151
Institute for Chemical Technology and Polymer Chemistry [email protected] http://www.itcp.kit.edu/wilhelm/ KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Introduction to Rheology Prof. Dr. Manfred Wilhelm private copy 2019

Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

  • Upload
    others

  • View
    14

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

Institute for Chemical Technology and Polymer Chemistry [email protected] http://www.itcp.kit.edu/wilhelm/

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Introduction to Rheology

Prof. Dr. Manfred Wilhelm

private copy 2019

Page 2: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook
Page 3: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook
Page 4: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

Contents (overview)

Motivation, Literature, Journals

First principles

Simple models: Maxwell, Voigt, Burger, Carreau, Ostwald - de Waele

Glossary

Rheological hardware

Examples: Dispersions (response and phenomena), Polymer melts, ...

Fourier-Transformation

FT-Rheology

Page 5: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

I

Contents

Literature: ................................................................................................................................... 1

Books ...................................................................................................................................... 1

Journals ................................................................................................................................... 2

Internet .................................................................................................................................... 2

Definition of the term “Rheology” ............................................................................................. 3

Typical examples of daily live: ( motivation) ........................................................................ 3

1) Brush with paint on a wall ................................................................................................. 3

2) Piston in an engine ............................................................................................................. 4

Why can we assume that Hooke’s law could be correct? ........................................................... 5

Hooke for polymers (rubber elasticity) ...................................................................................... 8

Why can we assume that Newton’s law could be correct? ....................................................... 10

Gedankenexperiment ............................................................................................................ 11

Linear models: Hooke, Newton, Maxwell, Kelvin-Voigt … ................................................... 14

Detailed analysis of Maxwell model ........................................................................................ 16

Without any mathematics: step experiments (step in stress or step in strain) .......................... 27

Memory (Gedächtnis) ............................................................................................................... 28

Multimode models .................................................................................................................... 29

Glossary .................................................................................................................................... 31

a) Lamellar flow ................................................................................................................... 31

b) Reynolds number ............................................................................................................. 31

c) Cox-Merz-rule .................................................................................................................. 32

d) Lissajous figures ............................................................................................................... 33

e) Shear thinning ................................................................................................................... 34

Ostwald-de Waele (example for 2 parameter model) ....................................................... 34

Carreau (example for 3 parameter model) ........................................................................ 35

4 parameter models:.......................................................................................................... 35

Thixotropy shear thinning + long memory ( Hysteresis) ......................................... 36

Shear thickening ( rheopex dilatancy) ....................................................................... 36

Anti-thixotropy shear thickening + memory ( Hysteresis) ....................................... 36

Rheopexy .......................................................................................................................... 37

Dilatancy ........................................................................................................................... 37

Page 6: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

II

Bingham plastic ................................................................................................................ 37

Dimensionless groups ........................................................................................................... 38

Deborah number ............................................................................................................... 39

Péclet number ................................................................................................................... 40

Taylor vortex .................................................................................................................... 40

What do we expect for (p,T)? ................................................................................................... 42

Gases ..................................................................................................................................... 42

Viscosity of liquids, temperature dependence ...................................................................... 44

Stress-strain tensor and normal forces ...................................................................................... 46

Definition of the extra stress tensor (right handed system!) ................................................. 48

Properties of the extra stress tensor ...................................................................................... 48

What do normal stress differences mean? ............................................................................ 49

What do we expect for N1,2 0γ,γ ? ..................................................................................... 50

Phenomena where we can directly “see” normal forces ....................................................... 51

a) Rod-climbing ................................................................................................................ 51

b) Secondary flow for rotating disc .................................................................................. 52

c) Extrudate swell ............................................................................................................. 52

Possible measurements (for oscillatory rheometers) and hardware ......................................... 53

1) Detection of onset of non-linearity at fixed frequency .................................................... 53

2) Measurement of G’, G” at T = const., : variable, 0: parameter .................................... 53

3) Temperature dependent measurement .............................................................................. 54

4) Shear rate dependent viscosity ......................................................................................... 55

Hardware: ............................................................................................................................. 55

Couette geometry .............................................................................................................. 55

Hardware .................................................................................................................................. 58

Stress and strain rheometer, typical types of construction: .................................................. 58

Typical hardware specifications (ARES) ............................................................................. 59

Typical pathway of a signal from the torque transducer to G’, G” ...................................... 60

Vane rheometer .................................................................................................................... 61

Melt-flow index .................................................................................................................... 62

Capillary rheometer ( high shear rates) ............................................................................ 62

Elongational rheology, viscosity .......................................................................................... 63

Page 7: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

III

Rheology on two specific examples: polymers and dispersions .............................................. 66

Polymers ............................................................................................................................... 66

Reptation theory ................................................................................................................... 66

Typical shape for G’(), G”() for monodisperse linear polymer melts ............................ 69

Time-Temperature-Superposition (TTS) and the Williams-Landel-Ferry (WLF) equation 73

Dispersions ........................................................................................................................... 77

Fourier-Transform-spectroscopy .............................................................................................. 88

Problem of discretisation (ADC, analogue digital converter) .............................................. 89

Some important mathematical relations ............................................................................... 90

Appendix A .............................................................................................................................. 93

Appendix B ............................................................................................................................. 115

Appendix C ............................................................................................................................. 124

Page 8: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

1

Literature:

Books

Einführung in Rheologie und Rheometrie (also available in English)

Gebhard Schramm, Gebr. Haake GmbH, Karlsruhe

(easy; book to start with)

Das Rheologie Handbuch (also available in English)

Thomas Mezger, Vincentz Verlag, 2000

(easy, covers lots of practical problems, nice hardware section)

Rheology for Chemists, an Introduction

J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000

(easy)

A Handbook of elementary Rheology

Howard A. Barnes, University of Wales, Institute of Non-Newtonian Fluid Mechanics,

Aberystwyth 2000, (good overview, very elaborated literature at the end)

The structure and rheology of complex fluids

Ronald G. Larson (Head of society of rheology), Oxford University Press 1999

(more advanced)

Rheology Principles, Measurements and Applications

Ch. W. Macosko, Wiley-VCH 1994

(more advanced)

Engineering Rheology

R. J. Tanner, Oxford University Press 2000

(for mechanical engineers)

Page 9: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

2

Rheological measurements

A. A. Collyer and D.W. Clegg, Chapman & Hall 1995

(Hardware)

Rheology: A Historical Perspective

R. I. Tanner and K. Walters, Elsevier 1998

(lots about people and phenomena)

Journals

Journal of Applied Rheology

http://www.ar.ethz.ch/

(incl. Jobs!, Hardware guide, reports about upcoming and previous conferences)

Rheologica Acta (Springer)

http://www.springerlink.com/

Journal of Rheology (The Society of Rheology)

http://scitation.aip.org/joro/

Journal of Non-Newtonian fluid mechanics

http://www.elsevier.com/

Internet

www.rheologie.de

www.rheology-esr.org

www.rheology.org

Page 10: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

3

Definition of the term “Rheology”

Rheology is the science of deformation and flow of matter.

Side conditions:

conservation of energy, conservation of mass, symmetry constraints, incompressibility;

Analysis of:

Deformations: strain (shear), stretch (elongation);

stress (torque); normal forces;

Typical examples of daily live: ( motivation)

1) Brush with paint on a wall

v = 1 m/s = 1000 mm/s

d = 0.2 mm

What is the relevant quantity?

Assumption: layered structure

i

i

d

v= constant for all i!

v

d

n layers

vn

vi

di

Page 11: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

4

s

1 5000

mm 0.2

mm/s 1000

d

v

d

v

d

v

n

n

i

i

shear rate d

vγ [1/s]

Why is this a rate and not a frequency?

Frequency is only used with respect to periodic phenomena, otherwise: rate!

both: [1/s] !

2) Piston in an engine

frequency:

min

16000

ω1

(=rpm, rotations per minute)

s

1100

ω1

stroke (german: Hub):

s = 10 cm = 0.1 m

s

m 20

s

m 20.11002s

ωv 1

s

m 30

s

m 20)2/(

maxv why 2/ ?

m1020μm 20d 6

s

1101.5

m 1020s

m 30

d

vγ 6

6max

max

think about: - shower lotion

- lipstick

- coating of paper

- extrusion of fibres (clothing)

d

1

s v

Page 12: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

5

unit of γ : [1/s] = inverse time

comparison: pλγ

1

pλγ is a unitless quantity

Why can we assume that Hooke’s law could be correct?

Do we “buy” this law?

Hooke: xkF

Possible reasons:

a) (x)

!

(x,...) FFF (assumption)

Taylor-expansion (Taylor around x = 0 MacLaurin series)

2

0x2

2

0x0)(x(x) x

x

F

2!

1x

x

FFF

b)

Interaction Potential for vibrational (IR) spectroscopy (beside Hooke):

Morse-Potential U(x) (Potential, not force!)

FdxUFx

U

Polymer molecule with relaxation time p

F

0 x

0,

because

at equil.

k vanishing for

small x

linear nonlinear part

CC

C CC

CCC C

d

v

Page 13: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

6

Potential has units of energy!

