49
Introduction to Information Retrieval BM25, BM25F, and User Behavior Chris Manning and Pandu Nayak

Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Introductionto

InformationRetrieval

BM25,BM25F,andUserBehaviorChrisManningandPanduNayak

Page 2: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Page 3: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Summary– BIM[Robertson&Spärck-Jones1976]§ Boilsdownto

where

§ Withconstantpi =0.5,simplifiestoIDFweighting:

RSV = log Nnixi=qi=1

RSV BIM = ciBIM ;

xi=qi=1∑ ci

BIM = log pi (1− ri )(1− pi )ri

document relevant(R=1) notrelevant(R=0)

termpresent xi =1 pi ritermabsent xi =0 (1– pi) (1 – ri)

Logoddsratio

Page 4: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

GraphicalmodelforBIM– BernoulliNB

i ∈ q

Binaryvariablesxi = (tfi ≠ 0)

Page 5: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

AkeylimitationoftheBIM§ BIM– likemuchoforiginalIR– wasdesignedfortitlesorabstracts,andnotformodernfulltextsearch

§ Wewanttopayattentiontotermfrequencyanddocumentlengths,justlikeinothermodelswediscuss

§ Want

§ Wantsomemodelofhowoftentermsoccurindocs

ci = logptf r0p0rtf

Page 6: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

1.OkapiBM25 [Robertsonetal.1994,TRECCityU.]

§ BM25“BestMatch25”(theyhadabunchoftries!)§ DevelopedinthecontextoftheOkapisystem§ StartedtobeincreasinglyadoptedbyotherteamsduringtheTRECcompetitions

§ Itworkswell

§ Goal:besensitivetotermfrequencyanddocumentlengthwhilenotaddingtoomanyparameters§ (RobertsonandZaragoza2009;Spärck Jonesetal.2000)

Page 7: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

§ Wordsaredrawnindependentlyfromthevocabularyusingamultinomialdistribution

Generativemodelfordocuments

... the draft is that each team is given a position in the draft …

basic

team each

thatof

is

the draft

designnfl

football

given

annual draftfootball

team

nfl

Page 8: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

§ Distributionoftermfrequencies(tf)followsabinomialdistribution– approximatedbyaPoisson

Generativemodelfordocuments

... the draft is that each team is given a position in the draft …

draft

Page 9: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Poissondistribution§ ThePoissondistributionmodelstheprobabilityofk,thenumberofeventsoccurringinafixedintervaloftime/space,withknownaveragerateλ (=cf/T),independentofthelastevent

§ Examples§ Numberofcarsarrivingatthetollboothperminute§ Numberoftyposonapage

p(k) = λk

k!e−λ

Page 10: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Poissondistribution§ IfTislargeandpissmall,wecanapproximateabinomialdistributionwithaPoissonwhereλ =Tp

§ Mean=Variance=λ =Tp.§ Examplep= 0.08,T=20.Chanceof1occurrenceis:

§ Binomial

§ Poisson…alreadyclose

p(k) = λk

k!e−λ

P(1) = [(20)(.08)]1

1!e−(20)(.08) = 1.6

1e−1.6 = 0.3230

P(1) = 201

!

"#

$

%&(.08)1(.92)19 = .3282

Page 11: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Poissonmodel§ Assumethattermfrequenciesinadocument(tfi)followaPoissondistribution§ “Fixedinterval”impliesfixeddocumentlength…thinkroughlyconstant-sizeddocumentabstracts§…willfixlater

Page 12: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Poissondistributions

Page 13: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

(One)PoissonModel§ Isareasonablefitfor“general”words§ Isapoorfitfortopic-specificwords

§ gethigherp(k)thanpredictedtoooften

Documents containingk occurrencesofword(λ =53/650)

Freq Word 0 1 2 3 4 5 6 7 8 9 10 11 12

53 expected 599 49 2

52 based 600 48 2

53 conditions 604 39 7

55 cathexis 619 22 3 2 1 2 0 1

51 comic 642 3 0 1 0 0 0 0 0 0 1 1 2

Harter, “A Probabilistic Approach to Automatic Keyword Indexing”, JASIST, 1975

Page 14: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Eliteness(“aboutness”)§ Modeltermfrequenciesusingeliteness§ Whatiseliteness?

