46
Introduction to Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16

Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

  • Upload
    others

  • View
    11

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Introduction to ComputationalNeuroscienceLecture 6: Single neuron models

sábado, 1 de octubre de 16

Page 2: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Applications

Cognitive

Models

Analyses

Basics

Lesson Title

1 Introduction

2 Structure and Function of the NS

3 Windows to the Brain

4 Data analysis

5 Data analysis II

6 Single neuron models

7 Network models

8 Artificial neural networks

9 Learning and memory

10 Perception

11 Attention & decision making

12 Brain-Computer interface

13 Neuroscience and society

14 Future and outlook: AI

15 Projects presentations

16 Projects presentations

sábado, 1 de octubre de 16

Page 3: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Let’s start easy... how do we simulate the behavior of a single neuron in a computer?

Neurons in silico

“Make it as simple as possible but not simpler” Einstein

Artificial neural networks is a major strand in computationalneuroscience, machine learning, and artificial intelligence

sábado, 1 de octubre de 16

Page 4: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Learning objectives

• Understand the different levels of single neuron modeling

• Simulate the most popular single compartment models

sábado, 1 de octubre de 16

Page 5: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Conferences of computational neuroscience...

* Biologists (bottom-uppers) believe that a model that deviates from details of known physiology is inadmissibly inaccurate

* CS, physicists, and mathematicians (top-downers) feel that models that fail to simplify do not allow any useful generalization to be made

Appropriate level of models?

sábado, 1 de octubre de 16

Page 6: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Biological detail

Appropriate level of models

Biologicalprocesses

(molecular)

Electricalproperties

(morphology)

Electricalproperties(average)

Computationalproperties

(processing)

sábado, 1 de octubre de 16

Page 7: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Classification of neuron models

Point neuron models

Multi-compartment models

Spiking neurons

Rate neurons

McCulloch-Pitts

Integrate-and-Fire

Hodgkin-Huxley

sábado, 1 de octubre de 16

Page 8: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

McCulloch-Pitts

Integrate-and-Fire

Hodgkin-Huxley

sábado, 1 de octubre de 16

Page 9: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

McCulloch-Pitts (idea)McCulloch and Pitts (1943): pioneers to formally define neurons as computational elements

The idea: explore simplified neural models to get the essence of neural processing by ignoring irrelevant detail and focusing in what is needed to do a computational task

sábado, 1 de octubre de 16

Page 10: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

McCulloch-Pitts (idea)McCulloch and Pitts knew that spikes (action potential) somehow carry information through the brain:

each spike would represent a binary 1

each lack of spike would represent a binary 0

They showed how spikes could be combined to do logical and arithmetical operations

From modern perspective there is a design problem for these circuit elements: brevity of a spike (1 ms) compared to the interval between spikes (>50 ms) implies a duty cycle of < 2%

sábado, 1 de octubre de 16

Page 11: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

McCulloch-Pitts (rule)

MP neurons are binary: they take as input and produce as output only 0’s or 1’s

Rule: activations from other neurons are summed at the neuron and outputs 1 if threshold is reached and 0 if not

sábado, 1 de octubre de 16

Page 12: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

McCulloch-Pitts (analogy)

MP neurons function much like a transistor:

In artificial networks, inputs come from the outputs of other MP neurons (as transistors in a circuit)

sábado, 1 de octubre de 16

Page 13: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

McCulloch-Pitts (nomenclature)

Weight: is the strength of the connection between twoneurons

State: is the degree of activation of a single neuron

Update rule: determines how input to a neuron is translatedinto the state of that neuron

sábado, 1 de octubre de 16

Page 14: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

McCulloch-Pitts (states)

Sharp threshold(digital)

Sigmoid function(analog)

sábado, 1 de octubre de 16

Page 15: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

McCulloch-Pitts (states)In mathematical terms:

y = �

nX

i=1

!i · xi

!

where � represents a threshold or a sigmoid function

if total_input >= 0total_input = sum(w.*x);

y = 1;else

y = 0;end

sábado, 1 de octubre de 16

Page 16: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

McCulloch-Pitts (logic)

MP neurons are capable of logic functions

sábado, 1 de octubre de 16

Page 17: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

McCulloch-Pitts

Integrate-and-Fire

Hodgkin-Huxley

sábado, 1 de octubre de 16

Page 18: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Prerequisites

Differential equations (1 slide)

Neurons as electronic circuits (4 slides)

sábado, 1 de octubre de 16

Page 19: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Differential equations

The most common and simplest types of dynamic modelscome in the form of differential equations

They describe the rate of change of some variable, say u, as a function u and other variables

sábado, 1 de octubre de 16

Page 20: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Generation of electric potential in neuron’s membrane

Chief factors that determine the membrane potential:

1. The permeability of the membrane to different ions

2. Difference in ionic concentrations

Ion pumps: maintain the concentration difference by actively moving ions against the gradient using metabolic resources

Ion channels: “holes” that allow the passage of ions in the direction of the concentration gradient. Some channels are selective for specific ions and some are not selective

sábado, 1 de octubre de 16

Page 21: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Neuron as an electric circuit

sábado, 1 de octubre de 16

Page 22: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Differences in ion concentration

Neuron as an electric circuit

Cell membrane

Ionic channels

Batteries

Capacitor

Resistors

Can we describe an equivalent circuit to calculate the change in membrane potential V?

sábado, 1 de octubre de 16

Page 23: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Neuron as an electric circuit

Ohm law:

Kirchoff’s law: the total current flowing across the cell membrane is the sum of the capacitive current and the ionic currentssábado, 1 de octubre de 16

Page 24: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Integrate-and-fire (idea)

One of the oldest... proposed by Lapicque (1907) way before the mechanisms that generate action potential we understood

One of the most popular neuronal models (simple but captureimportant neuronal properties)

Neurons integrate inputs (synaptic currents) from other neurons, and when “enough” are received they fire an action potential and reset their membrane voltage

sábado, 1 de octubre de 16

Page 25: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Integrate-and-fire (bath tube)

Analogy: imagine a bath tube with a hole in the bottom, and thus leaking water

Incoming action potentials are like buckets of water that are poured in time into the bath tube

If enough are coming during a short time, and thus compensating for the leak, water will overflow

At threshold the neuron emits an action potential and its voltage (equivalent to the water level) will be reset to a default value

sábado, 1 de octubre de 16

Page 26: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Integrate-and-fire (threshold)Threshold mechanism

For V < VTh neuron obeys a passive dynamics

For V = VTh neuron fires a spike and resets

The shape of the action potentials are more or less the same

As far as neural communications is concerned, the exact shape of the spike is not important, rather its time of occurrence

sábado, 1 de octubre de 16

Page 27: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Integrate-and-fire (equation) Let’s divide the behavior of a neuron in two regimes

Sub-threshold (voltage according to equivalent circuit):

Supra-threshold (if V = VTh then spike and reset)

sábado, 1 de octubre de 16

Page 28: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Integrate-and-fire (simulation)

Now we are ready to simulate an I&F neuron...

We still lack synaptic currents from other neurons... (later)

sábado, 1 de octubre de 16

Page 29: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

McCulloch-Pitts

Integrate-and-Fire

Hodgkin-Huxley

sábado, 1 de octubre de 16

Page 30: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Hodgkin-Huxley

sábado, 1 de octubre de 16

Page 31: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Hodgkin-Huxley (heroic)

Nobel Prize in Medicine or Physiology in 1963

Empirical model that describes the ionic conductance and generation of nerve action potential

Published in 1952

Work reflects a combination of experimental work, theoreticalhypothesis, computational data fitting, and model prediction

sábado, 1 de octubre de 16

Page 32: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Hodgkin-Huxley (big is good)

Made their experiments on the squid giant axon, not the giant squid axon!

sábado, 1 de octubre de 16

Page 33: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Hodgkin-Huxley (as a circuit)

Voltage clamp: fix the voltage, measure the current, and infer g

sábado, 1 de octubre de 16

Page 34: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Hodgkin-Huxley (Na and K)

But how exactly?

Voltage clamp: fix the voltage, measure the current, and infer g

The data of HH indicated that Na and K ion channels conductance (open) depended on voltage

sábado, 1 de octubre de 16

Page 35: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Hodgkin-Huxley (gating)

Voltage clamp: fix the voltage, measure the current, and infer g

HH proposed that channels behaved as a system of gates or doors

gK = maximal conductance x probability all gates are open

Example for K channels:

n being the probability gate is open

n changes over time:

gK =For 1 gate

For 4 gates

sábado, 1 de octubre de 16

Page 36: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Hodgkin-Huxley (full model)

Voltage clamp: fix the voltage, measure the current, and infer g

Full model: Inserting gating mechanisms of Na and K conductances into current equations...

sábado, 1 de octubre de 16

Page 37: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Hodgkin-Huxley (full model)

Voltage clamp: fix the voltage, measure the current, and infer g

HHsimsábado, 1 de octubre de 16

Page 38: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Hodgkin-Huxley (full model)

Voltage clamp: fix the voltage, measure the current, and infer g

Action potentials come naturallysábado, 1 de octubre de 16

Page 39: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

What about the synapses?