Morse: 20(x) )))xβ(xexp(A(1U

set: x0 = 0

Taylor: ...3!

2!

xββx1e

3322βx

2222(x) xAβ...)xA(β...))xβ(1A(1U

xkx2Aβx

UF 2

a) + b) no proof, but we “buy” Hooke’s law

exercise: prove Hooke’s law for the finite extendable nonlinear elastic interaction (FENE),

frequently used in computer simulation, for x R0

X0=0 x

U/A

Note: A: Dissoziation energy

x

U/A

1

U/A

x

1

2

0(x) R

x1lnAU

k

exp(-(x-x0))

1

X0=0

X0=0

1-exp(-(x-x0))

(1-exp(-(x-x0)))2

Page 14: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

7

Remark:

If we remember typical force-constant from IR ( spectroscopy books)

k = 500 N/m ( m

kω )

and we remember typical area needed for a chain, e.g. polyethylene:

orthorhombic

a = 7.5 Å

b = 5 Å

c = 2.5 Å

2 chains per unit cell

2202o

2o2o

m1020A202

A37.5

2

A57.5

chain

A

Renormalization to area + relative change in length

L

xEσ

A

F + E: unit: pressure [ 1Pa = 1 N/m2 ]

5 Å

7.5 Å

stress

E-module

F

F

F

different A

different x and L

L

Page 15: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

8

upper limit:

L

xEσ

A

xk

A

F

GPa 250Pa10250mm

mN

20

1010500EL

A

k 92

1020

Tungsten (W): 150 GPa

But: bending modes are weaker only several GPa

Hooke for polymers (rubber elasticity)

Start of chain in coordinate origin, where is end?

GaussW(r)

2

2

(r) 2σ

μ)(xexp

σ2π

1W , here = 0

Boltzmann: 22 xkC))ln(exp(-x k C ln(W) k S

with 0 H S,T - H G

) xk - (C T - G 2

G: units of energy:

)Fdx(W F,x

ΔG

x2k T F (temp. + elongation!)

only needed: 0 H ; GaussW(r)

See analogy for Gauss in crystallography! Debye-Waller factor!

C in unit cell 10-10 m (one bond)

CCC

Page 16: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

9

Page 17: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

10

Why can we assume that Newton’s law could be correct?

Newton: γηd

vησ

A

F

Why not: xA

F ?

x a a,F ?

a2

πv F 3

1 ??

why?

We need proportionality between viscous force and velocity: vFviscous

Remember:

Law from Stokes: vrη6πF (F: e.g. gravity)

Note: unit of :

sPa ηm

smPa

v

dp

dv

AF

η

, old: Poise: 1Pa s = 10 P; 1 cP = 1 mPas (Poiseuille);

typical values: blood 100 – 4 mPas

(thicker than water!; shear thinning)

Glycerin 0°C 10,000 mPas

20°C 1,400 mPas

60°C 60 mPas

Oil, SAE 10 30°C 200 mPas

H2O 1 mPas ( memorize!)

Air 0.02 mPas

Do we “buy” this?

rough surface

2r F

v Sphere in viscous media

T

x

Note: In Rheology Newton’s law is associated with γησ ,

not with his other law: amxmF .

Page 18: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

11

Gedankenexperiment ( Prof. Sillescu, article Lord Rayleigh 1891! see Appendix A, p. 93-114)

Tube; big mass M; lots of particles with small mass m strike on mass M; M is moved with

speed vM; What force is needed?

For M: ΔtvΔl MM

For m: ΔtvΔl , same velocity for all small particles!

After time t:

Average density of particles m: Δl

N ρ , number density, not mass density!

The mass M is hit by the following number of particles during t:

NΔlρΔlΔlρ2

1ΔlΔlρ

2

1NN MM

M m

vM vm = v - vm = - v

l

50:50 probability that particles fly in correct direction

direction of particles

particles lM

l

lM

l

l - lM

but N- > N+ !!

m

Page 19: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

12

if we define a clash-rate:

vρZZZ

v

vvZ

2

1vvρ

2

1Z

v

vvZ

2

1vvρ

2

1Z

vρZv

Z

Δtv

N

ΔtΔl

ΔtNρ

Δt

N Z

MM

MM

each particle transfers elastic impact onto mass M with relative momentum v2mp

M

M

vv2mp

vv2mp

In one time unit t, this balances the outer force F needed to push mass M with velocity vM.

MM

2MM

22MM

2

MMMM

MM

MM

v4mZ4vvv

mZ

v2vvvv2vvvv

mZ

vvvvvvvvv

mZ

vv2mv

vvZ

2

1vv2m

v

vvZ

2

1F

pZpZF

M

vF

Friction is proportional to the velocity of the mass M.

mv

mv

Page 20: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

13

Sir Isaac N

ewton

1642 – 1727 “N

ewton w

as the first to formulate a hypothesis regarding the

magnitude of the force required to overcom

e viscous resis-tance and to treat a case of m

otion in a viscous fluid.” C

fP

rincipia

Lib

iiS

ectIX

Em

ilHatschek

Page 21: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

14

Linear models: Hooke, Newton, Maxwell, Kelvin-Voigt … incl. oscillatory excitation and response

Hooke – spring

γ G σ γG σ

dtd

Newton – dash-pot

Math. def. of linear models:

A linear model is a mathematical description of the relation between stress and strain

(respective: strain rate) where only linear terms of 1γ or 1γ are used. Further more G and

are constant.

Experimental def.:

Linear response can be assumed if the response (stress, strain, strain rate) is large enough to

be detected but still in a regime where G and are not affected by the measurement.

,

Pa no unit

γγσ,

dt

dγ γ ,γ η σ

Page 22: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

15

The non-linear regime should be avoided for linear response measurements:

Dash-pot (DP) and spring (S) can be arranged in series or in parallel:

G’’

rate sweep: γη

γ

asymptotic deviation!

linear regime

G

0

strain sweep: 00 γG,γG

fixed frequency linear regime

G’

DPS σσ

viscosity with a

bit of elasticity

(long term)

DPS

DPS

γγ γ

γγ γ

σ

η ,G ,γ γ, 0

σ

η G, ,γ γ,

DPS γγ

elasticity with

a bit of viscosity

(long term)

γηGγσ

σσ σ DPS

Maxwell model

(for liquids with some

elastic response)

Kelvin-Voigt model

(for solids with some

viscous response)

G’, G” later

Page 23: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

16

Detailed analysis of Maxwell model

)1(η

σ

G

σγ

η

σγ γ η σ

G

σγ γ G σ

DP

S

1. step-experiment

at time t > 0, 0 γ (not in the dash-pot, but overall system!)

using (1):

t 0

0

0(t)0t

00(t)

(t)00(t)

0(0)

(0)0

(0)(t)

0

(0)

(t)

0(0)(t)

t

0

0σ(t)

σ(0)

0

0

0

GGlim

t)η

Gexp(GG

γ

σ t)

η

Gexp(γGσ

γGσ

sPa

sPa

G

ητ);

τ

texp(σt)

η

Gexp(σσ

G

σ

σln

G)ln(σ)ln(σ

tdη

Gdσ

σ

1

tdη

G

σ

η

σGσ

η

σ

G

σ 0

(see: first order kinetic, or Lambert-Beer)

(for short time force is fully in spring)

relaxation time

t)η

Gexp( 0

0G

0

Memory!

t

Page 24: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

17

Oscillatory response:

Hooke

distinguish: amplitude elongation!

System has memory ( stored energy storage modulus G’)

Newton

distinguish:

[rad/s] , f [1/s = Hz] 2πT

2π ω

System has no memory ( energy is lost loss modulus G’’)

t

0

t)sin(ω γ γ 0

t)cos(ωω γ γ

t)sin(ω γ γ

0

0

t

γ 0

phase shift

,

, , γ

Page 25: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

18

Maxwell:

(t)0

0(t)

γωi t)ωexp(iω)(i γ γ

t)ωexp(i γ γ

after initial time we reach dynamic steady state:

(t)0

0(t)

σωi δ)t(ωexp(iω)(iσ σ

δ)t(ωexp(iσ σ

eq. (1): η

σ

G

σγ

22

22

22

2222

22

22

22

)()(*

*

*

)(*

)(*

(t)

(t)

(t)

(t)

(t)

(t)(t)

τω1

τωGG

τω1

τωGG

τω1

τωi

τω1

τωG

τω1

τωiτωG

τ)ωi-(1τ)ωi(1

τ)ωi-(1τωiGGiGG

τ)ωi-(1:part imag. and real into sep.τωi1

τωiGG

τωi

τωi1

G

G

G

ητ,

τωi

11

G

G

G

1

σ

γ:def.,

ηωi

G1

σ

γG

σωi

G

η

σ

G

σωi γωi

Plot:

Why G’ = storage ?

Why G” = loss ?

