21
Investigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson Ineke De Moortel Patrick Antolin Contributions from Paolo Pagano

Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Investigating the energetics of the Kelvin-Helmholtz instability

in oscillating coronal loopsThomas Howson

Ineke De Moortel Patrick Antolin

Contributions from Paolo Pagano

Page 2: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Coronal Wave Energy

Resonant absorption/mode coupling

Generation by e.g. photospheric motions, flares, reconnection…

Turbulence and dissipation?

Phase mixing and dissipation?

e.g. reflections?

KHI?

Heating?

Need to generate small length scales!

Page 3: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

OBSERVATIONS

逸させる方法として、「共鳴吸収」「位相混合」「サイクロトロン共鳴」などの物理過程が考えられていますが、観測的に捉えることは困難とされてきました。「ひので」は空間分解能力が高く、微細な構造の動きを世界最高レベルで捉えることができますが、観測できるのは上下方向の動きのみで、奥行き方向の動き(我々に近づいたり遠ざかったりする方向)はわからず、アルヴェン波の散逸に関連する決定的な物理情報を得ることができません。

そこで今回、「ひので」に加え、2013年に打ち上げられた NASA の太陽観測衛星「IRIS」を用いて、散逸過程の解明に迫りました。「IRIS」は、「ひので」の観測を踏まえて提案・開発された衛星で、「ひので」と同等の空間分解能力で紫外線の分光観測を行います。これにより、奥行き方向の動きを捉えることができ、「ひので」による上下方向の動きと組み合わせることで、太陽大気の運動を詳細に調べることが可能となりました。

2013年10月19日、両衛星による共同観測を実施し、 コロナ中に浮かぶプロミネンスのデータを取得しました。「ひので」の観測からは、プロミネンスを構成する磁力線の上下振動が複数検出されましたが、その振動箇所における奥行き方向の運動は、通常想定される振動パターンとは異なったものでした。通常の振動パターンとは、上下振動の最上点と最下点で速度ゼロ、中心位置で速度最大となるものを指しますが、今回観測されたものは最上点と最下点で最大速度、中心位置で速度ゼロとなるものでした。

我々は、この特異な動きは「共鳴吸収」による波動散逸の結果ではないかと考えました。そこで、波動に伴うプロミネンス振動の 3次元シミュレーションを実施し、磁力線の動きを再現しました。このシミュレーションから、磁力線の振動エネルギーの一部は共鳴吸収により磁力線表面の運動に変換され、その結果として振動が徐々に減衰していくことがわかりました。また、疑似観測データを作ると、上下振動に対する表面運動のパターンが、観測された奥行き方向の動きに対応することが明らかになりました。よって、観測された振動パターンは、共鳴吸収に伴う磁力線の表面運動と解釈できます。また、この運動は磁力線表面に無数の小さな渦を作り、その渦がエネルギー

Motion of prominence plasma crossing IRIS slit

Time [sec]

Doppler velocity from

IR

IS [km/s]

Dis

plac

emen

t [km

]

1,000

500

0

-1,000

-500

0 100 200 300 400

10

5

0

-10

-5

岡本

丈典

太陽

コロ

ナを

加熱

する

メカ

ニズ

ムの

観測

的証

拠を

初め

て捉

えた

宇宙

科学

研究

所 研

究員

(現 名

古屋

大学

研究

員)

Patrick Antolin

国立

天文

台 研

究員

共同

研究

者: Bart D

e Pontieu, Han Uitenbroek, Tom

Van D

oorsselaere, 横山

央明

Prominence in corona

Hinode field-of-view

Sun

Transverse oscillation

Resonant absorption + KHI Turbulence Heating

Synthetic IRIS D

oppler signal [km

/s]

Simulated Hinode intensity map

600 800 1000 1200 1400Time [sec]

-2000

-1000

0

1000

2000

[km

]

Simulated Hinode intensity map

600 800 1000 1200 1400Time [sec]

-2000

-1000

0

1000

2000

[km

]

-10

-5

0

5

10

Sim

ulat

ed IR

IS D

oppl

er s

igna

l fo

r 45o L

OS

[km

/s]

