57
Introduction to EEG for non-epileptologists working in seizure prediction and dynamics Richard Wennberg, MD, FRCPC University of Toronto IWSP4, Kansas City, 2009

Introduction to EEG for non-epileptologists working in seizure prediction and dynamics

  • Upload
    tillie

  • View
    33

  • Download
    0

Embed Size (px)

DESCRIPTION

Introduction to EEG for non-epileptologists working in seizure prediction and dynamics. Richard Wennberg, MD, FRCPC University of Toronto IWSP4, Kansas City, 2009. 1. EEG source. cortical pyramidal cells voltage fluctuations in space/time summated EPSPs/IPSPs - PowerPoint PPT Presentation

Citation preview

Page 1: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Introduction to EEG for non-epileptologists working in seizure prediction and dynamics

Richard Wennberg, MD, FRCPC

University of Toronto

IWSP4, Kansas City, 2009

Page 2: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

1. EEG source

• cortical pyramidal cells

• voltage fluctuations in space/time

• summated EPSPs/IPSPs

• dependent on neural “synchrony”

Page 3: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

2. EEG oscillations

• Normal– (alpha, beta, mu, gamma, sleep spindles/delta)– generated in cortex– varying degrees of thalamocortical

interdependence

• Abnormal– (seizures, burst-suppression)

Page 4: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

3. EEG sharp transients

• Normal– Vertex sharp waves, positive occipital sharp

transients of sleep (POSTS), benign epileptiform transients of sleep (BETS) or small sharp spikes; eye blinks, EKG, EMG

• Abnormal– Epileptiform spikes, polyspikes, spike and waves,

sharp waves, sharp and slow waves– Periodic complexes (lateralized and generalized),

triphasic waves

Page 5: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

International (10-20) Electrode Placement

Page 6: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics
Page 7: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Gloor, J Clin Neurophysiol, 1985

Page 8: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Gloor, J Clin Neurophysiol, 1985

Page 9: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Gloor, J Clin Neurophysiol, 1985

Page 10: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Pedley and Traub. In: Daly and Pedley, eds. Current Practice of Clinical EEG, 1990

Page 11: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Pedley and Traub. In: Daly and Pedley, eds. Current Practice of Clinical EEG, 1990

Page 12: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics
Page 13: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics
Page 14: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Steriade. In: Niedermeyer and Lopes da Silva, eds. Electroencephalography, 1993

Page 15: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

EEG examples

Page 16: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Subject awake, resting. Normal posterior alpha rhythm disappears with eye opening (*). High frequency activity at end of figure after eye opening is muscle artifact. Anterior-posterior bipolar montage. LFF 0.5 Hz, HFF 70 Hz, this and all other figures.

Page 17: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Stage II sleep. K-complex (*); Sleep spindles (**). Anterior-posterior bipolar montage.

Page 18: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Burst of generalized 3 Hz spike and wave activity (*). Primary generalized epilepsy. Anterior-posterior bipolar montage.

Page 19: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Generalized, bilaterally synchronous, 3 Hz spike and wave activity in a different patient with primary generalized epilepsy. Referential montage; reference = linked ears.

Page 20: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Primary generalized epilepsy: spike and wave bursts

Juvenile myoclonic epilepsy

Generalized, bilaterally synchronous bursts of spike and wave activity in another patient with primary generalized epilepsy, subtype juvenile myoclonic epilepsy. Referential montage; reference = linked ears.

Page 21: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Primary generalized epilepsy: transition to tonic-clonic seizure

Juvenile myoclonic epilepsy

In this condition, bursts of spike and wave activity increase in frequency in the morning hours after awakening in a true “pre-ictal period” that may – or may not – result in a transition to a generalized tonic-clonic seizure.

Page 22: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Primary generalized epilepsy: transition to tonic-clonic seizure

High amplitude “hypersynchrony”

Same seizure transition as previous figure, shown here at slower sweep speed.

Page 23: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Bilateral temporal lobe (“focal”, “partial”) interictal epileptiform activity. Independent sharp and slow wave complexes over right (*) and left (**) anterior-mid temporal regions. Temporal lobe epilepsy. Anterior-posterior bipolar montage.

