30
1 Introduction to Iwan Models and Modal Testing for Structures with Joints Matthew S. Allen Associate Professor University of Wisconsin-Madison Thanks to Brandon Deaner (now at Mercury Marine) for his work in this area and for creating the initial version of these slides. Much of the damping in built up structures comes from the interfaces (joints). Joints are nonlinear and influenced by physics at multiple length scales. However, the response of structures with joints is often quasi- linear. Motivation size Quantum mechanics, chemistry Molecular dynamics Meso, micro, asperity models FEA, detailed joint mechanics Assembly / Structural scale Assembly / Structural scale FEA + joint models 0.1 nm 1 nm 1 m 0.1 mm 10 mm 1m 500 1000 1500 2000 2500 3000 3500 4000 10 4 10 5 10 6 10 7 Frequency (Hz) Magnitude 1340 1360 1380 1400 1420 144 Frequency (Hz) 0 13.09 27.04 42.18 58.35 82.28 107 129.6

Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

1

IntroductiontoIwanModelsandModalTestingforStructureswithJoints

Matthew S. AllenAssociate Professor

University of Wisconsin-Madison

Thanks to Brandon Deaner (now at Mercury Marine) for his work in this area and for creating the initial version of these slides.

Much of the damping in built up structures comes from the interfaces (joints).

Joints are nonlinear and influenced by physics at multiple length scales.

However, the response of structures with joints is often quasi-linear.

Motivation

size

Quantummechanics,chemistry

Moleculardynamics

Meso,micro,asperitymodels

FEA,detailedjointmechanics

Assembly/StructuralscaleAssembly/StructuralscaleFEA+jointmodels

0.1nm

1nm

1m

0.1mm

10mm

1m

500 1000 1500 2000 2500 3000 3500 4000

104

105

106

107

Frequency (Hz)

Mag

nit

ud

e

0

13.0927.04

42.18

58.35

82.28 107

129.6

1340 1360 1380 1400 1420 144Frequency (Hz)

0

13.0927.04

42.18

58.35

82.28

107

129.6

Page 2: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

2

Outline

Discrete Damping Model

Modal Damping Model

Apply the Modal Damping Model Academic System

Finite Element Model

Beam Structure

Exhaust Structure

Conclusions

M0

u3

K∞

M0M0

K∞ K∞

u2u1

F

FS, KT, χ, β

Wewanttoaccuratelymodelthenonlineardampingseeninjoints.

Structures with joints exhibit increased damping.

Jointed Structure vs. Monolithic Structure

Damping depends on the amplitude of the force

0 200 400 600 800 1000-1

0

1

Res

pons

e

Time0 200 400 600 800 1000

-1

0

1

Res

pons

e

Time

Page 3: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

3

Thenonlineardampingofjointsisclassifiedintotworegions.

“macro-slip” – occurs when the stick region vanishes and there is large relative motion between the two parts.

“micro-slip” – nonlinearity associated with the slip region at the outskirts of the contact patch.

D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New Mexico SAND2001-0811, 2001.

F

F

Slip Region

Stick Region

AJenkinselementisoftenusedtoprovidestick‐slipbehavior.

Consists of: Coulomb Friction Damper Linear Elastic Spring

Provides Stick-Slip behavior Stuck state has stiffness and no energy dissipation Slipped state has no stiffness and energy dissipation

Fx(t, ϕ)

k

Page 4: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

4

OneapproachistomodelajointwithseveralJenkinselementsoveranarea.

Advantage: Predictive!

Disadvantage: Many degrees-of-freedom, no guarantee that power law behavior is captured.

* C. W. Schwingshackl, D. D. Maio, I. Sever, and J. S. Green, "Modeling and validation of the nonlinear dynamic behavior of bolted flange joints," Journal of Engineering for Gas Turbines and Power, vol. 135, 2013.

(see also) Bograd, S., Reuss, P., Schmidt, A., Gaul, L., and Mayer, M., “Modeling the Dynamics of Mechanical Joints,” Mechanical Systems and Signal Processing, 25, pp. 2801-2826, 2011.

AparallelarrangementofJenkinselementsisknownasanIwanmodelandisusedtomodelbothregionsofslip.

D. J. Segalman, "A Four-Parameter Iwan Model for Lap-Type Joints," Journal of Applied Mechanics, vol. 72, pp. 752-760, September 2005.

x(t, ϕ1)

x(t, ϕ2)

x(t, ϕ3)

F

x(t, ϕ4)

Micro-Slip

Macro-SlipIwan Model

Page 5: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

5

A4‐ParameterIwanmodelisusedtocapturebothmicro‐ andmacro‐slip.

