33
INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, 2004 [email protected] http://www.cmpe.boun.edu.tr/~ethem/i2ml Lecture Slides for

INTRODUCTION TO Machine Learningethem/i2ml/slides/v1-1/i2...INTRODUCTION TO Machine Learning ETHEM ALPAYDIN © The MIT Press, 2004 [email protected] ethem/i2ml Lecture Slides for

  • Upload
    others

  • View
    33

  • Download
    1

Embed Size (px)

Citation preview

INTRODUCTION TO

Machine Learning

ETHEM ALPAYDIN© The MIT Press, 2004

[email protected]://www.cmpe.boun.edu.tr/~ethem/i2ml

Lecture Slides for

CHAPTER 10:

Linear Discrimination

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

3

Likelihood- vs. Discriminant-based Classification

Likelihood-based: Assume a model for p(x|Ci), use Bayes’ rule to calculate P(Ci|x)

gi(x) = log P(Ci|x)

Discriminant-based: Assume a model for gi(x|Φi); no density estimation

Estimating the boundaries is enough; no need to accurately estimate the densities inside the boundaries

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

4

Linear Discriminant

Linear discriminant:

Advantages:Simple: O(d) space/computation

Knowledge extraction: Weighted sum of attributes; positive/negative weights, magnitudes (credit scoring)Optimal when p(x|Ci) are Gaussian with shared cov matrix; useful when classes are (almost) linearly separable

( ) 01

00| ij

d

jiji

Tiiii wxwww,g +=+= ∑

=

xwwx

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

5

Generalized Linear Model

Quadratic discriminant:

Higher-order (product) terms:

Map from x to z using nonlinear basis functions and use a linear discriminant in z-space

215224

2132211 xxz,xz,xz,xz,xz =====

( ) 00| iTii

Tiiii ww,,g ++= xwxxwx WW

( ) ( )∑=

=k

jjiji wg

1

xx φ

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

6

Two Classes( ) ( ) ( )

( ) ( )( ) ( )

0

201021

202101

21

w

ww

ww

ggg

T

T

TT

+=

−+−=

+−+=

−=

xw

xww

xwxw

xxx

( )⎩⎨⎧ >

otherwise

0if choose

2

1

C

gC x

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

7

Geometry

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

8

Multiple Classes( ) 00| i

Tiiii ww,g += xwwx

Classes arelinearly separable

( ) ( )xx j

K

ji

i

gg

C

1max

if Choose

==

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

9

Pairwise Separation( ) 00| ij

Tijijijij ww,g += xwwx

( )⎪⎩

⎪⎨

⎧∈≤∈>

=otherwisecare tdon'

if 0

if 0

j

i

ij C

C

g x

x

x

( ) 0

if choose

>≠∀ xij

i

g,ij

C

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

10

From Discriminants to Posteriors

When p (x | Ci ) ~ N ( µi , ∑)

( )

( )iiTiiii

iTiiii

CPw

ww,g

log21

|

10

1

00

+−==

+=

−− µµµ ΣΣw

xwwx

( ) ( )

( )( )[ ]

otherwise and

01 log

11

50

if choose

1| and |

21

21

C

y/y

y/y

.y

C

yCPCPy

⎪⎩

⎪⎨

>−>−

>

−=≡ xx

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

11

( )( ) ( )( )

( )( )

( )( )

( )( )

( ) ( )( ) ( )[ ]( ) ( )( ) ( )[ ]

( )( )

( ) ( ) ( )

( )( )

( ) ( ) ( )[ ]001

01

1

211

210211

0

2

1

21

2

212

11

1

212

2

1

2

1

2

1

1

11

exp1

1sigmoid|

|1

|log

logitof inverse The 21

where

log21exp2

21exp2log

log|

|log

|

|log

|1

|log|logit

wwCP

wCP

CP

w

w

CP

CP

/

/

CP

CP

Cp

Cp

CP

CP

CP

CPCP

TT

T

T

T

T//d

T//d

+−+=+=

+=−

−+−=−=

+=

+−−−π

−−−π=

+=

=−

=

−−

−−−

−−−

xwxwx

xwx

x

w

xw

xx

xx

x

x

x

x

x

xx

µµµµµµ

µµ

µµ

ΣΣ

ΣΣ

ΣΣ

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

12

Sigmoid (Logistic) Function

( ) ( )( ) 50if choose and sigmoid Calculate 2.

or ,0if choose and Calculate 1.

