51
1 October, 2007 1 October, 2007 ALT&DS2007 (Sendai, Japan ALT&DS2007 (Sendai, Japan1 Introduction to Introduction to Probabilistic Image Processing Probabilistic Image Processing and Bayesian Networks and Bayesian Networks Kazuyuki Tanaka Kazuyuki Tanaka Graduate School of Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan Tohoku University, Sendai, Japan [email protected] [email protected] http://www.smapip.is.tohoku.ac.jp/~kazu/ http://www.smapip.is.tohoku.ac.jp/~kazu/

Introduction to Probabilistic Image Processing and Bayesian … › ... › 08 › papers08 › bayes1.pdf · 2018-02-11 · Probabilistic Image Processing and Bayesian Networks Kazuyuki

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

1 October, 20071 October, 2007 ALT&DS2007 (Sendai, JapanALT&DS2007 (Sendai, Japan)) 11

Introduction toIntroduction toProbabilistic Image ProcessingProbabilistic Image Processing

and Bayesian Networksand Bayesian Networks

Kazuyuki TanakaKazuyuki TanakaGraduate School of Information Sciences,Graduate School of Information Sciences,

Tohoku University, Sendai, JapanTohoku University, Sendai, [email protected]@smapip.is.tohoku.ac.jp

http://www.smapip.is.tohoku.ac.jp/~kazu/http://www.smapip.is.tohoku.ac.jp/~kazu/

1 October, 20071 October, 2007 ALT&DS2007 (Sendai, JapanALT&DS2007 (Sendai, Japan)) 22

ContentsContents

IntroductionIntroductionProbabilistic Image ProcessingProbabilistic Image ProcessingGaussian Graphical ModelGaussian Graphical ModelBelief PropagationBelief PropagationOther ApplicationOther ApplicationConcluding RemarksConcluding Remarks

1 October, 20071 October, 2007 ALT&DS2007 (Sendai, JapanALT&DS2007 (Sendai, Japan)) 33

ContentsContents

IntroductionIntroductionProbabilistic Image ProcessingProbabilistic Image ProcessingGaussian Graphical ModelGaussian Graphical ModelBelief PropagationBelief PropagationOther ApplicationOther ApplicationConcluding RemarksConcluding Remarks

1 October, 2007 ALT&DS2007 (Sendai, Japan) 4

Markov Random Fields for Image Processing

S. S. GemanGeman and D. and D. GemanGeman (1986): IEEE Transactions on PAMI (1986): IEEE Transactions on PAMIImage Processing for Image Processing for Markov Random Fields (MRF)Markov Random Fields (MRF)(Simulated Annealing, Line Fields)(Simulated Annealing, Line Fields)

J. Zhang (1992): IEEE Transactions on Signal ProcessingJ. Zhang (1992): IEEE Transactions on Signal ProcessingImage Processing in EM algorithm for Image Processing in EM algorithm for MarkovMarkovRandom Fields (MRF)Random Fields (MRF) (Mean Field Methods) (Mean Field Methods)

Markov Random Fieldsare One of Probabilistic Methods for Image processing.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 5

Markov Random Fields for Image Processing

In Markov Random Fields, we have to consider notonly the states with high probabilities but also oneswith low probabilities.In Markov Random Fields, wehave to estimate not only theimage but also hyperparametersin the probabilistic model.We have to perform thecalculations of statisticalquantities repeatedly.

HyperparameterEstimation

Statistical Quantities

Estimation of Image

We need a deterministic algorithm for calculatingstatistical quantities.Belief Propagation

1 October, 2007 ALT&DS2007 (Sendai, Japan) 6

Belief Propagation

Belief Propagation has been proposed in order toachieve probabilistic inference systems (Pearl,1988).It has been suggested that Belief Propagation has aclosed relationship to Mean Field Methods in thestatistical mechanics (Kabashima and Saad 1998).Generalized Belief Propagation has been proposedbased on Advanced Mean Field Methods (Yedidia,Freeman and Weiss, 2000).Interpretation of Generalized Belief Propagationalso has been presented in terms of InformationGeometry (Ikeda, T. Tanaka and Amari, 2004).