The Iwan Model consists of spring and frictional damper elements in parallel

D. J. Segalman, "A Four-Parameter Iwan Model for Lap-Type Joints," Journal of Applied Mechanics, vol. 72, pp. 752-760, September 2005.

Population Density

ρ(ϕ) = R ϕχ[H(ϕ) – H(ϕ – ϕmax)]+Sδ(ϕ – ϕmax)

x(t, ϕ1)

x(t, ϕ2)

x(t, ϕ3)

F

x(t, ϕ4)

ϕρ(ϕ

)

ϕmax

micro-slip macro-slip

KT

FS

micro-slip macro-slip

Sti

ffn

ess

Joint Force

Wecanrepresentthe4‐ParameterIwanmodelgraphicallytodescribeshowstiffnessanddissipationchangewithforcelevel.

Slope = 3 + χ

β

micro-slip macro-slip

log(Joint Force)

log(

Dis

sip

atio

n/C

ycle

)

FS

{R, χ, ϕmax, S} {FS, KT, χ, β}

Converted to physical parameters

Slope = 1

ThisisthekeytotheIwanmodel:itcapturesaspecificevolutionofdampingandstiffnesswithamplitudethathasbeenobservedinmanyexperiments!!

Page 6: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

6

Stiffnesschangesaretypicallysmall– dampingeffectisofprimaryinterest.

Slope = 1 + χ

micro-slip macro-slip

Log Joint Force

Log

Dam

pin

g R

atio

FS

Slope = –1

no-slip (material damping)

2

/

2

diss cyc

n

E c X

m X

2

/ /diss cyc d nE m X

2 2212

2

( ) ( )d

d n

V t V t

X

0 cos( )mx cx kx F t

Ediss/cyc goes as |X|2 !!

Whywouldwewanttoapplythedampinginamodalframework?

Simplify computations for structure with many joints

1 1 1 1

2 2 2 2

3 3 3 3

S T

S T

S T

F ,K , χ ,β

F ,K , χ ,β

F ,K , χ ,β

Many parameters needed to characterize each joint

separately.

Page 7: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

7

Whywouldwewanttoapplythedampinginamodalframework?

Simplify computations for structure with many joints

M = 1

q

K∞

FS, KT, χ, β

2 T,

ˆΦ FX Jr r r r rq q + F

Whywouldwewanttoapplythedampinginamodalframework?

Because tests in the micro-slip regime frequently reveal that the structure as a whole often behaves modally!

Page 8: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

8

Linear Modes of the system are preserved No geometric nonlinearities due to large deflection or

material nonlinearities

TheproposedmodalIwanmodelcomeswithseveralassumptions.

F

D

No coupling among modes

rth Modal Force applied = rth Modal Response only

Doesthemodalapproachworkforasimplemassspringsystem?

M0

u3

K∞

M0M0

K∞ K∞

u2u1

F

FS, KT, χ, β

Discrete Model:

D. J. Segalman, "A Modal Approach to Modeling Spatially Distributed Vibration Energy Dissipation," Sandia National Laboratories, Albuquerque, New Mexico and Livermore, California SAND2010-4763, 2010.

Modal Models:

M = 1

q1

K∞1

FS1, KT

1, χ1, β1

M = 1

q2

K∞2

FS2, KT

2, χ2, β2

M = 1

q3

K∞3

FS3, KT

3, χ3, β3

???

Page 9: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

9

Comparisonprocedurefordiscreteandmodalsimulations.

Apply Impact Force

0 20 400

0.5

1

Time (s)

Fo

rce

Convert physicalresponse to modal

Discrete Simulation:

q = -1x

Hilbert Transform

100

101

102

10124

125

126

127

128

129

Modal Joint F

(a)

Nat

ura

l F

req

uen

cy (

Hz

)

10

010

110

210

10-6

10-4

10-2

100

102

104

Modal Joint F

(b)

Mo

dal

En

erg

y D

issi

pat

ion

per

cyc

le

Optimize Analytical Modelto frequency and energydissipation to each mode.

Min f

Apply Impact Force

0 20 400

0.5

1

Time (s)

Fo

rce

Hilbert Transform

100

101

102

10124

125

126

127

128

129

Modal Joint F

(a)

Nat

ura

l F

req

uen

cy (

Hz

)

10

010

110

210

10-6

10-4

10-2

100

102

10

Modal Joint F

(b)

Mo

dal

En

erg

y D

issi

pat

ion

per

cyc

le

Compare Modal andDiscrete simulations

Modal Simulation:

101

102

103

0.188

0.189

0.19

0.191

0.192

0.193

0.194

Modal Force

Nat

ura

l F

req

uen

cy (

Hz)

101

102

103

10-2

100

102

104

Modal Force

Mo

dal

En

erg

y D

iss

ipat

ion

/Cyc

le

FS, KT, χ, β

FS1, KT

1, χ1, β1

HilbertTransformwithpolynomialfittingisusedtoextractfrequencyandenergydissipationdata.

