72
Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013 Introduction to the theory of belief functions: An application to intelligent vehicles Philippe XU 1,2 Franck DAVOINE 2 Thierry DENOEUX 1 Huijing ZHAO 2 1 1 UMR CNRS 7253 HEUDIASYC Université de Technologie de Compiègne 2 LIAMA, CNRS Peking University [email protected]

Introduction to the theory of belief functions: An ...xuphilip/dokuwiki/_media/en/2013_02_04... · Introduction to the theory of belief functions. An application to intelligent vehicles

  • Upload
    vodat

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Introduction to the theory of belief functions:

An application to intelligent vehicles

Philippe XU1,2

Franck DAVOINE2

Thierry DENOEUX1

Huijing ZHAO2

1

1UMR CNRS 7253 HEUDIASYC

Université de Technologie de Compiègne

2LIAMA, CNRS

Peking University

[email protected]

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Mon parcours à l’ENS

• 2008-2011: ENS Cachan - Antenne de Bretagne Magistère Informatique et télécommunications

• 2009-2010: National Taiwan University Année d’échange (M1)

• Stage de recherches: • 2011: LIAMA, Peking University (Franck Davoine, Huijing Zhao)

Multi-sensor Based Object Detection in Driving Scenes

• 2010: LIAMA, Chinese Academy of Science (Franck Davoine)

Multi-modal Pedestrian Detection

• 2009: IRISA, VistaS (Patrick Pérez) Detection and Tracking of Moving Objets in Crowded Scenes

2

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Thèse

• 2011-…: HEUDIASYC (UTC), F. Davoine, T. Denoeux

Information Fusion for Urban Scenes Understanding

• LIAMA MPR: HEUDIASYC (CNRS), KLMP (PKU)

• ANR-NSFC PRETIV: HEUDIASYC (CNRS), KLMP (PKU), eMotion (INRIA), PSA Peugeot Citroën

• ICT-ASIA PREDIMAP: HEUDIASYC (CNRS), KLMP (PKU), SJTU (Shanghai), CSIS (University of Tokyo), MATIS (IGN), eMotion (INRIA), AITGC (Thailand)

3

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

LIAMA

4

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

LIAMA

Site internet: liama.ia.ac.cn

Projets de recherche:

• Multimodal Scene Understanding: MPR, CAVSA

• Massive Computing: LSPDS, YOUHUA

• Trustworth Software: ECCA, CRYPT, FORMES

• Shapes Modeling: CCM, cPlant, CAD, TIPE

5

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

HEUDIASYC

6

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

HEUDIASYC

• 9 CR CNRS + 41 Enseignants-Chercheurs + 72 Doctorants + …

• Labex MS2T: Maîtrise des Systèmes de Systèmes Technologiques

• Robotex: Equipement d’excellence

• Evaluation AERES: A+

7

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Plan

1. Etat de l’art de la robotique moderne

2. Théorie des fonctions de croyance

a) Représentation de l’incertitude

b) Combinaison d’informations

3. Application aux véhicules intelligents

a) Contexte multi-capteurs et multi-classes

b) Résultats expérimentaux

8

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Plan

1. Etat de l’art de la robotique moderne

2. Théorie des fonctions de croyance

a) Représentation de l’incertitude

b) Combinaison d’informations

3. Application aux véhicules intelligents

a) Contexte multi-capteurs et multi-classes

b) Résultats expérimentaux

9

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Fiction et réalité

10

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

I, Rodney Brooks, Am a Robot

Four basic capabilities that any true AGI (Artificial General Intelligence) should possess:

• The social understanding of an 8-year-old child

• The manual dexterity of a 6-year-old child

• The language capabilities of a 4-year-old child

• The object-recognition capabilities of a 2-year-old child

http://spectrum.ieee.org/computing/hardware/i-rodney-brooks-am-a-robot/1

11

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

I, Rodney Brooks, Am a Robot

Four basic capabilities that any true AGI (Artificial General Intelligence) should possess:

