-wastes from cashew nut shell processing industries every year and were proven to be amongst the potential bio-based renewable materials. Cashew nuts production (globally) has been reported to have increased by 32% in the past 10 years wherein the India alone covered 25% of total production [5]. An almost linear trend in the cashew production worldwide dur-ing the recent years leads to mounting cashew nut shell agro-waste to be dealt with.

2 Paper structure

2.1 Introduction

The section throws light on the depletion of the conven-tional fuel reserves and further need to opt alternative energy sources. Cashew nut shells as biomass; statistical reports regarding production of liquid biofuels, cashew nuts production and the role of bioenergy in meeting the existing energy demands were outlined.

2.2 Literature review

This section not only deals with the previous research studies covering the areas of fast pyrolysis, utilising cashew nut shell oil in different blend ratios as alternative fuel to evaluating the engine performance and emission char-acteristics such as BTE, BSFC, CO, NOx, UBHC etc., incor-porating aromatic chemicals like toluene in fuel mixtures and also briefs the key findings. Research gap, novelty and objectives of the study are also addressed.

2.3 Materials and methodology

Here, a detailed insight to the adopted research plan and methodology for executing the work is presented. The sec-tion covers treating the materials and instruments used, describes various processes like pyro oil extraction, sample fuels preparation and characterization, detailed experi-mental procedure, etc.

Vol.:(0123456789)

SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x Research Article

2.4 Results and discussions

This section plots the obtained experimental data of all the tested fuel samples and discusses the associated logics, reasons behind their variation. Results are explained and also compared with previous works.

2.5 Conclusion

This part presents the key finding and conclusions drawn off the investigations.

3 Literature review

James Mgaya et  al. [5] reviewed the latest trends and developments on Cashew nut shells, its extracts and iso-lates, as clean energy sources and also discussed various attempts made on the agro-waste utilization in energy sector.

Vinod [6] briefly reviewed various developments and status of biomass pyrolysis technologies over the past thirty years and realized that, bio-oils extracted through fast pyrolysis are found more expedient in transportation, storage and handling aspects. Hossain and Davies [7], after reviewing about twenty-four confirmed experiments on the pyro liquids (both crude and upgraded) in diesel engines realised that only quarter of them were deemed successful to stabilise engine performance. Summarised that long ignition delay, engine components erosion and corrosion, coking of cylinder and piston liners, sudden rise of cylinder pressure, lower BTE, extended combustion duration, higher SFC and CO emissions, etc. could be the associated reasons.

Shiva Kumar et al. [8] revealed that running CI engine with pure CPO resulted in inferior performance and recorded reduced HC, CO, smoke emissions along with raised NOx levels. Authors also highlighted that, up to 40% replacement of cashew nut shell bio-oil is practicable without compromising on engine performance. Impact of adding Hexanol [9], pentanol [10] to cashew nut biodiesel on engine parameters is correspondingly investigated and in both cases marginal change in BTE, significant drop in BSFC were noticed along with the increased NOx levels and decreased CO, HC, smoke emissions. Kasiraman et al. [11] tested blends of Cashew nut shell oil with 10%, 20%, 30% (by volume) camphor oil as fuels on a diesel engine and observed that ‘30% camphor oil blend with 70% cashew nut shell oil’ showed the performance close to die-sel fuel with 3.6% higher BTE, 5.8% higher NOx and 7.4% higher smoke emissions and concluded that neat cashew nut shell oil performance can get significantly better with camphor oil blends and 30% camphor oil blend could be

substituted for diesel. Bupesh Raja and Jaya Prabhakar [12] investigated the performance and emission characteristics of Diesel engine using ‘20%, 40% and 60% (by volume) proportions of Cashew nut shell oil blended with Diesel’ as fuels and reported that 20% blend showed a closer but however lower BTE to Diesel and achieved reduced CO, HC, CO2 emissions with a bit higher NOx levels over Diesel fuel. Pushparaj et al. [13] tested the effect of 10%, 20% and 30% by volume Cashew nut shell biodiesel blended with Die-sel on the performance and emission evaluation in diesel engine and found that blend20 showed improved power output over diesel and improved performance parameters like up to 45% higher SFC along with the 37% reduced CO emissions and slightly increased Nox, etc. Venkatesan [14] tested the 10%, 20%, 30%, 40% and 50% by volume pro-portions ‘Cashew nut shell pyro oil blended with 20% Jath-ropa biodiesel-diesel mixture’ as fuels to diesel engine and found that ‘10% cashew nut shell pyro oil blended with 20% Jathropa-Diesel’ closely resembled diesel properties with slight increments in BTE, BSFC and also decreased the CO, HC and Smoke emissions with marginal rise in NOx levels. Venkatesan et al. [14] investigated the perfor-mance and emission characteristics of cashew nut shell pyrolysed oil—waste cooking oil with diesel fuel in a four stoke DI diesel engine. Blends of pyro oil with diesel blends are CPO5WC5D90, CPO10WC5D85 and CPO15WC5D80 resulted in comparable performance with slight reduction in BTE at all power outputs. Several metal based additives have been found to improve combustion quality when added to the biodiesels. Nano alumina particles added Cashe nut shell biodiesel was tesed in CI engine by Rad-hakrishnan et al. [15] and results showed 10%, 8.8%, 12.4% and 8.4% reductions in CO, HC, NOx and smoke emissions.

The studies covered in the literature generally exam-ined the CI engine charcteristics by adding biodiesel/bio-oil to diesel fuel. However, this work assesses the impact of adding toluene into CPO-Diesel mixture on the engine performance and emissions. Toluene is a volatile and a flammable chemical that comes with similar chemical properties like propanol, hexane, and heptane.