G/2

G’, G” (linear scale)

G’, storage

= 1

G”, loss module

log() [rad/s]

G

Note: (a+b)(a-b)=a2-b2

Page 26: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

19

222

0ω22

22

0ω0ωωτωlim

τω1

τωlimGlim

2ωG for small

1

0ω220ω0ωωτωlim

τω1

τωlimGlim

1ωG for small

trick to memorize: ba ωG , a + b = 3

Note for “NMR-People”:

FID: shapeLorentz)T

texp( M

2

in

1

1

2

= 1 log

log G

G”

G’

1

Lorentz:

1τω

τω-Im

1τω

τRe

22

2

)(

22)(

in Rheology: 0 !!

Factor missing

G”

G’

)Gˆ(Re

0

) Gˆ( Im

Page 27: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

20

GGG 0ω0ω* (module of spring within Maxwell-element)

width of relaxation spectrum for G”:

Set to = 1:

ωGG

2 ; G = 1

Maximum at:

full width at half maximum, 1, 2 ?

fwhm

1τω

τωGG

22

G”

log = 1

G2

1

11

1GG

1ω :meaningful physically 1ω

ω1

2ω1ω

2ω1

1ω1ω

1

02ω1ω

ω

10

Gd

1)(ω

2

22

2

2

222

2

2

222

)(

log

G2

1

G4

1 fwhm

04

1ωω

4

1

ω4

4

11ω

ω

4

1

2

2

2

Page 28: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

21

remember:

The full width at half maximum (fwhm) of a single exponential relaxation is 1.14 decades in

frequency space.

)()(*

*

)(* GiG

γ

σG

t)ωexp(iγiωγ t),ωexp(iγ γ;γGσ 00***

γiω

GiGσ )()(*

** Gηiω units: [1/s Pa s = Pa]

[to memorize: “iong”, i omega n equals G]

14.1ω

ωlog :ratio

0.268ω

3.732ω

32

4312

21

41

41411

ω

2a

4acbbx

0cbxax

2

110

2

1

1/2

2

1/2

2

**

22*

*

Gηω

ηηη

ηiηη

Page 29: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

22

Phase lag : G

Gtanδ

experimental advantage: G”, G’ extensive quantities

tan intensive quantity

if, e.g. filling factor is “bad”, G’ is wrong, G” is also wrong, but G”/G’ is still accurate

tan is generally very reproducible

%10GG

GG

typical error margin for rheological measurements

Page 30: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

23

Page 31: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

24

Page 32: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

25

Page 33: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

26

Page 34: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

27

Without any mathematics: step experiments (step in stress or step in strain)

t0

t0

F, ,

Kelvin-Voigt model

t0

ta

η

σγ 0)(t

G

σγ )(ta

F, ,

Maxwell - model

t0

spring elastic part

viscous part spring, elastic part

t

2nd possibility: strain step:

t

τ

texp~

memory?

Page 35: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

28

More complex models (but still linear models!):

Memory (Gedächtnis)

The memory of the system might be defined for a step strain experiment as follows:

dt

dG

γdt

dt

dGM (t)

(t) , minus sign, so that M(t) is positive;

dt γMdσ

td γM-dσσ t

tt

-t) t-(t

σ

0t

Memory depends only on elapsed time: t – t’ = s, dt’ = -ds

dsγM-σ s)-(t

0

(s)(t)

exchange of limits and: dt’ = -ds

t0

t0

Burger - model

1

2

G1

G2

2

1

G1

2 1, G2

Page 36: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

29

for infinite small motion:

dsγGσ

tts ,td γGσ

dtγGdtdt

dγGdσ

Gdγdσ

s)-(t

0

(s)

t

-

t)t-(t

if we have a modulus function with an exponential memory:

τ

t-expGG 0(t)

t

-t0t td γ

τ

)t-(t-expGσ

Improvement of this model: several relaxation times

Multimode models

t

) t(

N

1k kk

N

1k kk(t)

td γ τ

texp Gσ

model mode-N , τ

texp GG

picture for multimode Maxwell-model:

Also possible: multimode Kelvin-Voigt (several Kelvin-Voigt models in series);

Under oscillatory shear, a multimode Maxwell-model will respond as follows

(see next page)

remember: fwhm for single Maxwell: 1.14 decades spacing ?! in

not uncommon for polymers: 5 – 7 decades relaxation time distribution

= 1 = 2 = 3 = 4

= 1 + 2 + 3 + 4

F, ,

4 3 2 1

monomodal:

Page 37: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

30

H. M

. Laun

Page 38: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

31

To reduce the need of maths for a while, a glossary on important rheological terms is inserted:

Glossary

a) Lamellar flow

For this model: (h)γγ , in contrast: tube 22

0r rrv 40rI !!

Shear deformation is equally distributed throughout the sample. For sliding plate geometry:

the points of similar elongation amplitude form lamellae.

For high shear rates, generally instabilities can occur (Reynolds number) and the lamellar

flow profile is disrupted.

Other possibility: plug-flow (tooth paste!)

b) Reynolds number

The Reynolds number describes the ratio between the kinetic energy of a system and the

energy lost by viscous flow.

viscous

kin

E

E Re , for Re > 2000 we find transition between lamellar ( γF ) and turbulent

( 2γF ) flow!

For a capillary (diameter: circle) we find: η

v2rρ Re

r: radius, : density, v: avg. velocity, : viscosity

vh

1

dt

dx

h

h

x

h

Hagen-Poiseuille

flux

v = const.

0 r0

r0

Page 39: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

32

example:

Aorta (main blood vessel close to the heart):

r = 1 cm = 0.01 m

= 4 mPas = 0.004 N/m2 s ; 1 N = 1 kgm / s2

= 1000 kg/m3

v = 0.3 m/s

1,500smsm kg

mkgmsm

104

1031010 2 Re

3

22

3-

13-2

,close to transition: lamellar turbulent!

c) Cox-Merz-rule

The Cox-Merz-rule is an empirical rule that connects the shear rate dependent viscosity with

the absolute value of the frequency dependent complex viscosity, as calculated by:

)(*

)(* Gηiω

via: ν2πω ; νfrequency ω:note ; ηη

tally)(experimen 1a , ηη

ω*

)γ(

ω)(a*

)γ(

This rule holds only for rheologically simple materials!

ω

GGηγη

ω*

e.g. Maxwell-model:

22)(

22

22

)(

τω1

τωGG

τω1

τωGG

G’

= 1

G”

log()

G’ leading term G” leading term

G0

G0/2

Page 40: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

33

1

2

ω

*

ω

0

222

*

ωω

const.

ω

Glimηlim

ηconst.ω

τω

ω

Glimηlim

for single Maxwell-model

d) Lissajous figures

oscillatory shear different representations

~ cos (t), ~ sin (t)

vector description of circle

general for ellipse:

a

b

2

δtan

δ)tcos(ω

t)cos(ω

y

x

log() = 1

-1

log( )(*η )

t 1

1

max

(t)

σ

σ

max

(t)

γ

γ

x

y

ba

phase lag

0

Page 41: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

34

Linear response: ( ellipse) Contains symmetry elements for Lissajous figure:

2 mirror plains + point symmetry

In case of non-linearity: only point symmetry ( I(31), I(51), …)

Note: deviations < 2-3% of sinusoidal response can generally not be seen in Lissajous

figures!! much less sensitive compared to FT-Rheology (see later)

e) Shear thinning

(deutsch auch: Strukturviskos), pseudoplastic

monotonically decaying viscosity flow curves; viscosity as a function of shear rate in steady

state, so no implicit memory involved.

To describe shear-rate dependent viscosity, empirical equations with 1, 2, 3, 4 parameters are

used, e.g.:

1 parameter: Newtons law! = 0

Ostwald-de Waele (example for 2 parameter model) aγbη

a: scaling parameter, shear thinning exponent; a[0, 1] : 0 Newton

1 max. shear thinning exponent

γ log

η log

2

η 0

0η = Newton

c

0

γβ1

ηη

β

1

-a

aγbη

2121 γγfor γηγη

Page 42: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

35

if a = 1: bγγbγηF -1

force independent of γ , force is constant!

bη1γat

Carreau (example for 3 parameter model)

c0

γβ1

ηη

also other def. for Carreau:

c0

γβ1

ηη

(not equal!)

c: scaling parameter c[0, 1]

: pivot point (knee),

2

η

11

η

β

1β1

ηη

β

1γ if 0

c

0c

0

4 parameter models:

- further parameter needed to: e.g. model the width of the knee as the next parameter

- introduction of “second Newtonian plateau” for high shear rates

e.g.: d c

0

γβ1

η)γη(

where cd < 1

WHY??

Polymers: increase in Mw/Mn!