0 50 100 150 200 250 300 350 400 450 500-500

0

500

1000

An

gle

(ra

d)

Time (s)

Measurement

Polynomial Fit

0 50 100 150 200 250 300 350 400 450 500

102

|Vel

oci

ty|

Time (s)

Academic Model 3rd Mode

|Measurement|

|Hilbert Transform|Polynomial Fit

Hilbert Transform

100

101

102

10124

125

126

127

128

129

Modal Joint F

(a)

Nat

ura

l F

req

uen

cy (

Hz

)

10

010

110

210

10-6

10-4

10-2

100

102

10

Modal Joint F

(b)

Mo

dal

En

erg

y D

issi

pat

ion

per

cyc

le

Instantaneous damping and

frequency are related to the derivative of the amplitude and phase, respectively.

Page 10: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

10

Optimizationcanbeusedtofittheanalyticalmodeltomeasuredchangesindissipationandfrequency.

ˆ 3

0

0

ˆ4 ˆ ˆif ˆ ˆ ˆ3 2

ˆ ˆ ˆ4 if

JS

Model

JS S

RqF F

D

q F F F

ˆ 1ˆˆ ˆ1ˆ ˆ( 1)( 2) ˆ ˆˆ

2

ˆˆ ˆ

2

if

if

T

JS

Model

JS

rK K

F Ff

KF F

micro-slip macro-slip

Nat

ura

l Fre

qu

ency

Modal Joint Force

micro-slip macro-slip

log(Modal Joint Force)

log(

Mod

alD

issi

pat

ion

/Cyc

le)

Optimize the ‘Analytical Modal Model’ in a least squares sense

Approximate Frequency:

Approximate Dissipation:

Optimize analytical modelto match frequency and

energy dissipation to eachmode.

22ˆ ˆˆ ˆ

Min ˆ ˆ ˆ ˆmax max

Exp Model Exp ModelD f

Exp Model Exp Model

D D f ff f f

D D f f

HowwelldoesamodalIwanmodelpredicttheresponseofaspringmasssystem.

vs.

101

102

103

10-1

100

101

102

103

104

105

Academic Model 1st Mode

Modal Force

Mo

da

l En

erg

y D

iss

ipa

tio

n/C

yc

le

Discrete SimAnalytical ModelModal Sim

101

102

103

0.0672

0.0672

0.0673

0.0673

0.0674

0.0674

0.0675

0.0675

0.0676Academic Model 1st Mode

Modal Force

Na

tura

l Fre

qu

en

cy

(H

z)

Discrete SimAnalytical ModelModal Sim

macro-slipmicro-slip

macro-slipmicro-slip

ˆ 3

0

0

ˆ4 ˆ ˆif ˆ ˆ ˆ3 2

ˆ ˆ ˆ4 if

JS

Model

JS S

RqF F

D

q F F F

ˆ 1ˆˆ ˆ1ˆ ˆ( 1)( 2) ˆ ˆˆ 2

ˆˆ ˆ

2

if

if

T

JS

Model

JS

rK K

F Ff

KF F

vs.

Page 11: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

11

HowwelldoesamodalIwanmodelpredicttheresponseofaspringmasssystem.

101

102

103

100

Academic Model 2nd Mode

Modal Force

Mo

dal

En

erg

y D

issi

pat

ion

/Cyc

le

Discrete Sim

Analytical ModelModal Sim

101

102

103

0.188

0.189

0.19

0.191

0.192

0.193

0.194Academic Model 2nd Mode

Modal Force

Nat

ura

l F

req

uen

cy (

Hz)

Discrete Sim

Analytical ModelModal Sim

101

102

103

100

Academic Model 3rd Mode

Modal Force

Mo

dal

En

erg

y D

issi

pat

ion

/Cyc

le

Discrete Sim

Analytical ModelModal Sim

101

102

103

0.272

0.274

0.276

0.278Academic Model 3rd Mode

Modal Force

Nat

ura

l F

req

uen

cy (

Hz)

Discrete Sim

Analytical ModelModal Sim

Limitations The previous results all excited the system with a force that

was spatially distributed to excite a single linear mode.