Salih Ozer [16], found that when toluene was added to diesel fuel or to biodiesel in CI engine emissions like BSFC, HC, NOx were increased and CO, smoke emission levels were dropped. Xiuxiu Sun et al. [17] learnt from a theoretical study that increasing the toluene content in the surrogate fuel of diesel engine, increased the soot and NOx emissions. Karthikeyan et al. [18] improved the CI engine characteristics by adding a mono philic antioxidant called butylated hydroxyl toluene to B20 (20% rice bran biodiesel + 80% diesel) and in compari-sion to B20, the results have shown 0.5% increased BTE, 1.2% decreased BSFC, 9.6% decreased NOx, 9.6% and 16.6% and 11.2% increments in HC and CO emissions

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x

respectively. Hellier et al. [19] conducted experiments on a diesel engine supplied with binary mixture of tolu-ene & n-heptane and found that with increasing toluene in the mixture, ignition delay timing was also increased which influenced the exhaust emissions by emanating higher NOx levels. Yu et al. [20] reported that the par-ticulate emissions could be reduced by adding chemi-cals like xylene and toluene into the diesel fuel in CI engine. Joy et al. [21] improved the CI engine attributes by adding di mithyl ether (an ignition enhancer) in cash-ewnut shell biodiesel with 1.6% increased BTE and 4% improved BSFC as well as reduced emissions level.over pure biodiesel. Midhat et al. [22] concluded that exhaust emissions were observed to be largely dependent on the number of methyl branches present in the fuel used. Also found that fuel blends consisting more than 30% alkyl benzene proportions may lead to increased emis-sions like CO and UBHC, PM, etc.

Researchers tested many pyro oil blends opus extracted from coconut shells [23] waste tyres and waste plastics [24, 25], hazelnut shells [26], waste cook-ing oil [27], date tree waste mixtures and date seeds [28], etc. as substitute fuels on CI engine to improve engine performance and reduce emission characteris-tics. Nonetheless no remarkable experimental investi-gations have been reported so far on CI engine using cashew nut shell pyro oil-toluene-diesel blends.

From the comprehensive literature surveyed, it is clear that Cashew nut shell liquid has the potential which upon proper treatment could possibly turn into a better alternative to diesel. Cashew nut shell biomass is selected, owing to cashew nut shell liquid’s 100% mis-cibility and its significant potential for blending towards diesel [8]. Most of the investigations on toluene-mixed-fuels used in CI engines are found to be typically theo-retical [17, 29, 22, 30–33]. There hasn’t been any prom-ulgated research in the accessible literature covering the feasibility of toluene addition to Pyro oil blends. This has paved the way to conduct this research.

This work was taken up to analyse the improvement of CPO’s performance in CI engine when blended with Diesel and Toluene. Specific objectives of this disserta-tion include.

• Pre-treatment of cashew nut shell biomass and pro-duction of CPO through fast pyrolysis.

• Preparation & characterization of the tested blends.• Assessing the performance and emissions character-

istics of the CI engine using CPOT5, CPOT10, CPOT15 blends as fuels and finding the optimal one.

4 Materials and methodology

4.1 Overview of the materials and process description

4.1.1 Feedstock and pre‑treatment

Cashew nut shells were collected from a cashew nut pro-cessing industry located in the sub urban Guntur, India. Shells were washed, sun dried (for 36 h to remove the dust and excess moisture), milled in a laboratory ball mill. and the samples were stored in a refrigerator at 4-5 ◦ C for further experimentation. Figure 1 shows the photographic views of the collected samples of Cashew Nuts, Cashew Nut Shells and the ball mill used.

4.1.2 CPO production

Among the several available ways of transforming bio-mass into fuel, fast pyrolysis technique is considered more economical and an effective thermal conversion technique, wherein the biomass is quickly heated to 400–550 °C in absence of oxygen, converted directly to aun high yield bio-oil of around 74–75% (by wt) accom-panied with lower yields of 13 wt% flue gas and 12 wt% bio-char as by-products [34]. Owing to pyro oil’s hydro-philic and high polarity nature, adding co-solvents could enhance its solubility.

The CPO is produced through a lab scale fast pyrolysis apparatus, photographic view of the same is shown in Fig. 2.

A stainless steel made thermal reactor (350  mm length, 200 mm inlet diameter, 10 mm wall thickness) having an inlet for Nitrogen (N2) gas supply and an outlet for exiting the volatile gasses, was placed in an electric furnace of capacity 7.5 k-Wh. K-type thermocouples were attached at various axial and radial positions of reactor to record the temperatures at regular time intervals. The outlet of the reactor, through a high temperature-with-standing stainless steel pipe (of 130 mm length), was connected to a counter flow type stainless steel made condenser (of 500 mm length, 30 mm inlet diameter and 50 mm outlet diameter) which was linked to gas-oil separator (of 350 mm length and 100 mm diameter).

About 250 g of the pre-treated samples was fed into reactor for each run. Nitrogen gas was supplied into the reactor to make the environment inert and the samples were heated to an optimum condition of temperatures range 450–650 °C. Vapours emanating out of the reactor entered the condenser and got condensed by the action of circulating water. After that, the condensate was let

Vol.:(0123456789)

SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x Research Article

dribbled into the gas-oil separator and the non-conden-sable gases were risen to the neck of a separate pipe, exited to the gas burner through an exhaust passage. CPO was collected off the gas-oil separator. Heating was ceased when no substantive changes in exhaust gases and in temperatures were observed. Then the reactor was allowed to cool down for nearly 6 h.

4.1.3 Toluene

Toluene was purchased from a local commercial vendor in Vijayawada, India and was a colourless, clear, water-insol-uble, aromatic hydro carbon solvent, smelling typical to paint thinners. Due to being a pure hydrocarbon (C7H8) containing only carbon and hydrogen atoms, toluene’s

Fig. 1 Collected samples of a: cashew nuts, b, c cashew nut shells, d lab scale ball mil

Fig. 2 Lab scale fast pyrolysis setup

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x

complete combustion gives rise to CO2 and H2O ensur-ing the vehicle’s emission control system such as sensors etc. unaffected. Owing to its hazardous impact on living beings, toluene is generally employed in smaller quantities to the fuel samples. For this purpose, 5% (by vol) toluene was added to the tested blends. Toluene’s characteristics like low sensitivity, effective anti-knock/anti-pinging, more energy density, heating values etc. might boost the engine operation.