γlog

η log

γlog

η log 0η , 1st Newtonian plateau

η , 2nd Newtonian plateau

e.g.: c

0

γβ1

ηηη)γη(

Page 43: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

36

Thixotropy shear thinning + long memory ( Hysteresis)

A decrease of apparent viscosity under constant shear rate, followed by a gradual recovery

when the stress or shear rate is removed. The effect is time dependent.

greek: thixis: shake

trepo: changing

in principle we can have two types of hysteresis:

or:

Shear thickening ( rheopex dilatancy)

2121 γγfor γηγη

Anti-thixotropy shear thickening + memory ( Hysteresis)

start of shear time after shear

γ = const.

steady state

γ increase

Plateau cτ

ningshear thin p thixotrolim0τc

η

t

η

t

Newton

γ

σ

η

t

η

t

γ = const. time after shear

Page 44: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

37

or:

Rheopexy

Structure is generated without shear so that viscosity or module increases as a function of time

only (not as a result of applied shear).

Dilatancy

Why is wet sand “dry” for a few seconds when we walk barefoot on the beach? dilatancy!

Application of shear changes (reduces) level of liquid in packed spheres (granula). This can

cause shear thickening.

Experiment:

Dilatation: Ausweitung

Bingham plastic

(the “evil” in the ketchup bottle!)

(deutsch: strukturviskose Flüssigkeit mit Fließgrenze = plastisches Fluid)

γ

σ

ordered spheres ”sand”

shear

or shake

disordered spheres need

more volume in beaker to pack

Vsand = const. !

Vwater = const. ! sand level

water level

γ

σ γ = const.

G

yieldσ

yieldγ

yieldyield

yield

γGσ

σγησ

yieldσ Ketchup 20 Pa

Newton

critical stress

below: elastic, solid-like

above: liquid-like

“dry” particles on top

Page 45: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

38

Extension of Bingham-model: Herschel-Bulkley

include: powerlaw for viscosity n

HB γkσσ

for measurements vane rheometer (see later)

Dimensionless groups

Reynolds (already covered), Deborah, Péclet, Taylor

For several phenomena in nature only unitless quantities seem to play the important role:

e.g.: 1) Arrhenius group

RT

E-expAk a

r

if Ea << RT kr A

if Ea >> RT kr << A, slow down

2) kinetics

tk-expAA r(0)(t)

kr t >> 1 basically complete reaction

kr t << 1 just started

γ

σ

Newton

Bingham shear thinning (pseudoplastic)

yieldσ

η

unitless

yieldyield

yield

σσfor σγησ

σσfor 0γ

Page 46: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

39

Deborah number

[book of judges 5.5, song of Deborah: “Even the mountains flowed before the Lord ...”]

remember:

response liquid n timeobservatio long 1, De

reponse astic viscoel1, De

like solidn timeobservatioshort 1,De

n timeobservatio

timerelaxation internal

t

τ

tG

ηDe

τG

η t,

η

G

De

1

GexpγGσ (t)

if we take: γt

1

under oscillatory shear: t)sin(ωγωγ

t)cos(ωγγ

0

0

τγωτγDe 0 e.g. longest relaxation time in polymer

Note: Generally Deborah-nr. is not precisely defined ( ωγor ,γωγ 0 ), and there is

confusion with Weissenberg-nr.: τγWi

Weissenberg normally used in the context of: γ =const., steady shear

with respect to normal forces

Pipkin diagram:

dimensionless

step in strain

sol i d

yield ( Bingham plastic)non linear response

viscoelastic

N e w t o n

l i qui d

τωor τ,γω De, 0

ω γ0 = const.

1

(osc. shear) (Cox-Merz)

Page 47: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

40

Péclet number

Stokes: vξF

vrη6πF

Stokes-Einstein for diffusion coefficient D: rη6π

Tk

ξ

Tk D

Time needed to displace object by distance r: 322

rTk

η6π

Tk

rrη6π

D

rt

Tk

σr6πγr

Tk

η6πγtPe

33

frequently used in context with colloids;

Taylor vortex

locityangular ve :Ω

density :ρ

3400γη

RRRΩρTa

2i

3

io22

2r F

γησ

less sensitive to Taylor vortices

more sensitive to Taylor vortices

secondary flow caused by inertia generates vortices

in addition to shear Ri

Ro

moving bob

moving cup

Page 48: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

41

Units for Ta (only check, no proof):

1

N

1

s

mkg

Nsm

mkg

sm

Nsm

mkgTa

2

2

2242

42

2

2

26

42

unitless quantity

-=- END OF GLOSSARY -=-

Page 49: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

42

What do we expect for (p,T)?

Gases Mean free path length: l

Cross-section 22 r4π2rπA

2

2

r4πV

N1

1L

r4πL

1

AL

1

ΔV

normal conditions (Gas, 1 bar, 300 K):

nm 300μm 3

1m

103

1

m10103

m 1L

m10m104πA

m103m1022.4

106

V

l22.4ˆMol 1 nRTpV

621925

3

2192210-

32533

23

mean free path length

clash rate:

s

110

Δt

1 :rateclash typical

s 10

1

s

m 330

m 103

v

LΔt

RT2

3mv

2

1:precise more

s

m 330 v,

Δt

Lv

Δt

1

9

9

6-

2

L >> r

mean distance

2r

v

in physics: (confusing for rheology)

o

A1r

volume

one particle

Page 50: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

43

velocity distribution (Maxwell-Boltzmann)

(see Physical Chemistry books for details)

onsdistributifor truegenerally ,vv :note kT2

3vm

2

1

m

3kTv:picture simple

m

kT2.54

8kTv

dvv2kT

mvexp

kT2π

m4πdvP

___22

___2

2

1

2

1

2

1

222

3

(v)

model: L: mean free path length

e.g. xi: bottom layer, xi+1: top layer, gap of width L

momentum transport if particle leaves layer xi+1 to go to layer xi :

dx

dvLm s

Number of particles n leaving layer xi+1 in unit time in direction xi :

NtvAρtvA

N

LA

N

V

Nρ particle ofdensity n

0n

only half fly in correct direction:

vV

N

2

1vρ

2

1ntvAρ

2

1

0

nn

1st moment 2nd moment

x

z

y

xi

xi+1

L

unit area A

vs: shear velocity

v: particle velocity

vs

dx

dvLv s

s

volume average velocity!

unit time, unit area

Page 51: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

44

in unit time, unit area the following momentum p

is transferred:

dx

dvLmv

V

N

2

1

Δt

Δp s

0

this must be equal to the force

dx

dvηF s

mT3kTmrπ8

m

3kT v:using

rπ8

vm1

r4πNV

VvmN

2

r4πN

VL :using

Lvρ2

1Lvm

V

N

2

2

2

1

220

0

20

0

Viscosity of gases is: - independent of density!

- therefore independent of pressure! TTp, ηη !

- a function of mass and temp. of particles! Tη !

Viscosity of liquids, temperature dependence

- no shear: Boltzmann distribution for particles

making transition from left to right ;

typically 1vacancy per shell (= 12 neighbours)

5-10% free volume

no shear (density diff. amorphous crystall!)

energy activation :E* , RT

*Eexp

h

kTN

E*

Page 52: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

45

- shear: force on single molecule, typical distance r

2rσAσF

apply this force for half distance r

2

2

2

rrσE m

32

Vm: average occupied volume per molecule,

VM: volume per NL molecules

So effective jumps N are jumps to the right N minus jumps to the left N

(1)

RT

2

Vσ*E

expRT

2

Vσ*E

exph

TkNNN

MM

B

The shear rate is the effective number of jumps in one second divided by layer thickness in

unit time:

(2) Nr

Nrγ

d

v

(2) in (1):

RT

*Eexp

V

k

V

R

NV

R

V σ

η

σ2 RT

V2

RT

*Eexp

h

Tkγ

x/2x1x1lim/2eelimsinh(x)lim

/2ee sinh(x) :remember

2 RT

Vσexp

2 RT

Vσexp

RT

*Eexp

h

Tkγ

m

0)γ(

B

mLmM

MB

0x

xx

0x0x

xx

MMB

r

r/2

2

rσ*E

3

2

rσ*E

3

Page 53: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

46

- Arrhenius for T-dependence

- increase of free volume reduces viscosity (hopping probability )

- Ea ; Ea

- Pressure dependence via average volume per molecule weak p-dependence

Stress-strain tensor and normal forces (Why might we need a tensorial property?!)

So far we have used F and x,v

as collinear (parallel) vectors

scalar description

If we would like to extend this, what happens if F and x

are not parallel?

We need a transformation between F x

.

This transformation should:

1. transform a vector into a vector

2. transform a plane into a plane

3. have a fixed origin in both systems

1-3 define an affine coordination transformation. This transformation is linear if the new

system )y,y,(yy 321

is generated out of the old system )x,x,(xx 321

by a linear set of

equations:

T

(T)

liquid

RT

Eexp a

T

gases

x

F

Page 54: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

47

3332321313

3232221212

3132121111

xaxaxay

xaxaxay

xaxaxay

if we introduce matrix (3 by 3 matrix, second rank tensor)

333231

232221

131211

a a a

a a a

a a a

A , we can write: xAy

Example for a simple rotation of a vector x

in 2 dimensions:

)(αsin

)(α cosy ,

αsin

α cosx

use of addition theorems:

sin αsin cosα cos

...isin αsin cosα cosRe

sin i cosαsin iα cosReeeReeRe)(α cos iiααi

analogue for the sine (using the imaginary part):

cosαsin sinα cos...)(αsin

αsin

α cos

cossin

sin cos

)(αsin

)(α cosy

x1

x2

x

α

y2

y1

y

Rotation around

origin by angle

in math. positive sense

(counterclockwise)

x

A

Page 55: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

48

Definition of the extra stress tensor (right handed system!)