• The social understanding of an 8-year-old child

• The manual dexterity of a 6-year-old child

• The language capabilities of a 4-year-old child

• The object-recognition capabilities of a 2-year-old child

http://spectrum.ieee.org/computing/hardware/i-rodney-brooks-am-a-robot/1

12

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

I, Rodney Brooks, Am a Robot

Four basic capabilities that any true AGI (Artificial General Intelligence) should possess:

• The social understanding of an 8-year-old child

• The manual dexterity of a 6-year-old child

• The language capabilities of a 4-year-old child

• The object-recognition capabilities of a 2-year-old child

http://spectrum.ieee.org/computing/hardware/i-rodney-brooks-am-a-robot/1

13

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

I, Rodney Brooks, Am a Robot

Four basic capabilities that any true AGI (Artificial General Intelligence) should possess:

• The social understanding of an 8-year-old child

• The manual dexterity of a 6-year-old child

• The language capabilities of a 4-year-old child

• The object-recognition capabilities of a 2-year-old child

http://spectrum.ieee.org/computing/hardware/i-rodney-brooks-am-a-robot/1

14

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

DARPA Grand Challenge 2004

• Defense Advanced Research Projects Agency

• Barstow (California) -> Primm (Nevada)

• 240 km/10 heures

• $1 million

15

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Quinze participants

16

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Résultats

• Aucun véhicule ne termine le parcours

• Meilleur score: 11,78 km (CMU)

17

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

DARPA Grand Challenge 2005

• $2 million

• 23 participants

• 5 terminent le parcours

• 1er: Stanley (Stanford), 6h53min

• 2ème: Sandstorm (CMU), +11min

• 3ème: H1ghlander (CMU), +10min

• 4ème: Kat-5 (+20min), TerraMax (+5h)

18

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

More challenges

• DARPA Urban Challenge (2007)

• DARPA Robotics Challenge (2012-2014)

• Chine: The Future Challenge (every year since 2009)

19

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Google car

20

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Scène routière à Pékin

21

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Nos véhicules

22

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Compréhension de scène

23

Scene

Tree Sky Car Pedestrian Car Road Car Traffic light Car

Composed-of

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Plan

1. Etat de l’art de la robotique moderne

2. Théorie des fonctions de croyance

a) Représentation de l’incertitude

b) Combinaison d’informations

3. Application aux véhicules intelligents

a) Contexte multi-capteurs et multi-classes

b) Résultats expérimentaux

24

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Raisonnement dans l’incertain

Dans de nombreux domaines des sciences appliquées, nous sommes amenés à raisonner à partir de connaissances imparfaites.

Ex: données en provenance de capteurs, d’experts, de modèles, …

25

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Data-related Fusion Aspects B. Khaleghi et al.: “Multisensor data fusion: A review of the state-of-the-art”.

Information Fusion, vol. 14(1), pp. 28-44, 2013

26

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Data-related Fusion Aspects B. Khaleghi et al.: “Multisensor data fusion: A review of the state-of-the-art”.

Information Fusion, vol. 14(1), pp. 28-44, 2013

27

« Je crois que Jean mesure 1,5

mètre. »

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Data-related Fusion Aspects B. Khaleghi et al.: “Multisensor data fusion: A review of the state-of-the-art”.

Information Fusion, vol. 14(1), pp. 28-44, 2013

28

« Jean mesure entre 1,5 mètre

et 2 mètres. »

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Data-related Fusion Aspects B. Khaleghi et al.: “Multisensor data fusion: A review of the state-of-the-art”.

Information Fusion, vol. 14(1), pp. 28-44, 2013

29

« Jean est grand. »

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Data-related Fusion Aspects B. Khaleghi et al.: “Multisensor data fusion: A review of the state-of-the-art”.