4.1.4 Blends preparation and characterization

The three CPO-TU-Diesel blends viz. CPOT5, CPOT10 and CPOT15 were each prepared (on volume basis) by taking the corresponding proportions separately in a beaker and the mixture was vigorously stirred up at a maintained speed of 850 rpm in a magnetic stirrer continually for about 45 min till a consistent mixture was observed. The treated mixture was, then, heated as well as sonicated in a probe sonicator for nearly 20 min to ensure the long last-ing (over months) stability of the blend. Figure 3 shows the photographic views of the samples of neat CPO, Toluene,

neat Diesel and the samples tested fuels and also the equipment used to prepare blends.

The characterization of the properties of diesel, CPO, Toluene and the fuel blends was conducted at K L Uni-versity, Andhra Pradesh, India and the testing methods were conformed to ASTM standards. Table 1 illustrates the average of the three consecutive observations for each property.

4.2 Experiment setup and procedure

Schematic diagram of the experimental test rig and the engine specifications are shown in Fig.  4 and Table  2 respectively. Experiments were conducted on a natu- rally aspirated, single cylinder, four stroke, water cooled, KIRLOSKAR make Diesel engine developing 4.4 kW out-put power at 1500 rpm. Test rig consisted of a CI engine, Dynamometer, Exhaust gas analyser, smoke meter, DAS (digital type) linked to a Computer, various sensors and measuring systems. An eddy current dynamometer with load sensor was coupled to CI engine shaft to provide the brake load. A non-contact type rpm sensor was attached close to flywheel to measure the speed. Rate of fuel

Fig. 3 Photographic views of the samples used, tested blends and instruments used for blending

Vol.:(0123456789)

SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x Research Article

consumption was measured in minutes/cc with the help of a solenoid regulated automatic Burette. A pipe-type calorimeter of 20–200 L/h water flow rate was employed to measure EGT and the water is made to circulate in the calorimeter by using a self-priming pump. Cooling water flow rate of 40–400 L/h to the engine and dynamometer was controlled by providing separate rota meter. The air box next to an in-lined air filter was included of differential pressure transmitters to measure air flow rates. Meanwhile, a fuel measurement system right after to the in-lined fuel tank measures fuel consumption rates. A surge tank in the

upstream of air intake manifold was employed to ensure a steady air flow by damping out the pulsations. A piezo-electric pressure transducer and a TDC (Top Dead Centre) pulse pick up were fitted to engine cylinder to read the Cylinder pressure and crank angle respectively. A High-speed DAS with 16-bit, NI USB-6210 collected and stored the required data to analyse in offline. K-type thermocou-ples were used to read the temperatures across different points of the engine.

Initially, the engine was started and allowed to reach a steady state level. Both gas analyser and smoke meter

Table 1 Characterised physicochemical properties of the neat and blended fuels

Properties Neat diesel Neat CPO Toluene CPOT5 CPOT10 CPOT15 Test method

Density (kg/m3) 840 924 832 865 885 895 ASTM D4052Flash point (°C) 52 62 6 57 61 64 ASTM D93Fire point (°C) 56 68 11 63 65 69 ASTM D93Calorific value (MJ/kg)Value (MJ/kg) mm (MJ/kg)

43.50 45.0 42.5 44.0 42.85 41.26 BOMB CALO-RIMETER 12/58@

Viscosity (cst) 50 °C 3.41 7.3 3.5 4.3 5.3 5.9 ASTM D445Water content (%) 0 7.5 0 1.0 1.5 1.75 ASTM D93

Fig. 4 Schematic view of the experimental test rig

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x

were stabilized for a while before taking the observa-tions. Fuel injection timing was set at 270 before TDC with 180 bar injection pressure. First, diesel was supplied to the engine as the CI engines are generally opted to be oper-ated on diesel fuel and the baseline data is obtained. Then the fuel line was flushed out and the tank was filled with next fuel blend to be tested and the experimental data was collected. The process continued for all three blends tested viz. CPOT5, CPOT10, and CPOT15. At a given brake load, BSFC was calculated using the EXCEL computations in the computer. BTE was computed at the given load, by giving the inputs such as fuel consumption, Calorific value, density to the EXCEL sheet. Exhaust gas temperatures were measured by the pipe-type calorimeter. Emissions like HC, NOx, CO were measured by Exhaust gas analyser and the smoke emissions are measured by the smoke meter. Combustion parameters like cylinder pressure, HRR, igni-tion delay, etc. are averaged to multiple cycles and com-puted by amplifying the output signal of the transducer. To ensure the recorded results to be accurate, the aver-age values were considered after conducting each set of experiments thrice.

5 Results and discussion

5.1 Performance parameters

5.1.1 Brake thermal efficiency

The useful amount of energy obtained by combusting fuel is generally specified by Brake Thermal Efficiency.

Variation of BTE against BP for all the tested fuels is shown in Fig. 5 and can be seen that BTE increased with increasing BP. CPOT5 attained higher BTE at all BP con-ditions over rest of the fuels. At rated output, 31% maxi-mum BTE was attained for CPOT5 whereas neat diesel,

CPOT10 and CPOT15 reached 30.5%, 29.5% and 28.5% BTE respectively.

Owing to having far lower flash and ignition points compared to diesel and CPO, toluene addition to the mixture seems to have triggered the primary phase com-bustion of the spray before the expected point and thus lowered the duration of combustion. Higher Calorific Value and Shorter Combustion durations could be the possible reasons behind the marginal improvement in BTE for CPOT5. Secondary atomization of fuel which resulted in an optimized mixture formation for CPOT5 might also be the associated reason. At all the BP conditions, BTE for CPOT10 and CPOT15 was lower than Diesel due to the poor spray formations resulted from the higher viscosities, lower CV and higher densities.