Page 24: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Ictal EEG showing focal rhythmic seizure pattern localized to right temporal region (“equipotentiality” at F8-T4). Temporal lobe epilepsy. Anterior-posterior bipolar montage.

Page 25: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Interictal EEG during drowsiness in a different patient showing unilateral right anterior temporal lobe spikes (“phase reversing” at Zg2, F8, F10)

Patient with bilateral hippocampal sclerosis, global developmental delay, medically-refractory complex partial seizures

Page 26: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Patient with bilateral hippocampal sclerosis, global developmental delay, medically-refractory complex partial seizures

Ictal EEG showing unilateral right temporal lobe seizure (with “equipotentiality” at Zg2-T4, F8-T4, F10-T10)(note different sensitivity and time scale compared with preceding, interictal EEG figure from same patient)

Page 27: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Artifacts

Reference electrodes

Page 28: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Why should the non-epileptologist care about artifacts and reference electrodes?

Two examples– EEG studies of beta and gamma oscillations in

cognition would appear to have been analyzing mainly muscle artifact

• Whitham et al. Clin Neurophysiol 2008;119:1166-75 and Clin Neurophysiol 2007;118;1877-88

– The need for a reference electrode in EEG affects phase synchronization studies; resulting amplitude variations influence the phase locking analyses

• Guevara et al. Neuroinformatics 2005;3:301-13

Page 29: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

CZ-C3

C3-T3

T3-SP1

SP1-SP2

SP2-T4

T4-C4

C4-CZ

EOG1-EOG2

FP1-F7

F7-T3

T3-T5

T5-O1

FP2-F8

F8-T4

T4-T6

T6-O2

FP1-F3

F3-C3

C3-P3

P3-O1

FP2-F4

F4-C4

C4-P4

P4-O2

EKG

Comment Eye Blink C3 pulse artifact C3 pulse artifact C3 pulse artifact Eyes left Eyes right 100 uV

1 sec

Eye blink, horizontal eye movements, frontalis and temporalis EMG, lateral rectus EMG, pulse artifacts.

Combined circular and anterior-posterior bipolar montage.

Page 30: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

F7-Pz

T3-Pz

T5-Pz

Fp1-Pz

F3-Pz

C3-Pz

P3-Pz

O1-Pz

Fz-Pz

Cz-Pz

Pz-Pz

Fp2-Pz

F4-Pz

C4-Pz

P4-Pz

O2-Pz

F8-Pz

T4-Pz

T6-Pz

Comment Eye Blink C3 pulse artifact C3 pulse artifact C3 pulse artifact Eyes left Eyes right 100 uV

1 sec

Eye blink, horizontal eye movements, frontalis and temporalis EMG, lateral rectus EMG, pulse artifacts.

Referential montage; reference = Pz.

Page 31: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

F7-Fz

T3-Fz

T5-Fz

Fp1-Fz

F3-Fz

C3-Fz

P3-Fz

O1-Fz

Fz-Fz

Cz-Fz

Pz-Fz

Fp2-Fz

F4-Fz

C4-Fz

P4-Fz

O2-Fz

F8-Fz

T4-Fz

T6-Fz

Comment Eye Blink C3 pulse artifact C3 pulse artifact C3 pulse artifact Eyes left Eyes right 100 uV

1 sec

Eye blink, horizontal eye movements, frontalis and temporalis EMG, lateral rectus EMG, pulse artifacts.

Referential montage; reference = Fz.

Page 32: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

F7-C3

T3-C3

T5-C3

Fp1-C3

F3-C3

C3-C3

P3-C3

O1-C3

Fz-C3

Cz-C3

Pz-C3

Fp2-C3

F4-C3

C4-C3

P4-C3

O2-C3

F8-C3

T4-C3

T6-C3

Comment Eye Blink C3 pulse artifact C3 pulse artifact C3 pulse artifact Eyes left Eyes right 100 uV

1 sec

Eye blink, horizontal eye movements, frontalis and temporalis EMG, lateral rectus EMG, pulse artifacts.

Referential montage; reference = C3.