To simulate circuits of neurons we also need to include the synaptic currents (Isyn)

7.2 THE POSTSYNAPTIC RESPONSE 173

RRVP

Recycling

Reservevesicles

Postsynapticreceptors

Transmitter

Actionpotential

[Ca ]2+

PSCReleasemachinery

Fig. 7.1 Schematic of achemical synapse. In thisexample, the presynaptic terminalconsists of a single active zonecontaining a RRVP which isreplenished from a single reservepool. A presynaptic actionpotential leads to calcium entrythrough voltage-gated calciumchannels which may result in avesicle in the RRVP fusing withthe presynaptic membrane andreleasing neurotransmitter intothe synaptic cleft.Neurotransmitter di!uses in thecleft and binds with postsynapticreceptors which then open,inducing a postsynaptic current(PSC).

which, on release, may activate a corresponding pool of postsynaptic recep-tors (Walmsley et al., 1998). The RRVP is replenished from a large reservepool. The reality is likely to be more complex than this, with vesicles in theRRVP possibly consisting of a number of subpools, each in different states ofreadiness (Thomson, 2000b). Recycling of vesicles may also involve a numberof distinguishable reserve pools (Thomson, 2000b; Rizzoli and Betz, 2005).

A model of such a synapse could itself be very complex. The first stepin creating a synapse model is identifying the scientific question we wish toaddress. This will affect the level of detail that needs to be included. Verydifferent models will be used if our aim is to investigate the dynamics of aneural network involving thousands of synapses compared to exploring theinfluence of transmitter diffusion on the time course of a miniature exci-tatory postsynaptic current (EPSC). In this chapter, we outline the widerange of mathematical descriptions that can be used to model both chemicaland electrical synapses. We start with the simplest models that capture theessence of the postsynaptic electrical response, before including graduallyincreasing levels of detail.

The abbreviation IPSC,standing for inhibitorypostsynaptic current, is alsoused.

7.2 The postsynaptic responseThe aim of a synapse model is to describe accurately the postsynaptic res-ponse generated by the arrival of an action potential at a presynaptic termi-nal. We assume that the response of interest is electrical, but it could equallybe chemical, such as an influx of calcium or the triggering of a second-messenger cascade. For an electrical response, the fundamental quantity to bemodelled is the time course of the postsynaptic receptor conductance. Thiscan be captured by simple phenomenological waveforms, or by more com-plex kinetic schemes that are analogous to the models of membrane-boundion channels discussed in Chapter 5.

7.2.1 Simple conductance waveformsThe electrical current that results from the release of a unit amount of neu-rotransmitter at time ts is, for t ! ts:

Isyn(t ) = gsyn(t )(V (t )" Esyn), (7.1)

where the effect of transmitter binding to and opening postsynaptic recep-tors is a conductance change, gsyn(t ), in the postsynaptic membrane. V (t ) is

sábado, 1 de octubre de 16

Page 40: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

What about the synapses?

PSC (excitatory)

To simulate circuits of neurons we also need to include the synaptic currents (Isyn)

How do we model synaptic currents?

sábado, 1 de octubre de 16

Page 41: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

What about the synapses?

Synaptic currents also occur due to the opening and closing of ion channels:

PSC (excitatory)

Arrival of incoming spike from other neuron:

1) gsyn gsyn + dg

2) exponential decay

as with Hodgkin-Huxley the difficultyis to find how g changes with time

Solution I:

sábado, 1 de octubre de 16

Page 42: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

What about the synapses?Two important remarks:

* There are excitatory and inhibitory synapses

* There MANY synapses

Isyn = Iexc + Iinh

XIsyn

sábado, 1 de octubre de 16

Page 43: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

What about the synapses?Now, we can couple a synaptic model with I&F or HH

I&F

+ synapticcurrents

= Full

modelReady to simulate any neuronal circuit!

sábado, 1 de octubre de 16

Page 44: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Multicompartment modelsUsed for very detailed simulations of one or few neurons

Allows fine study of morphological, pharmacological, or electrical effects

Simulated using NEURON or GENESIS

Idea: divide a neuron incompartments (with distinct electrical properties) & connectthe equivalent circuits

sábado, 1 de octubre de 16

Page 45: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Summary

• Single compartment models include McCulloc-Pitts, Integrate-and-Fire, and Hodgkin-Huxley

• MP is good for exploring computational properties

• I&F and HH capture important details of neuronal activity and are the basis for simulating realistic neuronal circuits

sábado, 1 de octubre de 16

Page 46: Introduction to Computational Neuroscience · Computational Neuroscience Lecture 6: Single neuron models sábado, 1 de octubre de 16. Applications Cognitive Models Analyses Basics

Applications

Cognitive

Models

Analyses

Basics

Lesson Title

1 Introduction

2 Structure and Function of the NS

3 Windows to the Brain

4 Data analysis

5 Data analysis II

6 Single neuron models

7 Network models

8 Artificial neural networks

9 Learning and memory

10 Perception

11 Attention & decision making

12 Brain-Computer interface

13 Neuroscience and society

14 Future and outlook: AI

15 Projects presentations

16 Projects presentations

sábado, 1 de octubre de 16