Information Fusion, vol. 14(1), pp. 28-44, 2013

30

« Il est possible que Jean

mesure plus de 1,5 mètre. »

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Théories et imperfections B. Khaleghi et al.: “Multisensor data fusion: A review of the state-of-the-art”.

Information Fusion, vol. 14(1), pp. 28-44, 2013

31

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Théorie des probabilités

• La théorie des probabilités peut représenter:

• Incertitude aléatoire: interprétation fréquentielle

• Incertitude épistémique: interprétation subjective

• Problème en tant que modèle de l’incertitude épistémique (modèle Bayesien):

• Impossibilité de représenter l’ignorance (totale ou partielle)

32

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Représentation de l’ignorance

• Principle of Indifference: en l’absence d’information concernant une quantité X, une probabilité égale doit être mise sur toutes les valeurs possibles de X.

• Premier problème: une probabilité uniforme et l’ignorance sont représentées de la même manière.

33

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

L’exemple de l’eau et du vin

Soit une bouteille contenant un mélange d’eau et de vin.

La bouteille contient: • au moins autant d’eau que de vin,

• au plus deux fois plus d’eau que de vin.

Question: «Quelle est la probabilité que la bouteille contienne au plus 1.5 fois plus d’eau que de vin?»

34

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

L’exemple de l’eau et du vin

Avec 𝒓𝒆/𝒗 le rapport eau sur vin:

𝟏 ≤ 𝒓𝒆/𝒗 ≤ 𝟐;

loi de proba uniforme sur [𝟏, 𝟐];

𝑷 𝒓𝒆/𝒗 ≤ 𝟑/𝟐 = 𝟎. 𝟓.

Avec 𝒓𝒗/𝒆 le rapport vin sur eau:

𝟏 ≤ 𝒓𝒆/𝒗 ≤ 𝟐⟺ 𝟏/𝟐 ≤ 𝒓𝒗/𝒆 ≤ 𝟏;

loi de proba uniforme sur [𝟏/𝟐, 𝟏];

𝒓𝒆/𝒗 ≤ 𝟑/𝟐 ⟺ 𝒓𝒗/𝒆 ≥ 𝟐/𝟑

𝑷 𝒓𝒆/𝒗 ≤ 𝟑/𝟐 =

𝑷 𝒓𝒗/𝒆 ≥ 𝟐/𝟑 = 𝟐/𝟑.

Contradiction

35

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Limitation de la granularité

Ce que le conducteur

perçoit: une voiture

noire à l’arrêt sur la

droite.

Ce qu’un capteur laser perçoit:

présence d’un obstacle en forme de ‘L’.

C’est peut-être une voiture, ou un bus, ou un camion, ou un bâtiment, etc…

36

-15 -10 -5 0 5 10 150

5

10

15

Voiture

Obstacle

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Théorie des fonctions de croyance Theory of belief functions

• Autres dénominations: • Théorie de Dempster-Shafer (Dempster-Shafer theory)

• Théorie de l’évidence (Evidence theory)

• Modèle des croyances transférables (Transferable belief model)

• Quelques grands noms: • Dempster (1968)

• Shafer (1976)

• Smets (1980-1990)

37

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Fonction de masse

• Soit X une variable à valeur dans un ensemble fini 𝛀 (cadre de discernement).

• Fonction de masse: 𝒎:𝟐𝛀 → 𝟎; 𝟏 telle que

𝒎(𝑨)

𝑨⊆𝛀

= 𝟏

• m(A) représente la croyance concernant l’appartenance de X à l’ensemble A, mais à aucun sous-ensemble strict de A.

38

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Exemple d’un capteur laser

• Un capteur laser peut mesure la présence d’obstacle. 2 cas possibles: 𝛀 = {𝑶,𝑶 }.

• Le capteur n’est pas parfait, la mesure est fausse dans 20% des cas.