10

10

.yCwy

gCwgT

T

>+=

>+=

xw

xxwx

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

13

Gradient-Descent

E(w|X) is error with parameters w on sample Xw*=arg minw E(w | X)

Gradient

Gradient-descent: Starts from random w and updates w iteratively in the negative direction of gradient

T

dw w

E,...,

wE

,wE

E ⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

∂∂

=∇21

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

14

Gradient-Descent

wt wt+1

η

E (wt)

E (wt+1)

iii

ii

www

i,wE

w

+=

∀∂∂

η−=

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

15

Logistic Discrimination

Two classes: Assume log likelihood ratio is linear

( )( )

( )( ) ( )( )

( )( )

( )( )

( )( )

( ) ( )[ ]01

2

100

0

2

1

2

1

1

11

02

1

exp1

1|

log where

log|

|log

|1

|log|logit

|

|log

wCP̂y

CP

CPww

w

CP

CP

Cp

Cp

CP

CPCP

wCp

Cp

T

o

T

oT

+−+==

+=

+=

+=−

=

+=

xwx

xw

x

x

x

xx

xwx

x

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

16

Training: Two Classes

{ } ( )( ) ( )[ ]

( ) ( )( )( )( )

( ) ( ) ( )ttt

t

t

rt

t

rt

T

tttt

tt

yryrw,E

lE

yyw,l

wCPy

y~rr,

tt

−−+−=

−=

−=

+−+==

=

∏ −

1 log1 log|

log

1|

exp11

|

Bernoulli|

0

1

0

01

X

X

X

w

w

xwx

xx

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

17

Training: Gradient-Descent( ) ( ) ( )

( ) ( )

( )

( )

( )∑

−=∂∂

−=∆

=−=

−⎟⎟⎠

⎞⎜⎜⎝

⎛−−

−=∂∂

−=∆

−==

−−+−=

t

tt

t

tj

tt

tj

tt

tt

t

t

t

jj

ttt

t

t

yrwE

w

d,...,j,xyr

xyyyr

yr

wE

w

yydady

y

yryrw,E

ηη

η

ηη

00

0

1

111

1 asigmoidIf

1 log1 log| Xw

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

18

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

19

10

100 1000

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

20

{ } ( )( )( )

( ) [ ][ ]

{ }( ) ( )( )

{ }( )

( ) ( )∑∑

∏∏∑

−η=−η=

−=

=

=+

+==

+=

=

=

t

tj

tjj

t

t

tj

tjj

ti

t

tiiii

t i

rtiiii

K

j jTj

iTi

i

oi

Ti

K

i

tK

ttt

tt

yrwyr

yrw,E

yw,l

K,...,i,w

wCP̂y

wCpCp

,~r,

ti

0

0

0

1 0

0

0

log|

|

1exp

exp|

||

log

1Mult|

∆∆ xw

w

w

xw

xwx

xwxx

yxrx

X

X

X

K>2 Classes

softmax

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

21

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

22

Example

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

23

Generalizing the Linear Model

Quadratic:

Sum of basis functions:

where φ(x) are basis functions Kernels in SVM

Hidden units in neural networks

( )( ) 0|

|log i

Tii

T

K

i wCpCp

++= xwxxxx

W

( )( ) ( ) 0|

|log i

Ti

K

i wCpCp

+φ= xwxx

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

24

Discrimination by Regression

Classes are NOT mutually exclusive and exhaustive

( )( ) ( )[ ]

( ) ( )