Forces with other spatial distribution can cause macro-slip at a lower force level.

100

102

104

106

0.422

0.4225

0.423

0.4235

0.424

Frequency vs Log Modal Amplitude

Log Modal Disp. Amplitude

Nat

ura

l Fre

qu

en

cy (

rad

)

100

102

104

106

10-5

100

105

1010Log Dissipation vs Log Modal Amplitude

Modal Disp. Amplitude

Mo

dal

En

erg

y D

iss

ipat

ion

/Cyc

le

100

102

104

106

10-2.9

10-2.7

10-2.5

Log Damping Ratio vs. Modal Amplitude

Modal Disp. Amplitude

Dam

pin

g R

ati

o

Linear region

governed by

Material Damping

Page 12: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

12

Limitations– Mode2

10-1

100

101

102

103

10-2

10-1

Damping Ratio vs Log Modal Amp.

Modal Disp. Amplitude

Dam

pin

g R

ati

o

10-1

100

101

102

103

1.18

1.19

1.2

1.21

Frequency vs Log Modal Amplitude

Log Modal Disp. Amplitude

Nat

ura

l Fre

qu

ency

(ra

d)

Limitations– Mode3

10-1

100

101

102

103

1.71

1.72

1.73

1.74

Frequency vs Log Modal Amplitude

Log Modal Disp. Amplitude

Nat

ura

l Fre

qu

ency

(ra

d)

10-1

100

101

102

103

10-1

Damping Ratio vs Modal Amplitude

Modal Disp. Amplitude

Dam

pin

g R

atio

Page 13: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

13

CananIwanmodelbeusedtopredicttheresponseofaFEmodel?

Academic simulations: micro-slip region = Excellent Representation transition region = may be inaccurate macro-slip region = Excellent Representation

Finite Element models?

Comparisonprocedurefordiscreteandmodalsimulations.

Apply Impact Force Convert physicalresponse to modal

Discrete Simulation:

q = *-1x

Hilbert Transform

100

101

102

10124

125

126

127

128

129

Modal Joint F

(a)

Nat

ura

l F

req

uen

cy (

Hz

)

10

010

110

210

10-6

10-4

10-2

100

102

10

Modal Joint F

(b)

Mo

dal

En

erg

y D

issi

pat

ion

per

cyc

le

Optimize Analytical Modelto frequency and energydissipation to each mode.

Min f

Apply Impact Force Hilbert Transform

100

101

102

10124

125

126

127

128

129

Modal Joint F

(a)

Nat

ura

l F

req

uen

cy (

Hz

)

10

010

110

210

10-6

10-4

10-2

100

102

10

Modal Joint F

(b)

Mo

dal

En

erg

y D

issi

pat

ion

per

cyc

le

Compare Modal andDiscrete simulations

Modal Simulation:10

110

210

3

0.188

0.189

0.19

0.191

0.192

0.193

0.194

Modal Force

Nat

ura

l F

req

uen

cy (

Hz)

101

102

103

10-2

100

102

104

Modal Force

Mo

dal

En

erg

y D

iss

ipat

ion

/Cyc

le

Page 14: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

14

HowisadiscreteIwanjointappliedinafiniteelementmodel?

Discrete Iwan (Fs, KT, χ, β)

x

y

z

Contact Region

FE model

Determine the contact surfaces

Use an Iwan model for each joint

AsimpleFEmodelwascreatedforsimulations.

Mesh: • Hexahedron elements• Relatively course mesh (1,554 nodes)

Constraints:• Free-Free Boundary conditions• Two washers are merged with the link• Washers are constrained to move and rotate along the surface of the beam Link

Beam

Washers

Discrete Iwan Models

3.5"

20"

2"

MSA3

Page 15: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

Slide 28

MSA3 "For Simulations" isn't too specific. How to improve? "To evaluate the modal approach" ??

Did you sufficiently explain the motivation - Why did we create an FEA model? What are we hoping to learn from these simulations?Matt Allen, 1/31/2013

Page 16: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

15

102

103

104

105

124

124.5

125

125.5

126

126.5

127

127.5

128

128.5

129

1 lbf

5 lbf10 lbf

50 lbf

100 lbf

500 lbf1000 lbf 5000 lbf

10000 lbf

Finite Element Model 1st Mode

Modal Force

Na

tura

l Fre

qu

en

cy

(H

z)

