22
Introduction to FreeSurfer surfer.nmr.mgh.harvard.edu

Introduction to FreeSurfer surfer.nmr.mgh.harvard

  • Upload
    duc

  • View
    107

  • Download
    4

Embed Size (px)

DESCRIPTION

Introduction to FreeSurfer surfer.nmr.mgh.harvard.edu. Why FreeSurfer?. Anatomical analysis is not like functional analysis – it is completely stereotyped. Registration to a template (e.g. MNI/Talairach) doesn ’ t account for individual anatomy. - PowerPoint PPT Presentation

Citation preview

Page 1: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Introduction to FreeSurfersurfer.nmr.mgh.harvard.edu

Page 2: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Why FreeSurfer?

1. Anatomical analysis is not like functional analysis – it is completely stereotyped.

2. Registration to a template (e.g. MNI/Talairach) doesn’t account for individual anatomy.

3. Even if you don’t care about the anatomy, anatomical models allow functional analysis not otherwise possible.

Page 3: Introduction to FreeSurfer surfer.nmr.mgh.harvard

ICBM Atlas

Why not just register to an ROI Atlas?

12 DOF(Affine)

Page 4: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Subject 1 Subject 2 aligned with Subject 1 (Subject 1’s Surface)

Problems with Affine (12 DOF) Registration

Page 5: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Surface and Volume Analysis

Cortical Reconstructionand Automatic Labeling

Inflation and FunctionalMapping

Surface FlatteningSurface-based IntersubjectAlignment and Statistics

Automatic SubcorticalGray Matter Labeling

Automatic Gyral White Matter Labeling

Page 6: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Talk Outline

1. Cortical (surface-based) Analysis.

2. Volume Analysis.

Page 7: Introduction to FreeSurfer surfer.nmr.mgh.harvard

7

Surface Reconstruction Overview

• Input: T1-weighted (MPRAGE,SPGR)• Find white/gray surface• Find pial surface• “Find” = create mesh

– Vertices, neighbors, triangles, coordinates– Accurately follows boundaries between tissue types– “Topologically Correct”

• closed surface, no donut holes• no self-intersections

• Generate surface-based cross-subject registration• Label cortical folding patterns• Subcortical Segmentation along the way

Page 8: Introduction to FreeSurfer surfer.nmr.mgh.harvard

8

Surface Model

• Mesh (“Finite Element”)• Vertex = point of triangles

• Neighborhood

• XYZ at each vertex

• Triangles/Faces ~ 150,000

• Area, Distance

• Curvature, Thickness

• Moveable

Page 9: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Surfaces: White and Pial

Page 10: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Cortical Thickness

white/gray surface

pial surface

lh.thickness, rh.thickness

• Distance between white and pial surfaces

• One value per vertex

Page 11: Introduction to FreeSurfer surfer.nmr.mgh.harvard

A Surface-Based Coordinate System

Page 12: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Comparing Coordinate Systems and Brodmann Areas

Cumulative histogram (red=surface, blue=nonlinear

Talairach)

Ratio of surface accuracy to volume accuracy

Page 13: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Automatic Surface Segmentation

Precentral Gyrus Postcentral Gyrus

Superior Temporal GyrusBased on individual’s folding pattern

Page 14: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Inter-Subject AveragingS

ubje

ct 1

Sub

ject

2

Native Spherical Spherical

Surface-to- Surface

Surface-to- Surface

GLM

Demographics

mri_glmfit cf. Talairach

Page 15: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Borrowed from (Halgren et al., 1999)

Visualization

Page 16: Introduction to FreeSurfer surfer.nmr.mgh.harvard

16

Automatic Cortical Parcellation

Fine-tune based onindividual anatomy

Spherical Atlas based on Manual Parcellations (40 of them)

Map to IndividualThru Spherical Reg

Note: Similar methodology to volume labeling

More in the Anatomical ROI talk

Page 17: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Talk Outline

1. Cortical (surface-based) Analysis.

2. Volume Analysis.

Page 18: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Volume Analysis: Automatic Individualized Segmentation

Surface-based coordinate system/registration appropriate for cortex but not for thalamus, ventricular system, basal ganglia, etc…

Anatomy is extremely variable – measuring the variance and accounting for it is critical (more in the individual subject talk)!

Page 19: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Volumetric Segmentation (aseg)

Caudate

Pallidum

Putamen

Amygdala

Hippocampus

Lateral Ventricle

Thalamus

White Matter

Cortex

Not Shown:Nucleus AccumbensCerebellum

Page 20: Introduction to FreeSurfer surfer.nmr.mgh.harvard

Summary• Why Surface-based Analysis?

– Function has surface-based organization– Visualization: Inflation/Flattening– Cortical Morphometric Measures– Inter-subject registration

• Automatically generated ROI tuned to each subject individually

Use FreeSurfer Be Happy

Page 21: Introduction to FreeSurfer surfer.nmr.mgh.harvard

21

FreeSurfer Directory Tree

bert

scripts surf label mri stats

orig.mgz T1.mgz brain.mgz wm.mgz aseg.mgz

•Subject•Subject Name

Each data set has its own unique SubjectId (eg, bert)

recon-all –i file.dcm –subject bert –all

Page 22: Introduction to FreeSurfer surfer.nmr.mgh.harvard

22

Other File Formats• Surface: Vertices, XYZ, neighbors (lh.white)• Curv: lh.curv, lh.sulc, lh.thickness• Annotation: lh.aparc.annot• Label: lh.pericalcarine.label• Unique to FreeSurfer • FreeSurfer can read/write:

• NIFTI, Analyze, MINC• FreeSurfer can read:

• DICOM, Siemens IMA, AFNI