This results in the following extra stress tensor:

333231

232221

131211

τ ττ

τ ττ

τ ττ

τ

The stress-tensor σ is the sum of the extra stress tensor plus the hydrostatic pressure. The

hydrostatic pressure acts equally along the 332211 τand τ,τ components.

100

010

001

runit tenso:E pressure,:p , τE-pσ

Properties of the extra stress tensor

- The tensor is symmetric (like many in quantum mechanics, see e.g. Fermi’s golden rule):

jiij ττ

reduction from 9 variables to 6 variables

- forces that pull have positive prefactor

- forces that push have negative prefactor

The tensor has properties that are invariant under transformation of coordinates:

1st invariant: Trace of the tensor A

332211

n

1iii1 aaaaAtr I

indices ij :

i: the force acts on a plane that is

normal to the basis vector i

j: the force acts in the direction of

the basis vector j 1

3

2

21

11 23

22

13

12

Page 56: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

49

(see also quantum mechanic books

1iii α α )

2nd invariant: 2

2

2 Atr Atr 2

1I

3rd invariant:

333231

232221

131211

3

a a a

a a a

a a a

Adet I

Due to the first invariant 0τττ 332211 the trace of the extra stress tensor has only two

variables. N1 = 11 - 22

N2 = 22 - 33

What do normal stress differences mean? - assume shear stress along 21

22 : force that pushes plates apart

33 : force that pushes material into plate-plate geometry

N1 = 11 - 22 : first normal stress difference, generally positive

N2 = 22 - 33 : second normal stress difference, generally negative 21 NN

to memorize: Na = aa - a+1, a+1

normal stress differences

1

3

2

21

11

22

33

Page 57: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

50

What do we expect for N1,2 0γ,γ ?

- N1,2 should only be a function of γ due to kinetic nature of the phenomenon, e.g.:

constant:cb,a, ...γcγbaN 21,2

- if we do not apply a shear rate N1,2 should be 0 a = 0

- if we apply a shear rate, the force N1,2 should be independent of the direction

γ-NγN 1,21,2

even function with respect to nγ

We expect equation like: 21,2 γcN as first approximation

23322

22

2

22211

21

1

γ

ττ

γ

γ

ττ

γ

1 : first normal stress coefficient

2 : second normal stress coefficient

1 : generally positive, 21 ψψ (typical factor: 10);

N1 can be as high or even higher than 12 !

2 : generally small and negative

1 + 2 can be measured separately using both:

cone-plate plate-plate

Information: N1 Information: superposition N1 and N2

N1 + N2 γN1 γ

&

Page 58: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

51

Typical examples for extra stress tensor:

a) ideal viscous fluid b) viscoelastic liquid

000

00τ

0τ0

τ 21

12

33

2221

1211

τ00

0ττ

0ττ

τ 5 unknown

12 = 21 12 = 21 , 11 + 22 + 33 = 0

3 degrees of freedom , 1 , 2

The first normal stress coefficient can be estimated using:

ωγfor ω

G2γψlim

2

)(1

Phenomena where we can directly “see” normal forces

a) Rod-climbing

Parabola, f(r) 2r

centrifugal forces

(e.g. water)

Newtonian fluid

leading term, f(r) 4r !

ω,...)ρ,,ψ,ψr,f(R, 21

Non-Newtonian fluid

climbing effect is called

Weissenberg effect

Page 59: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

52

b) Secondary flow for rotating disc

c) Extrudate swell

Newtonian fluid Non-Newtonian fluid

centrifugal

forces

see: cover page

book: Tanner

Newton or not?

up!

Newtonian fluid Non-Newtonian fluid

parabola

die swell

film blowing(e.g. plastic bags)

Page 60: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

53

New chapter:

Possible measurements (for oscillatory rheometers) and hardware

1) Detection of onset of non-linearity at fixed frequency

a: Problem: torque too low, hard to get sensitivity

b: onset of non-linearity, but: depends on accuracy of detection!

c: in filled materials sometimes an overshoot in G” is detected: Payne-effect

typical values: polymer melts: 0 < 0.05 – 0.3

solutions: 0 < 0.1 – 1

cross-linked rubber: 0 0.01

we know linear regime for a fixed frequency ( 10max ω2πγγ )

we can assume: linear if 2 < 1

perhaps non-linear if 2 > 1

2) Measurement of G’, G” at T = const., : variable, 0: parameter

2

= 1 log

log G

G”

G’

1

G”

b

c

linear regime

log 0

log G

G’

1 = const., fixed

a

Frequency dependent module

distribution of relaxation times

e.g. via Multimode-Maxwell models

see section about polymers (later)

(reptation, rubber plateau, TTS)

difference!

(name!: not pain)

Page 61: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

54

Typical range: 10-2 < < 60,

dynamic range: 4 decades of hardware due to mechanical device!

ωγγ

t)cos(ωωγγ

t)sin(ωγγ

0max

0

0(t)

adjust 0 every 1 - 2 decades for best performance

3) Temperature dependent measurement

0: fixed but parameter, T: variable, : fixed

Instrument for this: DMTA, (Dynamic mechanical thermo analyser)

cheap due to limited -range

(sometimes also E-module measurements)

adjust 0 !,

torque will change for an increase

in by 104 by up to 104!

log

log G

1

T

G’ or G” [Pa]

log

G’ or G”

if 1/T

Arrhenius

109

105 - 106

Page 62: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

55

4) Shear rate dependent viscosity

Fit with: 1 - 4 parameter model (see before)

Hardware:

Couette geometry

preferentially: static bob, moving cup (because of Taylor vortices!)

inside moving: Searle-type, outside moving: Couette-type

experimental linear regime

e.g. 10% reduction

relative to 0

log γ

log asymptotic behaviour in principle no linear regime!

0

(t) (t) (t)

cup

bob

Mooney-Ewart

N(t): torque

or or

double couette

for low viscosity

materials,

e.g. water

Haake-type

Air bubble low friction at lower end

Page 63: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

56

To prevent evaporation of water:

If plate - geometries are used:

Dodecane, C12H26

H2O sample

H2O

or

saturated H2O vapor

water trap

H2O

r0

20rArea

Torque at infinitesimal area:

1rΔNrFΔNΔ

total torque 30rN

e.g. change from 50 mm plate-plate geometry to

8 mm plate-plate geometry : torque reduction by

2448

503

, 2.5 decades reduction

plate-plate

non homogeneous γ,γ0 !

r0

cone-plate

homogeneous γ,γ0 !

h

30rN

typical values for : 0.02 - 0.1 rad

1.14 –5.73° very small!

or

truncated cone

easier to manufacture

Advantage of plate-plate (cone-plate) vs. Couette:

- less sample volume (e.g. 0.1ml vs. 10ml)

Disadvantage of plate-plate:

- leakage (low viscosity material)

- less area less sensitivity for low viscosity materials

- heterogeneity of shear rate

Page 64: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

57

5) Creep experiment

G(0,t) measured

Wagner-Ansatz (Manfred Wagner, Prof. in Berlin):

γhtGtγ,G

1. 1γhlim0γ

, linear response

2. decreasing strictly monotonic as a function of time, 0γhlimγ

typical examples:

2

212211

γa1

1γh

1ff , γn-expfγn-expfγh

meltPEfor 0.18n e.g. ,γn-expγh

0

t

t

G(t)

log G(0,t)

log t

1 < 2 < 3 < 4

(modulus measured, not stress!)

Overlay via h()

4 2

3

1

damping function

Doi-theory

Page 65: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

58

Hardware

Stress and strain rheometer, typical types of construction:

motor, Volt + Amp. torque, (t)

optical encoder, (t) or position sensor (capacity)

air bearing

frame

geometry, e.g. plate-platesample

disc stress-rheometer,

stress is given, strain measured

strain is measured via optical encoder

controlled stress is imposed

motor, (t)

plate-plate

disc

disc

air bearing strain-rheometer (A),

strain is given, stress measured

optical encoder or position sensor

position sensor, (t)

rigid spring, deflection < 1°, otherwise problem with Bingham fluid

strain-rheometer (B),

ARES-type

nominal actual value comparison, feedback loop

sample

ball (cheap) or air bearing (expensive); for normal forces air bearing needed

air bearing

motor acts as rigid spring

motor

magnetic suspension, seal + normal forces

position sensor

position sensorfeedback (t)

feedback: “stand still”

stress detection force rebalance transducer (FRT) e.g. our ARES: 2K FRT N1 (2K = 2000 gcm, N1 = normal forces can be measured)

strain application

Page 66: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

59

Typical hardware specifications (ARES)

Magnets, transducer: Al Ni Co - alloy 0.01% / °C

Magnets, motor: Nd (Neodym) 0.1% / °C

(compare: Cu: 0.39% / °C)

Optical encoder: 30,000 lines + interpolation

0.0810-6 radian resolution = 810-8 rad

Alternative: capacitive encoding: LC

d

1C LC

dynamic range of transducers:

newest: 1K FRT N1 (Rheometrics, also Haake)

Nmax / Nmin = 106, e.g. 10-1Nm to 10-7Nm!