Page 33: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

F7-Av12

T3-Av12

T5-Av12

Fp1-Av12

F3-Av12

C3-Av12

P3-Av12

O1-Av12

Fz-Av12

Cz-Av12

Pz-Av12

Fp2-Av12

F4-Av12

C4-Av12

P4-Av12

O2-Av12

F8-Av12

T4-Av12

T6-Av12

Comment Eye Blink C3 pulse artifact C3 pulse artifact C3 pulse artifact Eyes left Eyes right 100 uV

1 sec

Eye blink, horizontal eye movements, frontalis and temporalis EMG, lateral rectus EMG, pulse artifacts.

Referential montage; reference = common average (of electrodes F3, F4, T3, C3, C4, T4, T5, P3, P4, T6, O1, O2).

Page 34: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

F7-aF7

T3-aT3

T5-aT5

Fp1-aFp1

F3-aF3

C3-aC3

P3-aP3

O1-aO1

FZ-aFz

CZ-aCz

PZ-aPz

Fp2-aFp2

F4-aF4

C4-aC4

P4-aP4

O2-aO2

F8-aF8

T4-aT4

T6-aT6

Comment Eye Blink C3 pulse artifact C3 pulse artifact C3 pulse artifact Eyes left Eyes right100 uV

1 sec

Eye blink, horizontal eye movements, frontalis and temporalis EMG, lateral rectus EMG, pulse artifacts.

Referential montage; reference = Laplacian.

Page 35: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

EEG cannot “see” deep into the brain

Spontaneous activity in, e.g.,

mesial temporal regions,

interhemispheric frontal lobe structures, thalamus

is NOT apparent on scalp EEG

Page 36: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Comparison of intracranial interictal epileptiform activity recorded during sleep with simultaneous scalp EEG. Focal spikes in left and right hippocampus (LH and RH), electrode contacts LHD1 and RHD1, show no scalp EEG correlates; more diffuse right temporal spike and wave complexes (RT) apparent at multiple contacts of right temporal depth electrode (RHD1-4) are associated with visible epileptiform potentials on scalp EEG (channels F8, T4). Referential montage; reference = common average 10-20 electrodes. Top 16 channels = scalp EEG. Channels 17-20 and 21-24 = left and right, respectively, temporal depth electrode recordings. Sensitivity = 15μV/mm for scalp EEG, 50 μV/mm for intracranial recordings.

Page 37: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics
Page 38: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics
Page 39: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

• Alarcón et al. JNNP 1994;57:435-49.– Scalp/FOE or depth/subdural or

scalp/subdural/depth– Mesial temporal focal spike voltage gradient ~

750μV/2.5mm– Estimated depth current dipole 2 nA·m would

produce scalp voltage of 0.45μV – A typical 100μV scalp spike would require a mesial

temporal focal dipole strength ~ 100-600 nA·m (an 80 mV hippocampal spike!)

• Nayak et al. Clin Neurophysiol 2004;115:1423-35.– Scalp/FOE– Only 9% of temporal spikes seen intracranially

visible on scalp w/o averaging

Page 40: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics
Page 41: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

LHD1-Ref

LHD2-Ref

LHD3-Ref

LHD4-Ref

LAT1-Ref

LAT2-Ref

LAT3-Ref

LAT4-Ref

L.MT1-Ref

LMT2-Ref

LMT3-Ref

LMT4-Ref

LPT1-Ref

LPT2-Ref

LPT3-Ref

LPT4-Ref

RHD1-Ref

RHD2-Ref

RHD3-Ref

RHD4-Ref

RAT1-Ref

RAT2-Ref

RAT3-Ref

RAT4-Ref

RMT1-Ref

RMT2-Ref

RMT3-Ref

RMT4-Ref

RPT1-Ref

RPT2-Ref

RPT3-Ref

RPT4-Ref

750 uV1 sec

*

*

Page 42: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Comparison of intracranial ictal epileptiform activity recorded during sleep with simultaneous scalp EEG. Focal electrographic seizure in right hippocampus (rhythmic activity at intracranial depth electrode contact RHD1) has no scalp EEG correlate. Referential montage; reference = common average 10-20 electrodes. Top 16 channels = scalp EEG. Channels 17-20 and 21-24 = left and right, respectively, temporal depth electrode recordings. Sensitivity = 15μV/mm for scalp EEG, 50 μV/mm for intracranial recordings.