Discrete SimAnalytical ModelModal Sim

102

103

104

105

10-6

10-4

10-2

100

102

104

1 lbf

5 lbf

10 lbf

50 lbf

100 lbf

500 lbf1000 lbf

5000 lbf

10000 lbf

Finite Element Model 1st Mode

Modal Force

Mo

dal

En

erg

y D

issi

pat

ion

/Cyc

le

Discrete Sim

Analytical ModelModal Sim

HowwelldoesthemodalIwanmodelpredicttheresponseofthestructure?

macro-slipmicro-slip

= -.28

macro-slipmicro-slip

102

103

104

105

106

344.94

344.945

344.95

344.955

344.96

344.965

344.97

344.975

344.98

1 lbf

5 lbf

10 lbf

50 lbf

100 lbf 500 lbf

1000 lbf

5000 lbf

10000 lbf

Finite Element Model 2nd Mode

Modal Force

Na

tura

l Fre

qu

en

cy

(H

z)

Discrete SimAnalytical ModelModal Sim

102

103

104

105

106

10-10

10-8

10-6

10-4

10-2

100

102

1 lbf

5 lbf

10 lbf

50 lbf

100 lbf

500 lbf

1000 lbf

5000 lbf

10000 lbf

Finite Element Model 2nd Mode

Modal Force

Mo

da

l En

erg

y D

iss

ipa

tio

n/C

yc

le

Discrete SimAnalytical ModelModal Sim

HowwelldoesthemodalIwanmodelpredicttheresponseofthestructure?

micro-slip

micro-slip

= -.99

Mode 2

Page 17: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

16

102

103

104

105

106

344.94

344.945

344.95

344.955

344.96

344.965

344.97

344.975

344.98

1 lbf

5 lbf

10 lbf

50 lbf

100 lbf 500 lbf

1000 lbf

5000 lbf

10000 lbf

Finite Element Model 2nd Mode

Modal Force

Na

tura

l Fre

qu

en

cy

(H

z)

Discrete SimAnalytical ModelModal Sim

102

103

104

105

106

10-10

10-8

10-6

10-4

10-2

100

102

1 lbf

5 lbf

10 lbf

50 lbf

100 lbf

500 lbf

1000 lbf

5000 lbf

10000 lbf

Finite Element Model 2nd Mode

Modal ForceM

od

al E

ne

rgy

Dis

sip

ati

on

/Cy

cle

Discrete SimAnalytical ModelModal Sim

HowwelldoesthemodalIwanmodelpredicttheresponseofthestructure?

micro-slip

micro-slip

= -.99

Mode 2

102

103

104

105

106

670

672

674

676

678

680

682

684

686

688

1 lbf

5 lbf 10 lbf

50 lbf

100 lbf

500 lbf

1000 lbf

5000 lbf10000 lbf

Finite Element Model 3rd Mode

Modal Force

Na

tura

l Fre

qu

en

cy

(H

z)

Discrete SimAnalytical ModelModal Sim

102

103

104

105

106

10-6

10-4

10-2

100

102

104

1 lbf

5 lbf

10 lbf

50 lbf

100 lbf

500 lbf

1000 lbf

5000 lbf

10000 lbf

Finite Element Model 3rd Mode

Modal Force

Mo

da

l En

erg

y D

iss

ipa

tio

n/C

yc

le

Discrete SimAnalytical ModelModal Sim

HowwelldoesthemodalIwanmodelpredicttheresponseofthestructure?

macro-slipmicro-slip

macro-slipmicro-slip

Mode 3

Page 18: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

17

TheresponsecanbesimulatedwithafewSDOFmodalsimulationsandcomparewellinthemicro‐slipregion.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2-5

0

51st Mode

Mod

al V

eloc

ity

Time (s)

Discrete Sim

Modal Sim

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2-5

0

52nd Mode

Mod

al V

eloc

ity

Time (s)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2-5

0

53rd Mode

Mod

al V

eloc

ity

Time (s)

Modal Responses

TheresponsecanbesimulatedwithafewSDOFmodalsimulationsandcomparewellinthemicro‐slipregion.

Physical Responses

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2-100

-50

0

50

100

150

200

250

Z-V

elo

city

(m

/s)

at M

idp

oin

t

Time (s)

FE Model with 50lbf Impact Force

Discrete Sim

Modal Sim

Page 19: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

18

CanamodalIwanmodelbeusedtopredicttheresponseofactualexperimentaldata.

FE simulations: micro-slip region = Good Representation

macro-slip region = Fair Representation

Laboratory data?

Laboratorytestswereinitiallyconductedonabeamwithalinkattachedinthemiddle.

Nut

Link

Beam

Bolt

Washer

3.5"

20"

2" Same

dimensions as the FE model

Washers between link and beam were removed

The damping of this structure was found to be very small (joint carries little load) and hence a modified structure was studied instead.