Typical prices (2002):

Stress rheometer: 15k – 40k € (Haake, Bohlin, TA, Rheometrics, …)

ARES (strain): 60k – 100k € (3 types of motors, diff. types of temp.

control, 7 diff. transducers, …)

+ cooling (N2): 10k €

+ dielectric option: 30k €

+ birefringence, dichroism option: 30k €

up to 180k €

Geometry: 1.5 – 3k €

d

1 km

0.08 mm !810-8 rad

Page 67: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

60

Typical pathway of a signal from the torque transducer to G’, G”

Torque transducer:

ADC: discrete in time ( dwell-time) and in intensity

(k-bit ADC, 2k slots)

t

V

0 t

0

“smoothing” analogue filter

“low-pass filter”

e.g. integration or

“oversampling”

t 0

Autobias a

a

“zero-frequency-artefact”

t 0

autorange

“NMR: RGA”

(receiver gain autorange)

Dynamic range of

ADC adjusted

t 0

4 bit ADC,

24 = 16 slots

dwell-time

Imax

Imin

dynamic range

V

V V

average

Page 68: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

61

Typical acoustic ADC’s: 16 bit = 216 = 65,536 dynamic range: 1: 65,536

(remark: limit for S/N in FT-Rheology!)

dwell-time: 10s, sampling rate: 100 kHz

105 6.55 104 = 6.55 109 decisions per second

corrections: e.g. inertia of geometry, stress transducer, motor,

phase lag due to lumped circuit

Vane rheometer (German: Schaufel, Flügelrad)

useful for determination of yield stress

( Bingham fluid) in concentrated

suspensions, greases or food (yoghurt!);

especially if the history of loading should

be avoided.

Approximation:

yv

v3vm σ

3

2

R

LR2πT

Tm: torque maximum

y: yield stress

position signal

torque signal

corrections + geometric factors

cross correlation or Fourier-Transformation G’, G”

Rv

Lv

Page 69: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

62

Melt-flow index

cheap + robust version of a capillary rheometer (see later)

- uncontrolled, non-homogeneous flow

- relative measurement (“index”)

typical parameters:

T = 190°C

M = 2.16 kg

pressure 3 105 Pa

MFI: flow of polymer in [g] per 10 min

rough measure of average MW

Capillary rheometer ( high shear rates)

Model system for e.g. polymer extrusion process

(see also: melt-flow index)

important shear rates:

0.8 mm

9.57 mm

M

0.209 mm

condition “E”

-4 -2 0 2 4 γ [s-1]

oscillatory / vibrational

rotational

capillary

elongational

processing

Page 70: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

63

Set-up:

Dominantly viscous properties of the material are determined,

pressure loss at entrance can be corrected “Bagley-Correction”

Information: m(t), ds, pn, …, p1 for different T, M, v, d, L

Elongational rheology, viscosity

important for: fibre spinning, blow moulding, flat film extrusion, film blowing

ratestretch :ε , xεv(t)dt

dx1

L d:L 1:30 for steady state, developed streamlines

M, v

d

ds die swell, extrudate swell normal forces

m(t)

pressure sensors

constant force or constant velocity

1 3

2

L0

L(t)

mass

Page 71: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

64

if specimen is stretched with constant rate ε

tεL

Lln

const.ε ; dt εdxx

1

εdtx

dx

0

L

L

t

0

1

0

[Hencky worked for many years in Mainz-Gustavsburg!

See Appendix B, p. 115 - 123]

tensile viscosity: ε

ση E

E

without proof: 3η

ηlim

0

E

for simple liquids

experimental apparatus:

Hencky-strain, sample length teL !

Trouton’s ratio

sample

thickness + elongation

monitored via camera

Prof. Meissner

Zürich

ex BASF

M

Prof. Münstedt

Erlangen

ex BASF

sample oil: + compensates gravity

+ temp. control

- can act as plasticizer

in the sample

A B

Page 72: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

65

Mu

ensted

t, Lau

n, R

heol. A

cta, 18, 492, 1979

Page 73: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

66

Rheology on two specific examples: polymers and dispersions

Polymers

End-to-end distance R

, bond length b, N monomers

n

1iirR

Gauß:

NbRNbRR 222

contour length: L = Nb (“odometer”)

e.g. high Mw-PE, N = 100,000, b = 1.5 Å

contour length 15 m (in principle visible!), R = 47 nm

simplified model: 6

RR g

Reptation theory

basic idea:

one-dimensional stochastic process

of chain along contour (reptate: reptile)

simplified

tube with diameter d and other chains are static,

typical distance of other chains: s d

typical d 30 - 80 Å

one-dimensional Fick-equation, for chain distribution probability

2

2

1d x

PD

t

P

R

d

s

Page 74: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

67

Solution for P(x, t): Gauß-statistics

tD4

xexp

tD4π

1tx,P

1d

2

1d

Mean square displacement ( second moment)

t2Ddxtx,Pxx 1d22

If we assume stochastic friction coefficient ’, where this friction coefficient ’ is

proportional to N, therefore also M

’ = N : friction per monomer unit

Using the Einstein-relation for the 1-d. diffusion:

11d M

kT

ξ

kTD

The time needed to diffuse along L will allow a fully different conformation, so that all

memory of the other chains (static) is erased

3

31

2

1d

2

1d2

MM

M

2D

2DλL

The self-diffusion coefficient Ds is given by the time t to move the center of mass by a typical

coil diameter R (3-dimensional problem!).

2s

23

2

s

2

MD

MM

M

λ6

RD

3 :here lity,dimensiona :n ,2nDt r

Gauß: 2

2

x

2nDtrσ 22

n: dimensionality

R

t

Page 75: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

68

assuming a Maxwell-model:

0

3

MG

G withληG

ηλ

3Polymer Mη , DeGennes 1971, exp.: 3.4

Polymer Mη

for non-entangled: 1Polymer Mη friction of polymer-contour

Rule of thumb for flexible monomers with 2 carbons per polymer backbone (so not true for

PPP, poly-paraphenylene persistence length)

ne 100 – 200 monomers

contourlength between entanglements: 150 3Å = 45 nm, nR e 3Å 3 - 4 nm

examples, Me: PE: 828 g/mol PS: 13 kg/mol

PDMS: 12.3 kg/mol PIB: 7.3 kg/mol

PMMA: 10 kg/mol 1,4 PBd: 1.8 kg/mol

1,4 PI: 5.4 kg/mol

might differ depending on lit. sources

molecular weight independent given by temporary entanglements,

“mesh-length”

Ml

3.4

1

Mc 1/10 Mc log M

log Mc 3 Me

“3 fingers needed to hold a stick”

entangled

Page 76: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

69

Typical shape for G’(), G”() for monodisperse linear polymer melts

related length scales:

related time scales:

d R e s

(d: disengagement, R: Rouse time, e: entanglement, s: segmental motion)

Zone I:

2ωG

1ωG

flow-zone, viscosity and the dissipation dominates response

length scale probed Rg

longest relaxation time: = 1 for tan = 1

(Maxwell-model) or

= 1

Maxwell-model

log

log G

G”

G’

1

IV III II I

tan minimum

G’p

2

Rg, 10-50 nm 2-3 nm

glass transition

5 - 10 nm Re, distance between entanglements

see Maxwell-model

log

log G’,

log G”

extrapolated crossing point

for 2ωG and 1ωG

d = 1

Page 77: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

70

Zone II: (rubber-plateau)

After G’ exceeds G”, G’ levels off. Response is dominated by elastic spring (G’!) of

physically cross linked entanglements (see motivation for Hooke-solid!). Maximum of

relative elastic response is reached for tan = Minimum, corresponding G’p (p: plateau).

length scale probed:

It is possible to calculate from G’p the entanglement molecular weight:

pe G

TRρM

: density

R: Gas constant

T: temperature

Assuming typical values for a polymer melt:

= 1,000 kg/m3, R = 8.3 J/(mol K), T = 450 K, Me 150 70 g/mol = 10.5 kg/mol

Pam

Nm103.5G

1Nm1J , kgKmolm

molKJkg

10.5

4508.31,000G

35

p

3p

typical plateau value: 105-106 Pa ( memorize!)

(high Tg + low Me increase in rubber plateau modulus)

for higher cross link density in chemical cross linked systems we expect higher modules

Mn does not affect G’p, but 3n

3n Mλ ,Mη ; so increase in molecular weight by factor

10 103 shift in for plateau length;

5-10 nm

Page 78: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

71

Strobl, The Physics of polymers

at 3 Me we start to see plateau

increase in Mn by 100

shift in by 1003 = 106

Page 79: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

72

Zone III:

G” exceeds again G’.