5.1.2 Brake specific fuel consumption

BSFC conveys the engine performance with reference to fuel economy. It measures the amount of fuel consumed in unit time to deliver unit Brake Power Output. Figure depicts the variation of BSFC with BP for all the tested fuels. From the Fig. 6 it can be seen that BSFC decreased with increasing BP outputs for all the tested blends. CPOT5 consumed lower fuel when compared to the rest at all the BP outputs. The rise in BSFC for CPOT10 and CPOT15 over Diesel could be associated to their comparative lower Calorific values, higher viscosity and densities. Toluene presence in the fuel mixtures makes the combustion time shorter thereby leading to an earlier pressure rise before the expected point on the combustion curve. This condi-tion inhibits the intended contrived operation inside the cylinder and thus more fuel has to be fed to deliver the

Table 2 Engine specifications

Type Direct injection CI engine

Model Kirloskar makeRated BP (kW) 4.4Rated constant speed (rpm) 1500Number of cylinders 1Bore(mm) × stroke (mm) 87.5 × 110Displacement volume (cc) 661Injection timing start 27◦ BTDCCompression ratio 17.5:1Cooling system Water cooledInjection pressure (bar) 180

0

5

10

15

20

25

30

35

0 1 2 3 4 5

BT

E

(%)

BRAKE POWER (kW)

DIESEL

CPOT5

CPOT10

CPOT15

Fig. 5 Variation of BTE with BP

Vol.:(0123456789)

SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x Research Article

same power output, which results into an increased BSFC. However, the low thermal value of the chemicals added (like toluene) to the fuel can also increase BSFC and there are studies which advocates the same [35, 36] which men-tions lower cetane and lower thermal value of the added chemical as the plausible reasons.

At the rated BP condition, CPOT5 showed 4.7% lower BSFC over neat diesel. Having greater calorific value and higher energy density could be the reasons. Studies [22, 37] shows the BSFC reduced due to the improved combus-tion when toluene like chemical with low flash point and ignition temperatures are added.

5.1.3 Exhaust gas temperature

Energy lost to the exhaust i.e. the effective energy utili-zation is typically reflected by the Exhaust gas tempera-tures. Figure 7 represents the variation of EGT with BP for all tested fuels.

It can be understood from Fig. 7, that with increase in BP outputs EGT also increased for all the fuels.. This could be explained by the cause that more amount of the fuel has to be injected to produce increased BP outputs, which in turn leads to increasing EGTs. Extended EGTs over neat die- sel fuel for the higher blends (CPOT10 and CPOT15) were might be due to the occurrence of partly more combus-tion in the stage of diffusion and their late burning nature (owing to excess amount of oxygen). For CPOT5, EGT was found closer but however lower to Diesel. At the maximum BP condition, highest EGT observed for CPOT15, CPOT10, Diesel and CPOT5 were 337 ◦ C, 326 ◦ C, 314 ◦ C and 305 ◦ C respectively. Though few literature studies [38] assessing the fuels similar to toluene showed reduced EGTs for all

the tested fuels, in this work effect of toluene in reducing EGTs for CPOT10 and CPOT15 blends seems to have been outmatched by the impact of excess oxygen combustion.

5.2 Emission parameters

5.2.1 CO emission

CO emissions off the CI engine are generally lower than SI engine as the CI engines are operated in Oxygen enriched atmosphere. Main cause of CO emissions would depend on air–fuel mixtures, inferiorly formed combustion mix-ture, shorter periods of combustion, lack of sufficient Oxy-gen, etc. [39].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

BSF

C

(Kg/

kW-h

r)

BRAKE POWER (kW)

DIESEL

CPOT5

CPOT10

CPOT15

Fig. 6 Variation of BSFC with BP

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5

EG

T

(oC

)

BRAKE POWER (kW)

DIESEL

CPOT5

CPOT10

CPOT15

Fig. 7 Variation of EGT with BP

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1 2 3 4 5

CO

(%

)

BRAKE POWER (kW)

DIESEL

CPOT5

CPOT10

CPOT15

Fig. 8 Variation of CO emissions with BP

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x

Figure  8 depicts the variation of percentage of CO emission with increasing BP output for all the tested fuels and the graph conveys that CO emissions increased with increasing Brake load, but with a steep rise in 3.3–4.4 kW range. There are some research works in the literature whose results found in agreement with the case [40–44]. From the Fig. 8 it can be realized that CO emissions for Diesel are lower than CPOT10 and CPOT15 as the Diesel is a free-from-Oxygen fuel. CPOT5 was observed to be the fuel with lowest CO emissions amongst the tested as the packed energy density of the CPOT5 is superior to the rest. At the maximum BP condition17%, 15%, 10% and 8% CO emissions were recorded for CPOT15, CPOT10, Diesel and CPOT5 respectively. Fuel richness, poor energy density and inferior Calorific values of the blends CPOT10, CPOT15 led to the partial oxidation of carbon atoms and resulted in formation of CO. CPOT5 was demonstrated to be the opti-mally proportioned fuel blend. It is observed that there are some previous studies conveying both decreased [45] and increased [46] CO emissions when the low ignition chemicals are mixed with fuels.

5.2.2 UBHC emissions

The Comparative difference in the un burnt hydro carbon emissions discharged off the CI engine supplied with neat Diesel, CPOT5, CPOT10, CPOT15 were presented in Fig. 9 which instantiate that the UBHC emissions increased with increasing BP.

At the maximum Brake power conditions, the recorded UBHC were 99 ppm, 97 ppm, 91 ppm and 87 ppm for CPOT15, CPOT10, Diesel and CPOT5 respectively. Higher UBHC emissions for CPOT15 and CPOT10 over Diesel might be due to the latent heat of vaporization of the moisture

as well as toluene content present, which could results in quenching of flame at the chamber walls. Relatively higher densities, viscosities and bulky oxidation reactions taking place at low temperature conditions might also be the possible reasons for higher emission of UBHC over Diesel. These results found similar to some of the previous studies of literature [47, 48]. CPOT5 was found to be with low-est UBHC emissions among the tested and the associated reasons could be the higher Heat release rates, optimal mixture formation which assists in proper and qualitative combustion.

5.2.3 NOx emissions

Figure 10 portrays the variation of NOx emissions for all the tested fuels with increasing BP and conveys that NOx emissions are increased with increasing BP outputs for all the fuels tested. Ignition delay, in-cylinder temperatures and air/fuel mixture proportions are some of the factors that influence the NOx formations.