Page 20: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

19

Alternative:Two‐beamteststructure

Beam Suspension 2 strings

8 elastic bungees

Forcing Automatic hammer

Consistent force input

Thetwobeamteststructureshowsmeasurable,nonlineardamping.

Damping (%) at various torque levels: 10 in-lbs, 30 in-lbs, 50 in-lbs

1500.112640.166050.313

3560.267420.489000.572

9000.1617120.2974001.21

Percent Difference

(%)

50 in-lbs Torque, ζ

(%)

Percent Difference

(%)

30 in-lbs Torque, ζ

(%)

Percent Difference

(%)

10 in-lbs Torque, ζ

(%)

Elastic Mode #

Page 21: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

20

MeasurementsweretakenwithascanninglaserDopplervibrometer.

Velocity Measurements:

Polytec OFV-534 Single Point LDV used as

reference.

Polytec PSV-400 Scanning Head used to

measure 70 points on the structure.

Comparisonprocedurefordiscreteandmodalsimulations.

Apply Impact Force Convert physicalresponse to modal

Laboratory Measurements:

Hilbert Transform

100

101

102

10124

125

126

127

128

129

Modal Joint F

(a)

Nat

ura

l F

req

uen

cy (

Hz

)

10

010

110

210

10-6

10-4

10-2

100

102

10

Modal Joint F

(b)

Mo

dal

En

erg

y D

issi

pat

ion

per

cyc

le

Optimize Analytical Modelto frequency and energydissipation to each mode.

Min f

Apply Impact Force Hilbert Transform

100

101

102

10124

125

126

127

128

129

Modal Joint F

(a)

Nat

ura

l F

req

uen

cy (

Hz

)

10

010

110

210

10-6

10-4

10-2

100

102

10

Modal Joint F

(b)

Mo

dal

En

erg

y D

issi

pat

ion

per

cyc

le

Compare Modal andDiscrete simulations

Modal Simulation:10

110

210

3

0.188

0.189

0.19

0.191

0.192

0.193

0.194

Modal Force

Nat

ura

l F

req

uen

cy (

Hz)

101

102

103

10-2

100

102

104

Modal Force

Mo

dal

En

erg

y D

iss

ipat

ion

/Cyc

le

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Mo

dal

Vel

oci

ty

Time (s)

Filtered

Average

0 20 400

0.5

1

Time (s)

Fo

rce

0 20 400

0.5

1

Time (s)

Fo

rce

Page 22: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

21

Comparethestandarddeviationofthetrimmedsetversusuntrimmedset.

3.225172.481392.1Modal Hammer50

0.31015.30238.6450

0.0110.6160.3350

0.0050.2836.5250

0.0090.4420.8150

3.081139.341444.5Modal Hammer30

1.58558.24180.1430

0.1253.8452.8330

0.0190.5130.9230

0.0130.3824.1130

0.2136.10288.6410

0.0410.6886.4310

0.0250.2732.8210

0.0880.8020.2110

Standard Deviation of Trimmed (N)

Standard Deviation of Impact Force (N)

Mean Impact Force (N)

Hammer Level(1 lowest - 4 highest)

Torque(in-lbs)

Apply Impact Force

0 20 400

0.5

1

Time (s)F

orc

e

50 100 150 200 250 300 350 400 450 500 550 60010

-8

10-6

10-4

10-2

|Vel

oci

ty|

(m/s

)

Frequency (Hz)

All Measurements

Filtered

-0.2-0.1

00.1

0.2

-0.11-0.1-0.09

-0.8-0.6-0.4-0.200.20.4

1st Elastic Mode 120.9 Hz

-0.2-0.1

00.1

0.2

-0.11-0.1-0.09

-1

0

1

2nd Elastic Mode 214.8 Hz

-0.2-0.1

00.1

0.2

-0.11-0.1-0.09-1

0

1

3rd Elastic Mode 473.7 Hz

-0.2-0.1

00.1

0.2

-0.11-0.1-0.09

00.5

1

4th Elastic Mode 787.4 Hz

-0.2-0.1

00.1

0.2

-0.11-0.1-0.09

0.40.60.8

11.2

5th Elastic Mode 813.2 Hz

-0.2-0.1

00.1

0.2

-0.11-0.1-0.09

0.51

1.5

6th Elastic Mode 1050 Hz

Toisolatethemodes,measurementswerebandpassfiltered.