1 October, 2007 ALT&DS2007 (Sendai, Japan) 7

Probabilistic Model and Belief Propagation

!!!!!1 2 3 4 5

),(),(),(),( 25242321

x x x x x

xxCxxCxxBxxA x3

x1 x2 x4

x5

!!!1 2 3

),(),(),( 133221

x x x

xxCxxBxxA

Treex3x1

x2

Cycle

Function consisting of a product of functions with twovariables can be assigned to a graph representation.

Examples

Belief Propagation can give us an exact result for thecalculations of statistical quantities of probabilistic modelswith tree graph representations.Generally, Belief Propagation cannot give us an exactresult for the calculations of statistical quantities ofprobabilistic models with cycle graph representations.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 8

Application of Belief Propagation

Turbo and LDPC codes in Error Correcting Codes (Berrou andGlavieux: IEEE Trans. Comm., 1996; Kabashima and Saad: J. Phys.A, 2004, Topical Review).CDMA Multiuser Detection in Mobile Phone Communication(Kabashima: J. Phys. A, 2003).Satisfability (SAT) Problems in Computation Theory (Mezard,Parisi, Zecchina: Science, 2002).Image Processing (Tanaka: J. Phys. A, 2002, Topical Review;Willsky: Proceedings of IEEE, 2002).Probabilistic Inference in AI (Kappen and Wiegerinck, NIPS, 2002).

Applications of belief propagation to many problems whichare formulated as probabilistic models with cycle graphrepresentations have caused to many successful results.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 9

Purpose of My Talk

Review of formulation of probabilistic modelfor image processing by means ofconventional statistical schemes.Review of probabilistic image processing byusing Gaussian graphical model (GaussianMarkov Random Fields) as the most basicexample.Review of how to construct a beliefpropagation algorithm for imageprocessing.

1 October, 20071 October, 2007 ALT&DS2007 (Sendai, JapanALT&DS2007 (Sendai, Japan)) 1010

ContentsContents

IntroductionIntroductionProbabilistic Image ProcessingProbabilistic Image ProcessingGaussian Graphical ModelGaussian Graphical ModelBelief PropagationBelief PropagationOther ApplicationOther ApplicationConcluding RemarksConcluding Remarks

1 October, 2007 ALT&DS2007 (Sendai, Japan) 11

Image Representation in Computer Vision

Digital image is defined on the set of points arranged ona square lattice.The elements of such a digital array are called pixels.We have to treat more than 100,000 pixels even in thedigital cameras and the mobile phones.

xx

y y

)1,1( )1,2( )1,3(

)2,1( )2,2( )2,3(

)3,1( )3,2( )3,3(

),( yxPixels 200,307480640 =!

1 October, 2007 ALT&DS2007 (Sendai, Japan) 12

Image Representation in Computer Vision

Pixels 65536256256 =!

x

y

At each point, the intensity of light is represented as aninteger number or a real number in the digital imagedata.A monochrome digital image is then expressed as atwo-dimensional light intensity function and the valueis proportional to the brightness of the image at thepixel.

( )yxfyx ,),( !

( ) 0, =yxf ( ) 255, =yxf

1 October, 2007 ALT&DS2007 (Sendai, Japan) 13

Noise Reduction byConventional Filters

173

110218100

120219202

190202192

Average =

!"

!#

$

!%

!&

'

192 202 190

202 219 120

100 218 110

192 202 190

202 173 120

100 218 110

It is expected that probabilistic algorithms forimage processing can be constructed from suchaspects in the conventional signal processing.

Markov Random Fields Probabilistic Image ProcessingAlgorithm

Smoothing Filters

The function of a linearfilter is to take the sumof the product of themask coefficients and theintensities of the pixels.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 14

Bayes Formula and Bayesian Network

Posterior Probability

}Pr{

}Pr{}|Pr{}|Pr{

B

AABBA =

Bayes Rule

PriorProbability

Event A is given as the observed data.Event B corresponds to the originalinformation to estimate.Thus the Bayes formula can be applied to theestimation of the original information fromthe given data.

