40
Inverse Source Problems for Wave Propagation Peijun Li Department of Mathematics Purdue University Joint Work with G. Bao, C. Chen, G. Yuan, Y. Zhao

Inverse Source Problems for Wave Propagation

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Inverse Source Problems for Wave Propagation

Inverse Source Problems for Wave Propagation

Peijun Li

Department of Mathematics

Purdue University

Joint Work with

G. Bao, C. Chen, G. Yuan, Y. Zhao

Page 2: Inverse Source Problems for Wave Propagation

Outline

Motivation and model problems

Inverse random source

Increasing stability

Ongoing and future work

2 / 40

Page 3: Inverse Source Problems for Wave Propagation

Source scattering problems

Source scattering problems are concerned with the relationship betweenradiating sources and wave fields.

Direct problem: To determine the wave field from the given sourceand the differential equation governing the wave motion.

Inverse problem: To determine the radiating source which producesthe measured wave field.

3 / 40

Page 4: Inverse Source Problems for Wave Propagation

Wave equations for source scattering

The Helmholtz equation - acoustic wave

∆u + κ2u = f in Rd .

The Navier equation - elastic wave

µ∆u + (λ+ µ)∇∇ · u + ω2u = f in Rd .

The Maxwell equations - electromagnetic wave

∇× E − iωµH = 0, ∇×H + iωεE = J in R3.

4 / 40

Page 5: Inverse Source Problems for Wave Propagation

Problem geometry

ΓR

source

Ω

BR

5 / 40

Page 6: Inverse Source Problems for Wave Propagation

Applications

Antenna synthesis

Tomography (PAT)

Medical imaging (MEG, EEG, ENG)

Fluorescence microscopy

Neuroscience (brain imaging)

6 / 40

Page 7: Inverse Source Problems for Wave Propagation

Related work

Deterministic problems

Devaney and Sherman (’82), Marengo and Devaney (’99), Ammari,Bao, and Fleming (’02), Fokas, Kurylev, and Marinakis (’04), Hauer,Kuhn, Potthast (’05), Albanese and Monk (’06), Devaney, Marengo,and Li (’07), Eller and Valdivia (’09), Bao, Lin, and Triki (’10), Badiaand Nara (’11), Tittelfitz (’15), Bao, Lu, Rundell, and Xu (’15),Zhang and Guo (’15), Bao, L., Lin, and Triki (’15), Cheng, Isakov,and Lu (’16)

Stochastic problems

Devaney (’79), L. (’11), Bao and Xu (’13), Bao, Chow, L., and Zhou(’14), Bao, Chen, and L. (’16)

7 / 40

Page 8: Inverse Source Problems for Wave Propagation

Inverse random source problem

Homogeneous media

Inhomogeneous media

8 / 40

Page 9: Inverse Source Problems for Wave Propagation

Why stochastic modeling?

Uncertainties are widely introduced to the mathematical models for threemajor reasons:

Randomness directly appears in the studied systems

Incomplete knowledge of the systems may be modeled by uncertainties

Stochastic techniques are introduced to couple the interferencebetween different scales

9 / 40

Page 10: Inverse Source Problems for Wave Propagation

Available framework

Homogenization theory: J. Keller, J. Lions, G. Papanicolaou

Bayesian statistics: D. Donoho, A. Stuart, E. Somersalo

Wiener chaos expansion: R. Cameron, W. Martin, G. Karniadakis

10 / 40

Page 11: Inverse Source Problems for Wave Propagation

Model problem

The Helmholtz equation

∆u(x , κ) + κ2u(x , κ) = f (x), x ∈ R2.

The source functionf (x) = g(x) + σ(x)Wx .

The Sommerfeld radiation condition

limr→∞

r1/2(∂ru − iκu) = 0, r = |x |.

The direct problem: Given g and σ, to determine the random wave field u.

The inverse problem: To recover g and σ2 from u|ΓRat κj , j = 1, . . . ,m.

11 / 40

Page 12: Inverse Source Problems for Wave Propagation

White noise

Wx is the 2-parameter Brownian motion on (R2, B(R2), µ).

White noise

Wx :=∂2Wx

∂x1∂x2.

Stochastic integral ∫R2

φ(x)dWx =

∫R2

Wx∂2φ(x)

∂x1∂x2dx .