§ Hiddenvariableforeachdocument-termpair,denotedasEi fortermi

§ Representsaboutness:atermiseliteinadocumentif,insomesense,thedocumentisabouttheconceptdenotedbytheterm

§ Elitenessisbinary§ Termoccurrencesdependonlyoneliteness…§ …butelitenessdependsonrelevance

Page 15: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

ElitetermsTextfromtheWikipediapageontheNFLdraftshowingeliteterms

The National Football League Draft is an annual event in which the National Football League (NFL) teams select eligible college football players. It serves as the league’s most common source of player recruitment. The basic design of the draft is that each team is given a position in the draft order in reverse order relative to its record …

Page 16: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Graphicalmodelwitheliteness

i ∈ q

Frequencies(notbinary)

Binaryvariables

Page 17: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

RetrievalStatusValue§ SimilartotheBIMderivation,wehave

where

andusingeliteness,wehave:

RSV elite = cielite

i∈q,tfi>0∑ (tfi );

p(TFi = tfi R) = p(TFi = tfi Ei = elite)p(Ei = elite R)+p(TFi = tfi Ei = elite)(1− p(Ei = elite R))

cielite(tfi ) = log

p(TFi = tfi R =1)p(TFi = 0 R = 0)p(TFi = 0 R =1)p(TFi = tfi R = 0)

Page 18: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

2-Poissonmodel§ Theproblemswiththe1-PoissonmodelsuggestsfittingtwoPoissondistributions

§ Inthe“2-Poissonmodel”,thedistributionisdifferentdependingonwhetherthetermiseliteornot

§ whereπisprobabilitythatdocumentiseliteforterm§ but,unfortunately,wedon’tknowπ,λ,μ

p(TFi = ki R) =

Page 19: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Let’sgetanidea:Graphingfordifferentparametervaluesofthe2-Poisson

cielite(tfi )

Page 20: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Qualitativeproperties

§

§ increasesmonotonicallywithtfi

§ …butasymptoticallyapproachesamaximumvalueas[nottrueforsimplescalingoftf]

§ … withtheasymptoticlimitbeing

cielite(0) = 0

cielite(tfi )

ciBIM

Weightofelitenessfeature

tfi →∞

Page 21: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Approximatingthesaturationfunction§ Estimatingparametersforthe2-Poissonmodelisnoteasy

§ …Soapproximateitwithasimpleparametriccurvethathasthesamequalitativeproperties

tfk1 + tf

Page 22: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Saturationfunction

§ Forhighvaluesofk1,incrementsintfi continuetocontributesignificantlytothescore

§ Contributionstailoffquicklyforlowvaluesofk1

Page 23: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

“Early”versionsofBM25§ Version1:usingthesaturationfunction

§ Version2:BIMsimplificationtoIDF

§ (k1+1) factordoesn’tchangeranking,butmakestermscore1 whentfi = 1

§ Similartotf-idf,buttermscoresarebounded

ciBM 25v1(tfi ) = ci

BIM tfik1 + tfi

ciBM 25v2 (tfi ) = log

Ndfi

×(k1 +1)tfik1 + tfi

Page 24: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Documentlengthnormalization§ Longerdocumentsarelikelytohavelargertfi values

§ Whymightdocumentsbelonger?§ Verbosity:suggestsobservedtfi toohigh§ Largerscope:suggestsobservedtfi mayberight

§ Arealdocumentcollectionprobablyhasbotheffects§ …soshouldapplysomekindofpartialnormalization

Page 25: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Documentlengthnormalization§ Documentlength:

§ avdl:Averagedocumentlengthovercollection§ Lengthnormalizationcomponent

§ b = 1 fulldocumentlengthnormalization§ b = 0 nodocumentlengthnormalization

dl = tfii∈V∑

B = (1− b)+ b dlavdl

"

#$

%

&', 0 ≤ b ≤1

Page 26: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Documentlengthnormalization

Page 27: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

OkapiBM25§ Normalizetf usingdocumentlength

§ BM25rankingfunction

t !fi =tfiB

ciBM 25(tfi ) = log

Ndfi

×(k1 +1)t "fik1 + t "fi

= log Ndfi

×(k1 +1)tfi

k1((1− b)+ bdlavdl

)+ tfi

RSV BM 25 = ciBM 25

i∈q∑ (tfi );