A

BBayesian Network

Data-Generating Process

1 October, 2007 ALT&DS2007 (Sendai, Japan) 15

Image Restoration by Probabilistic Model

OriginalImage

DegradedImage

Transmission

Noise

444 3444 21

444 8444 764444444 84444444 76

4444444 84444444 76

Likelihood Marginal

PriorLikelihood

Posterior

}ageDegradedImPr{

}Image OriginalPr{}Image Original|Image DegradedPr{

}Image Degraded|Image OriginalPr{

=

Assumption 1: The degradedimage is randomly generatedfrom the original image byaccording to the degradationprocess.Assumption 2: The originalimage is randomly generatedby according to the priorprobability.

Bayes Formula

1 October, 2007 ALT&DS2007 (Sendai, Japan) 16

Image Restoration by Probabilistic Model

Degraded

Image

i

fi: Light Intensity of Pixel iin Original Image

),( iii yxr =r

Position Vectorof Pixel i

gi: Light Intensity of Pixel iin Degraded Image

i

Original

Image

The original images and degraded images arerepresented by f = {fi} and g = {gi}, respectively.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 17

Probabilistic Modeling of ImageRestoration

444 8444 764444444 84444444 76

4444444 84444444 76

PriorLikelihood

Posterior

}Image OriginalPr{}Image Original|Image DegradedPr{

}Image Degraded|Image OriginalPr{

!

!=

"====N

i

ii fg

1

),(}|Pr{

}Image Original|Image DegradedPr{

fFgG

fg

Random Fieldsfi

gi

fi

gior

Assumption 1: A given degraded image is obtained from theoriginal image by changing the state of each pixel to anotherstate by the same probability, independently of the otherpixels.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 18

Probabilistic Modeling ofImage Restoration

444 8444 764444444 84444444 76

4444444 84444444 76

PriorLikelihood

Posterior

}Image OriginalPr{}Image Original|Image DegradedPr{

}Image Degraded|Image OriginalPr{

!

!"===

NN:

),(}Pr{

}Image OriginalPr{

ij

ji fffF

f

Random Fields

Assumption 2: The original image is generated according to aprior probability. Prior Probability consists of a product offunctions defined on the neighbouring pixels.

i j

Product over All the Nearest Neighbour Pairs of Pixels

1 October, 2007 ALT&DS2007 (Sendai, Japan) 19

Prior Probability for Binary Image

== >p p p!

2

1p!

2

1i j Probability ofNeigbouringPixel

!"==

NeighbourNearest :

),(}Pr{

ij

ji fffFi j

It is important how we should assume the functionΦ(fi,fj) in the prior probability.

)0,1()1,0()0,0()1,1( !=!>!=!

We assume that every nearest-neighbour pair of pixelstake the same state of each other in the prior probability.

1,0=if

1 October, 2007 ALT&DS2007 (Sendai, Japan) 20

Prior Probability for Binary Image

Prior probability prefers to the configurationwith the least number of red lines.

Which state should the centerpixel be taken when the statesof neighbouring pixels are fixedto the white states?

>

== >p p p!

2

1p!

2

1i j Probability ofNearest NeigbourPair of Pixels

1 October, 2007 ALT&DS2007 (Sendai, Japan) 21

Prior Probability for Binary Image

Which state should the centerpixel be taken when the states ofneighbouring pixels are fixed asthis figure?

?-?== >

p p

> >=

Prior probability prefers to the configurationwith the least number of red lines.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 22

What happens for the case oflarge umber of pixels?

p 0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0lnp

Disordered State Critical Point(Large fluctuation)

small p large p

Covariancebetween thenearest neghbourpairs of pixels

Sampling byMarko chainMonte Carlo

Ordered State

Patterns withboth ordered statesand disordered statesare often generatednear the critical point.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 23

Pattern near Critical Pointof Prior Probability

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0ln p

similar

small p large p

Covariancebetween thenearest neghbourpairs of pixels

We regard that patternsgenerated near the criticalpoint are similar to thelocal patterns in real worldimages.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 24

Bayesian Image Analysis

{ }{ } { }

{ }

!!

"

#

$$

%

&'

!!

