37
Introduction to Viscometry and Rheology, Basics, Rotational Testing Basic Seminar Applied Rheology

Introduction to Viscometry and Rheology, Basics ... · 2 Contents Definition of basic rheological parameters Viscosity and elasticity Deformation, shear stress and shear rate Parameters

  • Upload
    dothuy

  • View
    251

  • Download
    1

Embed Size (px)

Citation preview

Introduction to Viscometry and

Rheology, Basics, Rotational

Testing

Basic Seminar

Applied Rheology

2

Contents

Definition of basic rheological parameters

Viscosity and elasticity

Deformation, shear stress and shear rate

Parameters changing viscosity

Temperature, time and pressure

Newtonian and Non-Newtonian flow behavior

Yield stress

Thixotropic and rheopectic flow behavior

3

(Spring) (Dashpot)

Real Systems

Definition of basic rheological parameters

Viscosity and elasticity

Rotation and Oscillation Rotation and Oscillation

Viscosity Elasticity

4

Viscosity (dynamic) [Pa∙s]

Shear stress [Pa]

Deformation [-]

Shear rate [1/s].

Calculation of the dynamic viscosity

· =

Definition of basic rheological parameters

5

y

A

F v

y

x

= F

A = Pa

N

m2

Force

Area =

= dv

dy =

d

dt =

m

s·m

1 s

·

= x y Distance

Displacement =

m

m

Calculation of the dynamic viscosity

Definition of basic rheological parameters

6

Viscosity Shear rate

Shear stress =

Torque Md · Shear factor A

Rotational speed · Shear factor M

= .

Definitionen rheologischer Größen Definition of basic rheological parameters

Calculation of the dynamic viscosity

7

Definitionen rheologischer Größen

Experimental determination of the viscosity

Absolute Measurement

Relative Measurement

The geometry factors A and M can be calculated for the sensor

(Certificate from the manufacture)

The geometry factors A und M can not be calculated for the sensor

(e.q. Brookfield)

Definition of basic rheological parameters

8

= Dynamic (shear-)viscosity [Pa∙s] = /

1 Pa∙s = 1000 mPa∙s

1 mPa∙s = 1cP (centi Poise)

= Shear stress [Pa]

= Shear rate [1/s]

Units of viscosity

.

.

Definition of basic rheological parameters

9

= Kinematic Viscosity [mm2/s] = /

1 mm2/s = 1 cSt (centi Stokes)

= Density [kg/m3]

rel = Relative Viscosity [-] rel = 1/ 2

e.q. HAAKE-Unit

Units of viscosity

Definition of basic rheological parameters

10

* = Complex

dynamic

(oscillatory-) viscosity [Pa∙s]

1 Pa∙s = 1000 mPa∙s

1 mPa∙s = 1 cP (centi Poise)

G* = Complex modulus [Pa]

= Angular frequency [rad/s]

i = Imaginary Unit (= -1)

* = G*/i∙

Units of viscosity

Definition of basic rheological parameters

11

e = Extensional viscosity [Pa∙s] e = ( 22- 11)/

= Rate of deformation [1/s]

.

.

Units of viscosity

Definition of basic rheological parameters

12

Contents

Parameters changing viscosity

Temperature, time and pressure

13

Chem./physical composition = f ( S )

Temperature = f ( T )

Pressure = f ( p )

Shear rate = f ( )

Time = f ( t ) Shear time, relaxation time

Miscelaneous e.g. electric, magnetic fiel intensity

Viscosity should always be indicated togehter with the relevant influencing

parameters

Einflussgrößen auf die Viskosität

Viscosity is not a constant

e.q.: = 1,4 Pa∙s (20°C, 100 s-1, after 1 min pre-shear 200 s-1)

.

Parameters changing viscosity

14

-20 -10 0 10 20

T [°C]

101

102

103

104

30 -30

At 20 °C: ( / )/ T = 0.0504 1/K

Temperature dependence of a mineral oil

Parameters changing viscosity [m

Pa∙s

]

15

Viscosity of fluids measured at 20°C

Water

Fruit juice, wine

Saccharose-solution

Coffee cream

Olive oil

Honey

Bitumen

Fluid Viscosity [mPa∙s]

1

2 - 5

6 (40 g in 100 ml Wasser)

10

100

10 000

100 000 000

Parameters changing viscosity

16

Pressure depence of viscosity of cruede oil

0 100 200 300 400 500 600 700 800 900 1000 0.1

1.0

[P

as]

Viscosity curve at 15 bar

Viscosity curve at

atmosheric pressure

[1/s] .

Increase of the viscosity of 20 % with a

pressure increase of 15 bar

Parameters changing viscosity

17

Contents

Newtonian and non-Newtonian flow behavior

18

log shear rate .

Slope of 1

Shear rate

Parameters changing viscosity

The viscosity is not a

function of the applied

shear rate.

≠ f(

Newtonian flow behavior

Water

Mineral oil

Bitumen

log

vis

co

sit

y

log

sh

ear

str

ess

19

.