It can be seen from the graph that at peak load con-ditions, NOx emissions registered for CPOT15, CPOT10, Diesel and CPOT5 are 498 ppm, 478 ppm, 458 ppm and 426 ppm respectively CPOT10 and CPOT15 blends resulted in higher NOx when compared to neat diesel due to excess oxygen amount causing higher heats released and thereby making the cylinder environment favourable to form NOx. Sudden rise in cylinder pressure and temperatures due to the addition of toluene could also be the reasons to increase NOx levels. CPOT5 have shown 8% decreased NOx emissions over neat diesel at the rated BP. Lower latent heat of vaporization of toluene could be an attributed rea-son. There are literature studies indicating both reduced

0

20

40

60

80

100

120

0 1 2 3 4 5

UB

HC

(p

pm)

BRAKE POWER (kW)

DIESEL

CPOT5

CPOT10

CPOT15

Fig. 9 Variation of UBHC with BP

0

100

200

300

400

500

600

0 1 2 3 4 5

NO

x (

ppm

)

BRAKE POWER (kW)

DIESEL

CPOT5

CPOT10

CPOT15

Fig. 10 Variation of NOx with BP

Vol.:(0123456789)

SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x Research Article

[49] and increased [47] NOx emissions upon adding chemi-cals like toluene.

5.2.4 Smoke emission levels

The suspended soot particles in the exhaust gases off the engine generated in the diffusion stage of the combus-tions and higher levels of Smoke emissions reflects the combustion inefficiency. Figure  11 shows the Smoke emission levels variation with varying BP conditions and it can be understood from the graphs that with increas-ing BP, Smoke levels also increased almost linearly as the increased amounts of fuel was drawn into the cylinder to produce BP.

From Fig. 11 it can be learnt that smoke emission levels for CPOT15, CPOT10 and CPOT5 are lower than neat Diesel at all the engine BP outputs. Water droplets in the form of moisture present in the Pyro Oil could results into the secondary atomization due to the turbulent explosions off the heating and leads to the emission of comparatively lesser Smoke over neat diesel.. In case of neat diesel, the sucked-in fuel droplets were large enough (due to poor atomization) to cause inferior spray formation and also Diesel being an oxygen–free-fuel combined with inade-quate combustion time paves the way to the emission of solid carbon particles in the exhaust stream of gases. Add-ing toluene makes the fuel mixture poorer and mitigates the rich mixture regions and thus expected to reduce the smoke levels. Some literature findings [50–52] are found sound similarity with the current results. AT the rated brake power, 12.5%, 6.9% and 4.1% decreased smoke levels over neat diesel are recorded for CPOT15, CPOT10 and CPOT5 blends.

5.3 Combustion parameters

5.3.1 Ignition delay

The ignition delay (ID) is defined as the duration between the start of fuel injection for the process of pre-ignition and the start of dectectable combustion. Figure 12 shows the variation of ignition delay period with engine brake power output for all the tested fuels. Compared to CPOT5, remaining tested fuels showed higher ID at all power out-puts. It was noted as 10° CA ID for CPOT5 and 10.3 ◦CA, 10.8 ◦CA, 11.3 ◦ CA ignition delays were found with diesel, CPOT10 and CPOT15 repectively, at full load condition. The increase in ignition delay with the blends of pyro oils could be due to the lower temperatures of the combus-tion chamber, and aslo might be owing to relatively higher water content present in CPOT10 and CPOT15. The high latent heat of vaporisation of water resulted in lowering the temperature of the charge during compression and increased the ignition delay. This was more pronounced at low engine power outputs for all the fuels..

5.3.2 Maximum rate of pressure rise

The variation of maximum rate of pressure rise (MRPR) at different power outputs for Diesel and tested pyro oil blends with BP are reported in Fig. 13. All the tested fuels resulted in lower peak pressure as compared to CPOT5 at all operating conditions. In CI engines, peak pressure inside the cylinder is affected mainly by the amount of fuel charge involved in the first stage of combustion (called the uncontrolled combustion). The high viscosity and density of the blends of pyro oil resulted in poor mixture

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5

SMO

KE

NU

MB

ER

(B

SN)

BRAKE POWER (kW)

DIESEL

CPOT5

CPOT10

CPOT15

Fig. 11 Variation of smoke levels with BP

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5

IGN

ITIO

N D

EL

AY

(°C

A)

BRAKE POWER (KW)

DIESEL

CPOT5

CPOT10

CPOT15

Fig. 12 Variation of ignition delay with BP

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x

preparation with air, and hence the rate of pressure rise was reduced. Longer ingnition delays causes the more fuel accumulation before combustion begins and results in higher rates of pressure rise. Thus, CPOT5 and diesel showed increased MRPR over the rest.

5.3.3 Combustion duration

The combustion duration in CI engine is known as the time period between the ignition point (which accounts for 10% of the fuel burnt) and the end of combustion (which accounts for 95% of the burned fuel). The total combustion duration increased with the CPOT10 and CPT15 as compared to diesel and CPOT5 at all power outputs as seen in Fig. 14. Late combustion phases for CPOT10 and CPOT15 were seems delayed due to their

higher density and viscosity value. CD was noted as 42 ◦CA, 41 ◦ CA and 39 ◦ CA respectively with CPOT15, CPOT10 and CPOT5 at peak power output.

5.3.4 Heat release rate

Figure 15 illustrate the variation of HRR for diesel, CPOT5, CPOT10, and CPOT15 at the rated power outputs of engine. HRR is calculated from the energy balancing equations using pressure and crank angle diagram data. It is observed that CPOT5 resulted in the maximum HRR and the amount of the fuel consumed during the initial phase of pre-mixed combustion was lower as well as the rate of diffusion combustion was slightly higher for die-sel, CPOT10 and CPOT15 as compared to CPOT5. As the fuel gets evaporated during the ignition delay period, led to negative HRR at the beginning i.e. before starting of combustion as seen in Fig. 15. It can be explained that the CPOT15 owing to high moisture content, its cetane number gets decreased and this resulted in prolonged ignition delay and thus with CPOT10 and diesel as com-pared to CPOT5. Owing to the high viscosity and den-sity of the blends, later stage combustion occurred. As expected, CPOT10, CPOT15 showed lower peaks when compared to CPOT5.