"

#

$$

%

&()

=

======

**= NeighbourNearest:1

),(),(

Pr

PrPrPr

ij

ji

N

i

ii ffgf

gG

fFfFgGgGfF

fg

{ }fF =Pr { }fFgG ==Pr gOriginalImage

DegradedImage

Prior Probability

Posterior Probability

Degradation Process

Image processing is reduced to calculations ofaverages, variances and co-variances in theposterior probability.

B:Set of allthe nearestneighbourpairs of pixels

Ω:Set of Allthe pixels

1 October, 2007 ALT&DS2007 (Sendai, Japan) 25

Estimation of Original Image

We have some choices to estimate the restored image fromposterior probability.

In each choice, the computational time is generallyexponential order of the number of pixels.

}|Pr{maxargˆ gG === iiz

i zFfi

2

}|Pr{minargˆ!!

"

#

$$

%

&=='= (

z

gGzFiii zfi

))

}|Pr{maxargˆ gGzFfz

===

Thresholded Posterior Mean (TPM) estimation

Maximum posterior marginal (MPM) estimation

Maximum A Posteriori (MAP) estimation

! =====

if

ii fF

\

}|Pr{}|Pr{

f

gGfFgG

(1)

(2)

(3)

1 October, 2007 ALT&DS2007 (Sendai, Japan) 26

Statistical Estimation of Hyperparameters

! =====

z

zFzFgGgG }|Pr{},|Pr{},|Pr{ "##"

( )},|Pr{max arg)ˆ,ˆ(

,

!"!"!"

gG ==

f

Marginalized with respect to F

}|Pr{ !fF = },|Pr{ !fFgG == gOriginal Image

Marginal Likelihood

Degraded Image!y

x

},|Pr{ !"gG =

Hyperparameters α, β are determined so as tomaximize the marginal likelihood Pr{G=g|α,β} withrespect to α, β.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 27

Maximization of Marginal Likelihood byEM Algorithm

! =====

z

zFzFgGgG }|Pr{},|Pr{},|Pr{ "##"MarginalLikelihood

( ) },|,Pr{ln}',',|Pr{

,',',

! =====

z

gGzFgGzF

g

"#"#

"#"#Q

( ) ( )( )

( ) ( )( )( )

( ) ( )( ).,,maxarg1,1 :Step-M

},|,Pr{ln)}(),(,|Pr{

,,

:Step-E

,ttQtt

tt

ttQ

!"!"!"

!"!"

!"!"

!"#++

====#$z

gGzFgGzF

E-step and M-Step are iterated until convergence:EM (Expectation Maximization) Algorithm

Q-Function

1 October, 20071 October, 2007 ALT&DS2007 (Sendai, JapanALT&DS2007 (Sendai, Japan)) 2828

ContentsContents

IntroductionIntroductionProbabilistic Image ProcessingProbabilistic Image ProcessingGaussian Graphical ModelGaussian Graphical ModelBelief PropagationBelief PropagationOther ApplicationOther ApplicationConcluding RemarksConcluding Remarks

1 October, 2007 ALT&DS2007 (Sendai, Japan) 29

Bayesian Image Analysis byGaussian Graphical Model

{ } ( )!!

"

#

$$

%

&''(= )

*Bij

ji ff2

2

1expPr +fF

0005.0=! 0030.0=!0001.0=!

Patterns are generated by MCMC.

Markov Chain Monte Carlo Method

PriorProbability

( )+!!"# ,if

B:Set of all thenearest-neghbourpairs of pixels

Ω:Set of all the pixels

1 October, 2007 ALT&DS2007 (Sendai, Japan) 30

Bayesian Image Analysis byGaussian Graphical Model

( )2,0~ !Nfg ii "

{ } ( )!"#

$%

&'(

)**===

i

ii gf2

22 2

1exp

2

1Pr

+,+fFgG

Histogram of Gaussian Random Numbers

nr

Noise Gaussianfr

Image Original gr

Image Degraded

( )+!!"# ,, ii gf

Degraded image isobtained by adding awhite Gaussian noise tothe original image.

Degradation Process is assumed to be theadditive white Gaussian noise.