( ) ( )( ) ( ) ttt

t

tt

t

tt

tt

t

tTtTt

tt

yyyr

yrw,E

yrw,l

wwy

,~yr

xw

w

w

xwxw

−−η=

−=

⎥⎥⎦

⎢⎢⎣

σ−

−πσ

=

+−+=+=

σεε+=

1

21

|

2exp

2

1|

exp1

1sigmoid

0 where

2

0

2

2

0

00

2

X

X

N

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

25

Optimal Separating Hyperplane

(Cortes and Vapnik, 1995; Vapnik, 1995)

{ }

( ) 1

as rewritten be can which

1 for 1

1 for 1

that such and find

if 1

if 1 where

0

0

0

0

2

1

+≥+

−=+≤+

+=+≥+

⎩⎨⎧

∈−∈+

==

wr

rw

rw

w

C

Crr,

tTt

ttT

ttT

t

tt

ttt

xw

xw

xw

w

x

xxX

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

26

Margin

Distance from the discriminant to the closest instances on either side

Distance of x to the hyperplane is

We require

For a unique sol’n, fix ρ||w||=1and to max margin

w

xw 0wtT +

( )t,

wr tTt

∀ρ≥+

w

xw 0

( ) t,wr tTt ∀+≥+ 1 to subject 21 min 0

2xww

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

27

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

28

( )

( )[ ]

( )

00

0

21

121

1 to subject 21 min

10

1

110

2

10

2

0

2

=α⇒=∂

α=⇒=∂

α++α−=

−+α−=

∀+≥+

∑∑

=

=

==

=

N

t

ttp

N

t

tttp

N

t

tN

t

tTtt

N

t

tTttp

tTt

rw

L

rL

wr

wrL

t,wr

xww

xww

xww

xww

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

29

Most αt are 0 and only a small number have αt >0; they are the support vectors

( )

( )

( )

∑∑∑

∑ ∑∑

∀≥=

+−=

+−=

+−−=

t

0

0 and 0 to subject

21

21

21

t,r

rr

rwrL

ttt

t

tsTtst

t s

st

t

tT

t t

ttt

t

tttTTd

αα

ααα

α

ααα

xx

ww

xwww

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

30

Soft Margin Hyperplane

Not linearly separable

Soft error

New primal is

( ) ttTt wxr ξ−≥+ 10w

∑ξt

t

( )[ ] ∑∑∑ ξµ−ξ+−+α−ξ+=t

tt

t

ttTtt

t

tp wxrCL 1

21

0

2ww

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

31

( )

( ) ( ) ( ) ( )

( ) ( )∑

∑∑

α=

α==

α=α=

t

ttt

t

TtttT

t

ttt

t

ttt

,Krg

rg

rr

xxx

xφxφxφwx

xφzw

Kernel Machines

Preprocess input x by basis functions

z = φ(x) g(z)=wTz

g(x)=wT φ(x)

The SVM solution

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

32

Kernel Functions

Polynomials of degree q:

Radial-basis functions:

Sigmoidal functions:

( ) ( )qtTt ,K 1+= xxxx

(Cherkassky and Mulier, 1998)

( ) ( )( )

( ) [ ]T

T

x,x,xx,x,x,

yxyxyyxxyxyx

yxyx

,K

22

212121

22

22

21

2121212211

22211

2

2221

2221

1

1

+++++=

++=

+=

x

yxyx

( )⎥⎥

⎢⎢

σ

−−= 2

2

expxx

xxt

t ,K

( ) ( )12tanh += tTt ,K xxxx

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

33

SVM for Regression

Use a linear model (possibly kernelized)

f(x)=wTx+w0

Use the є-sensitive error function

( )( ) ( )( )⎪⎩

⎪⎨⎧

ε−−

ε<−=ε otherwise

if 0tt

tttt

fr

frf,re

x

xx

( )( )

00

0

≥ξξ

ξ+ε≤−+

ξ+ε≤+−

−+

+

tt

ttT

tTt

,

rw

wr

xw

xw

( )∑ −+ ξ+ξ+t

ttC2

21

min w