Strong increase as a function of frequency.

Transition zone towards glass plateau;

Zone IV: (glass plateau)

High torque and high frequency regime, experimentally difficult to obtain.

e.g. small sample diameter ( 5 mm), use of TTS (see later)

Length scale probed in dimension of typical length scale of polymer glasses, e.g. 2-3 nm.

shear rate dependent viscosity (or measured by ω*ηγη , Cox-Merz), typical shape:

Mn2

11 = 1 log

log G’

log G”

3 decades

Mn1

22 = 1

105

plateau length (width)

log γ or

log

log

1λγ : longest relax-

ation time

typical slope for linear polymers: - 0.8 0.1

3.4

n0 Mη

Mn2 10 Mn1

Page 80: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

73

Time-Temperature-Superposition (TTS) and the Williams-Landel-Ferry (WLF) equation

Assumption:

The internal mobility of a polymer is monotonically (+ continuously) changed via the

temperature. The changes keep the ratio (not the difference!) between the different relaxation

time distributions and relative strength. This is related to the concept of the “internal clock”

that is only affected by the temperature (McKenna). Obviously this assumption must fail if

phase transitions (e.g. first order: crystallisation, second order: glass transition or TODT) are

involved. If we set a reference temperature T2, where we know or have measured G’((T2)),

G”((T2)), we can predict G’((T1)), G”((T1)).

Maths:

Modification of Arrhenius law Vogel-Fulcher equation:

(1)

VF

a0 TTR

EexpηTη

note: Ea for flow of linear polymer melts 25-30 KJ/mol (typical value)

no information about TVF yet, except:

- if TVF = 0 Arrhenius

- if T = TVF singularity in

therefore we expect:

a) 1T

TVF

for typical temperatures T 300-500 K, because it is only a correction!

b) fixed difference of TVF relative to Tg due to the assumption of similar mobility of

different polymers at Tg; using (1):

temp.ref.:T ,TT ;

η

η :

Tη221

2

1

2

1

Maxwell G

η τ;

ω

1τη ;

ω

ω

η

η

1

2

2

1

: characteristic “frequency” of motion

Page 81: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

74

11

2

1 Tηfη

η

2: fixed value at reference temperature T2 (not defined yet)

elogTTR

Ef log

ω

ωlog

VF1

a

1

2

=: - C1 (no units!) 0.434

! temp.ofunit :C ; CC :elogR

E221

a

22VF CT :T ; choice of T2 will change C1 and C2!

212

211

221

211

1

2

TTC

TTC-

CTT

CC-C

ω

ωlog

only diff. to ref. T2 important!

212

211T

1

2

TTC

TTC-a log :

ω

ωlog

WLF-equation

shift factor

If we choose the reference temperature as T2 = Tg (other choices also possible!):

g12

g11

1

g

TTC

TTC-

ω

Tωlog

For these conditions (T2 = Tg) and for typical polymers it is found:

C1 17.4 C2 51.6 K

(C1 7.6 C2 100 K for T2 = Tg + 50 K ; rem.: C1 C2 const. ( 900 K))

apparent activation energy:

0

T

1for kJ/mol 17.5

elog

RCCE 21

a

Page 82: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

75

If we assume (Tg) 0.1 rad/s ( 0.01 Hz) as the typical jump rate (motion) at the glass

transition temperature for a spatial entity of several monomerunits (e.g. 100) -

relaxation. We do not look at side chain motion -relaxation (typically pure Arrhenius) or

–CH3 1012 Hz (at room temperature)

17.4

T51.6

T17.4

TT51.6

TT17.4

ω

0.1loglim

g

g

TTT

g2

C1 is related to prefactor

15.6

16.4

17.4

10ν

ν2π

ω ; 10ω

10ω

0.1

further: TVF = T2 – C2 T2 = Tg

TVF = Tg – 51.6 K

log

1/T1/Tg

Arrhenius

slope ~ apparent activation energy,

differs as a function of temperature! -1

0

singularity at: Tg - C2

Prefactor A – B stretch, IR frequency typically 1012 - 1014 1/s

Page 83: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

76

so: Tm > Tg > TVF

rule of thumb for polymers:

3

2

T

T

m

g (in Kelvin!, absolute energy scale)

Tg – C2 = TVF (C2 50 K)

ΔT51.6

ΔT17.4

ω

0.1loga log

(T)T

T2 = Tg:

T aT (T) [rad/s]

0 1 0.1

5 10-1.5 3.5

10 10-2.8 60

20 10-4.8 7103

30 10-6.4 2.5105

50 10-8.6 3.6107

100 10-11.5 31010

don’t take this table to literally!

16.4

mT

1

log

Ea = 17.5 kJ/mol

WLF

if crystalline

-1

curve defined via:

1) axis intercept Arrhenius

2) slope aT

ET

1lim

3) singularity at TVF

gT

1

VFT

1

T

1

C2!

3 deg 1 decade change in

mobility, close to Tg

15 deg 1 decade change

singularity

Page 84: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

77

Glossary: (to relax from maths for a second)

Boger fluid: To study the relaxation of high Mn polymers (e.g. normal forces, G’, G”) the

very long relaxation times are shifted to more “practical” values via low Mn

solvents.

Dispersions

Definition: lat.: dispersio, fragmentation

A system built of several phases where one is a continuous and at least one

more phase is fine fragmentated within the continuous phase. If the size of

the dispersed phase is < 0.2 m (visibility!) they might be classified as

colloids or colloidal dispersions.

continuous phase dispersed phase name example

solid solid vitreosol ruby glass

solid liquid solid emulsion butter

solid gas solid foam pumic-stone (Bims)

liquid solid colloidal sol dispersion of Au, S in H2O

liquid liquid emulsion milk, pharmaceutic

or cosmetic emulsion

liquid gas foam soap-foam

gas solid smoke NH4Cl, carbon black smoke

gas liquid fog, mist natural mist

gas gas --- ---

why?!

Page 85: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

78

Zero-shear viscosity as a function of solid content:

Einstein 1906: (see Appendix C, p. 124-144 for original work)

0.1for 2.51ηη s

s : viscosity solvent

: volume fraction

lit.: A. Einstein, Ann. Physik, 1906, 10, 289

1911, 34, 591

General behaviour for higher concentrations:

yet definednot :O , ...O2.51ηη 22s

Intrinsic viscosity (relative change of viscosity normalised to solvent viscosity):

tcoefficienEinstein , 2.5ηlim

η

ηηη

0

s

s

Extension of Einstein, O(2) Batchelor (1977)

shear O6.22.51η

η 32

s

extension O6.72.51η

η 32

s

t

shear + extension already anisotropic!

Shear can deform liquid particles to prolate or oblate shape if surface tension, mobility and

shear rate are sufficient (e.g. blood):

flow field,

hard, rotating particle

Idea:

a

b

c a

b

c

a = b < c prolate a < b = c oblate

In both cases: aspect ratio: 1c

a

Page 86: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

79

High aspect ratio more excluded volume (see liquid crystals: Onsager theory)

Zero-shear viscosity as a function of volume fraction (no information about γη !) for higher

fractions:

d

d η 2.5ηη ss

(1) dη 2.5dη s

At certain volume fraction the addition of d leads to an increase in d that is expected to be:

02.5η

ηln

d2.5η

dη 2.5dη

s

0

η

ηs

2.5expηη s Ball, Richmond 1980

Taylor:

...

42!

25

2

51ηη 2

s too low increase in 2!

Other idea:

Addition of small amount of particles d to the volume fraction (1-) of remaining fluid,

raises volume fraction by:

1

d

in analogy to (1):

physicalnot 1at y singularit ,11

1

η

η

ln11

1ln

1

1ln

η

ηln

1

d

2

5

η

η1

d

2

5dη

2.52.5

s

2.52.5

0

2.5

s

Page 87: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

80

If we assume a maximum filling fraction m, we find:

m-2.5

ms

η

, Krieger-Dougherty (1959)

Maximum filling factor ( crystallography, inorganic chemistry), examples:

Simple cubic, sc m = 0.52

Hexagonal packed sheet m = 0.605

(colloids high shear rates)

random close packing m = 0.637

body-centered cubic, bcc m = 0.68

face-centered cubic (fcc) / m = 0.74

hexagonal close packing

Max. possible value

for monodisperse!