Ω:Set of all the pixels

1 October, 2007 ALT&DS2007 (Sendai, Japan) 31

( ) gCI

Izgzz

2 ,

!""!

+=# d,P

Bayesian Image Analysisby Gaussian Graphical Model

( )+!!"# ,, ii gf

( )( )

( )!"

!#

$

%&

=

=

otherwise0

1

4

Bij

ji

ji C

Multi-Dimensional Gaussian Integral Formula

( ) ( )!!

"

#

$$

%

&''''( ))

*+* Bij

ji

i

ii ffgfP22

2 2

1

2

1exp),,|( ,

--,gf

Posterior Probability

Average of the posterior probabilitycan be calculated by using the multi-dimensional Gauss integral Formula

NxN matrix

B:Set of all thenearest-neghbourpairs of pixels

Ω:Set of all the pixels

1 October, 2007 ALT&DS2007 (Sendai, Japan) 32

Bayesian Image Analysisby Gaussian Graphical Model

( )( )

( ) ( )( ) ( ) ( )

1

2

T

2

2

11

1

11

1Tr

1

!

""

#

$

%%

&

'

!!++

!!+

!( g

CI

Cg

CI

C

ttNtt

t

Nt

)*)*

)*

( )( )

( ) ( )( )( ) ( )

( ) ( )( )g

CI

Cg

CI

I

22

242T

2

2

11

111

11

1Tr

1

!!+

!!+

!!+

!"

tt

tt

Ntt

t

Nt

#$

#$

#$

##

0

0.0002

0.0004

0.0006

0.0008

0.001

0 20 40 60 80 100( )t!

( )t!

gf̂

gCI

Im

2)()()(

tt

t

!"+= ( )2)(minarg)(ˆ tmztf ii

zi

i

!=

Iteration Procedure of EM algorithm in Gaussian Graphical Model

EM

g

1 October, 2007 ALT&DS2007 (Sendai, Japan) 33

Image Restoration by Markov RandomField Model and Conventional Filters

( )2ˆ||

1MSE !

"#

$"

=

i

ii ff

315Statistical Method

445(5x5)486(3x3)Median

Filter

413(5x5)388(3x3)Lowpass

Filter

MSE

(3x3) (3x3) LowpassLowpass (5x5) Median(5x5) MedianMRFMRF

Original ImageOriginal Image Degraded ImageDegraded Image

RestoredRestoredImageImage

Ω:Set of all the pixels

1 October, 20071 October, 2007 ALT&DS2007 (Sendai, JapanALT&DS2007 (Sendai, Japan)) 3434

ContentsContents

IntroductionIntroductionProbabilistic Image ProcessingProbabilistic Image ProcessingGaussian Graphical ModelGaussian Graphical ModelBelief PropagationBelief PropagationOther ApplicationOther ApplicationConcluding RemarksConcluding Remarks

1 October, 2007 ALT&DS2007 (Sendai, Japan) 35

Graphical Representationfor Tractable Models

Tractable Model

!!"

#$$%

&!!"

#$$%

&!!"

#$$%

&= '''

' ' '

===

= = =

FT,FT,FT,

FT, FT, FT,

),(),(),(

),(),(),(

CBA

A B C

DChDBgDAf

DChDBgDAf A

B CD! ! !

= = =FT, FT, FT,A B C

Intractable Model! ! != = =FT, FT, FT,

),(),(),(A B C

AChCBgBAf

A

B C

! ! != = =FT, FT, FT,A B C

Tree Graph

Cycle Graph

It is possible to calculate eachsummation independently.

It is hard to calculate eachsummation independently.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 36

Belief Propagationfor Tree Graphical Model

3

1 2

5

4

3

1 2

5

4

23!M

24!M

25!M

After taking thesummations over rednodes 3,4 and 5,the function of nodes 1and 2 can be expressedin terms of somemessages. 44 344 2144 344 2144 344 21

)(

52

)(

42

)(

3221

52423221

225

8

224

7

223

3

3 4 5

),(),(),(),(

),(),(),(),(

fM

f

fM

f

fM

f

f f f

ffDffCffBffA

ffDffCffBffA

!!!