Convert physicalresponse to modal

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Mo

dal

Vel

oci

ty

Time (s)

Filtered

Average

Nextthemeasurementsweredividedbythemassnormalizedmodeshapevalue.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Mo

dal

Vel

oci

ty

Time (s)

Filtered

Average

Page 23: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

22

ThemodalIwanmodelseemstohavedifficultycapturingtheenergydissipationandfrequency.

10-2

10-1

100

113

114

115

116

117

118

119

120

121

122

Modal Force

Na

tura

l Fre

qu

en

cy

(H

z)

Two Beam 1st Mode 30 in-lbs

Lab DataModal Iwan Model

10-2

10-1

100

10-12

10-10

10-8

10-6

Modal Force

Mo

da

l En

erg

y D

iss

ipa

tio

n/C

yc

le

Two Beam 1st Mode 30 in-lbs

Lab DataModal Iwan Model

Optimize Analytical Modelto frequency and energydissipation to each mode.

Min f

Howdoweaccountforthedampingassociatedwiththematerialandboundaryconditions?

Add a viscous damper to the modal Iwan model

M = 1

q

K∞

FS, KT, χ, β

C

Page 24: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

23

ThemodalIwanmodelwithaviscousdampercapturesthelaboratorydataaccurately!

10-2

10-1

100

113

114

115

116

117

118

119

120

121

122

Modal Force

Na

tura

l Fre

qu

en

cy

(H

z)

Two Beam 1st Mode 30 in-lbs

Lab DataModal Iwan ModelModal Iwan & VD Model

10-2

10-1

100

10-12

10-10

10-8

10-6

Modal ForceM

od

al E

ne

rgy

Dis

sip

ati

on

/Cy

cle

Two Beam 1st Mode 30 in-lbs

Lab DataModal Iwan ModelModal Iwan & VD ModelVD Model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-0.01

-0.005

0

0.005

0.01

0.015

Ve

loc

ity (m

/s) a

t M

idp

oin

t

Time (s)

Filtered DataSimulated Model

TheresponsecanthenbesimulatedasasuperpositionofnonlinearSDOFsystems.

Page 25: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

24

Theseconceptsalsoholdforrealistichardware

Front and rear catalytic converters assembled together with required assembly torque and exhaust manifold gasket.

System hung freely suspended by bungee cords to complete a roving hammer test.

0 50 100 150 200 250 300 350 400 450 500

10-1

100

Frequency [Hz]

Co

mp

osi

te F

RF

[m/s

2 ]

Composite FRF for Coupled Catalyic Converter System

Combined Composite FRF

Composite FRF 101X

Composite FRF 101Z

LinearExperimentalModalAnalysis

Force levels kept low to estimate linear damping.

Bending0.0045348.686

Torsion0.0044262.715

Localized Heat Shield Mode0.0004247.384

Localized Heat Shield Mode0.0005243.413

Bending0.0043175.422

Bending0.0030113.701

Deflection TypeDamping

Ratio

Natural Frequency

[Hz]

Modal Index

Page 26: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

25

10-4

10-3

10-2

10-1

100

10-2.6

10-2.5

10-2.4

10-2.3

10-2.2

Damping vs. Velocity Amplitude

Amplitude (m/s)

Dam

pin

g R

atio

Strike 204z1

Strike 304z1

Strike 304x1

Strike 204z2

Strike 304z2

Strike 304x2

Strike 204z3

Strike 304z3

Strike 304x3

ModalIwanmodelaccuratelycapturesthedampingversusamplitudeforvariousinputpoints(variouscombinationsofthedifferentmodalamplitudes)!

Because the quasi-modal framework is valid, we can reduce the number of tests and test/model comparisons dramatically!

Preview:ModalIwanparameterscan(*)beusedtodeducediscretejointparameters.

Measurements of modal response in micro-slip regime used to deduce discrete joint properties. [Segalman, Allen, Eriten & Hoppman, ASME-IDETC 2015]

Page 27: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

26

Conclusions

Modal Iwan models can represent real structures quite accurately! Academic Model

micro-slip region = Excellent Representation

macro-slip region = Excellent Representation

FE Model micro-slip region = Good Representation

macro-slip region = Fair Representation

Laboratory Data micro-slip region = Excellent Representation

macro-slip region = Not Obtained

Simulation Work:

Michael Starr, Daniel Segalman, Michael Guthrie, Brandon Deaner, Robert Lacayo

Lab Work:

Jill Blecke, Matthew Allen, Hartono Sumali, Michael Starr, Randy Mayes, Brandon Zwink, Patrick Hunter, Dan Segalman, Steve Myatt

Some of the work described was conducted at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Special thanks to…

Acknowledgements

Univ. Wisconsin Research Group:

Former: Brandon Deaner, Robert Kuether, Hamid Ardeh, Dan Roettgen, David Ehrhardt, Current: Robert Lacayo, Kurt Hoppman, Melih Eriten, …

B. Deaner, M. S. Allen, M. J. Starr, D. J. Segalman, and H. Sumali, "Application of Viscous and Iwan Modal Damping Models to Experimental Measurements From Bolted Structures," ASME Journal of Vibrations and Acoustics, vol. 137, p. 12, 2015.