Proposition

E

∫R2

φ(x)dWx = 0, E∣∣∣∫

R2

φ(x)dWx

∣∣∣2 =

∫R2

|φ(x)|2dx .

12 / 40

Page 13: Inverse Source Problems for Wave Propagation

Deterministic direct problem

Consider the deterministic scattering problem∆u + κ2u = g , x ∈ R2,

∂ru − iκu = o(r−1/2), r →∞.

Given g ∈ L2(Ω), it has a unique solution

u(x) =

∫ΩG (x , y)g(y)dy ,

where the Green function

G (x , y) = − i

4H

(1)0 (κ|x − y |).

13 / 40

Page 14: Inverse Source Problems for Wave Propagation

Stochastic direct problem

Consider the stochastic scattering problem∆u + κ2u = g + σWx , x ∈ R2,

∂ru − iκu = o(r−1/2), r →∞.

Theorem (Bao-Chen-L)

There exists a unique continuous stochastic process (mild solution) u,which satisfies

u(x) =

∫ΩG (x , y)g(y)dy +

∫ΩG (x , y)σ(y)dWy .

14 / 40

Page 15: Inverse Source Problems for Wave Propagation

Function regularity

g ∈ L2(Ω).

σ is chosen such that the stochastic integral∫ΩG (x , y , κ)σ(y)dWy

satisfies

E∣∣∫

ΩG (x , y , κ)σ(y)dWy

∣∣2 =

∫Ω|G (x , y , κ)|2σ2(y)dy <∞.

Hence σ ∈ Lp(Ω), p > 2 and σ ∈ C 0,η(Ω), 0 < η < 1.

15 / 40

Page 16: Inverse Source Problems for Wave Propagation

Constructive proof

Step 1: continuous modification of the Gaussian random field

v(x) =

∫ΩG (x , y)σ(y)dWy .

Step 2: construct an approximation sequence

W nx =

n∑j=1

|Kj |−12 ξjχKj

(x), ξj = |Kj |−12

∫Kj

dWx , ξj ∼ N (0, 1).

Step 3: consider an approximated solution

un(x) =

∫ΩG (x , y)g(y)dy +

∫ΩG (x , y)σ(y)dW n

x .

16 / 40

Page 17: Inverse Source Problems for Wave Propagation

Stochastic inverse problem

Recall the mild solution

u(x , κj) =

∫ΩG (x , y , κj)g(y)dy +

∫ΩG (x , y , κj)σ(y)dWy .

Taking the expectation yields

Eu(x , κj) =

∫ΩG (x , y , κj)g(y)dy .

Consider real and imaginary parts

ReG (x , y , κj) =1

4Y0(κj |x − y |), ImG (x , y , κj) = −1

4J0(κj |x − y |).

17 / 40

Page 18: Inverse Source Problems for Wave Propagation

Reconstruction of the mean

Real-valued Fredholm integral equations

EReu(x , κj) =1

4

∫ΩY0(κj |x − y |)g(y)dy ,

EImu(x , κj) = −1

4

∫ΩJ0(κj |x − y |)g(y)dy .

18 / 40

Page 19: Inverse Source Problems for Wave Propagation

Reconstruction of the variance

Taking the variance of the mild solution yields

VReu(x , κj) =1

16

∫ΩY 2

0 (κj |x − y |)σ2(y)dy ,

VImu(x , κj) =1

16

∫ΩJ2

0 (κj |x − y |)σ2(y)dy .

VReu(x , κj)−VImu(x , κj) =1

16

∫Ω

(Y 2

0 (κj |x − y |)− J20 (κj |x − y |)

)σ2(y)dy

19 / 40

Page 20: Inverse Source Problems for Wave Propagation

Numerical method - Kaczmarz algorithm

Consider the linear system of equations

Ajq = pj , j = 1, . . . ,m.

A1q = p1

A2q = p2A3q = p3

q0

q1q2

q3

20 / 40

Page 21: Inverse Source Problems for Wave Propagation

Regularized Kaczmarz algorithm

Let q0 = 0, do k = 0, 1, . . .q0 = qk ,

qj = qj−1 + ATj (µI + AjA

Tj )−1(pj − Ajqj−1), j = 1, . . . ,m,

qk+1 = qm,

where µ > 0 is a regularization parameter.