6 Conclusions

CI engine performance and emissions characteristics have been explored when 5(vol.) % of toluene was added to various CPO-Diesel mixtures.

Toluene was found to be well miscible in CPO-Diesel blends and no phase separation occurred over a week. Impact of Toluene addition to fuel in ameliorating engine characteristics has been found moderate. Per-formance results of CPOT5 revealed 1.64% higher BTE, 5% lower BSFC and 2.9% lower EGTs than neat diesel at rated power output. Meanwhile 4.4%, 20%, 7% and 4.17% decreased emissions of UBHC, CO, NOx and smoke were recorded. Compared to diesel, decreased smoke emissions were observed at all BP outputs for tested fuels. 13%, 8% reductions in ID were observed for CPOT5 over CPOT10 and CPIOT15 respectively. Reduced CD, increased HRR and MRPR were showed for CPOT5 fuel. Engine characteristics with CPOT10, CPOT15 fuels were found inferior to diesel.

Though CPOT5 was found optimal among the tested, its viability to be an effective alternative fuel seems fee-ble as the improvements observed were marginal.

2.5

3

3.5

4

4.5

5

5.5

6

0 1 2 3 4 5

RA

TE

OF

PRE

SSU

RE

RIS

E (b

ar/o

CA

)

BRAKE POWER (kW)

DIESEL

CPOT5

CPOT10

CPOT15

Fig. 13 Variation max. rate of pressure rise with BP

30

32

34

36

38

40

42

44

0 1 2 3 4 5

CO

MB

UST

ION

DU

RA

TIO

N (

/oC

A)

BRAKE POWER (kW)

DIESEL

CPOT5

CPOT10

CPOT15

Fig. 14 Variation combustion duration with BP

Vol.:(0123456789)

SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x Research Article

7 Future scope

The research could further be extended to analyse various blend ratios of toluene in different bio-oils and their impact on engine parameters. So far, most of the research works focussed on improving engine attributes such as BTE, BSFC, exhaust emissions by employing various alternative fuels. However, the studies revealing the long-term impacts of these substitutes on engine i.e. extent of oil contamination, injector nozzle, piston geometry, combustion chamber, etc. are found scanty and recommended for future work. Recov-ering the harmful aromatic organic compounds such as tolu-ene from the exhaust emissions (if any) is also a challenge.

Acknowledgements Authors would like to thank Mr. Shaik Moulali, M.Tech. for his valuable time and help during the preparation and characterization of the tested fuel samples. Authors extend their gratitude to the editors and anonymous reviewers for providing insightful suggestions and comments to improve the quality of this research article.

Declaration

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-bution 4.0 International License, which permits use, sharing, adap-tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Samer E (2019) Biomass as renewable energy: worldwide research trends. Sustainability. https:// doi. org/ 10. 3390/ su110 30863

2. Saha O, Sultana A, Sarker N, Siddiqui AR, Hossen F (2017) Bio-mass as a renewable resource for energy and chemical prod-ucts. Sci J Energy Eng 5:146–151. https:// doi. org/ 10. 11648/j. sjee. 20170 506. 13

3. Global bioenergy statistics 2020 World bioenergy association (2020) 3; 23; 49. https:// world bioen ergy. org/ uploa ds/ 20121 0WBAG BS2020. pdf.

4. Sinha SK, Subramanian KA, Singh HM, Tyagi VV, Mishra A (2019) Progressive trends in bio-fuel policies in India: targets and implementation strategy. Biofuels 10:155–166. https:// doi. org/ 10. 1080/ 17597 269. 2018. 15224 83

5. Mgaya J, Shombe GB, Masikane SC, Mlowe S, Mubofu EB, Revaprasadu N (2019) Cashew nut shell: a potential bio-resource for the production of bio-sourced chemicals, materials and fuels. Green Chem 21:1186–1201. https:// doi. org/ 10. 1039/ c8gc0 2972e

6. Kumar V, Nanda M (2016) Environmental effects biomass pyrol-ysis-current status and future directions, energy sources. Part A Recover Util Environ Eff 38:2914–2921. https:// doi. org/ 10. 1080/ 15567 036. 2015. 10987 51

7. Hossain AK, Davies PA (2013) Pyrolysis liquids and gases as alter-native fuels in internal combustion engines—a review. Renew

Fig. 15 Variation of heat release rate with crank angle

-20

0

20

40

60

80

100

120

140

-40 -20 0 20 40 60 80 100

HE

AT R

EL

EA

SE R

ATE

(KJ/

M3 d

eg)

CRANK ANGLE (DEGREE)

CPOT5

DIESEL

CPOT10

CPOT15

Vol:.(1234567890)

Research Article SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x

Sustain Energy Rev 21:165–189. https:// doi. org/ 10. 1016/j. rser. 2012. 12. 031

8. Kumar S, Dinesha P, Rosen MA (2018) Cashew nut shell liquid as a fuel for compression ignition engines: a comprehensive review. Energy Fuels 32:7237–7244. https:// doi. org/ 10. 1021/ acs. energ yfuels. 8b005 79

9. Pandian AK, Munuswamy DB, Radhakrishanan S, Devarajan Y, Ramakrishnan RBB, Nagappan B (2018) Emission and perfor-mance analysis of a diesel engine burning cashew nut shell oil bio diesel mixed with hexanol. Pet Sci 15:176–184. https:// doi. org/ 10. 1007/ s12182- 017- 0208-8

10. Devarajan Y, Nagappan BK, Munuswamy DB (2017) Performance and emissions analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends. Korean J Chem Eng 34:1021–1026. https:// doi. org/ 10. 1007/ s11814- 016- 0364-3