B. J. Deaner, M. S. Allen, M. J. Starr, and D. J. Segalman, “Application of Viscous and Iwan Modal Damping Models to Experimental Measurements from Bolted Structures," presented at the International Design Engineering Technical Conferences, Portland, Oregon USA, 2013.

M. S. Allen, R. J. Kuether, B. Deaner, and M. W. Sracic, "A Numerical Continuation Method to Compute Nonlinear Normal Modes Using Modal Reduction," presented at the 53rd Structures, Structural Dynamics, and Materials Conference (SDM), Honolulu, Hawaii, 2012.

Page 28: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

27

0 5 10 15 20 25 30 35 40 45 50

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Time (ms)

Res

po

nse

Response

Zero Pts

AlternativeT/FAnalysis:ZeroedEarly‐timeFFT

Nonlinearity is assumed to be active at high amplitudes and inactive at lower amplitudes

The response then becomes more linear as more of the initial nonlinear response is nullified.

Impulse responses with initial segments of varying length set to zero are compared in the frequency domain.

The nonzero portion of each impulse response begins at a point in which the response is near zero.

High Amplitude Nonlinear

Low Amplitude Linear

Excitation

0 5 10 15 20 25 30 35 40 45 50

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Time (ms)

Res

po

nse

Response

Zero Pts

AlternativeT/FAnalysis:ZeroedEarly‐timeFFT

Nonlinearity is assumed to be active at high amplitudes and inactive at lower amplitudes

The response then becomes more linear as more of the initial nonlinear response is nullified.

Impulse responses with initial segments of varying length set to zero are compared in the frequency domain.

The nonzero portion of each impulse response begins at a point in which the response is near zero.

High Amplitude Nonlinear

Low Amplitude Linear

Excitation

1340 1360 1380 1400 1420 1440

105

106

Frequency (Hz)

Mag

nit

ud

e

NLDetect: FFT of Time Response - Truncated at zero points)

0

13.0927.04

42.18

58.35

82.28 107

129.6

Page 29: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

28

Beam:ZEFFTs

500 1000 1500 2000 2500 3000 3500 4000

104

105

106

107

Frequency (Hz)

Mag

nit

ud

eNLDetect: FFT of Time Response - Truncated at zero points)

0

13.0927.04

42.18

58.35

82.28 107

129.6

1400 and 2750 Hz modes clearly soften as the amplitude increases.

FEA Mode 1: 644 Hz

FEA Mode 3: 1581 Hz

FEA Mode 6: 3035 Hz

1340 1360 1380 1400 1420 1440

105

106

Frequency (Hz)

Mag

nit

ud

e

NLDetect: FFT of Time Response - Truncated at zero points)

0

13.0927.04

42.18

58.35

82.28 107

129.6All of these lines come from one response with different parts erased!

Beam:BENDandIBEND

IBEND: Somewhat

nonlinear before 70ms,

Significantly nonlinear before 50ms.

1385 1390 1395 1400 1405 1410 1415 1420

106

107

Frequency (Hz)

Ma

gn

itu

de

NLDetect: FFT of Time Response - Truncated at zero points)

114

Fit to 114

130

Extrap from 114 to 129.6

71

Extrap from 114 to 70.95

30.6

Extrap from 114 to 30.58

2.66

Extrap from 114 to 2.655

0 20 40 60 80 100 120 1400

0.2

0.4

0.6

0.8

1

1.2

1.4

time (ms)

No

rmal

ized

In

teg

ral

Normalized Integral of Difference FRF over Frequency

0.2

0.4

0.6

0.8

1

1.2Integral

fit time

Page 30: Introduction to Iwan Models and Modal Testing for ... · D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New

29

“LinearBeam”

Results on previous slides for 200 lbf peak force

This shows the ZEFFTs for a 40 lbf peak force

3 Hz shift observed from high to low amplitude.

1400 1405 1410 1415 1420

105

106

Frequency (Hz)

Mag

nit

ud

eNLDetect: FFT of Time Response - Truncated at zero points)

011.9926.3443.2759.8181.05117.7