21 / 40

Page 22: Inverse Source Problems for Wave Propagation

Direct solver

Consider the approximated scattering problem∆u + κ2u = g + σW n

x , x ∈ R2,

∂ru − iκu = o(r−1/2), r →∞,

where

W nx =

n∑j=1

|Kj |−12 ξjχKj

(x).

Direct solver: FEM with PML, Monte Carlo.

Parameters: κj = (j − 0.5)π, j = 1, . . . , 5, µ = 1.0× 10−7, outloop k = 5.

22 / 40

Page 23: Inverse Source Problems for Wave Propagation

Numerical result

23 / 40

Page 24: Inverse Source Problems for Wave Propagation

Inhomogeneous media: direct problem

Consider the stochastic scattering problem∆u + κ2(1 + q)u = g + σWx , x ∈ R2,

∂ru − iκu = o(r−1/2), r →∞.

Theorem (Bao-Chen-L)

The stochastic scattering problem admits a unique continuous stochasticprocess u, which satisfies

u(x) = −κ2

∫ΩG (x , y)q(y)u(y)dy

+

∫ΩG (x , y)g(y)dy +

∫ΩG (x , y)σ(y)dWy .

24 / 40

Page 25: Inverse Source Problems for Wave Propagation

Inhomogeneous media: inverse problem

Consider the inhomogeneous stochastic Helmholtz equation

∆u(x , κ) + κ2(1 + q(x))u(x , κ) = g(x) + σ(x)Wx in BR .

Let v be the eigenfunction for the following problem:∆v(x , κ) + κ2(1 + q(x))v(x , κ) = 0 inBR ,

v(x , κ) = 0 on ΓR .

We have from the integation by parts that

−∫

ΓR

∂νv(x , κ)u(x , κ)dγ =

∫BR

g(x)v(x , κ)dx +

∫BR

σ(x)v(x , κ)dWx .

25 / 40

Page 26: Inverse Source Problems for Wave Propagation

Numerical result - homogeneous medium

26 / 40

Page 27: Inverse Source Problems for Wave Propagation

Numerical result - inhomogeneous medium

27 / 40

Page 28: Inverse Source Problems for Wave Propagation

Increasing stability

Continuous frequency data

Discrete frequency data

28 / 40

Page 29: Inverse Source Problems for Wave Propagation

Problem geometry

ΓR

source

Ω

BR

29 / 40

Page 30: Inverse Source Problems for Wave Propagation

Model problem

The Helmholtz equation

∆u(x , κ) + κ2u(x , κ) = f (x), x ∈ R2.

The Sommerfeld radiation condition

limr→∞

r1/2(∂ru − iκu) = 0, r = |x |.

Given f ∈ L2(Ω), it has a unique solution:

u(x , κ) =

∫ΩG (x , y ;κ)f (y)dy ,

where

G (x , y ;κ) = − i

4H

(1)0 (κ|x − y |).

30 / 40

Page 31: Inverse Source Problems for Wave Propagation

Transparent boundary condition

Given function u on ΓR , it has the Fourier series expansion:

u(R, θ) =∑n∈Z

un(R)e inθ, un(R) =1

∫ 2π

0u(R, θ)e−inθdθ.

Introduce the DtN operator T : H12 (ΓR)→ H−

12 (ΓR)

(Tu)(R, θ) = κ∑n∈Z

H(1)′n (κR)

H(1)n (κR)

un(R)e inθ.

Transparent boundary condition:

∂νu = Tu on ΓR .

31 / 40

Page 32: Inverse Source Problems for Wave Propagation

Problem formulation - continuous frequency data

Consider reduced problem∆u + κ2u = f in BR ,

∂νu = Tu on ΓR .

Define boundary data

‖u(·, κ)‖2ΓR

=

∫ΓR

(|Tu(x , κ)|2 + κ2|u(x , κ)|2

)dγ(x).

ISP 1. Let f be a complex function with a compact support Ω ⊂ BR . TheISP is to determine f from the data u(x , κ), x ∈ ΓR , κ ∈ (0,K ), whereK > 1 is a positive constant.

32 / 40

Page 33: Inverse Source Problems for Wave Propagation

Main result - ISP 1

Define

FM = f ∈ Hm(Ω) : ‖f ‖Hm(BR) ≤ M, suppf = Ω ⊂ BR,

where m > 2 is an integer and M > 1 is a constant.