Page 43: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Intracranial EEG (ECoG)

Page 44: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Intracranial EEG of one mesial temporal lobe seizure (continuous recording from top left to bottom right). EEG recorded from a depth electrode contact situated within the right anterior hippocampus in a patient with medically-refractory temporal lobe epilepsy. Referential montage, scalp FCz reference.

Page 45: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Temporal lobe epilepsyLeft regional hippocampal/parahippocampal seizure onset

(Intracranial depth electrode recording)

Page 46: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Temporal lobe epilepsySeizure “spread” to right mesial temporal region

(Do seizures “spread” or “jump”?)

Page 47: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

An individual patient may have more than one morphology and/or localization of seizure onset

Next seizures all from same patient, now seizure free >1 year after right anterior temporal lobe resection

Page 48: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

RHD1-Ref

750 uV

500 msec

RHD1-Ref

750 uV

500 msec

RHD1-Ref

750 uV

500 msec

LHD1-Ref

750 uV

500 msec

LHD1-Ref

750 uV

500 msec

Five different seizure onsets recorded from intracranial depth electrodes in one patient over 24 hours

Page 49: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

LHD1-Ref

750 uV

500 msec

LHD1-Ref

750 uV

500 msec

RHD1-Ref

750 uV

500 msec

RHD1-Ref

750 uV

500 msec

RHD1-Ref

750 uV

500 msec

…Continuation of the five seizures from previous figure

Page 50: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics
Page 51: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