Page 28: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

OkapiBM25

§ k1 controlstermfrequencyscaling§ k1 = 0 isbinarymodel;k1 largeisrawtermfrequency

§ b controlsdocumentlengthnormalization§ b = 0 isnolengthnormalization;b = 1 isrelativefrequency(fullyscalebydocumentlength)

§ Typically,k1 issetaround1.2–2andb around0.75§ IIRsec.11.4.3discussesincorporatingquerytermweightingand(pseudo)relevancefeedback

RSV BM 25 = log Ndfii∈q

∑ ⋅(k1 +1)tfi

k1((1− b)+ bdlavdl

)+ tfi

Page 29: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

WhyisBM25betterthanVSMtf-idf?§ Supposeyourqueryis[machinelearning]§ Supposeyouhave2documentswithtermcounts:

§ doc1:learning1024;machine1§ doc2:learning16;machine8

§ tf-idf:log2 tf *log2 (N/df)§ doc1:11*7+1*10 = 87§ doc2:5*7+4*10=75

§ BM25:k1 =2§ doc1:7*3+10*1=31§ doc2:7*2.67+10*2.4=42.7

Page 30: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

2.Rankingwithfeatures§ Textualfeatures

§ Zones:Title,author,abstract,body,anchors,…§ Proximity§ …

§ Non-textualfeatures§ Filetype§ Fileage§ Pagerank§ …

Page 31: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Rankingwithzones§ Straightforwardidea:

§ Applyyourfavoriterankingfunction(BM25)toeachzoneseparately

§ Combinezonescoresusingaweightedlinearcombination

§ Butthatseemstoimplythattheelitenesspropertiesofdifferentzonesaredifferentandindependentofeachother§ …whichseemsunreasonable

Page 32: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Rankingwithzones§ Alternateidea

§ Assumeelitenessisaterm/documentpropertysharedacrosszones

§ …buttherelationshipbetweenelitenessandtermfrequenciesarezone-dependent§ e.g.,denseruseofelitetopicwordsintitle

§ Consequence§ Firstcombineevidenceacrosszonesforeachterm§ Thencombineevidenceacrossterms

Page 33: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

BM25Fwithzones§ Calculateaweightedvariantoftotaltermfrequency§ …andaweightedvariantofdocumentlength

wherevz iszoneweighttfzi istermfrequencyinzonezlenz islengthofzonezZ isthenumberofzones

tfi = vztfziz=1

Z

∑ dl = vzlenzz=1

Z

∑ avdl = Averageacrossalldocuments

dl

Page 34: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

SimpleBM25Fwithzones

§ Simpleinterpretation:zonez is“replicated”vz times

§ Butwemaywantzone-specificparameters(k1, b,IDF)

RSV SimpleBM 25F = log Ndfii∈q

∑ ⋅(k1 +1)tfi

k1((1− b)+ bdlavdl

)+ tfi

Page 35: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

BM25F§ Empirically,zone-specificlengthnormalization(i.e.,zone-specificb)hasbeenfoundtobeuseful

tfi = vztfziBzz=1

Z

Bz = (1− bz )+ bzlenzavlenz

"

#$

%

&', 0 ≤ bz ≤1

RSV BM 25F = log Ndfii∈q

∑ ⋅(k1 +1)tfik1 + tfi

See Robertson and Zaragoza (2009: 364)

Page 36: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Rankingwithnon-textualfeatures§ Assumptions

§ Usualindependenceassumption§ Independentofeachotherandofthetextualfeatures§ AllowsustofactoroutinBIM-stylederivation

§ Relevanceinformationisqueryindependent§ Usuallytrueforfeatureslikepagerank,age,type,…§ Allowsustokeepallnon-textualfeaturesintheBIM-stylederivationwherewedropnon-queryterms

p(Fj = f j R =1)p(Fj = f j R = 0)

Page 37: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Rankingwithnon-textualfeatures

where

andisanartificiallyaddedfreeparametertoaccountforrescalings intheapproximations§ CaremustbetakeninselectingVj dependingonFj.E.g.