Page 88: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

81

Best theoretical equation for ():

3

1

m

3

1

m

s

18

9

η

η

Frankel and Acrivos, with m 0.62 - 0.64

experimental:

16.6exp102.710.052.51η

η 32

s

Zero-shear-(rate)-viscosity can drastically be influenced by multimodal distribution:

e.g. r1 : r2 = 5 : 1

60% ! η50

1η total50:50pure2

1 15%2 60%60% pure2, ηη 15% increase in solid content, same viscosity

picture:

Viscosity as a function of shear-rate for colloids:

log

Shear thickening,

layered structure

2nd Newtonian plateau

scaling law

cγ : critical shear stress

log γ

filling of voids

0, 1st Newtonian plateau

Page 89: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

82

Scaling-law behaviour (+2-Newton) can be described by:

- Ostwald de Waele -BγAγη , B[0,1]

- e.g. Ellis-model, using the Péclet-number as universal parameter

kT

rγη

kT

rσ6Pe

Peb1

1

ηη

ηη

3s

3

p0

The critical shear-rate can be estimated for a 0.50 = mixture:

s

nm10γd

27

c2 ; d [nm] , cγ [1/s]

Understanding of related forces F(x) and potentials ( energies) xVFdx for colloidal

particles:

Vtotal = Vvan-der-Waals + Velectrostatic + Vdepletion + Vsteric

DLVO-theory

DLVO: Derjaguin – Landau – Verwey – Overbeek (1941 + 1948)

101

103

101

105

10-3

10-1

102 103 104 105 particle diameter [nm]

cγ [1/s]

e.g.: d = 100 nm, cγ 103 1/s

Page 90: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

83

Van-der-Waals:

Attractive force between atoms, molecules and particles caused by induced electrical dipols of

electron cloud.

Permanent dipol interaction 3r

1rV ,

induced 6

2

3 r

1

r

1rV

, minus prefactor, because attractive!

For two quadratic surfaces with side length L one finds:

22

Lr12π

ArV

A: Hamaker constant [energy]; typical value: 0.4 - 4 10-19 J

For Lennard-Jones potential, also short range repulsion rfrV ,

for hard spheres, one typically finds:

126 r

1b

r

1arV

Velectrostatic:

2

r0

21

rεε4π

qqrF

q1 q2

Coulomb

1st - Maxwell-equation: r0 εε

ρE

, : charge density

eVE , Ve: electric potential ( qVWq;EF e

)

in spherical coordinates:

(1) ρεε

1Vr

dr

d

r

1ΔV

r0e2

2

r

Page 91: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

84

Approximation of via a Boltzmann-distribution of screened Coulomb potential (single ions):

kT

rVq1ρ

kT

rVqexpρrρ e

0e

0

homo

ee

0eff VkT

Vqρρ

using (1)

e2

e2

2

e VχVrdr

d

r

1ΔV Eigenvalue problem

( Quantum mechanics ψEψH )

solution:

rχexprεε4π

qrV

r0e

no screening screened potential, screening length1/: Debye length

rχexpr4π

)exp(χrρ

2

1/ : equivalent to Bohr-radius in H-atom, first Laguerre polynom

c

0.304

χ

1rD [nm] for 1:1 electrolyte, c in mol/litre

c = 1 mol/l rD = 3 Å

c = 0.01 mol/l rD = 30 Å

Bjerrum length:

What is the distance l b, where the electrostatic energy of ion is equivalent kT?? (“electrostatic

yardstick”)

+

l b

Page 92: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

85

FdxW

bl

2r0

dxxεε4π

eekT , RT = 2.4 KJ/mol , r = 80

l b = 7 Å

for distances smaller 7 Å Manning condensation, opposite charges bound to each other

In case of identical spheres at constant surface potential 0, radius a of spheres:

rχexpr

ψaε4πV

20

2

e

for a < 5

rχexp1lnψaε2πV 20e for a > 5

Vdepletion:

In bimodal systems with large size difference, e.g. polymeric solution plus particle, polymer

does not bind to particle. Potential caused by osmotic pressure.

Vd - , : osmotic pressure

mixed flocculated

areas not accessible for polymer

forces acting!

Page 93: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

86

Vsteric:

Influenced by: - number of chains per area

- layer thickness (Mn!)

- solvent quality

- anchor strength

systems: e.g. block copolymers (5 - 50% as anchor)

triblocks: bridging flocculation (e.g. sewage water treatment)

particle particle

non charged surfactants or polymers

Page 94: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

87

Book: Israelachvili

Page 95: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

88

Fourier-Transform-spectroscopy

[Joseph Baron de Fourier (1768-1830), mathematician and physicist]

In the past (in ESR till today): CW (continuous wave)

excite with single frequency

measure the resonance

change frequency

FT: all signals are acquired simultaneously (“multiplex advantage”)

In words:

A Fourier transform analyses the corresponding frequencies of a given timesignal with respect

to amplitude, frequency and phase (i.e. full information).

pulse

free induction decay (FID)

time

FT, Fourier transform

Ta

0

a

a T

Page 96: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

89

Note:

This method is of special importance in NMR, IR, X-ray, neutrons, QM, ... and Rheology!

Math:

dt tωiexptfωF

complex! complex (can be separated in cos + sin)

real + imaginary part or magnitude + phase

This operation is reversible! (one-to-one)

dω tωiexpωF2π

1tf

In NMR we use a single-sided, complex, discrete Fast-Fourier transform (FFT)

(special algorithm (“butterfly-algorithm”), which needs 2N datapoints)

Problem of discretisation (ADC, analogue digital converter)

scan rate of the signal

(dwell-time, DW)

Signals are not distinguishable!

Nyquist-frequency (cp. solid state-modes, Einstein, Debye model)

Frequency regime in which the signal can be assigned unambiguously (= spectral width, SW):

DW2

1SW

t

FID

FID

Page 97: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

90

Some important mathematical relations

1) FT is linear

ωGbωFatgbtfa

i.e. the different signals can be detected independently!

(“proof”: BCACCBA , linearity of the integral)

2) The point in time t = 0 is proportional to the whole integral of the absorptive spectrum.

Proof:

dω tωiexpωFtf

dω ωFdω 0ωiexpωF0tf

3) Timesignal and spectrum are inverse to each other with respect to the full width at half

maximum. (units: s, 1/s !)

Heisenberg’s uncertainty principle: t E h E = h

t 1

t

B A

A

B

b 0 a

FT

t pulse

FT

0

same integral, because

FID(t=0) is the same!

Page 98: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

91

4) important Fourier-pairs:

a) exponential Lorentzian

exp(-t/) (cp. Relaxation etc.)

22

22

0

00

τ

ωi

τ

τ

1

ωiτ

1

ωiτ

1

τ

1ωi

1t

τ

1ωiexp

τ

1ωi

1

dt tτ

1ωi expdt tωi exp

τ

texp

Magnitude: 22 ImRe “broader feet” ( test it! MC)

b) box sinc

real part

absorptive

imaginary part

dispersive

real (absorptive)

imaginary (dispersive)

0

πT

1

2

FT

FT

1

t0 0 -t0

FT

cp. single slit diffraction pattern

x -x q-vector

Page 99: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

92

proof:

(Euler) 01πiexp ; tωsinitωcostωiexp :remark

ω

tωsin2tωsini2

ωi

1

tωsinitωcostωsinitωcosωi

1

tωiexptωiexpωi

1

tωiexpωi

1dttωiexp

00

0000

00

t

t

t

t

0

0

0

0

c) Gaussian Gaussian (without proof)

2

σωexpσ2πtωiexp

texp

2t

2

t2t

2

5) convolution

Multiplication of a timesignal t(t) with a function g(t) corresponds to a convolution in

Fourierspace.

In NMR the measured timesignals are often multiplied with exp(-kt) or exp(-k’t2).

(This is equal to a convolution with a lorentzian or a gaussian.)

Example:

sinc()

FT

S

N

S/N 5/1 S/N 5/(1/3) =15 but: broader peak!

N 1/3

Convolution with a box-

function

averaging, new function

Page 100: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

93

Appendix A

Phil. Mag. 32 (5. Series), 424 (1891)

Page 101: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

94

Page 102: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

95

Page 103: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

96

Page 104: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

97

Page 105: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

98

Page 106: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

99

Page 107: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

100

Page 108: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

101

Page 109: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

102

Page 110: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

103

Page 111: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

104

Page 112: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

105

Page 113: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

106

Page 114: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

107

Page 115: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

108

Page 116: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

109

Page 117: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

110

Page 118: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

111

Page 119: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

112

Page 120: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

113

Page 121: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

114

Page 122: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

115

Appendix B

Page 123: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

116

Page 124: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

117

Page 125: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

118

Page 126: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

119

Page 127: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

120

Page 128: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

121

Page 129: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

122

Page 130: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

123

Page 131: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

124

Appendix C

Page 132: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

125

Page 133: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

126

Page 134: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

127

Page 135: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

128

Page 136: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

129

Page 137: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

130

Page 138: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

131

Page 139: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

132

Page 140: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

133

Page 141: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

134

Page 142: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

135

Page 143: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

136

Page 144: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

137

Page 145: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

138

Page 146: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

139

Page 147: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

140

Page 148: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

141

Page 149: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

142

Page 150: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

143

Page 151: Introduction to Rheology - itcp.kit.edu to Rheology_2019.pdf · Rheology for Chemists, an Introduction J. W. Goodwin and R. H. Hughes, Royal Society of Chemistry 2000 (easy) A Handbook

144