LHD1-Ref

LHD2-Ref

LHD3-Ref

LHD4-Ref

LAT1-Ref

LAT2-Ref

LAT3-Ref

LAT4-Ref

L.MT1-Ref

LMT2-Ref

LMT3-Ref

LMT4-Ref

LPT1-Ref

LPT2-Ref

LPT3-Ref

LPT4-Ref

RHD1-Ref

RHD2-Ref

RHD3-Ref

RHD4-Ref

RAT1-Ref

RAT2-Ref

RAT3-Ref

RAT4-Ref

RMT1-Ref

RMT2-Ref

RMT3-Ref

RMT4-Ref

RPT1-Ref

RPT2-Ref

RPT3-Ref

RPT4-Ref

Time

LHD1-Ref

LHD2-Ref

LHD3-Ref

LHD4-Ref

LAT1-Ref

LAT2-Ref

LAT3-Ref

LAT4-Ref

L.MT1-Ref

LMT2-Ref

LMT3-Ref

LMT4-Ref

LPT1-Ref

LPT2-Ref

LPT3-Ref

LPT4-Ref

RHD1-Ref

RHD2-Ref

RHD3-Ref

RHD4-Ref

RAT1-Ref

RAT2-Ref

RAT3-Ref

RAT4-Ref

RMT1-Ref

RMT2-Ref

RMT3-Ref

RMT4-Ref

RPT1-Ref

RPT2-Ref

RPT3-Ref

RPT4-Ref

Time

Focal onset Left Hippocampus

Page 52: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

LHD1-Ref

LHD2-Ref

LHD3-Ref

LHD4-Ref

LAT1-Ref

LAT2-Ref

LAT3-Ref

LAT4-Ref

L.MT1-Ref

LMT2-Ref

LMT3-Ref

LMT4-Ref

LPT1-Ref

LPT2-Ref

LPT3-Ref

LPT4-Ref

RHD1-Ref

RHD2-Ref

RHD3-Ref

RHD4-Ref

RAT1-Ref

RAT2-Ref

RAT3-Ref

RAT4-Ref

RMT1-Ref

RMT2-Ref

RMT3-Ref

RMT4-Ref

RPT1-Ref

RPT2-Ref

RPT3-Ref

RPT4-Ref

Time

LHD1-Ref

LHD2-Ref

LHD3-Ref

LHD4-Ref

LAT1-Ref

LAT2-Ref

LAT3-Ref

LAT4-Ref

L.MT1-Ref

LMT2-Ref

LMT3-Ref

LMT4-Ref

LPT1-Ref

LPT2-Ref

LPT3-Ref

LPT4-Ref

RHD1-Ref

RHD2-Ref

RHD3-Ref

RHD4-Ref

RAT1-Ref

RAT2-Ref

RAT3-Ref

RAT4-Ref

RMT1-Ref

RMT2-Ref

RMT3-Ref

RMT4-Ref

RPT1-Ref

RPT2-Ref

RPT3-Ref

RPT4-Ref

Time

Regional onset Left Hippocampus Parahippocampus

Page 53: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

LHD1-Ref

LHD2-Ref

LHD3-Ref

LHD4-Ref

LAT1-Ref

LAT2-Ref

LAT3-Ref

LAT4-Ref

L.MT1-Ref

LMT2-Ref

LMT3-Ref

LMT4-Ref

LPT1-Ref

LPT2-Ref

LPT3-Ref

LPT4-Ref

RHD1-Ref

RHD2-Ref

RHD3-Ref

RHD4-Ref

RAT1-Ref

RAT2-Ref

RAT3-Ref

RAT4-Ref

RMT1-Ref

RMT2-Ref

RMT3-Ref

RMT4-Ref

RPT1-Ref

RPT2-Ref

RPT3-Ref

RPT4-Ref

Time

LHD1-Ref

LHD2-Ref

LHD3-Ref

LHD4-Ref

LAT1-Ref

LAT2-Ref

LAT3-Ref

LAT4-Ref

L.MT1-Ref

LMT2-Ref

LMT3-Ref

LMT4-Ref

LPT1-Ref

LPT2-Ref

LPT3-Ref

LPT4-Ref

RHD1-Ref

RHD2-Ref

RHD3-Ref

RHD4-Ref

RAT1-Ref

RAT2-Ref

RAT3-Ref

RAT4-Ref

RMT1-Ref

RMT2-Ref

RMT3-Ref

RMT4-Ref

RPT1-Ref

RPT2-Ref

RPT3-Ref

RPT4-Ref

Time

Regional onset Right UncusHippocampus

Page 54: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Regional onset Right UncusHippocampus “spread” to Generalized

LHD1-Ref

LHD2-Ref

LHD3-Ref

LHD4-Ref

LAT1-Ref

LAT2-Ref

LAT3-Ref

LAT4-Ref

L.MT1-Ref

LMT2-Ref

LMT3-Ref

LMT4-Ref

LPT1-Ref

LPT2-Ref

LPT3-Ref

LPT4-Ref

RHD1-Ref

RHD2-Ref

RHD3-Ref

RHD4-Ref

RAT1-Ref

RAT2-Ref

RAT3-Ref

RAT4-Ref

RMT1-Ref

RMT2-Ref

RMT3-Ref

RMT4-Ref

RPT1-Ref

RPT2-Ref

RPT3-Ref

RPT4-Ref

Time

LHD1-Ref

LHD2-Ref

LHD3-Ref

LHD4-Ref

LAT1-Ref

LAT2-Ref

LAT3-Ref

LAT4-Ref

L.MT1-Ref

LMT2-Ref

LMT3-Ref

LMT4-Ref

LPT1-Ref

LPT2-Ref

LPT3-Ref

LPT4-Ref

RHD1-Ref

RHD2-Ref

RHD3-Ref

RHD4-Ref

RAT1-Ref

RAT2-Ref

RAT3-Ref

RAT4-Ref

RMT1-Ref

RMT2-Ref

RMT3-Ref

RMT4-Ref

RPT1-Ref

RPT2-Ref

RPT3-Ref

RPT4-Ref

Time

Page 55: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Intraoperative ECoG

Page 56: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

Pre-resection ECoG in a patient with right temporal lobe epilepsy, hippocampal sclerosis and a posterior middle temporal gyrus gliotic lesion.C1-4 inferior temporal gyrus, C4 anterior. C5-8 middle temporal gyrus, C8 anterior. C11-14 superior temporal gyrus; C1, C5 over lesion, C11 superior to lesion. C14-17 above Sylvian fissure. Propofol bolus given 3 minutes earlier with maximal activation of inferior temporal spikes.

Page 57: Introduction to EEG  for non-epileptologists working in seizure prediction and dynamics

ECoG 2 min after bolus of alfentanil: activation of amygdala/hippocampal spikes and suppression of temporal neocortical spikes

ECoG 10 min later: return to pre-activation baseline of amygdala/hippocampal spikes and reappearance of independent temporal neocortical spikes