Dis

plac

emen

t [km

] 2,000

1,000

0

-2,000

-1,000

0 200 400 600 800Time [sec]

Motion of prominence plasma crossing the slit

Prominence thread model

transverse motion

azimuthal motion

SIMULATIONS 10

5

0

-10

-5

IRIS slit

(Okamoto+2015, Antolin+2015)

Page 4: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson
Page 5: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Our ModelCore

Shell

External

X Z

Y

Straight, dense magnetic flux tube

Page 6: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Our ModelCore

Shell

External

X Z

Y

Straight, dense magnetic flux tube

Initial perturbation

Generates standing wave

Lare3D, dissipation & magnetic twist parameter studies

Page 7: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Kink Wave

Vertical Cross-Section

Standing kink wave.

Antinode at ‘apex’.

Wave damping occurs but no dissipation.

Gaussian damping profile.

Page 8: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Resonant Absorption & Instability

Initial velocity profile concentrated in loop core.

Resonant absorption creates flows within the loop shell - subject to phase mixing.

Creates large velocity shear within the loop K-H instability.

Isosurface: ⇢ = 2

Page 9: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Density EvolutionDeformation of density profile caused by KHI.

Resonant layer changes - modifies subsequent resonant absorption.

Progression of KHI affected by dissipation (and numerical resolution).

Page 10: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Additional harmonics restrict shear between internal and external velocity and hence reduce KHI.

Large dissipation also reduces shear and suppress the instability.

KHI sensitive to harmonics present and dissipation Time

Dec

reas

ing

diss

ipat

ion

Thanks to P. Pagano

First three harmonics

Only 1st harmonic

Page 11: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Ohmic heating at Loop Apex

Initial kinetic energy converted into heat.

Larger resistivity causes greater rate of heating once KHI occurs.

Observe earlier heating in cases with lower resistivity.

KHI generates small scales in magnetic field.

Currents form in boundary layer.

Page 12: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Twist: Initial Setup

Azimuthal magnetic field. Tension force balanced by gas pressure.

Effects on energetics from non-potential field?

Is twist energy accessed by KHI?

B� Pressure

Small twist included in flux tube

Page 13: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Nature of VorticesStraight Twisted

Straight vs helical vortex formation.

Larger in straight field case.

Incr

easi

ng T

wis

t

Increasing twist reduces density deformation due to magnetic tension force.

Vortices now inclined.

Page 14: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

In straight case, KHI currents are horizontal.

Large loop aligned currents even in weakly twisted case.

Currents with greater magnitude form in twisted case.

Current Formation

Page 15: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Has KHI accessed energy in Magnetic Twist?

Larger (very localised) KHI currents form in the presence of twist

Have we accessed twist energy?

When (anomalous) resistivity only acts on KHI vortices then we only dissipate wave energy - NOT magnetic twist.

Current

Page 16: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

ConclusionsResonant absorption generates Alfvén waves in boundary of loop.Induces velocity shear which becomes unstable to KHI.

Instability generates small scales in density and velocity and magnetic fields.

Reducing velocity shear (e.g. dissipation) stabilises loop. Hence can produce heating sooner with lower dissipation.

Magnetic twist also reduces density deformation but instability is more energetic with increased twist.

KHI does not seem to access energy in background field.

Page 17: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson
Page 18: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson
Page 19: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Density EvolutionDeformation of density profile caused by KHI.

Resonant layer changes - modifies subsequent resonant absorption.

Forms when:

�KH ⇡ 1.7V0

4!ALph⇡ 0.5

Allan & Wright (2010), Terradas et al. (2016)

Page 20: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Additional Harmonics

Azimuthal field introduces new harmonics.

Alfvén waves affected by new tension direction in field lines.

Vertical asymmetry.

Page 21: Investigating the energetics of the Kelvin-Helmholtz …tah2/RAS2018.pdfInvestigating the energetics of the Kelvin-Helmholtz instability in oscillating coronal loops Thomas Howson

Velocity ComparisonStraight Twisted