25
Introduction to Algorithms 6.046J/18.401J/SMA5503 Lecture 18 Prof. Erik Demaine

Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

  • Upload
    others

  • View
    11

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms6.046J/18.401J/SMA5503

Lecture 18Prof. Erik Demaine

Page 2: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.2© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Negative-weight cyclesRecall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.Example:

uu vv

< 0

Bellman-Ford algorithm: Finds all shortest-path lengths from a source s ∈ V to all v ∈ V or determines that a negative-weight cycle exists.

Page 3: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.3© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Bellman-Ford algorithmd[s] ← 0for each v ∈ V – {s}

do d[v] ←∞

for i ← 1 to |V| – 1do for each edge (u, v) ∈ E

do if d[v] > d[u] + w(u, v)then d[v] ← d[u] + w(u, v)

for each edge (u, v) ∈ Edo if d[v] > d[u] + w(u, v)

then report that a negative-weight cycle exists

initialization

At the end, d[v] = δ(s, v). Time = O(VE).

relaxation step

Page 4: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.4© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

12

–3

2

5

3

A B C D E0 ∞ ∞ ∞ ∞

0 ∞

∞ ∞

Page 5: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.5© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

∞–1

0 –1 ∞ ∞ ∞

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

12

–3

2

5

3

A B C D E0 ∞ ∞ ∞ ∞

0 ∞

∞ ∞

Page 6: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.6© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

∞–1

0 –1 ∞ ∞ ∞

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

12

–3

2

5

3

A B C D E0 ∞ ∞ ∞ ∞

0 ∞

∞4

0 –1 4 ∞ ∞

Page 7: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.7© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

4

0 –1 2 ∞ ∞

2

∞–1

0 –1 ∞ ∞ ∞

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

12

–3

2

5

3

A B C D E0 ∞ ∞ ∞ ∞

0 ∞

0 –1 4 ∞ ∞

Page 8: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.8© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

∞–1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

12

–3

2

5

30 ∞

∞2

0 –1 2 ∞ ∞

0 –1 ∞ ∞ ∞

A B C D E0 ∞ ∞ ∞ ∞

0 –1 4 ∞ ∞

Page 9: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.9© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

∞–1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

12

–3

2

5

30

∞2

0 –1 2 ∞ ∞

0 –1 ∞ ∞ ∞

A B C D E0 ∞ ∞ ∞ ∞

0 –1 4 ∞ ∞1

0 –1 2 ∞ 1

Page 10: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.10© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

∞ 0 –1 2 1 11

∞–1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

12

–3

2

5

30

2

0 –1 2 ∞ ∞

0 –1 ∞ ∞ ∞

A B C D E0 ∞ ∞ ∞ ∞

0 –1 4 ∞ ∞1

0 –1 2 ∞ 1

Page 11: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.11© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

10 –1 2 –2 1

–2 0 –1 2 1 1

∞–1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

12

–3

2

5

30

2

0 –1 2 ∞ ∞

0 –1 ∞ ∞ ∞

A B C D E0 ∞ ∞ ∞ ∞

0 –1 4 ∞ ∞1

0 –1 2 ∞ 1

Page 12: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.12© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

10 –1 2 –2 1

–2 0 –1 2 1 1

∞–1

Example of Bellman-Ford

AA

BB

EE

CC DD

–1

4

12

–3

2

5

30

2

0 –1 2 ∞ ∞

0 –1 ∞ ∞ ∞

A B C D E0 ∞ ∞ ∞ ∞

0 –1 4 ∞ ∞1

0 –1 2 ∞ 1

Note: Values decrease monotonically.

Page 13: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.13© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

CorrectnessTheorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, d[v] = δ(s, v) for all v ∈ V. Proof. Let v ∈ V be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

v1v1

v2v2

v3v3 vk

vkv0v0

…s

v

p:

Since p is a shortest path, we haveδ(s, vi) = δ(s, vi–1) + w(vi–1, vi) .

Page 14: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.14© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Correctness (continued)

v1v1

v2v2

v3v3 vk

vkv0v0

…s

v

p:

Initially, d[v0] = 0 = δ(s, v0), and d[s] is unchanged by subsequent relaxations (because of the lemma from Lecture 17 that d[v] ≥ δ(s, v)).• After 1 pass through E, we have d[v1] = δ(s, v1).• After 2 passes through E, we have d[v2] = δ(s, v2).M

• After k passes through E, we have d[vk] = δ(s, vk).Since G contains no negative-weight cycles, p is simple. Longest simple path has ≤ |V| – 1 edges.