• Représentation de l’information quand le laser mesure la présence d’un obstacle:

𝒎 𝑶 = 𝟎. 𝟖, 𝒎 𝛀 = 𝟎. 𝟐

• La masse 0.2 n’est pas allouée à {𝑶 }, aucune information ne soutient l’absence d’obstacle!

39

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Raffinement

• Un cadre de discernement peut être raffiné en partitionnant un ou plusieurs de ses éléments.

• Ex: Obstacle = {voiture, piéton}.

• Cadre de discernement: 𝛀 = {𝑽, 𝑷, 𝑶 }.

• La masse est simplement conserver sur l’ensemble des éléments raffinés.

𝒎 𝑽,𝑷 = 𝟎. 𝟖, 𝒎 𝛀 = 𝟎. 𝟐

40

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Plan

1. Etat de l’art de la robotique moderne

2. Théorie des fonctions de croyance

a) Représentation de l’incertitude

b) Combinaison d’informations

3. Application aux véhicules intelligents

a) Contexte multi-capteurs et multi-classes

b) Résultats expérimentaux

41

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Combinaison conjonctive

• Règle de Dempster non-normalisée:

𝒎𝟏⨅𝒎𝟐 𝑨 = 𝒎𝟏(𝑩)𝒎𝟐(𝑪)

𝑩∩𝑪=𝑨

• Règle de Dempster normalisée:

𝒎𝟏⨁𝒎𝟐 𝑨 =

(𝒎𝟏⨅𝒎𝟐)(𝑨)

𝟏 − 𝑲𝟏𝟐𝒔𝒊 𝑨 ≠ ∅

𝟎 𝒔𝒊 𝑨 = ∅

𝑲𝟏𝟐 = (𝒎𝟏⨅𝒎𝟐)(∅): degré de conflit entre les deux sources d’information.

42

Soient 𝒎𝟏 et 𝒎𝟐 deux fonctions de masse sur 𝛀 induites par deux sources d’information indépendantes.

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Exemple du capteur laser

• Information issue du laser:

𝒎𝟏 𝑽, 𝑷 = 𝟎. 𝟖,𝒎𝟏 𝛀 = 𝟎. 𝟐.

• Nouvelle source d’information:

𝒎𝟐 𝑷,𝑶 = 𝟎. 𝟔,𝒎𝟐 𝛀 = 𝟎. 𝟒.

43

{𝑽𝒐𝒊𝒕𝒖𝒓𝒆, 𝑷𝒊é𝒕𝒐𝒏} 0.8

𝜴 0.2

𝑷𝒊é𝒕𝒐𝒏,𝑶𝒃𝒔𝒕𝒂𝒄𝒍𝒆

0.6

{𝑷𝒊é𝒕𝒐𝒏} 0.48

𝑷𝒊é𝒕𝒐𝒏,𝑶𝒃𝒔𝒕𝒂𝒄𝒍𝒆

0.12

𝜴 0.4

𝑽𝒐𝒊𝒕𝒖𝒓𝒆, 𝑷𝒊é𝒕𝒐𝒏 0.32

𝜴 0.08

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Belief and plausibility functions

44

• bel(A) = degree to which the evidence supports A.

• pl(A) = degree of support that could be assigned to A if more specific information became available.