Viscosity curve: = f ( ) .

Shear rate

Parameters changing viscosity

log shear rate .

Slope of 1

Slope > -0.82

Almost every polymer

containing fluid

(melts and solutions)

Shear thinning behavior

Shower gel

Skin cream

Mayonnaise

Aka pseudoplastic flow

behavior

log

vis

co

sit

y

log

sh

ear

str

ess

20

Dis-aggregation Deformation

Newtonsches und nicht-Newtonsches Fließverhalten

Shear thinning flow behavior

Orientation

Ridgid rods

Liquid crystal Polymeric fluids Emulsions Suspensions

Extension

Rest state

Sheared

Newtonian and Non-Newtonian flow behavior

Random coils Droplets Particles

21

Sedimentation

Storage,

shelf live

Transport

Producing paint

Applying paint

Consistency in

the can

Brushing,

spraying, rolling

Levelling

10-4

10-3

10-2

10-1

100

101

102

103

104

10-1

100

101

102

103

shear rates [1/s] .

Shear rates for different paint applications

Newtonian and Non-Newtonian flow behavior

vis

co

sit

y

[

Pa∙s

]

22

Applications and typical shear rates

10-6 - 10-4

10-6 - 10-4

10-1 – 101

100 – 102

101 – 102

101 – 102

101 - 103

101 - 104

103 - 104

Sedimentation

Phase separation

Levelling, running

Extrusion

Dip coating

Chewing

Pumping, stirring

Brushing

Spraying

Application .

Shear rate [s-1]

Newtonian and Non-Newtonian flow behavior

23

log shear rate .

Dilatant flow behavior

PVC-plastisol

Clay dispersions

Quicksand

Newtonian and Non-Newtonian flow behavior

log

vis

co

sit

y

log

sh

ear

str

ess

24

Contents

Yield stress

25

Shear stress

Yield stress

Microscopic picture

The yield stress 0 is the shear stress required , to

overcome elastic behavior and

obtain stationary flow behavior

26

Bingham flow behavior

shear rate .

0

Extrapolation of the flow curve

Mortar

Yield stress

log

vis

co

sit

y

log

sh

ear

str

ess

27

Plastic flow behavior

shear rate [1/s] .

0

Extrapolation of the flow curve

Chocolate

Tooth paste

Printing ink

Yield stress

log

vis

co

sit

y

log

sh

ear

str

ess

28

Flow behavior

Newton = ·

Bingham = 0 + ·

Shear thinning = K · n (n < 1) Ostwald de Waele

Plastic = 0 + K · n Herschel-Bulkley, Casson

Dilatant = K · n (n > 1)

.

.

.

.

.

Mathematic models

29

Fließverhalten

Overview

log shear rate

log

sh

ear

str

ess

. lo

g v

isco

sit

y

log shear rate .

Newtonian

Shear thinning

Dilatant

Plastic

Bingham

Flow behavior

30

Contents

Thixotropic and rheopectic flow behavior

31

Network-structure

Scherzeitabhängiges Fließverhalten

Decrease of viscosity as a function of time under shear

100% recovery as a function of time without shearing

Primary-Particles Agglomerates

Agglomerates

Thixotropy

Thixotropic and rheopectic flow behavior

32

Recording of initial state (low shear stress, shear rate or oscillation)

Disaggregation at constant shear rate (e.g. 100 1/s) until a constant level

is reached

Re-aggregation (low shear stress, shear rate or oscillation)

Scherzeitabhängiges Fließverhalten

Determination

Ramp up, (peak hold) and ramp down

Hysteresis area as a measure for thixotropy

Time curve

Thixotropic-Loop

Thixotropic and rheopectic flow behavior

33

Scherzeitabhängiges Fließverhalten

Time curve and structure recovery

Thixotropic and rheopectic flow behavior

Range 1

Initial State

Range 2

Disaggregation

Range 3

Reaggregation

time t

Rotation

(Oscillation)

0 .

Rotation

(Oscillation)

0 .

Rotation

>> 0 .

t1 t2

log

vis

co

sit

y

34

Scherzeitabhängiges Fließverhalten

Thixotropic loop

Thixotropic and rheopectic flow behavior

shear rate [1/s] .

peak hold

• fresh building material

sh

ear

str

ess

vis

co

sit

y

35

Scherzeitabhängiges Fließverhalten

Rheopexy

Thixotropic and rheopectic flow behavior

shear rate [1/s] .

• Dispersions with high concentration of solids (e.g. Latex)

Real Rheopexy is not observed often

double check whether an artifact is observed

sh

ear

str

ess

vis

co

sit

y

36

Flow behavior

Newtonian flow behavior: f ( )

Non-Newtonian Flow behavior: = f ( )

Bingham (yield stress)

Shear thinning (pseudoplastic)

Plastic (yield stress)

Dilatant (shear thickening)

Time dependant flow behavior: = f (t, )

Thixotropy

Rheopexy

.

.

.

Conclusions

37

Any Questions?

Thank you for your attention!