Page 15: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.15© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Detection of negative-weight cycles

Corollary. If a value d[v] fails to converge after |V| – 1 passes, there exists a negative-weight cycle in G reachable from s.

Page 16: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.16© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

DAG shortest pathsIf the graph is a directed acyclic graph (DAG), we first topologically sort the vertices.

Walk through the vertices u ∈ V in this order, relaxing the edges in Adj[u], thereby obtaining the shortest paths from s in a total of O(V + E) time.

• Determine f : V → {1, 2, …, |V|} such that (u, v) ∈ E⇒ f (u) < f (v).

• O(V + E) time using depth-first search.

33 55 66

44

22s

77

99

8811

Page 17: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.17© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Linear programming

Let A be an m×n matrix, b be an m-vector, and cbe an n-vector. Find an n-vector x that maximizes cTx subject to Ax ≤ b, or determine that no such solution exists.

. ≤ .maximizingm

n

A x ≤ b cT x

Page 18: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.18© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Linear-programming algorithms

Algorithms for the general problem• Simplex methods — practical, but worst-case

exponential time.• Ellipsoid algorithm — polynomial time, but

slow in practice.• Interior-point methods — polynomial time and

competes with simplex.Feasibility problem: No optimization criterion. Just find x such that Ax ≤ b.• In general, just as hard as ordinary LP.

Page 19: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.19© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Solving a system of difference constraints

Linear programming where each row of A contains exactly one 1, one –1, and the rest 0’s. Example:

x1 – x2 ≤ 3x2 – x3 ≤ –2x1 – x3 ≤ 2

xj – xi ≤ wij

Solution:x1 = 3x2 = 0x3 = 2

Constraint graph:

vjvjvi

vixj – xi ≤ wijwij

(The “A”matrix has dimensions|E | × |V |.)

Page 20: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.20© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Unsatisfiable constraintsTheorem. If the constraint graph contains a negative-weight cycle, then the system of differences is unsatisfiable.Proof. Suppose that the negative-weight cycle is v1 → v2 →L→ vk → v1. Then, we have

x2 – x1 ≤ w12x3 – x2 ≤ w23

Mxk – xk–1 ≤ wk–1, kx1 – xk ≤ wk1

Therefore, no values for the xican satisfy the constraints.

0 ≤ weight of cycle< 0

Page 21: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.21© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Satisfying the constraintsTheorem. Suppose no negative-weight cycle exists in the constraint graph. Then, the constraints are satisfiable.Proof. Add a new vertex s to V with a 0-weight edge to each vertex vi ∈ V.

v1v1

v4v4

v7v7

v9v9

v3v3

s

0 Note:No negative-weight cycles introduced ⇒shortest paths exist.

Page 22: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.22© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

The triangle inequality gives us δ(s,vj) ≤ δ(s, vi) + wij. Since xi = δ(s, vi) and xj = δ(s, vj), the constraint xj – xi≤ wij is satisfied.

Proof (continued)Claim: The assignment xi = δ(s, vi) solves the constraints.

ss

vjvj

vivi

δ(s, vi)

δ(s, vj) wij

Consider any constraint xj – xi ≤ wij, and consider the shortest paths from s to vj and vi:

Page 23: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.23© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Bellman-Ford and linear programming

Corollary. The Bellman-Ford algorithm can solve a system of m difference constraints on nvariables in O(mn) time. Single-source shortest paths is a simple LP problem.In fact, Bellman-Ford maximizes x1 + x2 + L + xnsubject to the constraints xj – xi ≤ wij and xi ≤ 0(exercise).Bellman-Ford also minimizes maxi{xi} – mini{xi}(exercise).

Page 24: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.24© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Application to VLSI layout compaction

Integrated-circuit features:

Problem: Compact (in one dimension) the space between the features of a VLSI layout without bringing any features too close together.

minimum separation λ

Page 25: Introduction to Algorithmshome.ustc.edu.cn/~dwz/MIT_Algorithm/%c2%e9%ca%a1%c0%ed%b9%a4%d1%… · Bellman-Ford and linear programming Corollary. The Bellman-Ford algorithm can solve

Introduction to Algorithms Day 31 L18.25© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

VLSI layout compaction

11

x1 x2

2

d1

Constraint: x2 – x1 ≥ d1 + λBellman-Ford minimizes maxi{xi} – mini{xi}, which compacts the layout in the x-dimension.