11. Kasiraman G, Nagalingam B, Balakrishnan M (2012) Perfor-mance, emission and combustion improvements in a direct injection diesel engine using cashew nut shell oil as fuel with camphor oil blending. Energy 47:116–124. https:// doi. org/ 10. 1016/j. energy. 2012. 09. 022

12. Bupesh Raja VK, JayaPrabakar J (2017) Performance and emis-sion characteristics of cashew nut shell oil on the CI engine. Int J Ambient Energy 1:1. https:// doi. org/ 10. 1080/ 01430 750. 2017. 14215 84

13. Pushparaj T, Ramabalan S, Arul Mozhi Selvan V (2015) Perfor-mance evaluation and exhaust emission of a diesel engine fueled with CNSL biodiesel. Energy Sources Part A Recover Util Environ Eff 37:2013–2019. https:// doi. org/ 10. 1080/ 15567 036. 2011. 643343

14. Venkatesan K (2016) Experimental investigation on performance of cashew nut shell pyrolysed oil blend with bio diesel and die-sel. Exp Thermal Fluid Sci 14:2918–2926

15. Radhakrishnan S, Munuswamy DB, Devarajan Y, Arunkumar T, Mahalingam A (2018) Effect of nanoparticle on emission and performance characteristics of a diesel engine fueled with cashew nut shell biodiesel, Energy Sources. Part A Recover Util Environ Eff 40:2485–2493. https:// doi. org/ 10. 1080/ 15567 036. 2018. 15028 48

16. Özer S (2020) Environmental effects the effect of adding tolu-ene to increase the combustion efficiency of biodiesel. Energy Sources Part A Recover Util Environ Eff 00:1–16. https:// doi. org/ 10. 1080/ 15567 036. 2020. 17764 21

17. Sun X, Liang X, Shu G, Wang Y, Chen Y (2019) Effect of toluene content on the combustion and emissions of large two- stroke marine diesel engine. Appl Therm Eng 159:113909. https:// doi. org/ 10. 1016/j. applt herma leng. 2019. 113909

18. Alagu K, Nagappan B (2018) Impact of antioxidant additives on the performance and emission characteristics of CI engine fuelled with B20 blend of rice bran biodiesel. Environ Sci Pollut Res 25:17634–17644

19. Hellier P, Ladommatos N, Allan R, Rogerson J (2013) Combus-tion and emissions characteristics of toluene/n-heptane and 1-octene/n-octane binary mixtures in a direct injection com-pression ignition engine. Combust Flame 160:2141–2158. https:// doi. org/ 10. 1016/j. combu stfla me. 2013. 04. 016

20. Kuang Y, Guo Y, Chai J, Shang J, Zhu J, Stevanovic S, Ristovski Z (2019) ScienceDirect comparison of light absorption and oxida-tive potential of biodiesel/diesel and chemicals/diesel blends soot particles. J Environ Sci 87:184–193. https:// doi. org/ 10. 1016/j. jes. 2019. 06. 014

21. Joy N, Yuvarajan D, Beemkumar N (2019) Performance evalua-tion and emission characteristics of biodiesel-ignition enhancer blends propelled in a research diesel engine. Int J Green Energy 16:277–283. https:// doi. org/ 10. 1080/ 15435 075. 2018. 15614 55

22. Talibi M, Hellier P, Ladommatos N (2018) Impact of increasing methyl branches in aromatic hydrocarbons on diesel engine combustion and emissions. Fuel 216:579–588. https:// doi. org/ 10. 1016/j. fuel. 2017. 12. 045

23. Masimalai S, Kuppusamy V (2015) A comprehensive assessment on performance behavior of a CI engine using bio oil emul-sions (PJSO10, KSO10 and CSO10) as fuels. J Mech Sci Technol 29:4491–4498. https:// doi. org/ 10. 1007/ s12206- 015- 0948-6

24. Jeyakumar N, Narayanasamy B (2020) Investigation of perfor-mance, emission, combustion characteristics of municipal waste plastic oil fueled diesel engine with nano fluids. Energy Sources Part A Recover Util Environ Eff 00:1–22. https:// doi. org/ 10. 1080/ 15567 036. 2020. 17459 58

25. Panda AK, Murugan S, Singh RK (2016) Performance and emis-sion characteristics of diesel fuel produced from waste plastic oil obtained by catalytic pyrolysis of waste polypropylene. Energy Sources Part A Recover Util Environ Eff 38:568–576. https:// doi. org/ 10. 1080/ 15567 036. 2013. 800924

26. Zhao C, Liu X, Chen A, Chen J, Lv W, Liu X (2020) Characteristics evaluation of bio-char produced by pyrolysis from waste hazel-nut shell at various temperatures. Energy Sources Part A Recover Util Environ Eff 00:1–11. https:// doi. org/ 10. 1080/ 15567 036. 2020. 17545 30

27. Chiatti G, Chiavola O, Recco E (2016) Effect of waste cooking oil biodiesel blends on performance and emissions from a CRDI diesel engine. IntechOpen. https:// doi. org/ 10. 5772/ 57353

28. Bharath G, Hai A, Rambabu K, Banat F, Jayaraman R, Taher H, Bastidas-Oyanedel JR, Ashraf MT, Schmidt JE (2020) Systematic production and characterization of pyrolysis-oil from date tree wastes for bio-fuel applications. Biomass Bioenerg 135:105523. https:// doi. org/ 10. 1016/j. biomb ioe. 2020. 105523

29. Zhang K, Xin Q, Mu Z, Niu Z, Wang Z (2019) Numerical simulation of diesel combustion based on n-heptane and toluene. Propuls Power Res. https:// doi. org/ 10. 1016/j. jppr. 2019. 01. 009

30. Anderlohr JM, Piperel A, Pires A, Bounaceur R (2009) Influence of EGR compounds on the oxidation of an HCCI-diesel surrogate. Proc Combust Inst 32:2851–2859. https:// doi. org/ 10. 1016/j. proci. 2008. 06. 019

31. Niemeyer KE, Sung C (2014) Mechanism reduction for multicom-ponent surrogates: a case study using toluene reference fuels. Combust Flame. https:// doi. org/ 10. 1016/j. combu stfla me. 2014. 05. 001