""

#

$

%%

&

'

""

#

$

%%

&

'

""

#

$

%%

&

'= (((

(((

1 October, 2007 ALT&DS2007 (Sendai, Japan) 37

Belief Propagationfor Tree Graphical Model

3

1 2

5

4

By taking the summation over all the nodesexcept node 1, message from node 2 to node 1can be expressed in terms of all the messagesincoming to node 2 except the own message.

3

1 2

5

4

23!M

24!M

25!M

!=2z

212!M

1

Summation over allthe nodes except 1

1 October, 2007 ALT&DS2007 (Sendai, Japan) 38

Loopy Belief Propagation forGraphical Model in Image Processing

Graphical model for image processing is representedin terms of the square lattice.Square lattice includes a lot of cycles.Belief propagation are applied to the calculation ofstatistical quantities as an approximate algorithm.

1 2 4

5

31 2 4

5

Every graph consisting of apixel and its fourneighbouring pixels can beregarded as a tree graph.

Loopy Belief Propagation

3

1 2

5

4!"

2z

21

3

1 October, 2007 ALT&DS2007 (Sendai, Japan) 39

Loopy Belief Propagation forGraphical Model in Image Processing

( )MM

rrr!"

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )!!

!

"""

"""

"#

#

$

1 2

1

1151141132112

1151141132112

221,

,

z z

z

zMzMzMzz

zMzMzMfz

fM

42

3

1

5

Message Passing Rulein Loopy Belief Propagation

Averages, variances and covariances ofthe graphical model are expressed interms of messages.

3

1 2

5

4!"

2z

21

1 October, 2007 ALT&DS2007 (Sendai, Japan) 40

Loopy Belief Propagationfor Graphical Model in Image Processing

We have four kinds of message passing rules for each pixel.

Each massage passing rule includes3 incoming messages and 1 outgoing message

Visualizations ofPassing Messages

1 October, 2007 ALT&DS2007 (Sendai, Japan) 41

EM algorithm by means of Belief Propagation

Input

Output

LoopyBP EM Update Rule of Loopy BP

3

1 2

5

423!M

24!M

25!M

!=2z

212!M

1

EM Algorithm for Hyperparameter Estimation

( ) ( )( )

( )( ) ( )( ).,,,maxarg

1,1

,gttQ

tt

!"!"

!"

!"#

++

1 October, 2007 ALT&DS2007 (Sendai, Japan) 42

Probabilistic Image Processing byEM Algorithm and Loopy BP for GaussianGraphical Model( ) ( )( )

( )( ) ( )( ).,,,maxarg1,1

,gttQtt !"!"!"

!"#++

g

Loopy Belief Propagation

Exact

0006000ˆ

335.36ˆ

.=

=

LBP

LBP

!

"

0007130ˆ

624.37ˆ

.=

=

Exact

Exact

!

"

MSE:327

MSE:315

0

0.0002

0.0004

0.0006

0.0008

0.001

0 20 40 60 80 100( )t!

( )t!

1 October, 20071 October, 2007 ALT&DS2007 (Sendai, JapanALT&DS2007 (Sendai, Japan)) 4343

ContentsContents

IntroductionIntroductionProbabilistic Image ProcessingProbabilistic Image ProcessingGaussian Graphical ModelGaussian Graphical ModelBelief PropagationBelief PropagationOther ApplicationOther ApplicationConcluding RemarksConcluding Remarks

1 October, 2007 ALT&DS2007 (Sendai, Japan) 44

Digital Images Inpaintingbased on MRF

Inpu

t

Out

put

MarkovRandomFields

M. Yasuda, J. Ohkuboand K. Tanaka:Proceedings ofCIMCA&IAWTIC2005.

1 October, 20071 October, 2007 ALT&DS2007 (Sendai, JapanALT&DS2007 (Sendai, Japan)) 4545

ContentsContents

IntroductionIntroductionProbabilistic Image ProcessingProbabilistic Image ProcessingGaussian Graphical ModelGaussian Graphical ModelBelief PropagationBelief PropagationOther ApplicationOther ApplicationConcluding RemarksConcluding Remarks