§ Explainswhyworkswell

RSV = cii∈q∑ (tfi )+ λ jVj ( f j )

j=1

F

Vj ( f j ) = logp(Fj = f j R =1)p(Fj = f j R = 0)

λ j

log( !λ j + f j )f j!λ j + f j

1!λ j + exp(− f j !!λ j )

RSV BM 25 + log(pagerank)

Page 38: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

UserBehavior§ Search Results for “CIKM” (in 2010!)

38

# of clicks received

Taken with slight adaptation from Fan Guo and Chao Liu’s 2009/2010 CIKM tutorial: Statistical Models for Web Search: Click Log Analysis

Page 39: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

UserBehavior§ Adapt ranking to user clicks?

39

# of clicks received

Page 40: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

UserBehavior§ Tools needed for non-trivial cases

40

# of clicks received

Page 41: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Websearchclicklog

An example

41

Page 42: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

WebSearchClickLog§ How large is the click log?

§ search logs: 10+ TB/day

§ In existing publications:§ [Silverstein+99]: 285M sessions§ [Craswell+08]: 108k sessions§ [Dupret+08] : 4.5M sessions (21 subsets * 216k sessions)§ [Guo +09a] : 8.8M sessions from 110k unique queries§ [Guo+09b]: 8.8M sessions from 110k unique queries§ [Chapelle+09]: 58M sessions from 682k unique queries§ [Liu+09a]: 0.26PB data from 103M unique queries

42

Page 43: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

InterpretClicks:anExample

§ Clicks are good…§ Are these two clicks

equally “good”?

§ Non-clicks may have excuses:§ Not relevant§ Not examined

43

Page 44: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Eye-trackingUserStudy

44

Page 45: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

§ Higher positions receive more user attention (eye fixation) and clicks than lower positions.

§ This is true even in the extreme setting where the order of positions is reversed.

§ “Clicks are informative but biased”.

45

[Joachims+07]

ClickPosition-bias

NormalPosition

Percen

tage

ReversedImpression

Percen

tage

Page 46: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Userbehavior§ Userbehaviorisanintriguingsourceofrelevancedata

§ Usersmake(somewhat)informedchoiceswhentheyinteractwithsearchengines

§ Potentiallyalotofdataavailableinsearchlogs

§ Buttherearesignificantcaveats§ Userbehaviordatacanbeverynoisy§ Interpretinguserbehaviorcanbetricky§ Spamcanbeasignificantproblem§ Notallquerieswillhaveuserbehavior

Page 47: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

FeaturesbasedonuserbehaviorFrom[Agichtein,Brill,Dumais 2006;Joachims 2002]§ Click-throughfeatures

§ Clickfrequency,clickprobability,clickdeviation§ Clickonnextresult?previous result?above?below>?

§ Browsingfeatures§ Cumulativeandaveragetimeonpage,ondomain,onURLprefix;deviationfromaveragetimes

§ Browsepathfeatures

§ Query-textfeatures§ Queryoverlapwithtitle,snippet,URL,domain,nextquery§ Querylength

Page 48: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Incorporatinguserbehaviorintorankingalgorithm§ IncorporateuserbehaviorfeaturesintoarankingfunctionlikeBM25F§ ButrequiresanunderstandingofuserbehaviorfeaturessothatappropriateVj functionsareused

§ Incorporateuserbehaviorfeaturesintolearnedrankingfunction

§ Eitherofthesewaysofincorporatinguserbehaviorsignalsimproveranking

Page 49: Introduction to Information Retrievalweb.stanford.edu/class/cs276/handouts/lecture12-bm25etc.pdf · Introduction to Information Retrieval Elite terms Text from the Wikipedia page

IntroductiontoInformationRetrieval

Resources§ S.E.RobertsonandH.Zaragoza.2009.TheProbabilistic

RelevanceFramework:BM25andBeyond.FoundationsandTrendsinInformationRetrieval 3(4):333-389.

§ K.Spärck Jones,S.Walker,andS.E.Robertson.2000.Aprobabilisticmodelofinformationretrieval:Developmentandcomparativeexperiments.Part1.InformationProcessingandManagement779–808.

§ T.Joachims.OptimizingSearchEnginesusingClickthroughData.2002.SIGKDD.

§ E.Agichtein,E.Brill,S.Dumais.2006.ImprovingWebSearchRankingByIncorporatingUserBehaviorInformation.2006.SIGIR.