32. Tian Z, Pitz WJ, Fournet R, Glaude PA, Battin-Leclerc F (2011) A detailed kinetic modeling study of toluene oxidation in a pre-mixed laminar flame. Proc Combust Inst 33:233–241. https:// doi. org/ 10. 1016/j. proci. 2010. 06. 063

33. Andrae JCG, Brinck T, Kalghatgi GT (2008) HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model. Combust Flame 155:696–712. https:// doi. org/ 10. 1016/j. combu stfla me. 2008. 05. 010

34. Patel A, Agrawal B, Rawal BR (2020) Pyrolysis of biomass for effi-cient extraction of biofuel. Energy Sources Part A Recover Util Environ Eff 42:1649–1661. https:// doi. org/ 10. 1080/ 15567 036. 2019. 16048 75

35. Krishnamoorthi M, Malayalamurthi R, Sakthivel R (2018) chaul-moogra oil - diethyl ether blend with engine parameters and Renew. Energy. https:// doi. org/ 10. 1016/j. renene. 2018. 11. 062

36. Karabektas M, Ergen G, Hosoz M (2013) The effects of using diethylether as additive on the performance and emissions of a diesel engine fuelled with CNG. Fuel. https:// doi. org/ 10. 1016/j. fuel. 2012. 12. 062

37. Venu H, Madhavan V (2017) Effect of diethyl ether and Al2O3 nano additives in diesel-biodiesel-ethanol blends: performance, combustion and emission characteristics. J Mech Sci Technol. https:// doi. org/ 10. 1007/ s12206- 016- 1243-x

Vol.:(0123456789)

SN Applied Sciences (2021) 3:585 | https://doi.org/10.1007/s42452-021-04580-x Research Article

38. Hoang AT (2018) Waste heat recovery from diesel engines based on Organic Rankine Cycle. Appl Energy 231:138–166. https:// doi. org/ 10. 1016/j. apene rgy. 2018. 09. 022

39. Gugulothu SK (2020) Retracted article: Effect of piston bowl geometry modification and compression ratio on the perfor-mance and emission characteristics of DI diesel engine. SN Appl Sci. https:// doi. org/ 10. 1007/ s42452- 020- 3042-3

40. Appavu P, Venkata Ramanan M (2020) Study of emission char-acteristics of a diesel engine using cerium oxide nanoparticle blended pongamia methyl ester. Int J Ambient Energy 41:524–527. https:// doi. org/ 10. 1080/ 01430 750. 2018. 14770 63

41. Vallinayagam R, Vedharaj S, Yang WM, Saravanan CG, Lee PS, Chua KJE, Chou SK (2014) Impact of ignition promoting addi-tives on the characteristics of a diesel engine powered by pine oil–diesel blend. Fuel 117:278–285. https:// doi. org/ 10. 1016/j. fuel. 2013. 09. 076

42. Siva R, Munuswamy DB, Devarajan Y (2019) Emission and perfor-mance study emulsified orange peel oil biodiesel in an aspirated research engine. Pet Sci 16:180–186. https:// doi. org/ 10. 1007/ s12182- 018- 0288-0

43. Yuvarajan D, Dinesh Babu M, Beem Kumar N, Amith Kishore P (2018) Experimental investigation on the influence of titanium dioxide nanofluid on emission pattern of biodiesel in a diesel engine. Atmos Pollut Res 9:47–52. https:// doi. org/ 10. 1016/j. apr. 2017. 06. 003

44. Arunkumar M, Kannan M, Murali G (2019) Experimental studies on engine performance and emission characteristics using cas-tor biodiesel as fuel in CI engine. Renew Energy 131:737–744. https:// doi. org/ 10. 1016/j. renene. 2018. 07. 096

45. Chen H, Zhang P, Liu Y (2018) Investigation on combustion and emission performance of a common rail diesel engine fueled with diesel-ethylene glycol dual fuel. Appl Therm Eng 142:43–55. https:// doi. org/ 10. 1016/j. applt herma leng. 2018. 06. 073

46. Qian Y, Qiu Y, Zhang Y, Lu X (2017) Effects of different aromatics blended with diesel on combustion and emission characteristics

with a common rail diesel engine. Appl Therm Eng 125:1530–1538. https:// doi. org/ 10. 1016/j. applt herma leng. 2017. 07. 145

47. Asokan MA, Senthur Prabu S, Bade PKK, Nekkanti VM, Gutta SSG (2019) Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine. Energy 173:883–892. https:// doi. org/ 10. 1016/j. energy. 2019. 02. 075

48. Chen H, Su X, Li J, Zhong X (2019) Effects of gasoline and poly-oxymethylene dimethyl ethers blending in diesel on the com-bustion and emission of a common rail diesel engine. Energy 171:981–999. https:// doi. org/ 10. 1016/j. energy. 2019. 01. 089

49. Rakopoulos CD, Hountalas DT, Zannis TC, Levendis YA (2010) Operational and environmental evaluation of diesel engines burning oxygen-enriched intake air or oxygen-enriched fuels: a review. SAE Tech Pap Ser. https:// doi. org/ 10. 4271/ 2004- 01- 2924

50. Dinesha P, Kumar S, Rosen MA (2019) Combined effects of water emulsion and diethyl ether additive on combustion perfor-mance and emissions of a compression ignition engine using biodiesel blends. Energy 179:928–937. https:// doi. org/ 10. 1016/j. energy. 2019. 05. 071

51. Dhanasekaran R, Ganesan S, Kumar BR, Saravanan S (2019) Uti-lization of waste cooking oil in a light-duty DI diesel engine for cleaner emissions using bio-derived propanol. Fuel 235:832–837. https:// doi. org/ 10. 1016/j. fuel. 2018. 08. 093

52. Goga G, Singh B, Kumar S, Muk H (2019) Performance and emis-sion characteristics of diesel engine fueled with rice bran bio-diesel and n-butanol. Energy Rep 5:78–83. https:// doi. org/ 10. 1016/j. egyr. 2018. 12. 002

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.