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Prise de décision

∅ {𝑃} {𝑉} {𝑂 } {𝑃, 𝑉} {𝑃, 𝑂 } {𝑉, 𝑂 } Ω

𝑚 0 0.48 0 0 0.32 0.12 0 0.08

𝑏𝑒𝑙 0 0.48 0 0 0.8 0.6 0 1

𝑝𝑙 0 1 0.4 0.2 1 1 0.48 1

45

{𝑽𝒐𝒊𝒕𝒖𝒓𝒆, 𝑷𝒊é𝒕𝒐𝒏} 0.8

𝜴 0.2

𝑷𝒊é𝒕𝒐𝒏,𝑶𝒃𝒔𝒕𝒂𝒄𝒍𝒆

0.6

{𝑷𝒊é𝒕𝒐𝒏} 0.48

𝑷𝒊é𝒕𝒐𝒏,𝑶𝒃𝒔𝒕𝒂𝒄𝒍𝒆

0.12

𝜴 0.4

𝑽𝒐𝒊𝒕𝒖𝒓𝒆, 𝑷𝒊é𝒕𝒐𝒏 0.32

𝜴 0.08

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Plan

1. Etat de l’art de la robotique moderne

2. Théorie des fonctions de croyance

a) Représentation de l’incertitude

b) Combinaison d’informations

3. Application aux véhicules intelligents

a) Contexte multi-capteurs et multi-classes

b) Résultats expérimentaux

46

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Contexte multi-capteurs

47

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Objectifs

48

Scene

Tree Sky Car Pedestrian Car Road Car Traffic light Car

Composed-of

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Perceptions différentes du monde

Données issues des capteurs:

Sorties des détecteurs d’objets:

49

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Vue d’ensemble du système

• Plusieurs capteurs fournissent en données un ou plusieurs modules de traitement.

• Utilisation de blocs de traitement indépendants dans leur propre espace de raisonnement.

• Les sorties des modules (fonctions de masse) sont combinées sur un cadre de discernement unifié au niveau d’une image sursegmentée.

50

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Combinaison de modules

51

Ground Ground

Vegetation Vegetation

Sky Sky

Vegetation Vegetation

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Sky

Combinaison de modules

52

Ground Ground

Vegetation Vegetation

Sky

Vegetation Vegetation

Grass Road Tree/Bush Sky Obstacles

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Sky

Combinaison de modules

53

Ground Ground

Vegetation Vegetation

Sky

Vegetation Vegetation

Grass Road Tree/Bush Sky Obstacles

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Plan

1. Etat de l’art de la robotique moderne

2. Théorie des fonctions de croyance

a) Représentation de l’incertitude

b) Combinaison d’informations

3. Application aux véhicules intelligents

a) Contexte multi-capteurs et multi-classes

b) Résultats expérimentaux

54

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

General mass function

• Input: • Learned model M of a class C

• Observation X of an object S

• Observation-to-model measure d(X,M)

• Two distance thresholds 𝑑− and 𝑑+

• Output: mass function of 𝛀 = {𝑪, 𝑪 } a) If 𝑑− > 𝑑(𝑋,𝑀) → 0 then 𝑚( 𝐶 ) → 1.

b) If 𝑑− ≤ 𝑑(𝑋,𝑀) ≤ 𝑑+ then 𝑚({Ω}) → 1.

c) If 𝑑+ < 𝑑 𝑋,𝑀 → +∞ then 𝑚( 𝐶 ) → 1.

55

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

General mass function

𝒎 𝑪 = 𝜶𝒆−𝜸

𝒅𝒅−−𝒅

𝜷

𝒊𝒇 𝒅 < 𝒅−

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

𝒎 𝑪 = 𝜶𝒆−𝜸

𝒅+

𝒅−𝒅+

𝜷

𝒊𝒇 𝒅 > 𝒅+

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

𝒎 𝛀 = 𝟏 −𝒎 𝑪 −𝒎( 𝑪 )

56

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Mass function profile

57

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Mass distribution

Distance to model

Mass f

unction

m(f Cg)

m(f Cg)

m(+)

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Pignistic probability distribution

Distance to model

Pig

nis

tic p

robabili

ty

BetP(f Cg)

BetP(f Cg)

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Special case: 𝑑− = 𝑑+

58

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Mass distribution

Distance to model

Mass f

unction

m(f Cg)

m(f Cg)

m(+)

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Pignistic probability distribution

Distance to model

Pig

nis

tic p

robabili

ty

BetP(f Cg)

BetP(f Cg)

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Special case: 𝑑− = 0

59

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Mass distribution

Distance to model

Mass f

unction

m(f Cg)

m(f Cg)

m(+)

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Pignistic probability distribution

Distance to model

Pig

nis

tic p

robabili

ty

BetP(f Cg)

BetP(f Cg)

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Stereo based ground detection

Road plane estimation: 𝑨𝒖 + 𝑩𝒗 + 𝑪𝒅 + 𝑫 = 𝟎

Robust estimator RANSAC.