Theorem (L-Yuan)

Let f ∈ FM and u be the solution of the scattering problem correspondingto f . Then

‖f ‖2L2(Ω) . ε2 +

M2(K

23 | ln ε|

14

(6m−15)3

)2m−5,

where

ε =

(∫ K

0κ‖u(·, κ)‖2

ΓRdκ

) 12

.

33 / 40

Page 34: Inverse Source Problems for Wave Propagation

Sketch of proof

Step 1: energy estimate

‖f ‖2L2(Ω) .

∫ ∞0

κ‖u(·, κ)‖2ΓRdκ.

Step 2: low frequency estimate

I1(s) =

∫ s

0κ3

∫ΓR

∣∣∣∣∫ΩH

(1)0 (κ|x − y |)f (y)dy

∣∣∣∣2 dγ(x)dκ,

I2(s) =

∫ s

∫ΓR

∣∣∣∣∫Ω∂νxH

(1)0 (κ|x − y |)f (y)dy

∣∣∣∣2 dγ(x)dκ.

Step 3: high frequency tail estimate∫ +∞

sκ‖u(·, κ)‖2

ΓRdκ . s−(2m−5)‖f ‖2

Hm(Ω).

Step 4: link between low and high frequencies.

34 / 40

Page 35: Inverse Source Problems for Wave Propagation

Problem formulation - discrete frequency data

Consider reduced problem∆u + κ2u = f in BR ,

∂νu = Tu on ΓR .

Define boundary data at discrete frequency

‖u(·, κn)‖2ΓR

=

∫ΓR

(|Tu(x , κn)|2 + κ2

n|u(x , κn)|2)dγ(x),

whereκn = n

(πR

), n = |n|, n ∈ Z2 \ 0.

ISP 2. Let f be a complex function with a compact support Ω ⊂ BR . TheISP is to determine f from the datau(x , κ), x ∈ ΓR , κ ∈ (0, πR ] ∪ ∪Nn=1κn, where 1 < N ∈ N.

35 / 40

Page 36: Inverse Source Problems for Wave Propagation

Main result - ISP 2

Define

FM = f ∈ FM :

∫Ωf (x)dx = 0.

Theorem (L-Yuan)

Let f ∈ FM and u be the solution of the scattering problem correspondingto f . Then

‖f ‖2L2(Ω) . ε2

1 +M2(

N58 | ln ε2|

19

(6m−15)3

)2m−5,

where

ε1 =

∑n≤N‖u(·, κn)‖2

ΓR

12

, ε2 = supκ∈(0,π

R]‖u(·, κ)‖ΓR

.

36 / 40

Page 37: Inverse Source Problems for Wave Propagation

Sketch of proof

Step 1: energy estimate

|fn|2 . ‖u(·, κn)‖2ΓR, n ∈ Z2 \ 0.

Step 2: low frequency estimate

I (s) =

∣∣∣∣∫BR

f (x)e−isx ·ddx

∣∣∣∣2 , s ∈ (0,π

R].

Step 3: high frequency tail estimate

∞∑n=N0

|fn|2 ≤ N−(2m−5)0 ‖f ‖2

Hm(BR).

Step 4: link between low and high frequencies.

37 / 40

Page 38: Inverse Source Problems for Wave Propagation

References

(with G. Bao and C. Chen) Inverse random source scatteringproblems in several dimensions, SIAM/ASA J. UncertaintyQuantitication, 2016.

(with G. Bao and C. Chen) Inverse random source scattering forelastic waves, preprint.

(with G. Bao and C. Chen) Inverse random source scattering for theHelmholtz equation in inhomogeneous media, preprint.

(with G. Yuan) Stability on the inverse random source scatteringproblem for the one-dimensional Helmholtz equation, J. Math. Anal.Appl., to appear.

(with G. Yuan) Increasing stability for the inverse source scatteringproblem with multi-frequencies, preprint.

(with G. Bao and Y. Zhao) Stability in the inverse source problem forelastic and electromagnetic waves with multi-frequencies, preprint.

38 / 40

Page 39: Inverse Source Problems for Wave Propagation

Ongoing and future work

Partial data

Inhomogeneous media

Inverse random medium problem

Time-domain inverse problems

39 / 40

Page 40: Inverse Source Problems for Wave Propagation

Thank You !