1 October, 2007 ALT&DS2007 (Sendai, Japan) 46

Summary

Formulation of probabilistic model for imageprocessing by means of conventional statisticalschemes has been summarized.Probabilistic image processing by usingGaussian graphical model has been shown as themost basic example.It has been explained how to construct a beliefpropagation algorithm for image processing.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 47

Statistical Mechanics Informatics forProbabilistic Image Processing

S. S. GemanGeman and D. and D. GemanGeman (1986): IEEE Transactions on PAMI (1986): IEEE Transactions on PAMIImage Processing for Markov Random Fields (MRF)Image Processing for Markov Random Fields (MRF)((Simulated AnnealingSimulated Annealing, Line Fields), Line Fields)

J. Zhang (1992): IEEE Transactions on Signal ProcessingJ. Zhang (1992): IEEE Transactions on Signal ProcessingImage Processing in EM algorithm for Markov RandomImage Processing in EM algorithm for Markov RandomFields (MRF) (Fields (MRF) (Mean Field MethodsMean Field Methods))

K. Tanaka and T. Morita (1995): Physics Letters AK. Tanaka and T. Morita (1995): Physics Letters ACluster Variation MethodCluster Variation Method for MRF in Image Processing for MRF in Image Processing

Original ideas of some techniques, Simulated Annealing,Mean Field Methods and Belief Propagation, is oftenbased on the statistical mechanics.

Mathematical structure of Belief Propagation is equivalent toBethe Approximation and Cluster Variation Method (KikuchiMethod) which are ones of advanced mean field methods in thestatistical mechanics.

1 October, 2007 ALT&DS2007 (Sendai, Japan) 48

Statistical Mechanical Informatics forProbabilistic Information Processing

It has been suggested that statistical performanceestimations for probabilistic information processing areclosed to the spin glass theory.The computational techniques of spin glass theory has beenapplied to many problems in computer sciences.

Error Correcting Codes (Y. Kabashima and D. Saad: J. Phys.A, 2004, Topical Review).CDMA Multiuser Detection in Mobile Phone Communication(T. Tanaka: IEEE Information Theory, 2002).SAT Problems (Mezard, Parisi, Zecchina: Science, 2002).Image Processing (K. Tanaka: J. Phys. A, 2002, TopicalReview).

1 October, 20071 October, 2007 ALT&DS2007 (Sendai, JapanALT&DS2007 (Sendai, Japan)) 4949

SMAPIP ProjectSMAPIP Project

MEXT Grant-in Aid for Scientific Research onPriority Areas

Period: 2002 –2005Head Investigator: Kazuyuki Tanaka

Webpage URL: http://www.smapip.eei.metro-u.ac.jp./

Member:K. Tanaka, Y. Kabashima,H. Nishimori, T. Tanaka,M. Okada, O. Watanabe,N. Murata, ......

1 October, 20071 October, 2007 ALT&DS2007 (Sendai, JapanALT&DS2007 (Sendai, Japan)) 5050

DEX-SMI ProjectDEX-SMI Project

http://dex-smi.sp.dis.titech.ac.jp/DEX-SMIhttp://dex-smi.sp.dis.titech.ac.jp/DEX-SMI//

情報統計力学       GOGO

DEX-SMI       GOGO

MEXT Grant-in Aid for ScientificResearch on Priority Areas

Period: 2006 –2009Head Investigator: Yoshiyuki Kabashima

Deepening and Expansion ofStatistical Mechanical Informatics

1 October, 20071 October, 2007 ALT&DS2007 (Sendai, JapanALT&DS2007 (Sendai, Japan)) 5151

ReferencesReferencesK. Tanaka: Statistical-Mechanical Approach toK. Tanaka: Statistical-Mechanical Approach to

Image Processing (Topical Review), J. Phys. A,Image Processing (Topical Review), J. Phys. A,3535 (2002). (2002).

A. S. Willsky: Multiresolution Markov Models forA. S. Willsky: Multiresolution Markov Models forSignal and Image Processing, Proceedings ofSignal and Image Processing, Proceedings ofIEEE, IEEE, 9090 (2002). (2002).