60

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Stereo ground detection

• Plane model: Π: 𝑛 ∙ 𝑃 + 𝑑 = 0

• Distance: 𝑑 𝑆, Π = mean𝑃𝑖∈𝑆

𝑑(𝑃𝑖 , Π)

• Variance: 𝛾 =1/var𝑃𝑖∈𝑆

𝑑(𝑃𝑖 , Π) , 𝛽 = 2

• 𝛼 = ratio of visible pixels in S

61

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Stereo ground detection

62

0 0.2 0.4 0.6 0.8 10.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Recall

Pre

cis

ion

Stereo: Ground detection

d-=0, d+=8

d-=0, d+=16

d-=0, d+=Inf

d-=8, d+=8

d-=8, d+=16

d-=8, d+=Inf

d-=16, d+=16

d-=16, d+=Inf

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Stereo based method: 𝒅− = 𝟖, 𝒅+ = 𝟏𝟔

63

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

LIDAR based method

Multi-layered LIDAR:

• Cells cut by rays correspond to road.

• Laser impacts far away from the ground are obstacles.

64

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

LIDAR based method

65

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Monocular base method

• Features: Walsh-Hadamard coefficient over 8x8 patches

• Learning: Distribution over visual words (500 clusters)

• Observation: Each segment is represented by a distribution of visual words

• Distance: Distribution (histogram) distance

66

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Texton based road classification

𝒕− = 𝟔, 𝒕+ = 𝟔

67

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Vegetation detector

𝒕− = 𝟔:

𝒕− = 𝟎:

68

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Temporal propagation

Optical flow based approach

• For each segment St at time t is associated a segment St+1 at time t+1 defined as the one pointed by the mean flow of the pixels in St.

• The mass mt+1 is: 𝒎𝒕+𝟏 𝑨 = 𝜶𝒎𝒕 𝑨 , 𝒊𝒇 𝑨 ⊊ 𝛀

𝒎𝒕+𝟏 𝛀 = 𝟏 − 𝒎𝒕+𝟏(𝑨)𝑨⊊𝛀

69

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Détection du sol

70

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

Conclusion & Future works

• Framework adapted to multi-sensors fusion • Flexible to include new classes • Fusion is done locally over an over-segmented

image

• Future works: • Improve monocular based approach • Add new sensors (GPS, maps), new classes (moving) • Find a general approach to generate mass function

from “black box” detection tools • Global understanding

71

Introduction to the theory of belief functions. An application to intelligent vehicles – 04/02/2013

References

• G. Shafer: “A mathematical theory of evidence”. Princeton University Press, 1976.

• P. Smets: “Belief functions: the Disjunctive rule of combination and the generalized Bayesian Theorem”. International Journal of Approximate Reasoning, vol. 9, pp.1-35, 1993.

• T. Denoeux: “A k-nearest neighbor classification rule based on Dempster-Shafer theory”. IEEE Transactions on Systems, Man and Cybernetics, vol. 25(5), pp.804-813, 1995.

• T. Denoeux: “The cautious rule of combination for belief functions and some extensions”. Proceedings of FUSION, 2006.

• T. Denoeux and P. Smets: “Classification using Belief functions: the Relationship between the case-based and model-based approaches”. IEEE Transactions on Systems, Man and Cybernetics, vol. 36(6), pp.1395-1406, 2006.

• B. Khaleghi et al.: “Multisensor data fusion: A review of the state-of-the-art”. Information Fusion, vol. 14(1), pp. 28-44, 2013.

72